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ABSTRACT 

An increasing number of genes encoding PLP-dependent transcription regulators and 

MocR/GabR type regulators have been identified in various bacterial genomes. However, only a 

handful of them, including MocR, PdxR, and GabR have been studied experimentally. They 

control different aspects of the bacterial metabolism. Only GabR has a reported crystallographic 

structure. MocR/GabR regulators possess a chimeric structure consisting of a winged helix-turn-

helix (wHTH) DNA binding domain and an aminotransferase-like regulatory domain, which can 

bind PLP as an effector in transcription regulation. Such a chimeric construct presents a 

compelling case in molecular evolution. The regulation domains of all MocR/GabR type 

regulators loss their catalytic capacity during evolution and function as means of effector 

recognition and transcription regulation. A MocR/GabR homolog in Klebsiella pneumoniae has 

recently been studied; this homolog is currently named Duf161R (YczR) since it is putatively 

believed to control a gene encoding a membrane protein annotated as “domain of unknown 

function 161”.  

The three-dimensional crystal structure of the regulatory domain of YczR have been 

determined to a resolution of 1.79 Å. Our crystallographic studies hav revealed the structure of a 

truncated regulation domain with PLP bound, and our spectroscopic studies have collected 

evidence to support at least partial transaminase-like catalytic activity of the regulatory domain. 

Together with DNA binding studies, we provide data on a new case of MocR regulation and its 

currently unconfirmed biological function, which is likely augmenting pathogenesis via  



 xx 

facilitating taurine trafficking in K. pneumoniae.  

Together with DNA binding studies, we provide data on a new case of MocR regulation and 

its currently unconfirmed biological function, which is likely augmenting pathogenesis via 

facilitating taurine trafficking in K. pneumoniae.  

During my Ph.D. program, I also worked on several other protein projects. I have included 

chapter two for the PTP1B project. Protein tyrosine phosphatase 1B (PTP1B) is an enzyme 

shown to play an essential role in insulin regulation. PTP1B is a critical negative regulator of 

insulin and leptin signaling pathways by removing phosphate groups (PO4
3-) from insulin 

receptor and other post-receptor substrates. Previous studies have identified transition metal 

compounds that exhibit insulin-mimetic effects. A plausible explanation is that vanadium-

containing compounds and zinc-containing compounds inhibit PTP1B activity, which allows the 

required phosphorylation reaction to proceed normally. One specifically modified vanadium-

containing compound has been synthesized. This research has determined the three-dimensional 

crystal structure of PTP1B and VO(acac)2 complex to a resolution of 2.2 Å. Furthermore, the 

kinetic data suggest a mixed inhibition because of the aqueous study of the vanadium complex.  
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CHAPTER ONE 

YCZR, A NEW CASE OF PLP-DEPENDENT MOCR/GABR TYPE TRANSCRIPTION 

REGULATOR IN KLEBSIELLA PNEUMONIAE 

Research Aims: YczR may be Potential Anti-Virulence Target for Klebsiella pneumoniae 

Klebsiella pneumoniae is a Gram-negative, facultatively anaerobic bacterium[1-3]. It can 

reside in the human flora of the mouth, skin, and intestines[2, 4, 5]. Once aspirated to the lungs, 

specifically to the alveoli, it can cause hemoptysis and destructive changes to human and animal 

lungs[3, 6]. It also can lead to a range of different illnesses, such as wound infections, urinary tract 

infections (UTI), bloodstream infections, meningitis, surgical site infections, and pneumonia[7-9]. 

K. pneumoniae is a multi-drug resistant bacterium and consumes taurine as part of the 

pathogenesis infecting humans. 

Klebsiella infections commonly occur among patients who take long courses of certain 

antibiotics. Patients who have intravenous catheters or are on a ventilator are are also at a higher 

risk of Klebsiella infections[10-14].  

According to the Centers for Disease Control and Prevention (CDC) Healthcare-associated 

Infections (HAI) reports, doctors use several powerful antibiotics, such as polymyxins, 

fosfomycin, and aminoglycosides in conjunction to treat Klebsiella infections. However, 

Klebsiella is increasingly becoming resistant to antibiotics[4]. The highly antibiotic-resistant  

“superbug” bacteria belong to the carbapenem-resistant Enterobacteriaceae (CRE) family[5, 15].  
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Carbapenem-resistant K. pneumoniae (CR-Kp) is the most common type of CRE. 

According to CDC guidelines, CR-Kp is responsible for approximately 7,900 infections and 520 

deaths each year[16, 17]. Some strains of K. pneumoniae can produce Klebsiella pneumoniae 

carbapenemases (KPC) to render the antibiotics ineffective. KPC-producing bacteria are resistant 

to most classes of known antibiotics, including carbapenems, which are considered as a drug of 

last resort (DoLR) against antibiotic-resistant Gram-negative infections[6, 16]. Drug resistance and 

diminished effect of medication on bacteria and other infectious diseases are becoming one of 

the most significant health issues of the 21st century. To combat this problem, novel 

antimicrobial targets need to be identified[2]. 

Gene Transcription and Transcription Factors 

Gene transcription is fundamentally important for metabolism and normal physiological 

activities at the first step of gene expression. During transcription, RNA polymerase uses a 

particular segment of genomic DNA as a template to synthesize a single-stranded 

complementary mRNA primary transcript[18]. Therefore, transcription is a highly regulated 

process.  

Bacteria adapt to environmental changes by carrying out highly sophisticated responses via 

transcription regulation. Transcription factors (TFs) control transcription regulation by binding to 

specific DNA sequences and leading to either activation or repression of certain genes. TFs 

recognition of specific DNA binding sites is essential for mediating gene expression and 

repression in different cellular contexts.  
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TFs employ a variety of mechanisms to recognize target nucleotide sequences such as 

hydrophobic contacts and hydrogen bonds between DNA bases and amino acid side chains. They 

can bind to the specific promoter or regulatory regions of DNA by a variety of unique domains 

or motifs such as zinc fingers, leucine zippers, helix-turn-helix (HTH) domains, sheet DNA-

binding proteins, and transcription activator-like effector (TALE) domains. TFs can also 

recognize the local three-dimensional (3D) shape of the target DNA sequence at the protein-

binding site, including sequence dependent narrowing of the DNA minor groove.  

TF’s play several critical biological roles in bacteria, such as basal transcription regulation, 

cell cycle control, intercellular signal response, pathogenesis, environmental response, and 

differential enhancement of transcription[19, 20]. Therefore, TFs are potential antimicrobial targets.  

Based on biophysical, molecular, computational, and X-ray crystallography studies over the 

past decade, scientists have located numerous TFs binding sites, by deducing from aligning a set 

of DNA sequence that is experimentally known[21]. However, understanding the TFs binding 

mechanisms has proven to be a challenge, especially concerning mechanisms details. The 

primary difficulty is in bridging the gap between genomic-scale overview and molecular 

description at molecular level. 

GntR family and the subfamily classification 

The GntR family is a widespread and large group of bacterial TFs. It was named GntR after 

Haydon and Guest had identified and described the first GntR family member the Bacillus 

subtilis gluconate operon repressor in 1991[22]. The database of protein families (Pfam) currently 

stores approximately 8,561 regulatory proteins of the GntR family (Pfam family: GntR, 
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PF00392), which spread out among 764 bacteria taxa[23]. In the protein data bank (PDB) the 

metabolite-response GntR family has approximately 106 protein structures been solved.  

GntR family TFs often bind to DNA sequences adjacent to the genes which they control. 

There are many cases in which TFs bind as effectors. In some instances, GntR TFs are also not 

located close to the gene it regulates. One of the well-studied examples is FadR, the 

multifunctional regulator of fatty acid metabolism in E. coli[24].  

The GntR family TFs can regulate various biological processes including metabolism of 

fatty acid, amino acids, utilization of sugars and other carbon sources[22, 25]. Among all bacterial 

transcription regulators, the GntR superfamily proteins are structurally featured by N-terminal 

wHTH DNA-binding domains along with a heterogeneous C-terminal regulatory, effector-

binding/oligomerization (Eb/O) domain, which provides a basis for the constituent subfamilies 

classification.  

While the DNA binding domains in this superfamily share a significant level of similarity, 

as all exhibit the wHTH domain with the canonical HTH motif followed by a beta-turn-beta 

wing hairpin, the C-terminal regulatory ligand binding domains vary significantly. The 

characteristics of the C-terminal domains provide a basis for the current classification of the 

GntR subfamilies: HutC, MocR, YtrA, AraR, DevA, PlmA[26-28] (Figure 1) and, the largest 

subfamily, FadR[25, 27, 29].  
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Figure 1. Classification of Mycobacterium smegmatis GntR regulators including representatives 
of all subfamily regulators from different bacterial genomes with 1000 bootstrap replicates. All 
the GntR regulators are clustered into six subfamilies. FadR subfamily is branched again into 
two groups (VanR and FadR)[26].  

FadR subfamily is the largest GntR subfamily of all GntR-like regulators. The FadR family 

primarily functions in regulating the expression of enzymes responsible for oxidizing substrates 

related to amino acids, or substrates that emerge from the central metabolism. FadR is named 

after the best-characterized GntR repressor, the acyl-CoA responsive regulator that regulates 

fatty acid metabolism[30, 31]. The crystal structure for FadR of Thermotoga maritima transcription 

regulator TM0439 is shown in Figure 2 (PDB ID: 3FMS)[32]. 
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Figure 2. Quaternary structure of Thermotoga maritima GntR/ FadR bacterial transcription 
regulator TM0439 (PDB: 3FMS)[32]. 
 

The FadR C-terminal domain characteristically contains 150-160 amino acids, which form a 

six to seven α-helical bundle that binds carboxylic acids and other small organic ligands. A 

unique feature of this family is a kink in helix four which is involved in dimerization.  

 

Figure 3. Quaternary structure of Bacillus subtilis GntR/ HutC bacterial transcription regulator 
YvoA(PDB: 2WV0)[33]. 
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HutC is the second major GntR subfamily accounts of all GntR-family transcription 

regulators[31]. The HutC C-terminal domain is approximately 170 amino acids in length and 

consists of α-helices and β-sheets [25]. Although the HutC C-terminal domain lacks enzymatic 

activity, it shares a similar fold with chorismate from E.coli; it can bind effectors such as 

histidine, fatty acids, and sugars. This subfamily derives its name from HutC regulator in 

Pseudomonas putida which is involved in regulating histidine utilizing genes[31]. Capable of 

binding to a wide range of effector ligands, HutC regulators are involved in a variety of 

processes such as conjugative plasmid transfer, sensing of nutritional status in the environment, 

and antibiotic production[30, 31]. The X-ray structure of the GntR/HutC bacterial transcription 

regulator YvoA is shown (Figure 3; PDB ID: 2WV0)[33]. 

 

 
Figure 4. Quaternary structure of Corynebacterium glutamicum GntR/ YtrA bacterial 

transcription regulator CGL2947 (PDB: 2DU9). 

Most members of the YtrA subfamily form operons with ATP-biding cassette transport 

systems[25]. This subfamily contains a characteristically short 50 amino acid two helices C-

terminal domain. The short domain suggests that effector ligand binding is not likely without 

dimerization. Dimerization is commonplace as many GntR-like palindromic repeats have been 
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identified upstream of regulated operons[30]. Furthermore, the abundance of hydrophobic, 

aromatic, negatively charged, and positively charged residues at the end of the domain suggests 

that dimerization most likely occurs through side-chain-side-chain interactions and salt 

bridges[25]. This hypothesis was verified via the crystal structure of CGL2947 from 

Corynebacterium glutamicum (Figure 4), which showed a homodimer assembly[34].  

MocR/GabR 

MocR/GabR, the last of the major families, is characterized by a large C-

terminal/oligomerization domain with an average of length of 350 amino acids (Figure 5). This 

domain is homologous to type I aminotransferases, which catalyze the formation of α-keto acids 

from amino acids using PLP as a cofactor[25]. GabR from B. subtilis, the representative member 

of this family, regulates γ-aminobutyric acid (GABA) metabolism. GABA is an important carbon 

and nitrogen source. In many bacteria, B. subtilis GABA could act as the sole nitrogen source[35]. 

GabR regulates the gabTD pathway in a PLP and GABA dependent manner (Figure 6). In the 

presence of PLP, GabR will repress its transcription, upon binding to GABA, GabR upregulates 

the gabTD pathway promoting GABA metabolism and glutamate biosynthesis. The gabTD 

pathway consists of two genes, which allow for the use of intracellular GABA to generate 

succinate and glutamate[35].  
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Figure 5. Quaternary structure of Bacillus subtilis GntR/ GabR bacterial transcription regulator 
GabR (PDB: 4N0B)[36]. 

