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ABSTRACT 

Urinary tract infection (UTI) is the world’s most common bacterial infection. Much is 

known about the infectious process (pathogenesis) of a few of the bacteria that cause these 

infections, especially E. coli. Unfortunately, the pathogenesis of E. coli and other uropathogenic 

bacteria was explored almost exclusively in the belief that the bladder is supposed to be sterile. 

Our recent evidence, however, debunks this dogma. We used modern methods to reveal diverse 

bacterial communities in the bladders of adult women. These communities differ in women with 

and without lower urinary tract symptoms (LUTS), including UTI and urinary incontinence (UI). 

Many bacteria that we have detected in women with LUTS are understudied precisely because 

they were previously undetected or overlooked. Thus, very little is known about their 

pathogenesis.  

Aerococcus urinae is one of those understudied uropathogenic bacteria. It is associated 

with both UTI and UI. It is highly resistant to many antibiotics and, when undiagnosed, can 

cause invasive and life-threatening sepsis. Thus, I have begun a study of A. urinae’s 

pathogenesis. For well-studied uropathogens, the earliest stages of pathogenesis involve 

attachment to the cells that line the bladder wall (urothelium) and subsequent disruption of the 

host’s bladder immune system. I hypothesized that A. urinae also attaches to the urothelium and 

alters signaling to the host’s bladder immune system. To test my hypothesis, I first studied in 

vitro phenotypes of A. urinae related to attachment and colonization of the urothelium. Then, I 

studied the interaction between human urothelium and A. urinae strains isolated from women
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with LUTS. Results from this dissertation could be used to develop therapies that specifically 

target A. urinae. 
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

Urinary Tract and Urinary Tract Infections 

The urinary tract system is one of our body’s filtration systems, performing vital 

excretory functions to eliminate organic waste products (1). Briefly, the urinary tract system 

begins with the kidneys, which act as filters that selectively allow the passage of small ions and 

molecules from the blood steam. This filtration by the kidneys produces urine, which then flows 

through the ureters down into the bladder. The ureters are muscular tubes that extend inferiorly 

from the renal pelvis of the kidney and penetrate the posterior wall of the bladder, where urine is 

deposited. The bladder is a hollow muscular organ that functions as a temporary storage unit for 

urine. When the bladder is empty, it is decompressed; as the bladder fills with urine, it takes on a 

spherical shape. The area of the bladder where the urethra attaches is known as the trigone. This 

trigone acts as a funnel that channels urine through the urethra as the bladder contracts. The 

urethra, which is about 3-5 cm in females and 18-20 cm in males, connects the neck of the 

bladder to the exterior (1). 

A microbial infection along any part of the urinary tract system is known as a urinary 

tract infection (UTI) (2). UTIs can be categorized broadly based on where they occur 

anatomically. If infection is localized to the bladder it is known as cystitis; if the infection is 

localized to the renal/kidney area, it is known as pyelonephritis (2). Both cystitis and
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pyelonephritis can be subcategorized further into either uncomplicated or complicated infections 

(3). Uncomplicated UTIs occur in individuals who are otherwise healthy with no structural or 

neurological urinary tract abnormailities (4, 5). Complicated UTIs occur when there are factors 

that compromise the urinary tract or host defense, such as catheterization, urinary obstruction, 

urinary retention due to neurological disease, immunosuppression and even pregnancy (5, 6).  

