
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Master's Theses Theses and Dissertations 

2019 

Dissecting a Role for Polyamines in Rift Valley Fever Virus Dissecting a Role for Polyamines in Rift Valley Fever Virus 

Infection Infection 

Vincent Mastrodomenico 

Follow this and additional works at: https://ecommons.luc.edu/luc_theses 

 Part of the Virology Commons 

Recommended Citation Recommended Citation 
Mastrodomenico, Vincent, "Dissecting a Role for Polyamines in Rift Valley Fever Virus Infection" (2019). 
Master's Theses. 3998. 
https://ecommons.luc.edu/luc_theses/3998 

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It 
has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 2019 Vincent Mastrodomenico 

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_theses
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_theses?utm_source=ecommons.luc.edu%2Fluc_theses%2F3998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/53?utm_source=ecommons.luc.edu%2Fluc_theses%2F3998&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_theses/3998?utm_source=ecommons.luc.edu%2Fluc_theses%2F3998&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


 
 

LOYOLA UNIVERSITY CHICAGO 

 

 

DISSECTING A ROLE FOR POLYAMINES 

IN RIFT VALLEY FEVER VIRUS INFECTION 

 

 

A THESIS SUBMITTED TO 

THE FACULTY OF THE GRADUATE SCHOOL 

IN CANDIDACY FOR THE DEGREE OF 

MASTER OF SCIENCE 

 

 

PROGRAM IN MICROBIOLOGY AND IMMUNOLOGY 

 

 

BY  

VINCENT MASTRODOMENICO 

CHICAGO, ILLINOIS  

JUNE 2019 

 



 
 

 

 

 

 

 

 

 

Copyright by Vincent Mastrodomenico, 2019 

All rights reserved. 

 



 
 

 iii 

ACKNOWLEDMENTS 
 

I would like to thank Dr. Bryan Mounce, PhD, for being an exemplary mentor 

throughout my time at Loyola. It is with his guidance and unique perspective that I have 

learned to be proud of my milestones and overcome any obstacle in my path. I would 

also like to thank my entire lab, but especially Patrick Tate, Courtney Dial, and Tom 

Kicmal. You all have been with me every step of the way, and I could not be more 

grateful for all your help.  

 I would also like to thank the members of my thesis committee (Dr. Susan Baker 

and Dr. Yee Ling Wu) for questioning me, challenging me, and not only being incredibly 

supportive, but also motivating me to become a better scientist.  

 Lastly, I would like to thank my friends and family for providing me with love and 

support through all the difficulties that graduate students encounter. I would particularly 

like to thank my undergraduate mentor, Dr. Zachary Pratt, for being the inspiration 

behind my interest in biomedical science in the first place. 

 

 
 
 
 
 
 
 
 
 



 

 iv 

TABLE OF CONTENTS 

ACKNOWLEDMENTS ...................................................................................................................... III 

LIST OF FIGURES ........................................................................................................................... VI 

LIST OF TABLES ........................................................................................................................... VIII 

LIST OF ABBREVIATIONS ................................................................................................................ IX 

ABSTRACT ...................................................................................................................................... XI 

CHAPTER 1: BACKGROUND ............................................................................................................ 1 

Review of Literature ................................................................................................................... 1 
Rift Valley Fever Virus: an Overview ....................................................................................... 1 
Rift Valley Fever Virus Structure, Life Cycle, and Production ................................................. 4 
Role of Polyamines in Viral Infection ...................................................................................... 7 

Aims and Hypothesis .................................................................................................................. 9 

CHAPTER 2: MATERIALS AND METHODS ...................................................................................... 12 

Cell Culture ............................................................................................................................... 12 
Drug Treatment ........................................................................................................................ 12 
Infection and Enumeration of Viral Titers ................................................................................ 13 
Thin Layer Chromatography Determination of Polyamines ..................................................... 14 
Polyamine Luciferase Reporter Assay ...................................................................................... 14 
Virus Preparation and Concentration ....................................................................................... 15 
RNA Purification and cDNA Synthesis ....................................................................................... 15 
Viral Genome Quantification .................................................................................................... 15 
Genome-to-PFU Ratio Calculations .......................................................................................... 16 
Western Blot ............................................................................................................................. 17 
Silver Stain ................................................................................................................................ 17 
Indirect Immunofluorescence .................................................................................................. 18 
Electron Microscopy ................................................................................................................. 18 
Particle Size Measuring ............................................................................................................ 19 
Fractionation ............................................................................................................................ 19 
Total Polyamine Assay .............................................................................................................. 20 
Statistical Analysis .................................................................................................................... 20 

CHAPTER 3: RESULTS .................................................................................................................... 21 

RVFV is Sensitive to Polyamine Depletion. ............................................................................... 21 
RVFV Genome-to-PFU Ratio is Increased with Polyamine Depletion. ...................................... 24 
RVFV Viral Protein Levels are Unchanged in Infected Cell Supernatant. .................................. 27 
Viral Particles from Polyamine-Depleted Cells Show No Significant Physical Differences. ...... 30 
Polyamines are Associated with RVFV MP-12 Virions .............................................................. 32 



 

 v 

CHAPTER 4: DISCUSSION .............................................................................................................. 35 

Polyamines Play a Crucial Role in RVFV Infection ..................................................................... 35 
Polyamines Potentially Involved with RVFV Packaging ............................................................ 37 
Polyamines Producing Defective Viral Particles ....................................................................... 38 

REFERENCE LIST ............................................................................................................................ 40 

VITA .............................................................................................................................................. 46 

 
  



 

 vi 

 

 

LIST OF FIGURES 

Figure 1.  Transmission Cycle of RVFV. ........................................................................................... 3 

Figure 2.  Schematic Diagram of Rift Valley Fever Virus ................................................................. 4 

Figure 3.  Bunyavirus Replication Cycle. ......................................................................................... 6 

Figure 4.  Biosynthesis Pathway of Polyamines and Drug Inhibitors .............................................. 8 

Figure 5.  Rift Valley Fever Virus MP-12 is Sensitive to DFMO Treatment. .................................. 22 

Figure 6.  Rift Valley Fever Virus MP-12 is Sensitive to DENSpm Treatment. ............................... 23 

Figure 7.  Specific Infectivity of RVFV MP-12 is Diminished with DFMO. ..................................... 25 

Figure 8.  Specific Infectivity of RVFV MP-12 is Diminished with DENSpm. ................................. 26 

Figure 9.  Specific Infectivity of RNAse Treated RVFV MP-12 is Diminished with Polyamine 
                  Depletion. ..................................................................................................................... 27 

Figure 10. RVFV MP-12 Viral Protein Levels are Unchanged in Non-Cell Associated Virus Via 
                   Western Blot Analysis .................................................................................................. 28 

Figure 11. RVFV MP-12 Viral Protein Levels are Unchanged in Non-Cell Associated Virus Via 
                   Indirect Immunofluorescence ..................................................................................... 29 

Figure 12. RVFV MP-12 Viral Protein Levels are Unchanged in Non-Cell Associated Virus Via
                   Silver Stain Analysis ..................................................................................................... 30 

Figure 13. Physical Appearance of Secreted RVFV MP-12 Virions are Unchanged with Polyamine 
                   Depletion ..................................................................................................................... 31 

Figure 14. Physical Properties of Secreted RVFV MP-12 Virions are Unchanged with Polyamine 
                   Depletion ..................................................................................................................... 32 

Figure 15. Polyamines are Associated with RVFV MP-12 Virions ................................................. 34 



 

 vii 

Figure 16. Proposed Model of RVFV MP-12 Infection With and Without Polyamines. ................ 36 

 
  



 

 viii 

 

 