 

 
Figure 6. Schematic of GabR binding sites at the gabTD and gabR promoters. A schematic of the 
gabR and gabTD gene location is shown here. The arrows indicate the transcription directions 
and starting sites for the gabTD and gabR genes. Within the gabR-gabT regulatory region, the 



 

 
 
  

10 

two direct repeats (ATACCA) are indicated, and the 47-bp GabR binding site (-63 to -17) is 
shown in detail. 

The two genes, gabT and gabD, encode for the enzymes GABA aminotransferase (GABA-

AT) and succinic semialdehyde dehydrogenase (SSADH), respectively. GABA-AT catalyzes the 

ping-pong transamination using GABA as an amino group donor, PLP as a coenzyme, and α-

ketoglutarate as an amino group acceptor. In the first half reaction, GABA donates its amino 

group to PLP forming pyridoxamine 5’-phosphate (PMP) and releases succinic semialdehyde. In 

the second half reaction, PMP donates its amino group to α-ketoglutarate forming glutamate and 

regenerating PLP. Downstream, the GabD succinate semialdehyde dehydrogenase will convert 

succinic semialdehyde to succinate[37].   
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PLP Pyridoxal phosphate 

Pyridoxal 5'-Phosphate (PLP) is the active biological form of vitamin B6, which exists in 

the form of six interconvertible vitamers: pyridoxine, pyridoxamine, pyridoxal and their 5’-

phosphorylated forms[38-40]. PLP acts as a coenzyme in a variety of enzymatic reactions in all 

organisms, such as deamination, decarboxylation, racemization reactions of amino acids and in 

vast majority of transamination reactions[41]. 

The Enzyme Commission (EC) has identified more than 145 PLP-dependent activities 

which corresponding to about 4% of all classified activities[42]. Almost 1.5% of genes generally 

encode PLP-dependent enzymes in the free-living prokaryotic genomes[42]. The most common 

PLP-dependent enzymes are phosphorylases, aminotransferases, decarboxylases, glycogen 

amino acid racemases, and enzymes catalyzing β- or γ-elimination or replacement. The utility of 

PLP lies in its ability to stabilize carbanionic reaction intermediates by acting as an electrophilic 

catalyst after covalently binding to substrates. PLP is also involved in stress responses, especially 

to oxidative stress, which can quench reactive oxygen species[43]. The dysregulation of PLP 

metabolism can cause various physiological deficiencies, such as reduced glucan production, 

lowered stress tolerance, growth inhibition and biofilm formation[43].  

Some PLP-dependent enzymes generate enamine/imine intermediates that can inactivate 

other enzymes by covalent binding to their active site, whereas the RidA-family proteins quench 

these reactive intermediates to prevent metabolic damage[44].  

The PLP aldehyde group can form a Schiff base linkage (internal aldimine) with the ε-

amino group of the specific lysine group of the aminotransferase enzyme. In the 
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transaldimination, the amino acid substrate α-amino group displaces the ε-amino group of the 

active-site lysine. And then, the external aldimine can lose a proton, an amino acid side chain or 

carbon dioxide to form a quinoid intermediate, which can act as a nucleophile in several reaction 

pathways[38, 45, 46]. 

Domain of unknown function 

Domains of unknown function (DUF) are a large set of uncharacterized protein families that 

are found in the Pfam database that has no characterized function[47, 48]. More than 20% of all 

protein domains in the protein family’s database were annotated as DUFs in 2013[49]. The 

number of DUFs is substantially increased with the rapidly accumulating genome sequencing 

data[47]. These genes have been collectively given in the Protein family’s database the prefix 

DUF followed by a number. Some DUFs are highly conserved, indicating an important role in 

biology. However, the biological function of many DUFs often remains unknown because such 

proteins are not essential[48, 49]. Structural genomics program has attempted to understand the 

function of DUFs through structure determination. The structure of more than 250 DUF families 

proteins have been solved[49]. These protein families have been collected together in the Pfam 

database using the prefix DUF followed by a number. There are over 3,000 DUF families in the 

Pfam database representing over 20% of known families[49]. 

DUF161 is an uncharacterized hypothetical membrane protein, belonging to YitT family. 

This entry describes proteins with a trans-membrane domain. The functions of this family are 

unclear. The PDB entries over 50,000 protein structures, but less than 1% of them are membrane 
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proteins. Membrane proteins have proven to be challenging to study owing to their flexibility, 

partially hydrophobic surfaces, and lack of stability[50].  

MocR/YczE 

Generally, YczE and YitT family protein have been annotated as “membrane proteins 

containing the DUF161 domain”. YczR, in K. pneumoniae, is the transcriptional regulator of 

DUF161. The crystal structure of YczR would provide information to speculate on the function 

of DUF161. 

The TF of yczE genes, named YczR, predicted to constitute a MocR subfamily. Bacterial 

YczE family proteins are predicted to be unknown function membrane proteins which prosessing 

five trans-membrane helices. Based on the Conserved Domain Database (CDD), code COG2364 

belongs to the YczE family. Corresponding to the Pfam database (code: PF02588), InterPro 

databank (code IPR003740), and CDD (code COG1284), YczR and YitT family shared the 

presence of DUF161 domains. Based on the annotations report of the databanks, YczE and YitT 

family do not have apparent differences[51]. Possibly, they may be distinguished by the absence 

of the C-terminal DUF2179 domain in YczE, corresponding to the Protein Data Bank (PDB) 

structure PDB: 3HLU, present in the members of the YitT family[51, 52].  

YczR, in K. pneumoniae, is the transcriptional activator of YczE, which belongs to the 

transcriptional regulator MocR family. It is supposed to regulate the expression of the yczE 

genes. MocR regulators are a subfamily belonging to the class of GntR regulators characterized 

by the presence of a short N-terminal wHTH DNA-binding domain and a long C-terminal 
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regulatory domain. The C-terminal domains belong to the superfamily of the PLP enzymes of the 

fold type I[53].  

Two members of the MocR/GntR family have been characterized in detail, GabR, and PdxR. 

GabR positively regulates the expression of the gabTD operon, which is responsible for the 

utilization of gamma-Aminobutyric acid[36, 54]. PdxR regulates the expression of the pdxST 

genes[55].  

Obtaining the structure of YczR will help us in speculating the function of YczE. In our 

current research, we have solved the K. pneumoniae YczR regulator domain crystal structure and 

apo-YczR crystal structure. Based on the structure, we speculate that YczR might have a half 

alanine-glyoxylate transaminase activity. Based on this speculation, we designed the UV-

absorption spectroscopic measurements, end-point enzymatic assays, and fluorescence 

spectroscopy. Alanine-glyoxylate aminotransferase catalyzes the transfer of the L-alanine to 

glyoxylate, forming glycine and pyruvate. In the first half-transamination reaction, L-alanine 

reacts with the pyridoxal form of the enzyme to yield the pyruvate and the pyridoxamine form of 

the enzyme[56-60]. We also used size exclusion chromatography with multi-angle light scattering 

(SEC-MALS), small-angle x-ray scattering (SAXS), mass spectrometry, and transmission 

electron microscopy (TEM) methods to gain an in-depth understanding of the characteristics of 

YczR and valuable clues for the function of YczE. We used fluorescence polarization assay to 

determine the YczR binding DNA sequence. Fluorescence polarization assays are suitable for the 

analysis of binding between the small fluorescence-labeled DNA fragment and its significantly 

larger binding protein[61].  
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CHAPTER TWO 

CRYSTAL STRUCTURE OF KLEBSIELLA PNEUMONIAE YCZR, THE 

TRANSCRIPTIONAL REGULATOR OF THE DOMAIN OF UNKNOWN FUNCTION 161 

(DUF161) 

Research Significance 

YczR is a member of the understudied MocR/GabR subfamily of the GntR family of 

transcription regulators. A Typical GntR/MocR subfamily protein contains a large C-terminal 

putative type I aminotransferase domain and a small N terminal wHTH DNA binding domain [25, 

35].  

In the present study, we report two K. pneumoniae YczR regulator domain crystal 

structures: a 1.79 Å structure of YczR with PLP bound and the 2.0 Å apo structure of YczR 

regulator without PLP. We also used size exclusion chromatography with multi-angle light 

scattering (SEC-MALS), small-angle x-ray scattering (SAXS), and mass spectrometry methods 

to gain an in-depth understanding of the biological assembly of YczR. To our best knowledge, 

these crystal structures of YczR were described for the first time. 
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YczR is a Homodimer 

The YczR protein of K. pneumoniae has a predicted size of 475 amino acids and a 

theoretical molecular mass of 52.25 kDa. YczR was eluted as one major peak on a Superdex 200 

gel-filtration column during protein purification, with an apparent molecular weight of a dimer 

(108 kDa), indicating a dimer of YczR in solution (Figure 7). 

 

 

Figure 1. The gel filtration purification profile of YczR. The YczR major peak (fractions B9-
B12) on Superdex 200 16/60 corresponds to an apparent molecular weight of a dimer.  

YczR crystallizes as a homodimer with the two AT-fold domains organized in a head-to-

head domain arrangement (Figure 8 & 9). As seen in all type I aminotransferases[62, 63], this 

interface of YzcR contains two PLP-binding pockets bound by one molecule of PLP in each 

pocket. The large dimer interface between the two AT-domains further suggests that any such 

domain movements by the wHTH domain do not require restructuring of the AT-AT interface.  
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Figure 2. Quaternary structure of K. pneumoniae YczR regulator domain. YczR should be a 
head-to-tail domain-swap homodimer. The AT-fold domains are shown in red and blue. An 
orthogonal view of the structure is shown in Figure 9.  
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Figure 3. Quaternary structure of K. pneumoniae YczR regulator domain. The structure is rotated 
90° counterclockwise along the y axis relative to Figure 8.  

The structure of YczR was solved by molecular replacement and refined to 1.79 Å 

resolutions. The final model contains 385 residues, yielding a crystallographic R-value of 

19.11% and an R-free value of 22.84% with near ideal chemical geometry. Two molecules in an 

asymmetric unit formed a homodimer. Two active sites at the interface of the subunits are shown 

with PLP in element-colored sticks.  
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PLP is Bound in the C-terminal AT-Fold Domain 

Based on the amino sequence, the YczR should have a short N-terminal wHTH DNA-bing 

domain and a long C-terminal PLP-binding putative aminotransferase domain. However, the N-

terminal wHTH DNA-binding domains have not been found in YczR crystal structure. We 

speculated that we lost the DNA-binding domain when we purified the protein or during 

crystallization. The regulation domain structure still provides insights into YczR funcations.  

PLP is bound to the C-terminal regulator Domain (Figure 10). The PLP binding pocket also 

corresponds to the cofactor binding sites in the related enzymes and therefore defines the active 

site of YczR. 

 

Figure 4. Quaternary structure of YczR AT-fold domain monomer. PLP is bound in the AT-fold 
domain of YczR. Side chains of the key residues that interact with PLP are shown in stick 
representation. The secondary structure elements are shown in cartoon form. 
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Figure 5. Structure of YczR regulator domainPLP-binding pocket. The residues with 4 and 5 Å 
from K311-PLP were labeled. The PLP and surrounding side chains are shown as sticks. Carbon 
atoms are shown in gray, oxygen atoms in red, and nitrogen atoms in blue. 

One molecule of PLP forms an internal aldimine with the ω-amino group of K311 per YczR 

monomer. As with other types I aminotransferases[62, 63], the YczR AT-fold domain has two 

subdomains, the small subdomain that typically interacts with the α- carboxylate group of the 

substrate and the large subdomain containing the invariant lysine (K311) that forms the Schiff 

base with PLP. The interaction between the ASP278 and pyridine nitrogen of PLP probably 

could protonate the pyridine nitrogen. Although the effectors were unknown, those structure 

features remain.  

In amino transferase reaction, the principal function of PLP is to stabilize the negative 

charge generated at external aldimine between PLP and the amino acid substrate or the Cα atom 
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of the transition state by delocalizing the negative charge through the π-electron system of the 

cofactor[36].  

The YczR AT-fold domain residues that interact with PLP are shown (Figure. 11): The C4A 

atom of PLP is covalently attached to the LYS311 through the formation of an internal Schiff 

base. The PLP-pyridine ring stacked with residues Tyr-201 by formed pi-pi hydrophobic 

interactions. The C2A atom of PLP exhibits hydrophobic interaction with a Met-245 side chain. 