UTIs are considered the most common bacterial infection in the world, affecting up to 

150 million people annually (7). These infections cost around $3.5 billion per year in the United 

States alone (3). There are a whole host of factors that predispose an individual to having a UTI 

(Table 1). One of the most striking predisposition factors for UTI is the fact that an individual is 

female (Table 1). It is known that UTIs are considerably more commen in women than men. At  

 
Table 1. Conditions predisposing an individual to UTI 
 
Female 
Sexual intercourse 
Pregnancy 
Diabetes 
Immunosuppression 
HIV (high viral load) 
Urinary tract obstruction 
Urethral catheterization 
Urological instrumentation of surgery 
Recent urinary tract instrumentation 
Presence of an indwelling urethral catheter, stent, nephrostomy tube or urinary diversion 
Hospital-acquired infection 
Symptoms for 7 or more days before seeking care 
Functional or anatomical abnormality of the urinary tract 
Spinal Cord Injury 
Neurogenic bladder 
Polycystic kidney disease 
History of urinary tract infection in childhood 
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Table 2. Guidelines for Empiric Antibiotic Treatment for Uncomplicated UTIs (8) 
 

Cystitis 
Drug Dosage Duration 
First Line   
     Nitrofurantoin 100 mg twice daily 5 days 
     Trimethoprim-Sulfamethoxazole (Trim-Sulfa) 160/800 mg twice daily 3 days 
     Fosfomycin 3 g 1 dose 
Second Line   
     Ciprofloxacin 250 mg twice daily 3 days 
     Levofloxacin 250 mg daily 3 days 
Third Line   
     Amoxicillin-Clavulanate 875-125 mg twice daily 3-7 days 
     Cefdinir 300 mg twice daily 3-7 days 

Pylonephritis 
Drug Dosage Duration 
First Line   
     Ciprofloxacin 500 mg twice daily 7-14 days 
     Ceftriaxone followed by Ciprofloxacin 1 g once followed by 

Ciprofloxacin 500 mg twice 
daily 

7-14 days 

     Aminoglycoside followed by Ciprofloxacin 1.5 mg/kg/dose every 8 h for 
24 h followed by 

Ciprofloxacin 500 mg twice 
daily 

7-14 days 

Second Line   
     Ceftriaxone followed by Trim-Sulfa 1 g once followed by  

Trim-Sulfa 160/800 mg twice 
daily 

14 days 

     Aminoglycoside followed by Trim-Sulfa 1.5 mg/kg/dose every 8 h for 
24 h followed by  

Trim-Sulfa 160/800 mg twice 
daily 

14 days 

Cannot tolerate orals and Penicillin Allergy   
     Aztreonam 1 g every 8 h via short-term 

infusion intravenously 
7 days 

 

least 50% of women will experience at least one UTI in their lifetime and 10% will have one 

annually (9). A common treatment for UTI is the prescription of antibiotics (9). In the case of 
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uncomplicated cystitis, much of the antibiotic prescription for UTIs is done empirically. This 

means that the clinican prescribes an antibiotic before receiving urine culture results (2). 

In the case of uncomplicated pyelonephritis, it is important to obtain urine culture results 

before initiating empiric antimicrobial therapy; however, clinicians may inititate empiric 

treatment for uncomplicated pyelonephritis based on a Gram stain result of the urine sample 

instead of full urine culture results (2). The empiric treatment guidelines for uncomplicated 

infections were recommened by the Infectious Disease Soceity of America (8) and are outlined 

in Table 2. For complicated UTIs (cystitis or pyelonephritis), in contrast, urine culture results 

must be obtained prior to the administration of antibiotics (10). However, empiric treatment can 

be administered in these patients based primarily on previous urine culture results (2, 10). 

 This empiric antibiotic treatment of patients with UTIs has led to an increase in antibiotic 

resistance of common uropathogens, often resistance to multiple antibiotics (11).  The increase in 

antibiotic resistance has consequently led to a high recurrence rate of infection (9). The increase 

in antibiotic resistance and the high recurrence rate call for a need to develop new treatment 

options for UTI. To develop new treatments, a deeper understanding of the pathogenesis of the 

microbes that cause UTIs, also known as uropathogens, is required. 