LIST OF TABLES 

 
Table 1. Primers Utilized in This Study ......................................................................................... 16 
 
  



 

 ix 

 

 

LIST OF ABBREVIATIONS 
 

Rift Valley fever virus    RVFV 

Rift Valley fever     RVF 

La Crosse virus     LACV 

Zika virus      ZIKV 

Viral RNA      vRNA 

Complementary RNA    cRNA 

Ornithine decarboxylase    ODC1 

Spermidine synthase    SRM 

Spermine synthase     SMS 

Spermine oxidase     SMOX 

Spermidine/spermine acetyltransferase  SAT1 

Polyamine oxidase     PAOX 

Herpes simplex virus 1    HSV1 

Vaccinia virus     VACV 

Human cytomegalovirus    HCMV 

Human immunodeficiency virus    HIV1 

Eukaryotic translation initiation factor 5A  eIF5A 

Semiliki Forest virus     SFV 

Difluoromethylornithine    DFMO 



 

 x 

N1,N11-diethylnorospermine   DENSpm 

Keystone virus     KEYV 

Thin layer chromatography    TLC 

Multiplicity of Infection    MOI 

Quantitative Real Time PCR   qRT-PCR 

Plaque forming unit     PFU 

Encephalomyocarditis virus   EMCV 

Newcastle disease virus    NDV 

Coxsackie B3 virus     CVB3 

 

 

  



 

 xi 

 

 

ABSTRACT 
 

Bunyaviruses are emerging viral pathogens that cause encephalitis, hemorrhagic 

fevers, and meningitis. Rift Valley fever virus is a particularly devastating bunyavirus, 

infecting both humans and livestock with significant morbidity and mortality. 

By coordinating several host and viral processes Rift Valley fever virus is able 

to produce infectious virions. Polyamines are small, positively-charged host-derived 

molecules that play diverse roles in human cells and in infection. We previously 

demonstrated that polyamines are crucial for RNA viruses; however, the mechanisms 

by which polyamines function remain unknown. Here, we investigated polyamines’ role 

in the replication of the Rift Valley fever virus (vaccine strain MP-12). We found that 

polyamine depletion did not impact viral RNA or protein accumulation. Viral particles 

demonstrated no change in morphology, size, or density, however, targeting polyamines 

significantly reduced viral titers. In sum, polyamine depletion results in the accumulation 

of noninfectious particles which has important implications for targeting polyamines 

therapeutically, as well as enhancing vaccine strategies. 
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CHAPTER 1: BACKGROUND 

Review of Literature 

Rift Valley Fever Virus: an Overview  

The sudden emergence of viral pathogens is of great concern since they 

devastate both human and veterinary health (1). The National Institute of Allergy and 

Infectious Disease categorizes emerging infectious diseases by the organism/pathogen 

which possess the highest health risk to national security and public health. Category A 

pathogens are of the highest priority since they can easily be transmitted, result in high 

morbidity rates, cause mass social disruption, and require immediate action from 

healthcare professionals (2). Within this category are Bunyaviruses (2). Bunyaviruses 

are of particular interest because this viral family is the largest family with more than 

350 member viruses (3). With so many viruses in this family, the potential for outbreaks 

is great and current reports have noted a recent outbreak of Rift Valley fever, caused by 

Rift Valley fever virus (RVFV)(4, 5).  

RVFV is currently restricted to Africa and the Middle East. The disease was first 

identified and characterized in 1930 by Dauney et al. (6) in Kenya. From its 

identification, it remained a serious health concern for in East Africa and subsequently, 

the first major outbreak was reported in 1977 in Egypt (7). The second major outbreak 

occurred in 2000 moving from East Africa to Saudi Arabia and Yemen in the Arabian

 Peninsula (7, 8). Outbreaks continued in Kenya, Somalia, Tanzania in 2007, 

Sudan in 2008 and 2010, and more recently in Uganda and Niger in 2016 (4, 7). RVFV 
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appears to have excellent potential for spreading to new areas and therefore must be 

further studied to persevere human and animal health.   

RVFV, the causative agent of Rift Valley fever, normally causes an acute febrile 

illness which can escalate and cause severe disease including encephalitis, 

hemorrhagic fever in humans, as well as spontaneous abortion in domesticated animals 

(7, 9).  RVFV is an arthropod-borne virus (arbovirus) that infects a wide range of wild 

and domestic vertebrate species, mainly ruminants such as sheep, cattle, and goats 

(10, 11). The primary and secondary vectors of RVFV are the Aedes and Culex 

mosquitos(12). The RVFV transmission cycle, summarized in Figure 1, is maintained 

through horizontal transmission, direct contact transmission with infected tissue and 

fluid, and suspected vertical transmission between mosquitos and ruminants with 

humans being considered as the dead-end host (11, 13). 
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Figure 1. Transmission Cycle of RVFV. 
Arrows represent transmission direction. Solid green lines represent established routes of horizontal 
transmission from collected data. Solid red lines represent established routes of direct contact 
transmission from infected tissue and fluids. Dotted lines, both green and red, are suspected routes of 
vertical transmission but current data is insufficient. Adapted and modified image from (11). 

 
Outbreaks of RVFV often force a heavy restriction on livestock movement to 

prevent spread, causing massive economic loss. In addition, a major concern for society 

would be the continued spread of RVFV and the spread of other bunyaviruses. A 

distantly related bunyavirus, La Crosse virus (LACV) also causes encephalitis following 

infection transmitted by a mosquito bite and is primarily localized to midwestern and 

mid-Atlantic states of the USA (14, 15). Further, the rapid dissemination of several other 
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arboviruses like chikungunya (16) and Zika (17) viruses (ZIKV) demonstrate the 

extreme epidemic potential of arboviruses, including bunyaviruses. 

Rift Valley Fever Virus Structure, Life Cycle, and Production  

To remain pathogenic, viruses must maintain infectivity following successful 

replication of their viral genomes (Figure 2). RVFV has a tripartite negative-stranded 

RNA genome which is comprised of small (S), medium (M), and large (L) segments(18). 

The S segment (1.7 kB) is of ambisense orientation consisting of 2 proteins: the 

nucleoprotein (N) and a nonstructural protein (NSs protein). The M segment (3.2 kB) 

encodes the glycoproteins, Gn and Gc, and a 78 kD protein with an unknown function. 

Lastly, the L segment (6.4 kB) encodes the RNA-dependent RNA polymerase (L 

protein)(18, 19).  

 

Figure 2. Schematic Diagram of Rift Valley Fever Virus 
The panel above illustrates the RVFV virion containing the S, M, and L RNA segments in addition to the 
glycoproteins incorporated in the envelope. The arrows indicate the direction of viral protein production. 
The viral proteins include the polymerase (L), glycoproteins (Gc and Gn), Nonstructural M protein (NSm), 
Nonstructural S protein (NSs) and nucleoprotein (N).  
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All viruses must complete an entire replication cycle in host cells to produce 

viable progeny. Figure 3 depicts the viral life cycle of RVFV. It first attaches to an 

unknown host cell receptor mediated by interactions of viral glycoproteins and host 

proteins. Through receptor-mediated endocytosis, the virus enters the cell in an early 

endosome. The virion will fuse to the endosomal membranes upon acidification and 

undergoes viral uncoating.  The release of the viral RNA (vRNA) into the cytoplasm 

begins primary transcription of the vRNA to produce complementary RNA (cRNA) for 

translation and additional transcription. Viral proteins are produced and are transported 

to the ER-Golgi complex where encapsidation occurs followed by egress at the plasma 

membrane (20). These several factors (shown in Figure 2 and Figure 3) are essential 

for RVFV and contribute to the infectivity of progeny bunyaviruses (21), inclusion of 

replicative proteins (L and N proteins), and successful envelopment. 
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Figure 3. Bunyavirus Replication Cycle.  
The viral life cycle beings with attachment of virus to a host receptor. The virus undergoes receptor 
mediated endocytosis and enters the cell. Uncoating follows upon acidification and fusion with the 
endosome. Transcription of the viral RNA begins to produce complementary S, M, and L segments. 
Transcription of viral RNA continues in addition to translation of viral proteins. The proteins are 
transported to the ER-Golgi complex for further synthesis and encapsidation. Maturation of the virion 
occurs and egresses from the plasma membrane. 