The phosphate group of PLP forms hydrogen bonds and salt bridges with Ser-308, Ala-176, and 

Arg-318. The side chains of Thr-280, Asp-278 and Asn-250 are hydrogen bonded to N-1 and O-

3 of the PLP-pyridoxal, respectively. The phosphate moiety of the PLP formed hydrogen bonds 

with the peptide side chains of residues Arg-318 and Ala-176. This conformation allows 

hydrogen bond with the Lys-311 and could also interact with the amino group from the 

pyridoxamine intermediate during the enzymatic reaction. 
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Figure 6. PLP binding pockets. (A) A surface-coated YczR(blue) is shown with the PLP product 
as sticks (carbons colored gray, oxygen colored red and nitrogen colored blue). The PLP is 
buried below the surface. (B) A rotated, cut-away view of panel A, showing a defined pocket for 
binding the PLP, while the opened ring is pointing toward the solvent. 

Compared with the structure of GabR, PLP binding pocket in the YczR AT-fold domain has 

bigger size of the opening (Figure 12). PLP is buried below the surface of the protein. Once the 

internal aldimine between PLP and the K311 broken, the molecular PLP or PMP would be 

released from binding pocket easily.  
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Figure 7. Comparison of the structure of K. pneumoniae YczR with B. subtilis GabR (PDB ID: 
4N0B). An orthogonal view of the GabR structure is shown in pink. An orthogonal view of the 
YczR AT-fold domain is shown in blue. 

The crystal structures of K. pneumoniae YczR and B. subtilis GabR (PDB ID: 4NOB) were 

compared to analyze the difference in the overall structure (Figure 13). The YczR AT domain 

size was very similar to that B. subtilis GabR reported. GabR has a long linker connecting C-

terminal AT-fold domain to the N-terminal winged-helix domain. YczR lost the N-terminal 

DNA binding domain in the crystal structure.  
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Structure of Apo-YczR 

We also attempted to get YczR with L-alanine co-crystal. In the resulting crystal structure, 

PLP is no longer bound in the PLP-binding pocket. The PLP-binding site of the crystal structure 

of apo-YczR is shown (Figure 14). The purified YczR protein is pale yellow, which suggested 

that endogenous PLP from E. coli bound to YczR after purification. After co-crystallization of 

YczR and L-alanine, the apo-YczR crystal is clear in color. This result indicated that Schiff base 

between the invariant lysine (Lys-311) and PLP had been broken. 

 

Figure 8. Quaternary structure of apo-YczR AT-fold domain. PLP is no longer bound in the 
PLP-binding pocket. The secondary structure elements are shown in cartoon form.  
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One small molecular binds with Ser-308. Apo-YczR crystal crystallization solution 

contained 8% (V/V) Tacsimate, pH 6.0. Tacsimate is a unique crystallization reagent, which is 

composed of a mixture of titrated organic acid salts, developed exclusively by Hampton 

Research. Tacsimate contains malonic acid, ammonium citrate tribasic, succinic acid, DL-malic 

acid, sodium acetate trihydrate, sodium formate, and ammonium tartrate dibasic. We cannot 

jump to the conclusion that L-alanine replaced PLP. We still need to get the same structure result 

from crystallization solution without Tacsimate.  

The crystal structures of YczR-PLP and apo-YczR were compared to analyze the difference 

in the overall structure (Figure 15). The obtained apo-YczR structure with no PLP bound has a 

similar overall conformation when compared to YczR-PLP. The overall similarity suggests that 

the apo-YczR AT-fold domain maintains the overall structural integrity even when PLP is no 

longer bound.  
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Figure 9. Comparison of the YczR-PLP and apo-YczR AT-domain. The YczR-PLP structure is 
shown in orange red and in cyan for the apo-YczR structure. 
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Table 1. Crystallographic data collection and refinement statistics for YczR and Apo-YczR 

 YczR Apo-YczR  

Data Processing 

Space group C2221 C2221 
Cell dimension   
α, β, γ (deg) 123.482, 181.139, 108.567 123.24, 180.005, 106.006 
a, b, c (Å) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 
Resolution (Å) 1.82 2.46 
Resolution at I/σ (I) =2 1.85 2.73 
Rpim 

a (%) 2.9(38) 5.5(60) 
I/σ (I) 25.5(13.4) 13.2(10.9) 
CC ½ b

 0.757 0.575 
Completeness (%) 99.4(91.7) 99.7(97.3) 
Multiplicity   
No. Reflections 110262  
No. Unique Reflections  45635  
Refinement 

   
Rwork 

c/Rfree d(%) 17.64/21.13 20.8/28.96 
No. of Atoms   
protein 8448 8001 
ligand  60 30 
water 650 152 
B factors (Å2)   
protein 30.0 48.912 
ligand   
RMSD e   
bond lengths (Å) 0.02 0.01 
bond angles (deg) 2.07 1.67 
Ramachandran plot (%)   
most favored   
allowed   
outliers   

aPrecision-indicating merging R  
bPearson correlation coefficient of two “half”data sets   
cRwork = Σ|Fobs − Fcalc|/ΣFobs 
dFive percent of the reflection data were selected at random as a test set, and only these data were used to calculate Rfree 
eRoot-mean square deviation  
hNot applicable 
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To determine at which step the DNA-binding domain of YczR was lost, mass spectrometry 

is used to determine the molecular weight of YczR monomer (Figure 16) immediately after 

FPLC purification. YczR monomer has 474 amino acids, which theoretically molecular weight is 

52,112 Da. In the absence of PLP, the Mass Spectrometry plot shows a predominant peak at 

52933 Da, which suggesting a full-length of YczR in solution after FPLC purification. We 

speculate that protein lost N-terminal winged-helix domain during crystallization step. 

 
Figure 10. Mass spectrometry data of YczR-PLP monomer. 

To determine if YczR is a dimer in solution, SEC-MALS was used to assay YczR oligomers 

(Figure 17). Purified YczR was eluted from the size-exclusion column as a single peak detected 
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by Abs280. The molecular weight of 121 ± 5 kDa for this peak is determined by light scattering, 

which matches the mass calculated for the dimer from the expected sequence (52112 Da × 2 = 

104224 Da). YczR came out to be pretty homogeneous with small levels of aggregates that 

eluted right before the main peak and hence, may lead to an overestimation of the molecular 

weight of the main peak. Therefore, speculate YczR even at very low protein concentration still 

forms a dimer that appears a little bigger in solution. SEC-MALS data do not show YczR 

tetramers or higher oligomers exist in solution; however, further YczR oligomerization may still 

occur when the protein binds to DNA.  

 

Figure 11. Molecular weight determinations of YczR in solution. SEC-MALS profiles are shown 
for YczR. The absorbance at 280 nm is shown as a black line, and the calculated molecular 
weight for protein in the eluent at a particular time is shown in color, as noted. YczR (molecular 
weight in red) gives a single peak with a molecular weight of 121 ± 5 kDa. 
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Figure 12. The overall comparison of K. pneumoniae YczR and B. subtilis GabR (PDB ID: 
4N0B) SAXS models. 

Both YczR and GabR belong the MocR/GabR subfamily of GntR family of transcription 

regulator[36]. The SAXS model of K. pneumoniae YczR and B. subtilis GabR (PDB ID: 4NOB) 

(Figure 18) were compared to analyze the difference in overall size. Based on the SAXS model 

comparison result, the volume of YczR dimmer in solution was bigger than GabR. The result 

suggested that YczR was containing the much extensional DNA-binding domain. The whole 

structure of YczR should be more extensional.  
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CHAPTER THREE 

YCZR REGULATION DOMAIN CATALYZES A REVERSIBLE HALF-TRANSAMINASE 

REACTION INSTEAD OF BEING A NON-ENZYMATIC REGULATOR LIKE GABR 

The crystal structure of YczR showed that PLP was bound to the regulator domain reacted 

with the lysine (Lys-311) to form a stable internal aldimine, which likely controls the 

transcription from the yczE promoter in K. pneumoniae. 

Alanine-glyoxylate aminotransferase catalyzes the transfer of the amine of L-alanine to 

glyoxylate, forming glycine and pyruvate. In the first half-transamination reaction, L-alanine 

reacts with the pyridoxal form (PLP) of the enzyme to yield the pyruvate and the pyridoxamine 

form (PMP) of the enzyme[56-60]. Based on comparison of the crystal structure of YczR with 

alanine-glyoxylate transaminase structure, we speculated that YczR possibly possess half of the 

alanine-glyoxylate transaminase activity. To test this speculation, we designed the UV-

absorption and fluorescence spectroscopic experiments, and end-point enzymatic assays.  

UV Absorption 

 To test potential YczR substrates, we designed UV-Vis spectroscopy experiments in which 

20 amino acids and other possible substrate were added to the protein.  

The UV absorption of YczR alone in the reaction buffer (50 mM HEPES, pH 7.5, 300 mM 

NaCl) has two peaks maximum at 320 nm and 425 nm (Figure 19). The absorption curve stayed 

unchanged in 20 mins measurement. The 330nm and 420 nm peaks of the Schiff base (aldimine)  
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formed between an active-site lysine residue of the protein and PLP (Figure. 19, A) are generally 

ascribed to a ketoenamine tautomer, enolimine tautomers, a substituted aldamine respectively or 

PMP[64-68]. The peak at 420 nm signifies the formation of internal aldimine between an active-

site lysine residue of the protein and PLP.  

 

Figure 1. Time-resolved UV absorption spectra of YczR. 6 µM YczR in buffer (50 mM HEPES, 
pH 7.5, 300 mM NaCl) containing 6 µM PLP was taken at 25°C in the absence (A) or presence 
(B) of 500 mM L-alanine. After the addition of L-alanine, UV spectra were taken for 192 
minutes at 2 mins intervals. 

Upon mixing the YczR with 500 mM L-alanine, a biphasic spectral change was observed as 

shown (Figures 19, B). In a time-dependent manner, a slow decrease in the 425 nm peak with a 

concomitant increase in the absorbance at 325 nm was observed within 192 minutes.  

Decrease of the absorption peak at 425 nm and increased that at 330 nm is consistent with 

PLP turning into PMP. We speculated that L-alanine reacted with PLP to form one of the 

intermediates of the half-transamination.  

We speculate that the products of PLP and L-alanine reaction were PMP and pyruvate. UV 
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absorption spectra of YczR-PLP showed an increase in absorption in the range of 300-320 nm in 

reaction with L-alanine (Figure 19, B), suggesting the formation of PMP and possibly pyruvate, 

which both has absorpt at 320 nm. 

To prove one of the products was pyruvate, we added 100 mM pyruvate into the reaction 

cuvette after YczR and L-alanine reaction completed (Figure 20, A). Upon addition of pyruvate, 

the maximum absorption at 320 nm decreased (Figure 20, B). Moreover, maximum absorption at 

425 nm increased at the same time (Figure 20, C). The absorption change suggested that 

pyruvate was a product of PLP and L-alanine reaction. High concentration of pyruvate prompted 

the product from the first half reaction (PMP) reacted with pyruvate producing L-alanine. The 

increase in the UV absorption at 425 nm was observed during the addition of pyruvate, which 

confirms the formation of the Schiff base (aldimine) between PLP and an active-site lysine 

residue of the YczR. It is likely that that PLP-L-alanine reaction is a reversible reaction. Once the 

concentration of the product is increased, it will promote PLP formation.  

 

Figure 2. UV absorption spectra of YczR-L-alanine with pyruvate. Reaction of 6 uM YczR and 
30 mM L-alanine should be completed in 192 mins. 100 mM pyruvate was added into the 
cuvette. UV absorption was measured for 2 hours. Figures shown are for UV absorption change 
in 300 nm-600 nm (A), 306nm-330nm (B) and 400-450 nm (C). Brown line indicates absorption 
before addition of L-alanine. Pink line indicates that after PLP L-alanine reaction was complete. 
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Specificity test of YczR with amino acids or small molecular 

 

Figure 3. Specificity test of YczR with amino acids or other small molecules. Shown are UV 
absorption changes of 7 µM YczR in the presence of 300 mM Arginine (A), Lysine (B), Serine 
(C) and Leucine (D). In each case, the buffer was 50 mM HEPES, pH 7.5, 300 mM NaCl. 
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Figure 4. Specificity test of YczR with amino acids or other small molecules. Shown are UV 
absorption changes of 7 µM YczR in the presence of 300 mM phenyalanine (A), threoine(B), 
valine (C) and methionine (D). In each case, the buffer was 50 mM HEPES, pH 7.5, 300 mM 
NaCl. 
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Figure 5. Specificity test of YczR with amino acids or other small molecules. Shown are UV 
absorption changes of 7 µM YczR in the presence of 300 mM β-Alanine (A), GABA (B), 
Glutamine (C) and Cysteine (D). In each case, the buffer was 50 mM HEPES, pH 7.5, 300 mM 
NaCl. 
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Figure 6. Specificity test of YczR with amino acids or other small molecules. Shown are UV 
absorption changes of 7 µM YczR in the presence of 300 mM histidine (A), tyrosine (B), glycine 
(C) and tryptophan (D). In each case, the buffer was 50 mM HEPES, pH 7.5, 300 mM NaCl. 
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Figure 7. Specificity test of YczR with amino acids or other small molecules. Shown are UV 
absorption changes of 7 µM YczR in the presence of 300 mM aspartic acid (A), asparagine (B), 
proline (C) and D-alanine (D). In each case, the buffer was 50 mM HEPES, pH 7.5, 300 mM 
NaCl. 