Pathogenesis of Classic Uropathogens 

Both Gram-negative and Gram-positive bacteria are known to cause UTIs. The most 

common organism to cause UTI (both uncomplicated and complicated) is Escherichia coli, 

which is detected in 75-95% of cases of UTI (2). The most prevalent organisms following E. coli 

are Klebsiella pneumoniae, Staphylococcus saprophyticus, Streptococcus agalactiae (also know 

a group B Strep or GBS), Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus 
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and Enterococcus species (6, 11-14). These organisms are considered to be the classic 

uropathogens and the pathogenesis of a classic uropathogen in cystitis can be outlined in eight 

steps from initial colonization of the bladder all the way to ascension to the kidneys (3). These 

eight steps can be broadly categorized into three stages (Figure 1): the first is Adherence and 

Colonization, the second is Evasion of the Innate Immune Response, and the third is Persistence. 

The way uropathogens progress through these three stages of pathogenesis is different in cases of 

uncomplicated and complicated UTIs. In addition, each uropathogen has its own set of virulence 

factors that is uses to progress through these three stages of pathogenesis in the bladder.  

 

 

Figure 1. Pathogenesis Stages of a Uropathogen. Eight steps are involved in the pathogenesis 
of a uropathogen. These eight steps can be broadly categorized into three stages known as 
Adherence and Colonization, Evasion of the Innate Immune Response, and Persistence. 
Modified from Flores-Mireles et al. Nature Reviews Microbiology 2016 (3). 
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Adherence and Colonization.  

This phase of pathogenesis involves the interaction of the uropathogen with the bladder 

epithelium or urothelium. The urothelium lines the entire urinary tract system from the renal 

pelvis of the kidneys down the to urethra (1). It is a transitional epithelial layer that is composed 

of three layers: basal cells, intermediate cells, and apical or umbrella cells (15). These three 

layers allow the urothelium to act as a barrier that keeps unwanted ions, solutes, and even 

pathogens from gaining access to the blood stream (1, 15). However, uropathogens have an 

arsenal of virulence factors that allow them to adhere to and colonize the urothelial surface. 

 Key virulence factors involved in adherence and colonization of the urothelium are 

adhesins and pili. In many Gram-negative uropathogens, there is a highly conserved family of 

adhesive fibres called the chaperone-usher pathway (CUP) pili that are key to mediating 

adhesion to the urothelium. One particular CUP pilus, known as the Type 1 pilus, is found in 

both Uropathogenic Escherichia coli (UPEC) and Klebsiella pneumoniae (16). These Type 1 pili 

are tipped with the adhesin FimH, which binds to mannosylated uroplakins on the surface of the 

urothelium (17, 18). In Gram-positive uropathogens, such as Enterococcus species and 

Staphyococcus saprophyyticus, there are arrays of adhesins that are specific to the uropathogen. 

For example, Staphylococcus saprophyticus has a surface protein known as Aas that has both 

adhesive and autolytic properties (19), while Enterococcus species express the collagen adhesin 

Ace and the enterococcal polysaccharide antigen EpA (20). These adhesins and pili play critical 

roles in the first step in adherence and colonization of a uropathogen; the next step is to be able 

to survive on and within the urothelium. 
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A way a uropathogen can continue to reside on and within the urothelium is to break the 

barrier function of the urothelium and disseminate to lower layers of the urothelium. One way 

uropathogens disseminate to lower layers of the urothelium is to release toxins that cause tissue 

damage of the upper umbrella cells, causing them to exfoliate and expose the lower cell layers 

below. P. mirabilis secretes a haemolysin (HpmA) that inserts itself into host cell membranes, 

forming pores that destabilize the host cell (21). UPEC secretes an α-haemolysin known as HlyA 

that oligomerizes in cholesterol-rich microdomains in the umbrella cells causing pore formation, 

which promotes lysis of the host cell (22). UPEC also secretes cytotoxic necrotizing factor 1 

(CNF1). This toxin affects actin remodeling of the host cell through Rho family GTPases. 

Specifically, activation of the Rho GTPAse known as RAC1 induces the host cell anti-apoptotic 

and pro-survival pathways, which prevent apoptosis of the urothelial cell and allow UPEC to 

evade the immune system and persist inside the urothelial cell (22). 