 
It is important to note that the proportion of infectious virions versus noninfectious 

particles in RNA virus infection is low, with noninfectious particles outnumbering 

infectious particles by 100- to 1000-fold (22). An example of this phenomenon is for 

Bunyamwera virus, a related bunyavirus (22). The factors contributing to this ratio are 

multifactorial, but have important implications for infection and pathogenesis (23). The 

noninfectious particles can serve as decoys from immune system neutralization, 

enhancing infection by infectious particles (24, 25). In contrast, noninfectious particles 

can interfere with productive infection, by binding cellular receptors or usurping cellular 

and viral machinery from infectious viruses (26). Defective genomes play a role in 
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pathogenesis; for example, paramyxoviruses persist in their hosts by maintaining a 

balance of replication and apoptosis, which is modulated by defective viruses (27). 

Additionally, arthropod-borne viruses persist in their hosts at least partially through 

defective viral genomes feeding into host immune defenses such as the RNAi pathway 

(28). The precise mechanisms by which viruses produce defective genomes remains to 

be understood for several viral families. Importantly, the cellular contribution to this ratio 

of infectious-to-noninfectious virus is unclear.  

Role of Polyamines in Viral Infection 

Polyamines are small, positively-charged molecules found abundantly in all cells. 

Mammalian cells exclusively synthesize three biogenic polyamines(29). Within a cell, 

arginine is converted to ornithine which is the first step in this synthetic pathway, shown 

in Figure 4. Ornithine is converted into the polyamine putrescine via the gatekeeping 

enzyme of the pathway, ornithine decarboxylase 1 (ODC1). Following synthesis of 

putrescine, an enzyme, spermidine synthase (SRM), coverts putrescine to spermidine. 

Spermidine is then converted to spermine with spermine synthase (SMS). 

Subsequently, spermine can be converted back to spermidine via spermine oxidase 

(SMOX) and putrescine via spermidine/spermine acetyltransferase (SAT1) and 

polyamine oxidase (PAOX)(29). The polyamine synthesis pathway is important for many 

cellular processes, such as cell cycling, nucleic acid binding, and altering membrane 

fluidity (30–32).  
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Figure 4. Biosynthesis Pathway of Polyamines and Drug Inhibitors 
Polyamine synthesis begins with arginine being converted into ornithine. ODC1, the rate-limiting enzyme, 
converts ornithine to putrescine. Putrescine is converted to spermidine via SRM. Spermidine is converted 
to spermine via SMS and converted back via SMOX. Spermine and spermidine can be acetylated by 
SAT1 and converted back to putrescine via PAO. DFMO is an irreversible inhibitor to ODC1 preventing 
polyamine synthesis and DENSpm activates SAT1 to acetylate spermidine and spermine which will 
convert back to putrescine or are exported out of the cell. Image adapted and modified from (33). 
 

With the abundance of polyamines being utilized in cells for diverse processes, it 

is not surprising that viruses use polyamines for their own replication. Viruses like 

herpes simplex 1 (HSV1), vaccinia virus (VACV), and human cytomegalovirus (HCMV) 

have been reported to contain polyamines within the virion and are involved in viral 

packaging (34–36).  Ebolavirus, Marburgvirus, and human immunodeficiency virus 

(HIV-1) utilize polyamines in translation through the hypusination of eukaryotic 

translation initiation factor 5A (eIF5A) (37–39). Additionally, the depletion of polyamines 

reduces viral titers of many RNA viruses and was first demonstrated with an infrequent 

human pathogen found in the alphavirus family, Semliki Forest virus (SFV) (29, 40). The 

polyamine pathway has been considered a pharmacological target for numerous 
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cancers and targeting this pathway could be a feasible way to reduce various viral 

infections. An FDA approved drug, difluormethylornithine (DFMO) is a specific, nontoxic 

inhibitor of ODC1 (Figure 4). By reducing cellular or organismal polyamine levels, it is 

used to target diverse cancer types and is the primary treatment for trypanosomiasis 

(41, 42). Despite a reliance on polyamines for cellular growth and division, polyamine-

depleted mammalian cells maintain viability without significant toxicity (43, 44). 

Additionally, N1,N11-diethylnorspermine (DENSpm) is another pharmacological agent 

with therapeutic potential. Treatment of cells with DENSpm results in the upregulation of 

SAT1 and subsequent acetylation of spermidine and spermine(29). This acetylation 

results in an increase of reconverted putrescine or export of these polyamines from the 

cell (29, 45, 46) (Figure 4). These pharmacological agents are promising therapeutics, 

and they also provide valuable tools to study the roles of polyamines in virus infection. It 

is not known whether bunyaviruses utilize polyamines and with these pharmalogical 

agents, we can assess whether these drugs work against RVFV.  

Aims and Hypothesis 

Recent studies demonstrated that RNA viruses rely on polyamines for replication 

(29). Initially, it was found that positive-stranded RNA viruses, like chikungunya and 

Zika virus, required polyamines for translation of the viral polyprotein as well as viral 

RNA-dependent RNA polymerase activity (47). Olsen et al. uncovered that Ebola virus 

relies on polyamines for translation of viral proteins through the spermidine metabolite 

hypusine (37–39). It was further shown that a range of RNA viruses rely on polyamines 

for replication, both in vitro and in vivo (48). Prior work has established a role for 
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polyamines in virion packaging of nucleic acid in several DNA viruses (34–36). RNA 

viruses, in contrast, were characterized to package negligible levels of polyamines (49). 

Additionally, Mounce et al. highlighted the importance of the polyamine biosynthetic 

pathway as a target in the development of future antivirals. Upon depletion of 

polyamines through different pharmalogical agents that target the key players in 

polyamine biosynthesis, viral replication was severely limited (48). Currently, little is 

understood about polyamines in the viral lifecycle of bunyaviruses like RVFV. The goal 

of this proposal is to determine how polyamines may be involved in virus production and 

how they modulate RVFV infectivity. 

 In AIM 1, we examined whether polyamine depletion alters RVFV infection. I 

hypothesized that RVFV, like other RNA viruses, would be affected by polyamine 

depletion. Results from this aim establish the importance of polyamines for RVFV and to 

identify where polyamines may play a role in the RVFV replication cycle.  

 In AIM 2, I assessed virion production and composition of RVFV from cells with 

and without polyamines. I hypothesized that polyamines are essential for proper 

production of infectious RVFV; thus, in the absence of polyamines, infectious virion 

composition is compromised. The goal of this aim was to investigate RFVF genome 

abundance, size, and functionality in the presence of polyamine depleting drugs.  

 In AIM 3, I proposed that polyamines contribute to the gross architecture of 

RVFV. I hypothesized that RVFV utilizes polyamines for proper virion maturation like 

VACV and HSV1. The goal of this aim was to define the direct or indirect impact on the 

physical properties of RVFV in the presence of polyamine depleting drugs. 
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 The data generated from these aims demonstrated that RVFV uses polyamines 

for its replication. Although there was no change in morphology and viral protein levels 

were unchanged, we see an increase in RVFV genome-to-PFU ratio and a reduction in 

viral titer. 
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CHAPTER 2: MATERIALS AND METHODS 

Cell Culture 

Cells were maintained at 37⁰C in 5% CO2, in Dulbecco’s modified Eagle’s 

medium (DMEM; Life Technologies) with bovine serum and penicillin-streptomycin. 