The UV-visible spectrum of YczR reacted with other amino acids, and possible substrates 

were recorded (Figure 21-25). The time-dependent UV absorption of 7 µM YczR-PLP with 300 

mM Β-Alanine, serine, arginine, lysine, tyrosine, histidine, aspartic acid, phenylalanine, leucine, 

proline, threonine, valine, GABA, tryptophan, asparagine, methionine, and glutamine was 

measured separately in a cuvette with a 1 cm path length. The UV abortion spectral changes that 
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occurred with the addition of L-alanine were not observed when other amino acids, such as the 

D-alanine, glycine, glutamine or asparagine, were added. The results suggest that YczR 

specifically reacted with L-alanine, which matches the purpose of YczR as it activates 

transcription of the yczE operon. L-alanine or molecules with similar structure may regulate 

YczR function though reaction with PLP.  

Fluorescence emission spectra 

More information about conformational changes of the Schiff base after addition of L-

alanine can be obtained by fluorescence emission spectroscopy.  

Time-dependent fluorescence emission spectra results of YczR with L-alanine is shown 

(Figure 26). YczR (6 µM) and L-alanine (500 mM) were mixed in buffer (50 mM HEPES, pH 

7.5, 300 mM NaCl) at 25 °C. After the addition of L-alanine, fluorescence spectra was taken for 

20 mins at 4 mins intervals. When L-alanine-reacted YczR was excited at 283 nm, the 

characteristic emission peaks of the Shiff base between PLP and lysine were observed at 

approximately 326 nm[69].  
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Figure 8. Fluorescence emmission spectra of YczR. Fluorescence spectra of YczR-PLP (1.4 µM) 
in the buffer (50 mM HEPES, pH 7.5, 300 mM NaCl) was taken at 25°C in the absence of 500 
mM L-alanine at an excitation wavelength of 283 nm. 

Upon mixing the YczR with L-alanine, a change in fluorescence spectra was observed. The 

peak in the absorbance at 326 nm decreased slowly. The 326 nm absorption peak of the L-

alanine-reacted YczR can be ascribed to the external Schiff base associated with L-alanine. 

These results suggest that the Shiff base formed between PLP in YczR was broken in the 

presence of L-alanine.  

The fluorescence spectral changes that occurred with the addition of L-alanine were not 
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observed when other amino acids, such as the D-alanine, glycine, glutamine or asparagine, were 

added.  

Based on the results of Fluorescence emission spectra and UV absorption spectra, we 

speculate that the internal aldimine of YczR can react with L-alanine specifically.  

An End-point Assay to Monitor the YczR Catalyzed Half Transaminase Reaction 

Based on the UV absorption spectra result, we speculate that L-alanine formed pyruvate 

after reaction with PLP. An End-point assay was designed to confirm this hypothesis (Scheme 1). 

YczR was incubated with L-alanine excess and coupled with a lactate dehydrogenase to monitor 

the consumption of the NADH at 340 nm.  

 

 

Scheme 1. The end-point YczR-catalyzed half-aminotransferase reaction. The first half reaction 
(L-alanine to pyruvate) of the YczR-catalyzed transamination is shown on the top. The second 
half-reaction of Lactate dehydrogenase-catalyzed NADH oxidization is shown at the bottom. 
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To let the L-alanine and PLP reaction to be completed, 1 µM, 3.5 µM and 7 µM YczR had 

been added in the reaction buffer containing 500 mM L-alanine, 50 mM HEPES, (pH7.5), 300 

mM NaCl, which was kept at room temperature for 15mins. The lactate dehydrogenase 

consumed all pyruvate in each reaction solution to produce lactate. The data above shows 

measured absorbance change at 340 nm from the concomitant oxidation of the cofactor, NADH 

to NAD+. 

The concentrations of protein should affect the starting absorption points. The higher 

concentration of YczR in reaction solution had a higher starting absorption point. The absorption 

of 1 µM, 3.5 µM and 7 µM YczR decreased by 0.01, 0.05 and 0.1, absorption units (Figure 27). 

Those results suggest that 1 µM PLP in the YczR solution could react with 1 µM L-alanine to 

produce 1 µM pyruvate. In the YczR-catalyzed first half aminotransferase reaction, PLP and 

PMP are in dynamic equilibrium when pyruvate is present. All of the PLP was converted to PMP 

when pyruvate was omitted. 
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Figure 9. An end-point assay to monitor catalysis of half transaminase reaction by YczR. 
Absorption changes of NADH in the presence of 1 µM (blue), 3.5 µM (red) and 7 µM (black) 
YczR. 1 µM, 3.5 µM and 7 µM YczR has been added in the reaction buffer containing 500 mM 
L-alanine, 50 mM HEPES, (pH7.5), 300 mM NaCl, which was kept at room temperature 12 
hours. The lactate dehydrogenase consumed all pyruvate in each reaction solution to produce 
lactate. Absorbance change at 340 nm from the concomitant reduction of the cofactor, NADH to 
NAD+ was measured. 
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CHAPTER FOUR 

YCZR BINDS DNA SEQUENCE BETWEEN YCZR GENE AND YCZE GENE IN A 

SIMILAR FASHION TO GABR 

YczR Binds DNA with High Affinity 

YczR DNA binding sites and binding affinity was determined via fluorescence polarization 

(FP) experiments[70]. The K. pneumoniae YczR regulatory region contains 88 bp and has two 5bp 

direct repeats (CCTCA & AATGG). 

5’ATTTTTTCCTCAACATCATTGCGAATGCCCTCATCATCAGCAAAAATGGACTG

ATAATTAATGGCCAGTTTTGGAAAAGTGGATCGCT3’ within this fragment, the two 

direct repeats of sequences CCTCA and AATGG, appear to be likely for YczR binding. The 

bindings sites between CCTCA and AATGG repeats are separated by 34 bp, which corresponds 

to approximately three helical turns of DNA. Therefore, the corresponding nucleotides of the 

binding sites should lie on the same face of the DNA helix.  

GabR protected a 49 bp region of DNA identified previously for GabR-dependent 

regulation in vivo[35, 36]. Sequence alignment results indicate that many residues of the DNA 

binding regions between GabR and YczR are conserved (Figure 28). The GabR and YczR DNA 

binding regions are similar in type, direction, and spacing. We predict that some protein-DNA 

interactions between GabR-DNA and YczR-DNA complexes will be similar. Although a 

multitude of GntR family DNA bindings sites has been determined, the studies did not indicate a 

clear consensus sequence, rather sparse alignment was detected over short fragments [54, 55, 71].  



 

 
 
  

45 

Based on the pair of two direct sequence repeats, two 68-bp complementary single-stranded 

DNA oligonucleotides containing the YczR binding region 

(5'TTTCCTCAACATCATTGCGAATGCCCTCATCATCAGCAAAAATGGACTGATAATTA

ATGGCCAGTTTT-TAMRA-3', where Fl means fluorophore) were purchased from Integrated 

DNA Technologies (IDT). Fluorescence polarization assay studies were conducted to estimate 

1nM as the optimal DNA concentration for further experimentation.  

 
Figure 1. Sequence alignment of the winged-helix domain sequences of B. subtilis GabR gabR-
gabT DNA binding regions (top) and K. pneumoniae YczR yceE DNA binding regions (bottom). 
The black asterisks highlight DNA-binding residues of YczR that are identical or similar in 
GabR. 

The binding affinity of YczR for DNA containing the 68-bp YczR binding site was 

determined by FP (Figure 29). Different concentrations of YczR were incubated with TAMRA-

labeled DNA fragments containing the promoter regions of yczE and assayed for the formation 

of protein-DNA complexes. The result showed a dose-dependent polarization increase, indicative 

of YczR binding to DNA. The fluorescence polarization data set was fitted into the modified Hill 

equation to determine the apparent dissociation constant of the YczR-DNA complex, as 26.47 

nM. 

To rule out nonspecific effects from the TAMRA label and establish binding specificity, a 
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negative control assay was performed with Bovine Serum Albumin (BSA) and the TAMRA-

labeled DNA (Figure 30). A constant concentration of TAMRA-labeled DNA was incubated in 

several aliquots with increasing concentrations of BSA protein. The fluorescence polarization did 

not show any significant change with increasing concentration of BSA, which suggests that 

YczR specifically binds to the TAMRA-labeled DNA. 
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Figure 2. Fluorescence polarization assays to measure DNA binding by YczR. Titration of YczR 
against 1 nM TAMRA-DNA. The YczR concentrations were varied from 0 to 3,000 nM. The 
average values and errors were plotted and fitted to the Hill equation. Each data point was 
measured in triplicate. Error bars are too small to be displayed if the errors are less than 
1/1,000th of the measured value. 
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Figure 3. Specificity test of YczR fluorescence polarization assays. In the negative control 
binding assay, the same increasing concentrations BSA were used against a fixed concentration 
of TAMRA-labeled DNA to indicate specific binding.  
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YczR likely binds to the regulation region with a 2:1 stoichiometry 

Based on the CCTCA and AATGG direct repeats on the DNA sequence, two 34-bp 

complementary single-stranded DNA oligonucleotides containing the YczR binding region 

DNA_1 (5'- TTTCCTCAACATCATTGCGAATGCCCTCATCATTC-TAMRA-3') and DNA_2  

(5'- AGCAAAAATGGACTGATAATTAATGGCCAGTTTT-TAMRA-3') were designed and  

purchased from IDT. The two 34 bp DNA fragment located within the YczR protected region is 

close in size to a minimal fragment allowing YczR binding in vitro.  

YczR binds tighter to the site closer to yczE gene 

DNA_1 has one specific binding site for YczR (Figure 31). The dissociation constant (Kd) 

of the YczR with DNA_1 complex was determined to be 135.1 nM. DNA_2 also has one 

specific binding site for YczR (Figure 32). The dissociation constant (Kd) of the YczR with 

DNA_2 complex was determined to be 33.63 nM. We speculate that YczR binds on the DNA_2 

binding site first at low concentration and then it binds the DNA_1 binding site at high 

concentration.  
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Figure 4. Fluorescence polarization assays to measure DNA_1 binding by YczR. Titration of 
YczR against 1 nM TAMRA-DNA. The YczR concentrations were varied from 0 to 3,000 nM. 
The average values and errors were plotted and fitted to the Hill equation. Each data point was 
measured in triplicate. Error bars are too small to be displayed if the errors are less than 
1/1,000th of the measured value.  
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Figure 5. Fluorescence polarization assays to measure DNA_2 binding by YczR. Titration of 
YczR against 1 nM TAMRA-DNA. The YczR concentrations were varied from 0 to 3,000 nM. 
The average values and errors were plotted and fitted to the Hill equation. Each data point was 
measured in triplicate. Error bars are too small to be displayed if the errors are less than 
1/1,000th of the measured value.  
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Materials and Methods 

Materials 

Chemicals for YczR purification, crystallization, assays were purchased from Sigma-

Aldrich (St. Louis, MO), Alfa Aesar (Tewksbury, MA) and Fisher Scientific (Pittsburgh, PA). 

YczR gene was synthesized with codon optimization for E. coli expression from Integrated DNA 

Technologies (Coralville, IA).  

E. coli BL21 (DE3) cells and Turbo cells were purchased from New England BioLabs 

(Ipswich, MA). Bacterial growth media Luria-Bertani (LB) broth and antibiotics were obtained 

from Sigma-Aldrich. Crystallization screen solutions and other crystallization supplies were 

purchased from Hampton Research (Aliso Viejo, CA) and Emerald Bio (Bedford, MA). All other 

materials were purchased at the highest quality available. DNA and protein sequences were 

analyzed using DNA Strider and the BLAST program[72, 73].  