Evasion of the Innate Immune Response 

An essential component of the innate immune response to invading pathogens is 

recognition and activation of toll-like receptors (TLRs). TLRs are typically associated with 

immune cell responses, but TLRs are also expressed and function on other cell types including 

epithelial cells (23). Activation of TLRs within the mucosal epithelium varies by body location 

and epithelial cell type (23). This variation is regulated by tissue-specific differential expression.  

In response to the mechanical stress of infection, the urothelium can mount an innate 

immune response initiated by recognition of uropathogens via TLRs (24). The TLRs that are 

known to be expressed in the urothelium are TLR-2, TLR-3, TLR-4, TLR-5, TLR-7 and TLR-9 

(25). Specifically, it was shown that TLR-5 expression is weak, TLR-2, TLR-3 and TLR-7 
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expression is moderate and TLR-4 and TLR-9 expression is strong (25). Activation of the TLRs 

in the urothelium depends on ligands that bind TLRs. In the case of the urothelium, TLR-4 and 

TLR-5 have been show to participate in the defense against uropathogens in vivo (26-28), while 

TLR-2 has a role in the response to infection in vitro (29, 30).  

These TLRs (TLR-2, TLR-4 and TLR-5) are able to mount the appropriate immune 

response because they are capable of recognizing different pathogen associated molecular 

patterns (PAMPs). TLR-2 recognizes bacterial lipoteichoic acid or lipoproteins (Figure 2). TLR-

2’s main role is recognition of Gram-positive organisms. TLR-2 recognizes different forms of 

lipoproteins depending upon the other TLR with which it forms a heterodimer complex. When 

TLR-2 forms a heterodimer complex with TLR-1, it can recognize diacyl peptides (Figure 2); 

however, when TLR-2 forms a heterodimer complex with TLR-6, it can recognize triacyl 

peptides (Figure 2) (31-33). TLR-5 recognizes bacterial flagellin by forming a homodimer 

(Figure 2) (34). Finally, TLR-4 plays a major role in recognizing lipopolysaccharide (LPS) of 

Gram-negative bacteria by forming a homodimer (Figure 2) (25). For TLR-2 heterodimers and 

TLR-4 homodimers to activate the appropriate downstream signals in urothelial cells, the 

membrane bound molecule CD14 must be present (Figure 2) (35). At this time, it remains 

unknown if CD14 is required for TLR-5 activation of downstream signals in urothelial cells. 

Uropathogens have evolved several ways to evade recognition by the TLRs on the 

urothelium. The best studied is UPEC’s ability to evade the innate immune response via TLR-4. 

After infecting UPEC cells have penetrated the urothelial cells (vesicular UPEC), the urothelial 

cell mounts an innate immune response to remove the vesicular UPEC (36).  UPEC LPS  
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Figure 2. Innate Immune Response of the Urothelium to Gram-positive and Gram-negative 
Uropathogens. TLR-2 (red receptor) forms a heterodimer with either TLR-1 (purple receptor) or 
TLR-6 (yellow receptor) to recognize Gram-positive uropathogens. Specifically TLR-2 
heterodimers recognize either diacyl or triacyl lipoprotein peptides. With respect to Gram-
negative uropathogens, TLR-4 (blue receptor) and TLR-5 (green receptor) form heterodimers 
with themselves to recognize LPS and flagellin, respectively. Activation of TLR-2 heterodimers 
and TLR-4 require the presence of co-activator protein CD14. Once these receptors recognize 
their respective ligands, a downstream MyD88-dependent signaling response leads to activation 
of the transcription factor NF- κB. Activation of NF- κB leads to expression of pro-inflammatory 
cytokines.  
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activates TLR-4, which stimulates downstream adenylyl cyclase 3 (AC3) to produce cyclic 

AMP. The production of cyclic AMP induces exocytosis of the vesicular UPEC from the 

urothelial cell. In response, the UPEC cells escape the vesicles into the urothelial cytoplasm 

through an unknown mechanism (36). Another way UPEC evades the innate immune response 

through TLR-4 is via the adhesion of P pili known as PapG, which binds TLR-4 to reduce 

polymeric immunoglobulin receptor (PIGR) expression. PIGR is responsible for transporting 

immunoglobulin A (IgA) from the lamina propria through the urothelial cell and into the lumen. 