Vero cells (BEI Resources) were supplemented with 10% new-born calf serum (NBCS; 

Thermo-Fischer) and Huh7 cells, kindly provided by Dr. Susan Uprichard, were 

supplemented with 10% fetal bovine serum (FBS; Thermo-Fischer). THP1 cells were 

donated by Dr. Makio Iwashima and maintained in RPMI (Thermo-Fischer) 

supplemented with 2% FBS and beta-mercaptoethanol (BME, 50mM; Thermo-Fischer). 

THP1’s were differentiated with phorbol 12-myristate 13-acetate (PMA, 100 pg/ mL; 

Thermo-Fischer). RAW264.1 macrophages were provided by Dr. Katherine Knight and 

maintained in 2% FBS.  

Drug Treatment 

Difluoromethylornithine (DFMO; TargetMol) and N1,N11-Diethylnorspermine 

(DENSpm; Santa Cruz Biotechnology) were diluted to 100x solution (100mM and 

10mM, respectively) in sterile water. For DFMO treatments, cells were trypsinized 

(Zymo Research) and reseeded with fresh medium supplemented with 2% serum. 

Following overnight attachment, cells were treated with 100 µM, 500 µM, 1 mM, or 5

 mM DFMO. Cells were incubated with DFMO for 96 hours to allow for depletion 

of polyamines in Huh7 cells. For DENSpm treatment, cells were treated with 100 nM, 1
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 µM, 10 µM, 100 µM, and 1mM 16 hours prior to infection. During infection, 

media was cleared and saved from the cells.  The same medium containing DFMO and 

DENSpm was then used to replenish the cells following infection. Cells were incubated 

at the appropriate temperature for the duration of the infection.  

Infection and Enumeration of Viral Titers 

MP-12 (50), LACV, and KEYV were derived from the first passage of virus in 

Huh7 cells. ZIKV (MR766) was derived from the first passage of virus in Vero cells. 

CVB3 (Nancy strain) was derived from the first passage of virus in HeLa cells. ZIKV, 

LACV, and, KEYV were obtained from Biodefense and Emerging Infections (BEI) 

Research Resources. For all infections, DFMO and DENSpm were maintained 

throughout infection as designated. Viral stocks were maintained at -80⁰C. For infection, 

virus was diluted in serum-free DMEM for a multiplicity of infection (MOI) of 0.1 on Huh7 

cells, unless otherwise indicated. Viral inoculum was overlain on cells for 10 to 30 

minutes, and the cells were washed with PBS before replenishment of media. 

Supernatants were collected from MP-12, LACV, KEYV, ZIKV, and CVB3 24 hpi. 

Dilutions of cell supernatant were prepared in serum-free DMEM and used to inoculate 

confluent monolayer of Vero cells for 10 to 15 min at 37⁰C. Cells were overlain with 

0.8% agarose in DMEM containing 2% NBCS. CVB3 samples incubated for 2 days, 

MP-12, ZIKV, and LACV samples incubated for 3 days and KEYV samples incubated 

for 5 days at 37⁰C. Following appropriate incubation, cells were fixed with 4% formalin 

and revealed with crystal violet solution (10% crystal violet; Sigma-Aldrich). Plaques 
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were enumerated and used to back-calculate the number of plaque forming units (pfu) 

per milliliter of collected volume. 

Thin Layer Chromatography Determination of Polyamines 

Polyamines were separated by thin-layer chromatography as previously 

described (Madhubala, 1998). For all samples, cells were treated as described prior to 

being trypsinized and centrifuged. Pellets were washed with PBS and then resuspended 

in 200 uL 2% perchloric acid. Samples were then incubated overnight at 4⁰C. 200 uL of 

supernatant was combined with 200 uL 5 mg/ml dansyl chloride (Sigma Aldrich) in 

acetone and 100 uL saturated sodium bicarbonate. Samples were incubated in the dark 

overnight at room temperature. Excess dansyl chloride was cleared by incubating the 

reaction with 100 µL 150 mg/mL proline (Sigma Aldrich). Dansylated polyamines were 

extracted with 50 µL toluene (Sigma Aldrich) and centifuged. 5 µL of sample was added 

in small spots to the TLC plate (silica gel matrix; Sigma Aldrich) and exposed to 

ascending chromatography with 1:1 cyclohexane: ethylacetate. Plate was dried and 

visualized via exposure to UV.  

Polyamine Luciferase Reporter Assay 

To measure free polyamine levels in cells, a dual-luciferase vector containing the 

wild-type -1 frameshift antizyme OAZ1 (pC5730), kindly sent to us by Dr. Tom Dever 

from the National Institutes of Health, were transfected into cells with LipoD293 

(SignaGen). Free polyamines modulate OAZ1 mRNA frameshifting and these 

constructs can measure relative endogenous polyamine concentrations via a dual-

luciferase reporter as previously described (51) Huh7 cells were seeded with 2% media 
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and drug treated as described above. Cells were transfected with 62.5 ng of reporter 

plasmid of and after 24 hours of incubation, luminescent signal was measured using the 

Dual-Luciferase Reporter Assay System (Promega) by measuring both firefly and 

Renilla luciferase with the Veritas Microplate Luminometer (Turner Biosystems). Firefly 

luciferase was normalized to Renilla and the wild-type values and subsequently 

normalized to untreated controls.  

Virus Preparation and Concentration 

MP-12 was inoculation onto confluent Huh7 cells at an MOI of 0.001 and 

incubated for 48-72h, until full CPE. Supernatant was clarified via centrifugation and 

then concentrated using VivaSpin 20 centrifugal concentrators (GE Lifesciences). Virus 

was concentrated 1000-fold by resuspending in an appropriate amount of serum free 

DMEM.  

RNA Purification and cDNA Synthesis 

Media was cleared from cells and Trizol reagent (Zymo Research) directly 

added. Lysate was then collected, and RNA was purified according to the 

manufacturer’s protocol utilizing the Direct-zol RNA Miniprep Plus Kit (Zymo Research). 

Purified RNA was subsequently used for cDNA synthesis using High Capacity cDNA 

Reverse Transcription Kits (Thermo-Fischer), according to the manufacturer’s protocol, 

with 10-100 ng of RNA and random hexamer primers. 

Viral Genome Quantification 

Following cDNA synthesis, qRT-PCR was performed using the QuantStudio3 

(Applied Biosystems by Thermo-Fischer) and SYBR green mastermix (DotScientific). 



 
 

 

16 

Samples were held at 95⁰C for 2 mins prior to 40 cycles of 95⁰C for 1s and 60⁰C for 30s. 

Primer sequences are included in Table 1. Primers were verified for linearity using 

eight-fold serial diluted cDNA and checked for specificity via melt curve analysis 

following by agarose gel electrophoresis. All samples were used to normalize to total 

RNA using the ΔCT method. Primer sequences are included in Table 1.  