Methods 

DNA Cloning. To construct the His-tagged version of the YczR protein, the coding region 

was amplified by PCR from the synthesized YczR gene for K. pneumoniae genomic DNA using 

the specific oligonucleotides as primers (forward primer designed as 

GAAGGAGATATACATATGATCGACCAGAGCGATTGGATA and the reverse primer 

designed as GTGATGGTGGTGATGATGATCCCCTGTAACGGGGATTTT). The PCR 

thermocycler program used included an initial denaturation for 120 s at 95 °C; 40 cycles of 95 °C 

for 30 s, 50 °C for 60 s, and 72 °C for 50 s; and the final extension of 72 °C for 5 min. The PCR 

product was digested with NdeI and NotI and subsequently cloned into the expression vector 
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pETite (Lucigen). 

The YczR DNA fragment was cloned into the NdeI site of pETite by treated with Phusion 

HF DNA polymerase, following the manufacturer's instructions. The pETite-kan-c-5His vector 

with K. pneumoniae YczR full-length gene was transformed insert into E. coli Turbo competent 

Cell (New England Biolabs).  

After pETite-kan-c-5His vector was purified from E. coli Turbo cell, the resulting plasmid 

was then transferred to competent E. coli BL21DE3 cells to overexpress the YczR protein. 

Digestion of the plasmid from E. coli Turbo cell was by DNA Restriction enzymes NdeI and 

NotI. The restricted DNA fragments were analyzed by agarose gel electrophoresis according to 

standard protocols. 

The purified plasmid from BL21DE3 cell was then sent to sequencing. DNA sequencing 

result from DNA Sequencing & Genotyping Facility (University of Chicago Comprehensive 

Cancer Center) confirmed the correct orientation with a C-terminal His6-tag.  

Protein Purification. The YczR protein from E. coli was expressed and purified by using 

the intein-mediated purification with an affinity histidine tag system. Transformed E. coli 

BL21DE3 cultures were grown overnight at 37°C and 250 rpm in 500 ml of LB medium 

containing 50 µg/ml kanamycin.  

Induction of YczR expression was carried out at OD600 of 0.8 by adding Isopropyl-β-D-

thiogalactopyranoside (IPTG) to the final concentration of 0.5 mM.  

Cells were incubated at 25 °C and harvested after 16 hours by centrifugation at 7000 RPM 

and 4 °C for about 15 min (Avanti J-E Centrifuge, Beckman Coulter). The cell pellet was 
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resuspended in Ni column buffer containing 5% (vol/vol) glycerol and 1 mM PLP. 

Following sonication (Qsonica sonicators, Q500 Sonicator) to break the cellular wall, the 

cell extract was cleared by centrifuged twice at 16,500 rpm and 4 °C for 20 min. The supernatant 

fraction was loaded onto a 10 ml affinity chromatography Ni-NTA column (GE Healthcare) 

containing Ni2+ and previously equilibrated with lysis buffer. Elution of the retained proteins was 

achieved with a linear imidazole gradient (20 column volume, 10 mM-400 mM). 

Fractions containing protein eluted from Ni column were concentrated (Centricon Plus 

centrifugal filter units; Millipore) to 2 mL, and loaded onto the gel filtration column (HiLoad 

16/60 Superdex 200 pg. GE Healthcare), which was equilibrated with gel filtration column 

buffer (300 mM NaCl, 50mM HEPES, pH 7.5). 

The YzcR concentration was determined with the Bio-Rad protein assay kit. The protein 

molecular weight was analyzed using Sodium Dodecyl Sulfate Polyacrylamide Gel 

Electrophoresis (SDS-PAGE). Purified YczR protein was used freshly after exchanging into 

suitable buffers for the crystallization and biological assays. The YczR protein was stored with 

high salt concentrations (300 mM Nacl) and 5 % imidazole to stay soluble without precipitation. 

The protein was stored at 4 °C for short-term or flash frozen in1000µL aliquots in liquid nitrogen 

after the addition of 20% (V/V) glycerol and stored at -80°C for long-term use. The color of 

concentrated, purified YczR was pale yellow because PLP was bound to the protein. 

Crystallization. The purified YczR was buffer exchanged into crystallization screening 

buffer (50 mM HEPES, pH 7.5, 300 nM NaCl) and concentrated to 10 mg/ mL using a 10,0000 

molecular weight cutoff (MWCO) Amicon-Ultra centrifugal filter device (Millipore). The initial 
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sparse matrix screen (Crystal Screen Cryo 1 and 2, Crystal Screen 1 and 2, Index 1 and 2, and 

PEG/Ion 1 and 2 from Hampton Research and Wizard 1&2 and 3&4 from Emerald BioSystems) 

were set up with the Gryphon crystallization robot (Art Robbins Instruments) to obtain initial 

crystallization hits. 

Crystals appeared in the well solution containing 20% (W/V) PEG8000, 100 mM HEPES, 

pH 7.5, 200 mM (NH4)2SO4, and 10% (V/V) isopropanol after a week during incubation at room 

temperature. After the initial crystallization screen, Crystals of YczR were obtained via the 

sitting drop methods incubated at room temperature. Further optimized manually using a 1:1 well 

solution: YczR stock solution (10 mg/mL) ratio to obtain crystals with the best size and 

morphology. Crystallization was conducted in 24-well Cryschem sitting drop plates (Hampton 

Research). Crystals grew to maximum size in 1-2 weeks and were harvested in about 15 days.  

For attempted co-crystallization of YczR and L-alanine, 6 µL of YczR (20 mg/mL) was 

mixed with 1 µL of 10 mM L-alanine (dissolved in protein crystallization buffer) with 4 µL of 

well solution containing 8% (V/V) Tacsimate, pH 6.0, 20% (W/V) PEG8000. Crystals were 

seeded on day 3 with crystals obtained from previous trials. Crystals with good size and 

morphology were picked directly from the sitting drops into a cryoprotecting solution (well 

solution supplemented with 25% (v/v) glycerol) and then flash-cooled in liquid nitrogen.  

X-ray Diffraction Data Collection. Individual YczR crystals were flash frozen in liquid 

nitrogen using 30% PEG10,000 in the crystallization buffer as a cryoprotectant solution. The 

diffraction data of YczR were collected at Advance Photon Source (Argonne National 

Laboratory, Argonne, IL) Structural Biology Center (SBC) 19ID and 19BM beamlines. The 
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YzcR crystal diffraction images were recorded by the 4×4 tiled 300×300 mm2 sensitive area 

CCD detector from Area Detector Systems Corp. (ADSC). The data collection was at a 

wavelength of 1.0 Å. The datasets were indexed, integrated and scaled using the HKL2000[74].  

Structure Determination, Model Building, and Refinement. The collected datasets were 

all scaled in the space group C2221 to a resolution of 1.79 Å. Auto build by molecular 

replacement using PHASER[75] in the PHENIX[76] software suit automatically built about 60% of 

the residues. Manually build the remainder of the model in COOT[77]. Rigid body refinement 

followed by restrained refinement was carried out in Refmac5 in the CCP4 software suits until 

no more side chains can be built in automatically[78]. Final refinement statistics of YczR are 

listed in Table 1. Structural figures were made using UCSF Chimera[79]. 

UV-Absorption Spectroscopy. UV-Vis absorption spectra were recorded with Jasco V-

550 spectrophotometer in 1 mL quartz cuvettes in 50 mM Tris-HCl, pH 7.5, and 300 mM NaCl 

at 25 °C. The enzyme solution was centrifuged 5 mins at 14,000 RPM to reduce light scattering 

from the small amount of precipitate. The protein solution contained 10 mM potassium 

phosphate buffer at pH 7.5. 

Absorption of YczR-PLP (7 µM) with L-alanine (50 mM) was observed in the UV range 

300-600 nm over time. Also measure YczR-PLP (7 µM) at various with 300 mM Β-Alanine, L-

serine, Arginine, Lysine, Tyrosine, Histidine, Aspartic acid, Phenylalanine, Leucine, Proline, 

Threonine, Valine, GABA, Tryptophan, Asparagine, Methionine, and Glutamine separately as 

the same as YczR and L-alanine experiment.  
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End-point Assay to Monitor the YczR Catalyzed Half Transaminase Reaction. 

Activity was measured using varying concentrations of YczR protein in an assay buffer 

containing 50 mM HEPES (pH 7.5), 300 mM NaCl, 500 mM L-alanine, 320 µM NADH, and 5 

units Lactate dehydrogenase (LDH). 

In the first half-reaction, add 1 µM, 3 µM and 7 µM YczR to 500 µM L-alanine overnight at 

room temperature. In the coupled assay, measure the amount of pyruvate produced from each 

tube. LDH consumes the product of the first half-reaction (pyruvate) to produce lactate. The 

coupled reaction is measured spectrophotometrically (absorbance change at 340 nm) from the 

concomitant oxidation of the cofactor, NADH to NAD+. 

Fluorescence emission spectroscopy. Fluorescence emission spectroscopy is a type of 

electromagnetic spectroscopy, which analyzes fluorescence from a sample. Experiments were 

performed using a PTI Quanta-Master fluorimeter (Photon Technologies, Mirmingham, NJ). 

Time-based assays were conducted with excitation and emission wavelengths set at 283 and 326 

nm, respectively. The measurement was initiated after 1.4 µM YczR-PLP and in the presence of 

500 mM L-alanine in the buffer containing 50 mM HEPES (pH 7.5), 300 mM NaCl. 

Fluorescence emission spectra were measured every 4 mins from 0 min to 20 mins at 25 °C. 

GraphPad Prizm 3.0 was used for analyzing the time-dependent curves. 

Size Exclusion Chromatography with Multi-Angle Light Scattering (SEC-MALS). The 

size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) was used 

to determine the molecular mass of YczR oligomers in solution. SEC-MALS system was set up 
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with the AKTA FPLC system (GE Healthcare Biosciences) with a silica-based size-exclusion 

chromatography column (WTC-030S5, Wyatt Technology) as a liquid chromatography unit. 

For the experiments, the column was connected upstream of a refractive index detector 

(Optilab TrEX, Wyatt Technology), and then followed by a multiangle light scattering detector 

(Dawn Heleos II, Wyatt Technology) used for determining protein concentration and particle 

size, respectively.  

SEC-MALS sample injection requires 100 µl of a solution containing 7 µM YczR protein in 

50mM HEPES (pH 7.5), 300 NaCl buffer. The flow rate was set at 0.4 mL/min, and data were 

collected at 2 s intervals. Data processing and analysis were performed by the ASTRA software 

(Wyatt Technology). 

Fluorescence Polarization Assay. The binding affinity of YczR for a DNA containing the 

68-bp YczR binding site was determined by fluorescence polarization assays[70]. Synthesis 

Labeled DNA Sequence with fluorophore from Integrated DNA Technologies (IDT)  

Two 68-bp complementary single-stranded DNA oligonucleotides containing the YczR 

binding region (5'- TTTCCTCAACATCATTGCGAATGCCCTCATCATCAGCAAAAATGG 

ACTGATAATTAATGGCCAGTTTT-TAMRA3', where Fl means fluorophore) were purchased 

from Integrated DNA Technologies (IDT).  

Based on the four direct repeats on the DNA sequence, two 34-bp complementary single-

stranded DNA oligonucleotides containing the YczR binding region (5'- TTTCCTCAACAT 

CATTGCGAATGCCCTCATCATC-TAMRA-3') and (5'-AAAACTGGCCATTAATTA 

TCAGTCCATTTTTGCT-TAMRA-3') were also purchased from IDT.  
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Both oligonucleotides were synthesized and labeled with the fluorophore, 

carboxytetramethylrhodamine (TAMRA) attached at the 3' terminus. TAMRA has an emission 

maximum of 580 nm and an absorbance maximum of 565 nm. 

The double-stranded oligonucleotides were prepared by annealing a mixture containing an 

equimolar concentration of the two single-stranded oligonucleotides at 25 µM in 10 mM Tris-

HCl, pH 8.0, 1 mM EDTA, and 50 mM NaCl. The annealing solution was heated at 90°C for 1 

minute, and then cooled 5°C per minute until it reached 10°C by using a Mastercycler Personal 

(Eppendorf). 

For the fluorescence polarization assay, YczR was serially diluted in the buffer (50 mM 

HEPES, pH 7.5, 5% Glycerol, 300 mM NaCl) to acquire the appropriate concentrations against a 

fixed concentration of TAMRA-labeled DNA (1 nM). 