IgA is known to opsonize the UPEC cells in the lumen to prime them for recognition by 

phagocytic cells (37). This inhibition of PIGR expression by UPEC has only been shown in the 

mouse kidney, but this process also could happen in the bladder. 

The activation of TLRs in the urothelium leads to the expression and production of pro-

inflammatory cytokines (38). Pro-inflammatory cytokines are signals that aid in communicating 

to other urothelial cells and innate immune cells about the presence of a uropathogen (24). The 

main pathway for the production of pro-inflammatory cytokines in urothelial cells is activation 

of the transcription factor NF-κB via a MyD88-dependent response (Figure 2). NF- κB binds to 

DNA to aid in the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), interleukin 6 

(IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10) and tumor necrosis factor (TNF), and 

urothelial cells express these cytokines in response to uropathogen infection (24, 39-41). The 

functions of each of these cytokines in the urothelium can be found in Table 3. 

Pathogenic bacteria are known to suppress the innate immune response by disrupting the 

downstream cellular signaling pathways, such the MyD88-dependent activation of transcription 

factor NF-κB (42). The only uropathogen known to have suppressive effects on cytokine  
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Table 3. Function of Pro-Inflammatory Cytokines in the Urothelium. 
 

Cytokine Function References 

IL-1β 
-Pro-inflammatory 
-Known to be expressed early in response to Gram-
negative and Gram-positive uropathogens 

(46-48) 

IL-6 
-Activate B cell production if IgA 
-Stimulate C-reactive protein to increase inflammation 
response 

(24, 39) 

IL-8 -Promotes the chemotaxis and transepithelial infiltration 
of neutrophils 

(24, 39) 

IL-10 

-Anti-inflammatory 
-Inhibits activity of T helper 1 cells, natural killer cells 
and macrophages 
-Known to increase in response to UPEC infection  

(40, 49) 

TNF 
-Pro-inflammatory 
-Stimulates the production of inflammatory cytokines 
(IL-6) 

(50, 51) 

 

 

production in the urothelium is UPEC (43-45). Billips et al. showed that UPEC can suppress NF-

κB activation and secretion of IL-6 and IL-8 (44). Hunstad et al. found several genes required for 

this suppression by UPEC. The first were the rfa and rfb gene clusters, which encode the LPS 

biosynthetic genes; the second was the surA gene, which is a periplasmic cis-trans prolyl 

isomerase important for the biogenesis of outer membrane proteins (38). No definitive answers 

explain how these bacterial components suppress NF-κB activation and secretion of IL-6 and IL-

8; however, the fact that suppression is lost when genes that make LPS and outer membrane 

proteins are mutated suggests that UPEC may alter some of these outer membrane components to 

avoid NF-κB activation.  
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At this time, other uropathogens have not been shown to suppress cytokine production of 

the urothelium, but these uropathogens have other ways of evading the innate immune response 

that also aid in their persistence within the urinary tract.  

Persistence 

A mechanism that uropathogens use to persist within the bladder is the ability to form a 

biofilm. A biofilm is a multicellular bacterial community, in which bacteria in the biofilm are 

entrenched in a scaffold of proteins, polysaccharides and extracellular DNA (eDNA) (52). The 

formation of biofilms by uropathogens helps to protect the organisms from immune responses, 

antimicrobial agents, and other stresses the uropathogen may be exposed to in the bladder. The 

most studied and characterized biofilm of a uropathogen is the formation of intracellular 

bacterial communities (IBCs) by UPEC (53, 54). UPEC binds to α3β1 integrin on the surface of 

urothelial cells via FimH. This interaction causes activation of Rho family GTPases to remodel 

actin within the cell to allow UPEC to invade the urothelial cell (18). Then, through an unknown 

mechanism, UPEC escapes into the cytosol of the urothelial cell. Once in the cytosol, UPEC 

rapidly multiplies to form IBCs. These IBCs mature and follow one of two paths, the first is 

dispersal and invasion of surrounding urothelial cells and the second is establishment of 

quiescent intracellular reservoirs (QIRs) in underlying transitional urothelial cells (55). These 