Table 1. Primers Utilized in This Study 

Primers (qRT-PCR) Forward Reverse 
MP12 - Small 
Segment  

5'-CAGCAGCAACTCGTGATAGA-3' 5'-CCCGGAGGATGATGATGAAA-3' 

MP12 - Medium 
Segment  

5'-
GGAACTAGGGAAGACTGAGAGA-
3' 

5'-CTGCTGAAGGGTGGAAACA-3' 

MP12 - Large 
Segment  

5'-
CTCCACTAACCCAGAGATGATTG-
3' 

5'-CTCCTGGCTTGAGGTCTTAAC-3' 

ZIKV  5'-
CCCTCAAGTATAGCAGCAAGAG-
3' 

5'-TGAGTTGGAGTCCGGAAATG-3' 

CVB3  5'-GGAAGCACGGGTCCAATAAA-
3' 

5'-
CAGAGTCTAGGTGGTCTAGGTATC-
3' 

GAPDH 5’-GATTCCACCCATGGCAAATTC-
3’ 

5’-CTGGAAGATGGTGATGGGATT-3’ 

 

Genome-to-PFU Ratio Calculations 

The number of viral genomes quantified as described above were divided by the 

viral titer, as determined by plaque assay, to measure the genome-to-PFU ratio. Values 

obtained were normalized to untreated conditions to obtain the relative genome-to-PFU 

ratio.  
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Western Blot 

Samples were collected with Bolt LDS Buffer and Bolt Reducing Agent 

(Invitrogen) and run on polyacrylamide gels. Gels were transferred using the iBlot 2 Gel 

Transfer Device (Invitrogen). Membranes were probed with primary antibodies for Rift 

Valley Fever nucleoprotein, N, glycoprotein N, GN, (1:500, BEI Resources) and, β-actin 

(1:5000, Santa Cruz Biotechnology). Membranes were treated with SuperSignal West 

Pico PLUS Chemiluminescent Substrate (ThermoFisher Scientific) and visualized on 

ProteinSimple FluorChem E imager.  

Silver Stain 

Samples were collected with Bolt LDS Buffer and Bolt Reducing Agent 

(Invitrogen) and run on polyacrylamide gels. Gels were then washed with a fixative 

solution (50% methanol, 12% acetic acid, 0.05% formaldehyde) for 2 to 24 hours. After 

fixing, the gels were washed with a wash solution (35% ethanol) for 20 minutes and was 

repeated three times. Gels then were placed in a sensitizer solution (0.02% sodium 

thiolsulfate) for 5 minutes followed by 3 brief rinses with ddH2O. Following the brief 

rinsing steps, the gels sat in a staining solution (0.2% silver nitrate, 0.076% 

formaldehyde) for 20 minutes. After the stain, the gels were washed with ddH2O and the 

gels were revealed with developing solution (6% sodium carbonate, 0.05% 

formaldehyde, and 0.0004% sodium thiol sulfate) for 1 to 5 minutes. The reaction was 

then stopped with a stop solution (12% acetic acid) for 5 minutes and gels were stored 

in H2O at 4⁰C. 
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Indirect Immunofluorescence 

Huh7 cells grown on cover slips were either treated with 500 µM DFMO or 

untreated. After four days cells were infected with MP12. Cells fixed with 4% formalin for 

15 minutes, washed with PBS, permeabilized and blocked with 0.2% Triton X-100 and 

2% BSA in PBS (blocking solution) for 30 minutes at room temperature (RT). Cells were 

sequentially incubated as follows: Primary mouse anti-Nucleoprotein antibody (1:100 in 

blocking solution, overnight at 4oC), and secondary antibody, goat anti-mouse 488nm, 

(1:500 in PBS, 1hr, RT). Cells were then incubated in affinity pure Fab donkey anti-

mouse IgG fragment (1:100 in blocking solution, Jackson ImmunoResearch, 1hr RT), 

followed by primary mouse anti-RNA (J2) antibody (1:100) and 633nm conjugated 

phalloidin (1:500) in blocking solution (overnight at 4oC) and then secondary donkey 

anti-mouse 568nm (1:500 1hr at RT). After washing with PBS, cells were mounted with 

Invitrogen ProLong Diamond Antifade Mounting Media with DAPI for 30 min before 

imaging. To ensure that there was no binding of the 2nd fluorescent primary antibody to 

the first primary mouse antibody, control cells were processed as described above, but 

without the 2nd primary antibody step. Samples were imaged with Zeiss Axio Observer 

7 with Lumencor Spectra X LED light system and a Hamamatsu Flash 4 camera using 

appropriate filters using Zen Blue software with a 40X objective.  

Electron Microscopy 

Concentrated Rift Valley Fever Virus (RVFV) samples were prepared for imaging 

by transmission electron microscopy according to a published method (Ellis et al., 1988) 

with minor modifications. Concentrated RVFV samples suspended in media were fixed 
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in 5% glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA) for 24 h at room 

temperature. Fixed viral samples were subjected to ultracentrifugation then 

resuspended in 50 µl deionized water. Next, 5 µl of sample was pipetted onto a formvar- 

and carbon-coated 200 mesh copper grid (Electron Microscopy Sciences) held in place 

by negative-action tweezers. Five minutes later, the edge of the grid was blotted with a 

wedge of Whatman filter paper to remove excess sample. The sample was negatively 

stained by immersing the grid in a 1% solution of phosphotungstic acid (PTA) (pH 6.8) 

for 1 min. After the grid was removed from the 1% PTA solution, the edge of the grid 

was blotted with a wedge of Whatman filter paper, and the sample was allowed to air 

dry for 5 min. The sample was placed into a grid storage box and allowed to dry for 24 h 

prior to imaging with a Philips CM120 transmission electron microscope (TSS 

Microscopy, Beaverton, OR) equipped with a BioSprint 16 megapixel digital camera 

(Advanced Microscopy Techniques, Woburn, MA). (52) 

Particle Size Measuring 

We obtained images of viral particles via transmission electron microscopy 

(TEM) and negative staining. ImageJ was used to measure the diameter of the particles 

by measuring the provided standard from the TEM imaging software and measuring the 

particles which were then normalized to the standard.  

Fractionation 

Sucrose gradient ultracentrifugation was performed using an Optima L-90K 

ultracentrifuge with an SW60 Ti Beckman rotor and Ultra-Clear Centrifuge tubes (11x 

60mm; Beckman Coulter). Varying densities of sucrose (20%-60%) was added to the 
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centrifuge tubes in 2.5% increments between 20% and 30% and 5% increments 

between 30% and 60%. Tubes were weighed before adding 50 ul to 200 ul of viral 

supernatant, unless otherwise indicated. Centrifuge tubes were then spun at 45,000 

RPM for 18 hours at 4⁰C. Samples were then collected based on fraction amount (450 

uL) and analyzed by western blot, silver stain, and RT-qPCR.  

Total Polyamine Assay 

Huh7 cells were plated and either treated with 500 µM DFMO or untreated. After 

four days, cells were infected with MP12, VACV, and CVB3 at an MOI of 0.1 for 48 

hours. Supernatant was collected. 20% sucrose was added to the centrifuge tube and 

tubes were weighed before adding 1mL of viral supernatant, unless otherwise indicated. 

Centrifuge tubes were then spun at 18,000 RPM for 1.5 hours at 4⁰C. Pellets were then 

collected and Total Polyamine Assay Kit (BioVision Incorporated) was used and 

analyzed fluorescence of the whole sample with Synergy H1 microplate reader 

(BioTek).   

Statistical Analysis 

Prism 6 (GraphPad) was used to generate graphs and perform statistical 

analysis. For all analyses, one-tailed Student’s t test was used to compare groups, 

unless otherwise noted, with a = 0.05. For tests of sample proportions, p values were 

derived from calculated Z scores with two tails and a = 0.05.  
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CHAPTER 3: RESULTS 

RVFV is Sensitive to Polyamine Depletion.  