The constant concentration (0.1 nM) of TAMRA-labeled DNA was mixed with the serially 

diluted YczR protein (final concentration, 0-1,000 nM). The DNA binding reaction contained 50 

mM HEPES, pH 7.5, 10 mM MgCl2, 0.1 µg/µL BSA, 100 mM NaCl, and various concentrations 

of protein typically in 100 µL. The sample mixture was loaded into the individual wells of a 384-

well micro-plate. Fluorescence polarization data for the YczR DNA complex were obtained 

using a BioTek Synergy 2 Plate Reader (BioTek). The fluorescence polarization (FP) signals of 

the YczR-DNA mixtures were measured with fixed excitation (531 nm) and emission (595 nm) 

wavelength filters at room temperature. In the negative control binding assay, Add Bovine serum 

albumin (BSA) at increasing concentrations against a fixed concentration of TAMRA-labeled 

DNA.  
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The change plots in mP as a function of YczR concentration were used to determine the 

equilibrium dissociation constant (Kd) for the interaction between YczR and DNA binding site. 

The data was fit to a hyperbola using the program Kaleida Graph (Synergy Software). Determine 

Kd by: (Bmax)([S])/Kd+[S], where Kd and Bmax are derived from the single-ligand binding 

plot, and [S] is the concentration of the fluorescein-labeled DNA. Use the Kd result to calculate 

the Ki using the following equation: Ki=EC50/ (1+[s])/kd, where Kd is for YczR binding to 

DNA sequence. 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE INVISTIGATIONS 

Many widespread DUFs are biologically essential in bacteria, and the importance of 

understanding and prioritizing DUF research has been recognized in the last few years[80]. DNA 

sequence alignment results have indicated that YczR in K. pneumoniae is the transcriptional 

regulator of YczE (DUF161) a new MocR/GabR subfamily member of the GntR superfamily.  

In this study, we have defined two X-ray structures of the YczR regulation domain: a 1.79 

Å structure with PLP bound and a 2.0 Å apo structure without PLP.  

To the best of our knowledge, these structures are the first YczR X-ray crystal structures 

solved. The elucidation of the three-dimensional YczR crystal structure provided important 

information regarding the structure-function relationship and domain arrangements of the 

MocR/GabR subfamily. Additionally, this information allowed for transcriptional activity 

analysis of YczR.  

GabR is the best genetically and biochemically characterized MocR/GabR subfamily 

member. The members of the MocR/GabR subfamily contain an N-terminal wHTH DNA-

binding domain and a C-terminal aminotransferase-like PLP binding domain. YczR and GabR 

belong to the same evolutionary subgroup the MocR/GabR subfamily and share similar 

mechanistic, functional, and structural features.
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The N-terminal helix-turn-helix DNA-binding domain was not found in the two YczR 

crystal structures. However, SEC-MALS and mass spectrometry results suggested that the YczR 

protein is full length in solution after purification. We speculated that YczR lost the DNA-

binding domain during crystallization, likely due to a contaminated protease activity. Although 

YczR and GabR are similar in molecular weight, the SAXS results indicated that YczR occupies 

a greater volume. We surmise that the interactions between the DNA binding domain and the 

regulation domain within YczR are weaker than in GabR. This allows for full extension of the 

linker region, which contributes to the loss of the DNA binding domain during crystallization.  

Similar to GabR, YczR has a co-factor, PLP, which is a common co-enzyme among a large 

number of enzymes. Also, like GabR[36], the YczR structure shown indicates that the ε-amino 

group of lysine331 forms a covalent Schiff base linkage (internal aldimine) with the aldehyde 

group of PLP; which serves as the only effector of the YczR. In contrast, GabR requires GABA 

for modulation of its activity in addition to PLP[54]. Based on Belitsky’s publication, the 

intracellular level of PLP in bacteria is most likely not subject to significant variations[54]. It is 

unusual among bacterial transcriptional regulators to require a B6 vitamin for activity 

modulation.  

YczR is a likely DNA-binding transcription regulator that requires the presence of PLP for 

activation of the yczE promoter. YczR binds DNA sequence between yczR gene and yczE gene 

in similar fashion comparing to GabR. From the fluorescence polarization results, it appears that 

an oligomeric form of YczR binds to two binding sites within the yczE gene. The YczR can 

recognize and specifically bind to sequences within the yczE promoter fragment. 



  

 
 
  

63 

YczR likely binds to the regulation region with a 2:1 stoichiometry. The dissociation 

constant (Kd) of the YczR-DNA complex was determined to be 26.47 nM. Although the precise 

stoichiometric binding of YczR for DNA is unknown, the dissociation constants which been 

determined from the fluorescence polarization assay suggest that YczR binds DNA with a high 

affinity. Four direct repeats of the sequence CCTCA and AATGG were located in this fragment, 

which appears to be essential for YczR binding. YczR binds tighter to the site closer to the yczE 

gene. 

YczR regulation domain catalyzes a reversible half-transaminase reaction instead of being a 

non-enzymatic regulator like GabR. The only documented role of PLP as a cofactor in numerous 

enzymes is catalytic[81]. As such most of the aminotransferases are involved in the metabolism of 

amino group-containing compounds [42, 45]. It seems likely that PLP plays the same type cofactor 

role in YczR as it does in GabR. The aminotransferases PLP-binding domains evolved 

specifically to catalyze the aminotransferase reaction[46, 82, 83]. The UV-visible spectrum and 

fluorescence emission spectra results suggested the possibility that the regulatory domain of 

YczR maybe positive regulation of transcription because it could catalyze the half enzymatic 

reaction involving PLP.  

Previous research efforts have shown that potent mechanism-based in-activators can be 

rationally designed against these PLP-dependent drugs-targets. Although the mechanistic 

function of PLP cofactor has been studied in details, its transcriptional regulator role has not 

been fully elucidated[54]. Our current research results will contribute to understanding the role of 

PLP in the K. pneumoniae YczR transcriptional regulator domain. We propose several possible 
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functions for the 330 amino acids long PLP-binding aminotransferase-like regulator domain of 

YczR can be suggested: (1) it has a structural role to maintain oligomerization overall and/or 

stability; (2) it is an effector-binding domain; (3) it likely performs an enzymatic reaction 

unrelated to regulatory functions and the DNA-binding of YczR; it may catalyze an enzymatic 

reaction, which is essential to exert its regulatory functions of YczR. 

PLP also may interact covalently with taurine to activate TauR[55]. YczR likely responds to 

alanine to regulate taurine trafficking in K. pneumoniae to facilitate infection in animals and 

humans.  

Taken together, all the results from UV absorption and half alanine-glyoxylate transaminase 

assay indicate that the YczR is highly specific for catalyzing L-alanine to pyruvate processing, 

thereby playing a pivotal role in L-alanine detoxification. In this half-reaction, the L-alanine 

reacts with PLP and transfers its α-amino group to PLP to make pyridoxamine phosphate (PMP). 

A new Schiff base is generated once the L-alanine interacts with the PLP commonly referred to 

as the external aldimine[36]. If in the complete transaldimination reaction, then PMP would 

transfer its nitrogen to the sugar to make an amino sugar. However, the crystal structure of YczR 

showns that PMP had been released from the regulation domain active site pocket.  

 L-alanine could have specificity affected to YczR-DNA interaction. It may affect YczR-

DNA interactions though PLP. The use of a variety of biochemical techniques has allowed us to 

gain an in-depth understanding of the characteristics of YczR. 
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Future Work 

 YczR monomer’s molecular weight is 52.2kDa. YczR should be full-length protein in 

solution depend on mass spectrometry result. To research the selectivity and reaction 

mechanisms of YczR, future studies could involve active site residues mutations in YczR. Full-

length YczR is not very stable at room temperature and low salt concentration solution. DNA 

binding domain of YczR would be moved to make truncated YczR protein.  

DNA foot printing is a method to determining the DNA sequence specificity of DNA-

binding proteins binds in vivo or in vitro. YczR is the transcriptional activator controlling the 

transcription of YczE (DUF161). The localization of YczR DNA binding sites would elucidate 

the function of YczE.  

Many years of the alarming rise of bacterial resistance and antibiotics abuse has created a 

dangerous quandary for antibiotics research. Advances in the development of the scientific 

technology, and more tools have been provided for the improvement of the already established 

antibiotics and the new antibiotic classes discovery. The research of YczR maybe used to design 

inactivators, which are specific for drug targets to combat the rise of resistant gram-negative 

pathogens.  
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CHAPTER SIX 

THE AQUEOUS DECAY OF A VANADIUM COMPLEX SEREDIPUOSLY REVEALS 

MISSING KNOWLEDGE ON THE REDOX STATES OF PTP1B 

Research aims: The decay of a vanadium complex and its redox effect on PTP1B, a target 

for diabetic treatment, in vitro 

Diabetes is the seventh leading cause of death in the United States in 2016. The Center of 

Disease Control (CDC) and the American Diabetes Association (ADA) published the Diabetes 

Report Card in 2014, stating that 29.1 million Americans are diagnosed with diabetes as of 

2012[84]. There are two major types of diabetes with , which people are diagnosed, type 1 and 

type 2.  

Type 1 diabetes is genetically inherited and occurs when insulin is not produced in 

sufficient quantities. In type 2 diabetes, the insulin is produced in standard quantity, but the 

insulin receptors are desensitized and unable to transmit the signal inward to the cell[85, 86]. Type 

2 diabetes is often seen in patients with unhealthy lifestyles and is of interest due to the 

prevalence of patients with heart disease[87]. 

Protein-tyrosine phosphatases (PTPs) are a class of enzymes that regulate a variety of 

fundamental cellular processes[88, 89]. PTP1B is a critical negative regulator of leptin signaling 

pathways[90, 91]. Protein Tyrosine phosphatase 1B (PTP1B) was the first PTP purified from 

human tissue[92].  
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Previous studies have indicated that PTP1B plays an important role in cell signaling 

relevant to diabetes, obesity, and cancer[92-94]. PTP1B is a critical negative regulator of leptin 

signaling pathways[90, 91]. PTP1B also is a key negative regulator of insulin signaling pathways, 

which inhibit the pathway responsible for controlling the uptake of glucose into the cell and 

lowering blood sugar levels[95]. Inhibition targeting PTP1B could prove to be effective in the 

treatment of type 2 diabetes and provide an opportunity to improve insulin sensitivity[84, 96]. 

However, the difficulty lies in identifying a specific, potent and safe PTP1B inhibitor. The two 

major challenges in developing potential therapeutics targeting PTP1B are lack of selectivity 

over other similar PTPs as well as lack of cell permeability[97]. Developing PTP1B inhibitors 

should simultaneously occupy both active site (Site-A) and the adjacent pTyr binding site (Site-

B) partially to address the selectivity issue[98].  

Vanadium compounds have been known to be insulin-enhancing agents both in vitro and in 

vivo[99]. Orthovandate (VO4
3-), the vanadate form which most closely mimics PO4

3-, can act as a 

substrate analog to inhibit all types of phosphatases because it shares similar structural properties 

with phosphorus[100].  

Organic vanadium complexes have been proven more effective in vivo and in vitro studies 

than inorganic vanadium compounds[101]. It has been demonstrated that the peroxovanadium 

compounds irreversibly oxidize the thiol group of the conserved catalytic cysteine in the PTP 

catalytic sites[102]. Various vanadium compounds may have a different but overlapping spectrum 

of PTP inhibition activities, due to differences in their structure and stability. Vanadium is not 

well absorbed by mammalian cells, while some organic vanadium complex are better absorbed 
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because of the favorable membrane permeability[99, 103]. The detailed mechanisms by which 

different vanadium complexes enhance insulin’s activity are still not fully understood[104, 105].  

Another specific product generated during this decay and their effects on PTP1B was not 

looked at carefully. The prevalent explanation is that vanadium compounds would break down in 

solution and inhibit PTP1B activity via the generated vanadate acting as a transition state analog 

in the PTP1B reaction[102, 106, 107].  

Vanadyl acetylacetonate, VO(acac)2 is an organo-vanadium complex, where (acac) is the 

conjugate base of acetylacetone[108]. VO(acac)2 has been shown to inhibit tyrosine phosphatases 

(PTPases), such as PTP1B[107]. Like other charge-neutral acetylacetonate complexes, it is more 

soluble in polar organic solvents. 

This work will focus on the co-crystallization and inhibition of PTP1B using synthesized 

VO(acac)2 complex (Figure 33). In addition to vanadium complexes having shown potential in 

the treatment of Type 2 diabetes, other studies indicated shown that some zinc complexes also 

have similar insulin-enhancing effect in treatment of type 2 diabetes[109].  