QIRs are made up of non-replicated bacterial cells encased in membrane-bound compartments 

and can remain viabile for months. These QIRs have been implicated in cases of recurrent UTI 

because they are completely protected from the immune response and antimicrobial therapies 

(56). 
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Other uropathogens also rely on adhesions and pili to enhance biofilm formation. 

Specifically, in the case of Enterococcus species, there are adhesions known as endocarditis- and 

biofilm-associated (Ebp) pili (20). It is thought that Enterococcus species are primarily 

introduced into the urinary tract via a catheter (57). The implantation of the catheter into the 

bladder is thought to cause inflammation, which causes the release of fibrinogen. Ebp pili bind to 

this fibrinogen released from the urothelium and this binding allows for Enterococcus species to 

use it as a food source. This binding of fibrinogen by the Ebp pili also enhances biofilm 

formation of the Enterococcus species (58). In the case of another Gram-negative uropathogens, 

Proteus mirabilis, a key CUP pilus important for biofilm formation is known as the mannose-

resistant Proteus-like (MR/P) pilus. The MR/P pili are crucial for P. mirabilis colonization of the 

urothelium by helping promote biofilm formation through autoaggregation of P. mirabilis cells 

(59). 

The Gram-negative uropathogen Pseudomonas aeruginosa utilizes quroum sensing in the 

formation of its biofilm on both catheters and the urothelium. Quorum sensing is a process of 

cell-to-cell communication by bacteria and involves the production, release and subsequent 

detection of chemical signal molecules known as autoinducers. This process enables populations 

of bacteria to regulate gene expression on a community-wide scale (60). In the case of P. 

aeruginosa infection of the bladder, all of the virulence factors are controlled by a quorum 

sensing system. Specifically, autoinducers are produced by P. aeruginosa when there is a high 

enough cell density. These autoinducers bind transcriptional regulators that induce the expression 

of virulence factors. In P. aeruginosa, these transcriptional regulators help increase the 
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production of eDNA, rhamnolipid, lectins and elastase, which all help enhance the biofilm 

formation (61).  

 Other than biofilm formation, uropathogens need to be able to survive the harsh bladder 

environment. The bladder environment is very nutrient-poor so uropathogens are known to 

produce various virulence factors that allow them to survive. One important virulence factor is 

urease. Urease is found encoded in the uropathogens P. mirabilis (62), K. pneumoniae (63), P. 

aeruginosa (64) and S. saprophyticus (65). This enzyme catalyzes the hydrolysis of urea to 

carbon dioxide and ammonia (66). The most studied urease is from P. mirabilis; this urease is 

induced by the presence of urea and continually expressed during growth in urine (67). This 

reaction of hydrolyzing urea also stimulates the production of calcium crystal formation. These 

calcium crystals become trapped within polysaccharides produced by P. mirabilis, which forms 

crystalline biofilms on catheters and/or the urothelium (62).  

In addition, the urease reaction can cause direct tissue damage of the urothelium (68). 

This tissue damage releases nutrients for the uropathogens to utilize for their survival. One 

nutrient released from tissue damage important for uropathogen survival is iron (Fe3+). Iron is 

essential for bacterial growth and is very limited in the bladder environment (69). Urothelial cells 

Uropathogens are equipped with siderophore systems that are able to scavenge the iron that is 

released due to tissue damage. Specifically, UPEC produces several siderophores, but only two 

are known to be essential for persistence within the urinary tract, aerobactin and yersiniabactin 

(70). Aerobactin is highly produced and more effective at binding iron in low pH conditions 

(71). Yersiniabactin is a mixed-type siderophore that not only binds free iron but also binds 

copper to reduce intracellular killing by copper stress in the urothelial cell (72).  
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 As this section has highlighted, a lot is known about the mechanisms of pathogenesis 

used by some uropathogens, especially UPEC. However, much of the mechanisms of 

uropathogen pathogenesis have been defined in the context of the now debunked dogma that the 

bladder is a sterile environment.  