Previous data focused on the role of polyamines in alphavirus and flavivirus 

replication (47). It was further demonstrated that polyamines are required for a number 

of distinct viral families (48). We understand little about potential roles for polyamines in 

these diverse viruses, however, to initially examine polyamines in RVFV replication, we 

sought to determine their sensitivity to polyamine depletion. DFMO at a concentration of 

500 μM was sufficient to block alpha- and flavivirus replication(47, 48); thus, we 

investigated whether these parameters would similarly reduce RVFV infection (the 

vaccine strain of RVFV). We treated Huh7 cells with 500 μM DFMO for four days prior 

to infection at a multiplicity of infection (MOI) of 0.01 plaque-forming units (pfu) per cell 

with the vaccine strain of RVFV, MP-12. Samples were collected every eight hours and 

titered on Vero-E6 cells. We observed characteristic sigmoidal growth kinetics of 

untreated cells; however, DFMO-treated cells failed to produce virus (Figure 5A). In fact, 

viral titers remained flat over 64 hours of infection, suggesting that MP-12 failed to 

replicate without polyamines. 

To measure sensitivity to DFMO and, thereby, polyamine depletion, we treated 

Huh7 cells with increasing doses of DFMO, from 100 μM to 5 mM and measured virus

 replication at 48 hours post infection (hpi) via plaque assay. We observed a 

significant decrease in titer when cells were treated with a minimum of 500 μM DFMO 

(Figure 5B). Both 1 mM and 5 mM treatments significantly reduced titers as well. We 
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verified that DFMO was depleting polyamines using a quantitative polyamine-sensitive 

luciferase assay (53), which demonstrated significant reductions in polyamine levels at 

all tested concentrations (Figure 5C). To visually confirm that these doses of DFMO 

were, in fact, depleting polyamines, we performed thin-layer chromatography (TLC) on 

polyamines. We found that, compared to untreated samples, DFMO treatment as low as 

100 μM reduced polyamine levels and were undetectable at 500 μM (Figure 5D).  

 

Figure 5. Rift Valley Fever Virus MP-12 is Sensitive to DFMO Treatment.   
(A) Huh7 cells were left untreated or were treated with 500 µM DFMO for four days prior to infection at a 
multiplicity of infection (MOI) of 0.01 plaque-forming units of RVFV MP-12 strain per cell. Samples were 
collected every 8 h for 64 h and subsequently titered via plaque assay.   
Huh7 cells were treated with escalating doses of DFMO as indicated and subsequently infected with (B) 
MP-12 at an MOI of 0.1 pfu per cell. Viral titers were determined at 48 h post infection.   
(C) Intracellular polyamine levels were measured using a dual luciferase assay reporter of an OAZ1 
transcript construct following DFMO treatment for four days. Relative luciferase activity was normalized to 
untreated samples.   
(D) Thin layer chromatography on cells treated as in (B) to measure biogenic polyamine levels following 
DFMO treatment. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 using Student’s t test (n ≥ 3) comparing untreated 
cells to DFMO treatment. Error bars represent ± 1 SEM. Statistical comparison were performed between 
treated and untreated conditions.  
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We next investigated whether MP-12 was sensitive to DENSpm. First, we 

performed a growth curve of MP-12 using 100 μM DENSpm, an activator of SAT1 which 

acetylates polyamines, leading to their neutralization and export from the cell (45, 46). 

We observed significant decreases in viral titers over a course of infection (Figure 6A). 

Using a range of DENSpm concentrations, we observed a decrease in MP-12 titers at 

concentrations greater than 50 μM (Figure 6B), similar to our data with other viruses 

(48). We confirmed via TLC and ImageJ quantitation of chromatogram that DENSpm 

reduced polyamine levels (Figure 6C and D). 

 

 Figure 6. Rift Valley Fever Virus MP-12 is Sensitive to DENSpm Treatment.   
(A) Huh7 cells were treated with 100 µM DENSpm for 16h prior to infection with MP-12 at an MOI of 0.01. 
Samples were collected every 8 h for 32 h and titered via plaque assay.  
(B) Huh7 cells were treated with escalating doses of DENSpm as indicated and infected with MP-12 
at an MOI of 0.01 pfu per cell. Viral titers were determined at 48 hpi.  
(C) Relative polyamine levels as measured by thin layer chromatography (D) were quantified via ImageJ 
analysis and normalized to untreated controls. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 using Student’s t test (n 
≥ 3) comparing untreated cells to DFMO treatment. Error bars represent ± 1 SEM. Statistical comparison 
were performed between treated and untreated conditions.  
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RVFV Genome-to-PFU Ratio is Increased with Polyamine Depletion. 

Reports have suggested that polyamines are present in the virions of diverse 

viruses and promote genome packaging (34, 35). We hypothesized that polyamines 

may function similarly for RVFV. To test whether polyamines are involved in RVFV 

packaging, we aimed to quantify the ratio of the number of genomes per virus in 

infected cell supernatant. To this end, we treated Huh7 cells with DFMO and 

subsequently infected with MP-12 at MOI 0.1 for 48h. We titered the virus and 

measured the number of genomes (small [S], medium [M], and large [L] segments) via 

quantitative Real Time-PCR (qRT-PCR) with genome-specific primers. As in Figure 5B, 

we observed reduced MP-12 titers with DFMO treatment (Figure 7A). We anticipated 

that if polyamines were involved in packaging, we would observe significantly fewer viral 

genomes in the infected cell supernatant. Surprisingly, we observed equivalent numbers 

of genomes in the supernatant with escalating doses of DFMO (Figure 7B). We next 

calculated the genome-to-PFU ratio by dividing the number of viral genomes by the 

titers (values in Figure 7B divided by 7A). We found a dramatic increase in the number 

of viral genomes per infectious virus in a DFMO dose-dependent manner (Figure 7C).  
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Figure 7. Specific Infectivity of RVFV MP-12 is Diminished with DFMO. 
Huh7 cells were treated with either 500 µM or 1 mM DFMO for four days prior to infection with MP-12 
at an MOI of 0.1 pfu per cell. (A) Viral titers were determined via plaque assay and (B) viral genomes in 
culture supernatant was quantified via qRT-PCR at 48 hpi. (C) The relative number of viral genomes from 
(B) was divided by the titer from (A) to determine the genome-to-pfu ratio, normalized to untreated 
controls.  Values provided above data bars represent the fold change compared to untreated conditions. 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 using Student’s t test (n ≥ 3) comparing DFMO treatment to untreated 
controls. Error bars represent ± 1 SEM. Statistical comparison were performed between treated and 
untreated conditions.  
 

We confirmed these phenotypes by depleting cells of polyamines with DENSpm. We 

treated cells with 10 or 100 μM DENSpm for 16h prior to infection at MOI 0.1. We 

collected and titered (Figure 8A) and measured genomes (Figure 8B) at 48 hpi. As with 

DFMO, MP-12 titers were decreased but viral genome levels were unchanged, resulting 

in high genome-to-PFU ratio (Figure 8C). 
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Figure 8. Specific Infectivity of RVFV MP-12 is Diminished with DENSpm. 
Huh7 cells were treated with 10 or 100 µM DENSpm for 16h prior to infection with MP-12 at an MOI of 0.1 
pfu per cell. (A) Viral titers were determined via plaque assay and (B) viral genomes quantified via qRT-
PCR at 48 hpi. (C) The ratio of viral genomes (B) was divided by the titer from (A) to determine the 
genome-to-pfu ratio, normalized to untreated controls. Values provided above data bars represent the 
fold change compared to untreated conditions. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 using Student’s t test (n 
≥ 3) comparing DFMO treatment to untreated controls. Error bars represent ± 1 SEM. Statistical 
comparison were performed between treated and untreated conditions.  
 