Besides the drug design effort, the oxidation state of the catalytic cysteine in the PTP1B 

activity down regulation still presents some unsolved puzzles. Robin Carr & Harren Jhoti found 

that after soaking PTP1B with 2-phenl-sioxazolidine-3, 5-dione, the sulphur Sγ atom of Cys-215 

formed a covalent bond with the backbone nitrogen atom of Ser-216[110]. In our studies, it was 

observed that while Cys-215 was oxidized; it did not form a covalent bond with the backbone 

nitrogen atom of Ser-216, representing a possible intermediate state in redox sensing.  

In this study, we report the crystal structure of inhibited PTP1B obtained from the co-
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crystallization experiment of PTP1B and VO(acac)2. In addition to the inhibited structure via a 

vanadate species, the catalytic Cys-215 is shown to be partially oxidized and in two alternative 

conformations. Combining both inhibition studies and the crystal structures present important 

gap knowledge in the modification/oxidation of the PTP1B via the aqueous decay of VO(acac)2.  

 

Figure 1. Synthesis of VO(acac)2 complex.  
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Results and Discussion 

A variety of structural, enzymatic and kinetic studies from several laboratories have made 

clear that the mechanism of PTPs substrate recognition and catalysis[111-113]. All members of the 

PTPs are characterized by the presence of a signature motif, which contains the cysteine residue 

(Cys-215 in PTP1B) that is essential for catalysis[112]. PTP-mediated catalysis proceeds via a 

two-step ping-pong mechanism (Scheme 2).  

 

 

Scheme 1. The general mechanism of the PTP-catalyzed reaction. The WPD-loop assumes a 
catalytically active closed conformation with the general acid in position to protonate the leaving 
group during formation of the phosphor-enzyme intermediate. In the second step this 
intermediate is hydrolyzed. After the phosphate product is released the WPD-loop open 
conformation becomes favored. 
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In the first step, a nucleophilic sulfur atom of the thiolate side chain of the cysteine attacks 

the phosphate ester moiety of the substrate, resulting in the formation of a phosphor-enzyme 

intermediate with the release of the peptidyl-tyrosine. The second step occurs via the 

phosphoenzyme intermediate attacked of a water molecule, which mediated by Asp-181 and 

Gln-262, yields the final products inorganic phosphate and the regenerated enzyme.  

Structure of PTP1B and VO(acac)2 Complex 

The X-ray structures for PTP1B in the presence of the competitive inhibitor vanadate was 

determined by molecular replacement and refined to a 2.2 Å resolution. Overlapping X-ray 

crystal structures of PTP1B as ribbon diagram with VO(acac)2 as a ribbon diagram is shown 

(Figure 34). 

The PTP1B crystal structure to be solved was that of the 37kDa PTP1B catalytic domain 

with VO(acac)2 complex. PTP1B is one of the 38 classical PTPs that specifically target 

phosphorylated tyrosine residues. It is composed of an N-terminal catalytic domain, two proline-

rich motifs, and a C-terminal hydrophobic region. The crystals belong to P21 space group with 

cell dimensions (a= 52.17 Å, b = 71.75 Å, c = 88.01 Å) diffracted to 2.2 Å. The vanadium 

compound engages the catalytic site of the PTP1B protein.  
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Figure 2. Overlapping X-ray crystal structures of PTP as ribbon diagram 1B with VO(acac)2 as a 
ribbon diagram. 

The electron density of residues revealed the presence of covalently bound Vanadate in the 

pocket situated at the interface of the subunits in the crystal structure of PTP1B (Figure. 35). It is 

of interest to note that the structure of the initial Vanadium complex had degraded before the 

actual binding of the inhibitor to PTP1B. The pocket also corresponds to the cofactor binding 

sites in the related enzymes and therefore defines the active site of PTP1B.  
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Figure 3. Electron density of the vanadate modified catalytic cysteine. Vanadate is shown with 
the refined 2Fo-Fc electron density map contoured at 1.0 σ.  
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Table 2. Crystallographic data collection and refinement statistics for PTP1B 

 PTP1B 

Space group P21 
Cell dimension  
α, β, γ (deg) 60.743, 61.26, 88.307 
a, b, c (Å) 90.0, 90.041, 90.0 
Resolution (Å) 1.83 
Resolution at I/σ (I) =2 1.90 
Rpim 

a (%) 5.8(43) 
I/σ (I) 12.3(8.3) 
CC ½ b

 0.673 
Completeness (%) 91.1(83.4) 
Multiplicity  
No. Reflections  
No. Unique Reflections  
  
Rwork 

c/Rfree d(%) 17.7/22.6 
No. of Atoms  
protein 13937 
ligand 66 
water 1400 
B factors (Å2)  
protein 29.135 
ligand  
RMSD e  
bond lengths (Å) 0.02 
bond angles (deg) 1.96 
Ramachandran plot (%)  
most favored  
allowed  
outliers  

aPrecision-indicating merging R 
bPearson correlation coefficient of two “half”data sets 
cRwork = Σ|Fobs − Fcalc|/ΣFobs 
dFive percent of the reflection data were selected at random as a test set, and only these data were used to calculate Rfree 
eRoot-mean square deviation 
hNot applicable 
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The Electron Density in Green is the simulated annealing omit difference map (2Fo-Fc), at 

1.0 sigmas, that shows the existence of orthovanadate (VO4
3-). The central vanadium atom of 

orthovanadate is covalently linked to the sulfate of Cys-215. The Electron Density in grey is the 

simulated annealing composite map (2Fo-Fc) showing sulfenic acid, which is oxidized at the 

Cys-215 residue and exists in 2 positions at 1.0 sigma.  

From the omit map, the thiol group on Cys-215 has been oxidized. The side chain exists in 

two conformations, with one bound to Vanadate and the other facing out of the active site. 

Presently, the oxidized Cys-215 remains active. VO(acac)2 forms Electrostatic interactions with 

active site Cys-215 which may block substrate biding in the active site and/or decrease catalytic 

activity.  
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Figure 4. Electrostatic interactions between the VO(acac)2 inhibitor and the PTP1B active site. 
The hydrogen bonds between inhibitor and PTP1B are indicated by dashed lines. The crystal 
structure of the PTP1B: VO(acac)2 complex confirmed these noncovalent interactions. 

Electrostatic interactions between the VO(acac)2 bound Cys-215 and the PTP1B active site 

loop are shown (Figure 36). In the PTP1B covalent modification vanadium oxide (CVO) 

formation, the oxygen atoms in the modified Cys-215 forms two hydrogen bonds with the side 

chain hydroxyl of Ser-222 and the backbone amide of Arg-221; one of the oxygen atoms of 

vanadate forms hydrogen bonds with the backbone amides of Gly-220, Ile-219 and Gly-218. The 

second oxygen atom of vanadate is stabilized by the backbone amide groups of Arg-221 and a 
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water molecule, which interacts with the third oxygen atom of vanadate. The fourth oxygen atom 

forms hydrogen bonds with the backbone amide of Ser-216. In the sulfenic acid formation, the 

oxygen atom in the modified Cys-215 forms one hydrogen bond with the backbone amide of 

Ser-216.  

Previous work by Robin Carr & Harren Jhoti[110] found in the oxidized PTP1B active site, 

the sulphur atom in the Cys-215 has formed a covalent bond with the backbone amide of Ser-216. 

A crystallographic soaking experiment of PTP1B with one identified inhibitor (2-phenyl-

isoxazolidine-3, 5-dione) formed a sulphenyl-amide derivative of Cys-215. The sulphur Sγ atom 

of Cys-215 formed a covalent bond between the backbone nitrogen atom of Ser-216[110] (Figure 

37, B). The oxidation of catalytic Cys-215 formed sulphenyl-amide formation, which is a 

protective intermediate in the oxidative inhibition of PTP1B and caused significant changes in 

the enzyme active site.   
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Figure 5. Superimposed images of sulphenyl-amide PTP1B (PDB: 1OES) (purple, A) and 
VO(acac)2 inhibition of PTP1B (green, B) show structural changes in the catalytic Cys-215 
active site. With VO(acac)2 inhibitor bound, the Sy atom of Cys-215 flips away from the 
backbone nitrogen atom of Ser-216 and can no longer form a sulphenyl-amide bond. 

In the previous research, after the oxidation of Cys-215 to sulphenic acid, the nitrogen atom 

of Ser-216 on the backbone nucleophilic attacked the Sγ atom of Cys-215 and formed a 1.7 Å 

covalent bond[110]. However, in the vanadate bound Cys-215 crystal structure of PTP1B sulfenyl-

amide formation, the distance between the Sγ atom of Cys-215 and the nitrogen atom of Ser-216 

was 2.9 Å, which suggested hydrogen bond formed (Figure 37, A). The present structure 

identifies an intermediate of their proposed mechanism of inactivation. This study provides 

insight to further understanding of the redox inactivation of such proteins.  
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Figure 6. Superimposition of the oxidation state structures of the PTP1B catalytic cysteine. The 
structure of the sulphenic acid derivative of Cys-215 is shown in blue (A). The structure of the 
VO(acac)2 derivative is in green (B). The phosphate binding cradle structure is largely conserved 
with VO(acac)2 bound to the catalytic cystine. 

The structures of key residues at the active site of the VO(acac)2 derivative are very similar 

to the structure of the sulphenyl-amide derivative oxidation states (Figure 38). And the structures 

of these oxidation states are very similar to the structure of reduced PTP1B. The vanadate bound 

Cys-215 intermediate is stabilized by the similar interactions observed for the oxygen atoms in 

the sulphenic acid derivate. However, in the sulfenic acid derivative, the side chain of A Cys-215 

is rotated about 180o. 
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The movement of the WPD-loop (a conserved protein loop) is important in the PTP1B 

catalyzed reaction. The WPD-loop has a “closed” and an “open” two distinct conformation. The 

WPD-loop would fold over the active site and bring the conserved Asp residue up to 8 Å closer 

to the bound substrate. The WPD-loop has negligible interaction with the P-loop in the “open” 

conformations[114-117]. The Vanadate also may reduce the mobility of the WPD-loop, which may 

decrease catalytic activity. 

 
Figure 7. Overlay of the WPD-loop open vanadate-bound (green) and the WPD-loop closed 
conformations in the active sites of the PTP1B enzymes. The trigonal bipyramidal structure of 
the vanadate anion is formed by a nucleophilic attack on the catalytic cystine. This also results in 
a conformational change in the F182 residue.  
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Different from Johnson’s result[112], in the crystal grown in the presence of vanadate, a 

WPD-loop open vanadate-bound form conformation is observed. The conformational differences 

between the open and closed conformations in the WPD-loop and the side chain of Arg-221of 

the PTP1B in both the ligand-bound and ligand-free states had been shown (Figure 39).  

In the WPD-loop open vanadate-bound form (Figure 39, B), the bound vanadate exhibits a 

trigonal bipyramidal conformation with apical positions occupied by the sulfur atom of Cys-215 

and an oxygen atom from a water molecule. Compared with the WPD-loop closed form (Figure 

39, A), the side chain of Arg-221 is rotated about 70o around chi-3 and form a hydrogen bond to 

the Phe-179 carbonyl group. In both the open and closed forms, the side chain of Phe-179 is 

embedded into a hydrophobic pocket. Unlike the WPD-loop, the P-loop has no significant 

motion during catalysis[118]. The P-loop backbone residues align closely in both the ligand-bound 

and ligand-free states.  

Kinetic results of PTP1B with VO(acac)2 Complex 

The data obtained using VO(acac)2 complex as an inhibitor is shown in Figure 40. The 

kinetic data suggests a competitive mode of inhibition because the apparent Vmax decreases, 

while the apparent Km decreases, too. The concentration of vanadium complex varied from 0-

0.3333 uM. The initial kinetic parameters obtained without vanadium complex are Vmax= 0.007 

U/mM and Km= 2.8±0.1mM. After 16 hours, the PTP1B lost 2/3 activities compared with the 

new purified protein (Figure 41).  
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Figure 8. Activity versus substrate concentration for PTP1B against pNPP2- in the presence of 
varying VO(acac)2 complex concentrations. 
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Figure 9. Activity versus time for PTP1B. 
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Materials and Methods 

Materials 

Chemicals for PTP1B purification, crystallization, assays were purchased from Sigma-

Aldrich (St. Louis, MO), Alfa Aesar (Tewksbury, MA) and Fisher Scientific (Pittsburgh, PA). 