We next measured cell-associated viral RNA by extracting RNA from attached, 

infected cells. As with supernatant RNA, we observed no change in the number of 

genomes produced (Figure 9A). However, the MP-12 genomic RNA measurements 

could be free RNA or virion-associated RNA. To distinguish between the two, we 

treated our infected cell supernatant with RNAse A prior to genome quantification. We 

observed no change in the genome-to-PFU ratio with DFMO (Figure 9B), suggesting 

that a portion of supernatant genomic RNA was protected from RNAse degradation. We 

presume these RNAse-protected genomes are virion-associated; however, these data 

do not exclude the possibility that viral RNA could be contained in a vesicle or other 

layer to protect from degradation. This phenotype was confirmed again with DENSpm 
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treatment (Figure 9C). Together, these data suggest that polyamine-depleted cells have 

no defect in viral genome production or export. 

 

Figure 9. Specific Infectivity of RNAse Treated RVFV MP-12 is Diminished with 
Polyamine Depletion. 
(A) Huh7 cells were treated and infected as in (Fig. 7 and Fig. 8) and the number of cell-associated viral 
genomes was determined via qRT-PCR, normalizing to cellular GAPDH.  
(B,C) Samples from (Fig 7B) and (Fig 8B) were treated with RNase prior to genome quantification 
via qRT-PCR and divided by viral titers in (Fig 7A) and (Fig 8A) to determine the genome-to-pfu ratio.  
Values provided above data bars represent the fold change compared to untreated conditions. *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001 using Student’s t test (n ≥ 3) comparing DFMO treatment to untreated controls. 
Error bars represent ± 1 SEM. Statistical comparison were performed between treated and untreated 
conditions.  
 

RVFV Viral Protein Levels are Unchanged in Infected Cell Supernatant. 

We observe that viral titers are reduced greater than 100-fold with DFMO 

treatment (Figure 5A and B). However, genome levels are unchanged relative to the 

control (Figure 7B). We hypothesized that this discrepancy could be due to aberrant 

virion protein content. To test this hypothesis, we measured the levels of N and GN in 

both cells and infected cell supernatant. We observed no difference between the levels 

of viral proteins in the supernatant (Figure 10A), though there was a slight decrease in 

viral protein content when DFMO-treated intact cells were collected (Figure 10B).  
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Figure 10. RVFV MP-12 Viral Protein Levels are Unchanged in Non-Cell 
Associated Virus Via Western Blot Analysis 
Huh7 cells were treated with escalating doses of DFMO or left untreated for four days and subsequently 
infected at MOI of 0.1 pfu per cell or left uninfected. At 48 hpi, (A) supernatant and (B) cells were 
collected for western blot analysis for viral proteins GN and N, as well as cellular GAPDH.   
 

Because we observed significant changes in N protein levels in cell-associated protein 

but not in supernatant (Figure 10A and B), we investigated whether the N protein 

distribution changed with DFMO treatment. To this end, we imaged the N protein as well 

as double-stranded RNA (dsRNA, J2) in infected cells, either left untreated or treated 

with 500 µM DFMO. We noted that the N protein localized to perinuclear speckles that 

colocalized with dsRNA in both conditions (Figure 11). No significant detectable 

difference was noted between treatment conditions, though signal for the N protein was 

slightly reduced in DFMO treatment conditions, fitting with our observed western blot 



 
 

 

29 

results. 

 

Figure 11. RVFV MP-12 Viral Protein Levels are Unchanged in Non-Cell 
Associated Virus Via Indirect Immunofluorescence 
Huh7 cells were left untreated or treated with DFMO and infected with MP-12 for 48h prior to indirect 
immunofluorescence staining for nucleoprotein (N, green), double-stranded RNA (dsRNA, red), actin 
(purple), and nucleic acid (blue).  
 

As an additional control, we measured global viral and cellular protein levels in 

infected cells and supernatants via silver stain gel to determine if a DFMO-modulated 

non-viral protein may contribute to infectivity. Again, we observed no gross differences 

in protein profiles on our silver stain gels, either in cells or in the supernatant (Figure 

12A and B). These data suggest that DFMO does not alter viral protein levels in the 

infected cells supernatants. 
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Figure 12. RVFV MP-12 Viral Protein Levels are Unchanged in Non-Cell 
Associated Virus Via Silver Stain Analysis 
Samples from (Fig 10A) and (Fig 10B) were run on an acrylamide gel and analyzed for total protein 
content by silver stain for supernatant (A) and cell-associated (B) proteins. 
 

Viral Particles from Polyamine-Depleted Cells Show No Significant Physical 

Differences. 

We next sought to determine if polyamine depletion had any physical effect on 

the virions produced from infected cells. First, we generated viruses from untreated and 

DFMO-treated cells, concentrated and purified virions, and examined the particles by 

electron microscopy. We observed virions of size and shape previously described 

(Figure 13A) (52), with an average diameter of 90-110 nm. Intriguingly, we observed a 

similar number and size from virions derived from DFMO-treated cells (Figure 13B), 
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despite a lack of infectivity. These data suggest that fully formed viral particles are being 

produced but are not infectious.  

 

Figure 13. Physical Appearance of Secreted RVFV MP-12 Virions are Unchanged 
with Polyamine Depletion 
(A) Huh7 cells were treated with 500 µM DFMO or left untreated and subsequently infected with MP-12 at 
MOI 0.1 pfu per cell for 48 h. Secreted viruses were collected, concentrated, and purified via 
ultracentrifugation prior to electron microscopy. Representative images are shown for each treatment 
condition.  
(B) Diameter of viral particles derived from untreated or DFMO treated cells as in (A) were measured with 
ImageJ.   
 

To determine whether polyamine depletion altered the buoyant properties of the 

MP-12 virions, we employed differential sucrose gradient ultracentrifugation. Using a 

20-45% discontinuous gradient, we considered total protein content by silver staining 

the same fractions and observed viral proteins to a similar extent in both untreated and 

DFMO-treated conditions (Figure 14A), with peaks for these proteins in fractions from 

22.5-30% sucrose. We observed MP-12 N protein in gradients ranging from 22.5-30% 

sucrose when analyzed by western blot, as previously described (50), for both virions 

from untreated and DFMO-treated cells. (Figure 14B). Viral genomes measured via 

qRT-PCR were also not statistically significantly different with polyamine depletion 
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(Figure 14C). We observed a peak in viral titers in these same fractions, though titers in 

DFMO treatment conditions were 10- to 100-fold lower (Figure 14D). In total, these 

results suggest that DFMO-mediated polyamine depletion does not alter the buoyant 

properties nor virion physical size, despite significant reductions in infectivity.  

 

 

Figure 14. Physical Properties of Secreted RVFV MP-12 Virions are Unchanged 
with Polyamine Depletion 
Huh7 cells were treated with 500 µM DFMO or left untreated and subsequently infected with MP-12 at 
MOI 0.1 pfu per cell for 48 h. Secreted viruses were collected, concentrated, and purified via 
ultracentrifugation. MP-12 particles were then subjected to discontinuous sucrose gradient 
ultracentrifugation, from 20% to 45% sucrose. Fractions were collected and analyzed by (A) silver stain, 
(B) western blot for viral N protein, (C) plaque assay to determine viral titers and (D) qRT-PCR to detect 
viral genomes. Error bars represent ± 1 SEM from n≥3.  
 

Polyamines are Associated with RVFV MP-12 Virions 

Polyamines are implicated in viral packaging for several different viruses (34–36). 