YczR gene was synthesized with codon optimization for E. coli expression from Integrated DNA 

Technologies (Coralville, IA). E. coli BL21 (DE3) cells and Turbo cells were purchased from 

New England BioLabs (Ipswich, MA). Bacterial growth media Luria-Bertani (LB) broth and 

antibiotics were obtained from Sigma-Aldrich. Crystallization screen solutions and other 

crystallization supplies were purchased from Hampton Research (Aliso Viejo, CA) and Emerald 

Bio (Bedford, MA). All other materials were purchased at the highest quality available. 

Methods 

DNA Cloning. The PTP1B DNA fragment was digested with NdeI and NotI and 

subsequently cloned into the expression vector pETite. Transform the pETite-kan-c-5His vector 

with full-length PTP1B insert into E. coli Turbo cells for plasmid storage. The PTP1B plasmid 

was determined that there were no mutations in the entire coding region by DNA sequencing. 

(DNA sequencing & Genotyping Facility, University of Chicago, Chicago, IL) The resulting 

plasmid PTP1B was transferred to competent E. coli BL21DE3 cells for protein production and 

purification.  

Protein expression and purification. The PTP1B protein was purified by using the intein-

mediated purification with an affinity His-tag system. E. coli BL21DE3 cultures were grown 

overnight at 37°C while being shaken (250 RPM) in LB medium containing kanamycin (50 
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ug/mL). Induction of PTP1B expression was carried out at an OD600 reached 0.6-0.8 by adding 

IPTG to a final concentration of 0.5 mM. Cells were harvested after 16 h incubation by 

centrifugation at 8670 G and 4 °C for 15 min (Avanti J-E Centrifuge, Beckman Coulter). 

 The cell pellet was resuspended in Ni-NTA column wash buffer (what is Ni column 

buffer). Using sonication (Qsonica sonicators, Q500 Sonicator) to break the cellular wall, the cell 

debris was removed by centrifugation at 31000G and 4°C for 20 min. 

 Protein purification was purified using affinity chromatography (Ni-NTA, GE Healthcare). 

The Ni-NTA column was equilibrated with a wash buffer (50 mM NaH2PO4, 500 mM NaCl, 

and 10 mM imidazole, pH 7.5) and the PTP1B fusion protein was eluted from the column using 

wash buffer with imidazole (100 mM) 

The fractions protein was concentrated to 2 mL using a 10 kDa Amicon-Ultra centrifuge 

filter tube (Centricon Plus centrifugal filter units; Millipore). Further purified by size-exclusion 

chromatography (HiLoad 16/60 Superdex 200, GE Healthcare), which was equilibrated with gel 

filtration column buffer (300 mM NaCl, 50mM HEPES, pH 7.5). 

The protein concentration was determined with a Bio-Rad protein assay kit. The protein 

purity assessed by SDS-PAGE. Purified PTP1B protein was concentrated (Centricon Plus 

centrifugal filter units; Millipore) and flash frozen in 1000µL aliquots in liquid nitrogen after the 

addition of 20% (V/V) glycerol and stored at -80°C for long-term.  

Synthesis Specific compounds as potential PTP1B inhibitors. VO(acac)2 had been 

synthesized from vanadyl sulfate: VOSO4 + 2 Hacac → VO(acac)2 + H2SO4. The procedures 

were slightly modified from the reported in the literature[112]. Syntheses VO(acac)2 complexes 
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was performed under a pure N2 atmosphere using standard Schlenk and air-free manipulation 

techniques. The vanadium forms a square pyramidal structure. After the reaction, the complexes 

are purified using recrystallization. 

Crystallization. The purified YczR was buffer exchanged into crystallization screening 

buffer (50 mM HEPES, pH 7.5, 300 nM NaCl) and concentrated to 10 mg/ mL using a 10,0000 

molecular weight cutoff (MWCO) Amicon-Ultra centrifugal filter device (Millipore). PTP1B 

and VO(acac)2 were pre-mixed before crystallization. The initial sparse matrix crystal screen was 

using the Gryphon crystallization robot (Art Robbins Instruments) to obtain initial crystallization 

hits, and further optimized manually to obtain crystals with the best size and morphology.  

After the initial crystallization screen, crystal optimizations of PTP1B were obtained by the 

hanging drop method using protein at 10 mg/mL at room temperature. The optimized 

crystallization solution contained 20% (W/V) PEG6000, 100 mM HEPES, pH 7.5, 200 mM 

MgCl2. The hanging drops were incubated at room temperature. Crystals appeared in 6 days and 

grew to maximum size in1-2 week.  

Crystals with good size and morphology were picked from the hanging drops and flash-

cooled in liquid nitrogen using 20% (w/v) glycerol in addition to the compounds of the reservoir 

solution as the cryoprotectant.  

Diffraction data collection, Structure Determination, and Refinement. Diffraction data 

of PTP1B crystals were collected at Advanced Photon Source Structural Biology Center (SBC) 

19ID and 19BM beamlines. (Argonne National Laboratory, IL). The crystal diffraction images 

were recorded by the 4×4 tiled 300×300 mm2 sensitive area CCD detector from Area Detector 
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Systems Corp. (ADSC). The data collection was at a wavelength of 1.0 Å. The datasets were 

indexed, integrated and scaled using the HKL2000[74]. The datasets were all scaled in the space 

group P21 to resolutions of 2.2 Å respectively.  

Using PHASER[75] from CCP4 program suite performed molecular replacement, using the 

previously reported PTP1B (PDB ID: 1BZJ) as the search model[117]. Rigid body refinement 

followed by restrained refinement was carried out in Refmac5 in the CCP4 software suits until 

no more side chains can be built in automatically[78]. 

The remainder of the model was built and modified manually in Coot based on electron 

density maps. Before built the ligand in the model, the electron density from the Fo-Fc map 

supported the existence of the modification of Cys-215. The chemical restraint of Vanadium 

compound was generated in the program JLigand from CCP4.  

The ligand was manually fit in the model based the residual electron density in the 

deference (Fo-Fc) map. The PTP1B with Vanadium ligand model was further refined in Refmac 

5. The R free and R factor for the inactivated structure were 0.226 and 0.177, respectively. The 

data collection and refinement statistics for the PTP1B are given in Table 2. All figures depicting 

crystal structures were prepared by using Chimera.  

PTP1B inhibition assay. The PTP1B assay was used Synergy H1 hybrid multimode 

microplate reader (Biotek, USA) with 96 well plates (Greiner Bio-one, Monroe, NC). The 

PTP1B assay was carried out in a continuous manner using para-nitrophenylphosphate (pNPP2-) 

as the substrate. The absorbance of the product para-nitrophenol (pNP) was measured at 405 nm 

using a microplate reader. All inhibitors were pre-incubated with PTP1B in a buffer containing 
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50 mM HEPES (pH7.5), and 5 mM DTT, 300 mM NaCl for 5 min at 25 °C. The reaction that 

was followed is given in equation. 

                  pNPP2-(aq) + H2O(aq)  à  PO4
3- (aq) + pNP (aq) +H+ (aq) 

Calculate enzyme activity from the data. The assay was carried out at 25 °C using the 

substrate pNPP2- in the presence of 2 mM EDTA in a 50 mM Bis-Tris (pH 6.3) buffer, which 

provides a constant ionic strength over a wide pH range. 

Reactions were initiated by addition of enzyme into the microplate wells (final reaction 

volume of 300 uL). Inhibition constants (Ki) for PTP1B were determined by measuring initial 

rates of pNPP hydrolysis in the presence of a range of concentrations of inhibitor (0-3.33 uM) 

and [pNPP2-] (0-20 mM) at pH 6.3 and 25 °C. Kinetic parameters were determined by a fit of the 

initial rate (v) versus [pNPP2-] data to the Michaelis-Menten equation. 
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CHAPTER SEVEN 

CONCLUSIONS 

PTP1B is one of the most studied PTPs and plays a critical role in the regulation of the 

insulin-signaling pathway[84, 114]. The highly charged PTP1B catalytic site contains the common 

structural motif of PTPs. In the research pertaining to inhibition of PTP1B, specificity issues 

with other PTPs still present significant challenges, because of the high homogeneity to other 

cellular PTPs. It also remains a challenge in medicinal chemistry to design inhibitors with 

relatively uncharged outer surfaces and hydrophobic regions. This design would allow the 

inhibitor to cross membranes while maintaining relative efficacy once inside cells.  

PTPs specifically catalyze the dephosphorylation of phosphotyrosyl residues of peptides 

and proteins[119-121]. Orthovanadate (VO4
3-) is a phosphate analog that can quickly adopt a 

trigonal bipyramidal structure and could bind as a transition state analog to inhibit the PTP1B[122]. 

Previous research has proved this part of vanadate’s insulin-mimetic effect due to its PTPs 

inhibition function[123]. 

Vanadate was reported to inhibit protein phosphotyrosine phosphatase and activate 

autophospohrylation of solubilized insulin receptors[124]. Vanadate is insulin-mimetic[125] , and its 

insulin-mimetic properties have been researched in details[107]. It has been shown to be 

potentially useful in treating both noninsulin- and insulin-dependent diabetes mellitus in human 

clinical trials[126]. Vanadate has multitudinous effects on biological systems[123]. The 

biochemistry of vanadate behaves like phosphate due to their similar molecular geometry [127].  
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Vanadate may also have a strong affinity for the PTP1B active site[119-121, 128].  

Vanadate would chelate many organic molecules and also reversibly coordinate free thiol 

and hydroxyl groups. The interaction of vanadate with assay components and buffers has also 

been monitored in research investigating the mechanism of vanadate inhibition [106]. HEPES was 

chosen for the studies because it is one of the few buffers that does not have appreciable 

interaction with vanadate[106].  

After VO(acac)2 enters the cell, it would be degraded to vanadyl (IV) ion, and got oxdiated 

to vanadate (V)[129-131]. Furthermore, vanadate often was treated as a simple phosphate analog. Its 

rich redox and coordination chemistry also need to be considered, including coordination with 

many reagents and varied oxidation states[107].  

Here we report the X-ray structure of PTP1B with VO(acac)2 complex at a 2.2Å resolution. 

The detailed PTP1B crystal structure may provide more information about the ability of 

VO(acac)2 to bind the active site and inhibit PTP1B activity. The results suggest that the 

oxovanadium (IV) complex VO(acac)2 dissociates and oxidizes to a vanadium (V) species 

vanadate (VO4
3-) under crystallization conditions. This structure further suggests that better 

bioavailability of VO(acac)2 is the primary reason for its enhanced inhibitory behavior compared 

to simple salts[132].  

While the precise biochemical pathway of vanadate action is not yet known, these kinetics 

assay and X-ray crystallography studies will provide reliable proof of concept, validating the 

inhibition of PTP1B by VO(acac)2. Catalytic cysteine exists as a thiolate anion, making it 

susceptible to oxidation and more reactive. The mechanism of decrease regulating PTP1B 

activity in vivo may occur because of the oxidation of the catalytic Cys-215 in the active site. 
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Dithiothreitol (DTT) or glutathione can reduce the disulphides with Cys-215 to resore PTP1B 

activity[111].  

An essential cysteine residue at the catalytic site is the hallmark of PTPs. The cysteine 

would form a Thiol-phosphate intermediate during catalysis[133]. In this study, we set out to 

elucidate the mechanisms of vanadate inhibition of PTP1B. 

Compared with vanadium compounds, zinc compounds have received less attention in anti-

diabetic drug research. Zinc compounds also play essential structural roles in PTPs inhibition in 

vivo[134]. Previous research has shown that zinc compounds do not show inhibition of PTP1B at 

concentration lower than 10 uM[109].  

 Compared with previous research, this crystal structure also redefines the oxidation state of 

the catalytic Cys-215 in PTP1B. The nucleophilic Sg atom of Cys-215 attacks the backbone 

nitrogen atom of Ser-216 formed the sulphenyl-amide bond occurs through oxidation of Cys-215 

to sulphenic acid. The hydrogen bond interaction between the Nd1 atom of the invariant His-214 

side chain and the carbonyl oxygen atom of Cys-215 increases the partial charge on the 

backbone nitrogen atom of Ser-216 and enhance its reactivity. This assumption supports the 

nucleophilic substitution mechanism[114].  

During the in vitro oxidation reactions of the cysteine and thiol residues, sulfenic acids are 

commonly generated as intermediates[135]. We used a small organic vanadate molecule as a 

useful model to research the redox-sensing assembly of the PTP1B active site functional groups. 

The possible interactions and reactions of vanadate must be taken into consideration when these 

inhibitors are used in vivo and in vitro. Our results may help to better understand the mechanism 
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of inhibition of PTP1B, This would then aid in the design of potential inhibitors against the 

crucial therapeutic target of diabetes treating.  
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