The positive charges of polyamines complement the negative charges of DNA/RNA 

backbone if the genome is to be packaged tightly, as it is in a compact virion. Certain 

DNA viruses contain enough polyamines within the virion to sufficiently neutralize 40% 
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of the negative charge of DNA (34, 35). It had been shown that RNA viruses 

encapsidate polyamines to a lesser extent than DNA viruses (29).  Poliovirus, human 

rhinovirus 14, and encephalomyocarditis virus (EMCV) are viruses with reduced 

amounts of polyamines incorporated into mature virions (54, 55). The content of 

polyamines found was sufficient to neutralize 27% of the negative charge of RNA in 

rhinovirus 14, 11% in EMCV, and 1.6% in poliovirus (54, 55). Alternatively, myxoviruses, 

an RNA virus family including Newcastle disease virus (NDV) and influenza viruses, 

have been reported to encapsidate polyamines to neutralize around 30% of viral RNA 

(56). The variance in neutralization percent suggests that polyamines may contribute to 

viral packaging based on viral genome size and segment composition, as well as other 

poorly-defined factors. Poliovirus is a single stranded RNA virus while influenza is an 8 

segmented RNA virus. RVFV having a tri-segmented genome may utilize polyamines 

for efficient packaging. To test this, we generated RVFV, Coxsackie B3 (CVB3, Nancy 

Strain), a single stranded RNA virus closely related to poliovirus(57), VACV, and ZIKV 

from untreated and DFMO-treated cells, subsequently concentrating and purifying the 

virions through ultracentrifugation. Pellets were collected, lysed and labeled for 

polyamines using a total polyamine assay kit which measures polyamine concentrations 

with fluorescence. In relation to the positive control (VACV) and negative control 

(CVB3), we observed that polyamines are associated with purified RVFV virions. In 

DFMO treated conditions, we see a reduction in polyamine fluorescence for all viruses 

including RVFV. We see no significant difference between untreated and DFMO treated 
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ZIKV, indicating that flaviviruses may not utilize polyamines in viral packaging; although 

data supports ZIKV uses polyamine in transcription and translation (48). 

 

Figure 15. Polyamines are Associated with RVFV MP-12 Virions 
Huh7 cells were treated with 500 µM DFMO or left untreated and subsequently infected with MP-12, 
CVB3, VACV, ZIKV and mock at MOI 0.1 pfu per cell for 48 h. Secreted viruses were collected, 
concentrated, and purified via ultracentrifugation. Pellets were collected, lysed, and labeled. Polyamine 
levels were measured using a total polyamine luciferase assay.  
 
 



 
 

 

35 

CHAPTER 4: DISCUSSION  

Polyamines Play a Crucial Role in RVFV Infection  

Our goal was to determine how polyamines may be involved in virus production and 

how they modulate RVFV infectivity. Because polyamines are ubiquitously found in all 

cells at high concentrations (58), it is likely that viruses like RVFV may have evolved a 

dependence on polyamines. While a role for polyamines in enzymatic activity of viral 

enzymes was previously uncovered (47), it was not determined whether polyamines 

were required for infectivity. Our data suggests that polyamines are crucial for the 

replication of RVFV and that polyamines promote infectivity of progeny virions through 

to-be-determined mechanism(s). Additionally, we reported that polyamines are crucial 

for other bunyaviruses including La Crosse virus (LACV) and Keystone virus (KEYV) 

(59). This study is the first to find that polyamines are required for infectivity of 

bunyaviruses. Both alphaviruses and flaviviruses were sensitive to polyamine depletion 

at the level of genome translation and RNA-dependent RNA polymerase activity (29); 

however, these prior studies had not investigated whether non-infectious particles were 

still produced from polyamine-depleted cells and whether polyamines potentially 

facilitate the encapsidation of viral genomes. Here, we have generated a working model 

whereby polyamines facilitate productive RVFV infection, and in the absence of 

polyamines, an altered ratio of genomes per infectious virus occurs causin noninfectious 
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particles to accumulate therefore reducing RVFV infection (Figure 16). 

 

Figure 16. Proposed Model of RVFV MP-12 Infection With and Without 
Polyamines. 
Cells containing polyamines support robust virus replication. In contrast, infection of polyamine depleted 
cells results in the accumulation of noninfectious viral particles that have an altered ratio of genomes per 
infectious virus and no change in viral protein levels. As a result, polyamine depletion limits RVFV 
replication. 
 

Based on these data and others’ previous data, polyamines play pleiotropic roles 

during viral infection (29). Due to their nature as small, abundant, positively-charged 

molecules, it is not surprising that they affect virus infection at distinct stages. Here, we 

find that for RVFV, polyamines are important for infectivity. With polyamine depletion, 

infected cells produce and export viral proteins and genomes, but the produced virions 

are non-infectious. Recent reports (59) demonstrated this phenotype did not hold true 
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for the non-enveloped CVB3, a positive-sense RNA virus. Enteroviruses like CVB3 are 

known to recombine to rapidly evolve (60), and this tendency to recombine may impede 

changes in the ratio of infectious to non-infectious virus. This defining feature of these 

distinct phenotypes deserve further investigation.  

Polyamines Potentially Involved with RVFV Packaging  

Genome packaging is an essential part of the viral life cycle. Previous work has 

established that several DNA viruses encapsidate significant concentrations of 

polyamines within the virion (34, 35), while several RNA viruses were found to contain 

insignificant amounts of polyamines (54, 55). In the case of herpesviruses, the viral 

genomes associate with histones in the nucleus (61–63) but are further neutralized by 

polyamines in the capsid. Vaccinia virus also utilizes polyamines to neutralize its 

genome to fold and package the viral DNA within the capsid (35). It is unclear whether 

this phenotype is a function of genome size and the need to neutralize a large amount 

of negatively-charged nucleic acid, versus a relatively smaller single-stranded RNA 

virus genome. Additionally, RNA viruses have evolved distinct packaging mechanisms 

that are not dependent on polyamines. The presence of polyamines in bunyavirus 

virions (or flavivirus or alphavirus virions) remains unexplored. Our data begins to 

address this idea that RVFV may utilize polyamines like VACV or HSV to neutralize its 

genome for establishing a persisting infection. It is not yet understood whether virion-

bound polyamines affect infectivity or whether the virion stabilized by the polyamines 

and needs to be further characterized.  
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Polyamines Producing Defective Viral Particles 

It is understood that most viruses do not possess proofreading mechanisms and 

are prone to high mutation rates(64). These mutations could therefore produce 

defective viral particles. These defective viral particles have received an increase in 

attention and appreciation for their novel roles in viral infection. Due to their inability to 

replicate independently, defective viral particles seize infectious viral (and cellular) 

machinery, reducing the capacity of the infectious virus to replicate (65). Several 

mechanisms have been described whereby RNA virus genomes become defective, via 

error-prone polymerases, unique RNA structures, or mistakes during viral genome 

replication (26). While attention has focused on how defective genomes attenuate the 

infectivity of viral particles, how cellular factors contribute to defective virus production is 

less clear. Our results suggest that polyamine depletion results in noninfectious virus 

generation but with fully intact virions. This could establish a novel role for polyamines 

where defective particles can establish an innate immune response. Mounce et al. 

previously uncovered a novel role for polyamines in the innate immune response via the 

polyamine-acetylating enzyme SAT1 (47). Upon interferon stimulation, SAT1 is induced 

and reduces polyamine pools within cells. Whether interferon-mediated polyamine 

depletion plays a role in generating defective virions from infection is an important 

hypothesis for future testing. In sum, our data suggests that the polyamine pathway is 

central to virus replication and reducing polyamine pools may effectively limit infection. 

Our results also suggest novel strategies to attenuate viruses: polyamine-depleted cells 
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produce fully assembled viruses that are non-infectious. Such an attenuation strategy 

may serve well to stimulate immune responses, which may function to enhance vaccine 

efficacy. While significant work remains, understanding how polyamines contribute to 

virus infectivity can provide insight into basic mechanisms of virus infectivity and 

highlight novel therapeutic routes. 
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