History of the “Urine Is Sterile” Dogma 

The dogma that urine is sterile originated in the mid-1800s during the era of germ theory. 

Germ theory was an idea in mid-1800s that is now considered the scientific theory of disease 

where diseases are caused by the presence or the actions of specific microorganisms. 

Bacteriologists, including Louis Pasteur and William Roberts, had a part in helping establish 

germ theory as the current scientific theory of disease (73). During their studies, they showed 

that a vial of urine in a sealed container did not turn cloudy, in contrast to a vial of urine exposed 

to air or with added tap water. This led them to conclude, “…fresh and healthy urine is perfectly 

free from bacteria or other minute organisms” (73). This idea did not seem too far-fetched 

because at this time bacteria detected in the urine were primarily viewed as pathogens. 

The dogma of “urine is sterile” was reinforced when bacteria were detected 

microscopically only in the urine of individuals with symptoms of frequency, pain while 

urinating and hematuria (blood in the urine). Specifically, William Roberts described the 

presence of microscopic bacteria in urine from individuals with bacteuria as a result of urine 

decomposition (73). He defined two different types of urine decomposition while holding the 

urine over a period of several days of the individuals with symptoms. The first was “incipient” 

decomposition where the urine went from an acidic state to an alkaline state. The second was 

“ammoniacal” decomposition where there was an increase in the amount of ammonia in the 



 
 

   
  

16 

urine. Roberts’s studies concluded that the most common cases of bacteria detection in mid-

stream urine were when the urine was in one of the decomposed states mentioned above. These 

decomposed states of urine correlated highly with the individual experiencing some lower 

urinary tract symptom. This correlation led to the diagnostic technique of looking for bacteria in 

urine under a microscope. This technique would be used well into the 20th century for diagnosis 

of UTI. 

History of Clinical Microbiology Urine Culture 

Up until the 1950s, the clinical practice for detecting infection of the urinary tract, both 

cystits (bladder infection) and pyelonephritis (kidney infection), was simply the presence of 

bacteria in urine. These bacteria were observed either under the microscope or by growth in 

culture.  

In the 1950’s, Dr. Edward Kass, an infectious disease physician, changed the practice of 

detecting infection of the urinary tract by developing a culture method with a set threshold to 

distinguish between a patient suffering from pyelonephritis and a patient suffering from cystitis. 

He developed this method to prevent post-operative sepsis in patients undergoing kidney 

surgery. To achieve his goal, he needed a reliable test that could detect uropathogens in urine 

collected via a non-invasive procedure. He chose midstream urine and identified that 

uropathogens present at ≥105 colony forming units (CFU)/mL of urine was adequate for the task 

of differentiating pyelonephritis from cystitis (74, 75). This culture method and threshold was so 

easy that clinicans adopted it as standard clinical practice for infection anywhere in the urinary 

tract system. 
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Yet, many studies have provided evidence that this culture method and threshold of ≥105 

CFU/mL of a known uropathogen is insufficient to detect significant infection of the lower 

urinary tract in all type of patient populations (76-81). Dr. William Stamm (1982) demonstrated 

that 102 of a known uropathogen in the midstream urine of women was indicative of lower UTI 

(76), while Dr. Benjamin Lipsky (1987) showed that a threshold of 103 CFU/mL of a known 

uropathogen in midstream urine was indicative of lower urinary tract infection in men (78).  

Similarly, Dr. Randall Stark (1984) determined that a bacterium present at threshold lower than 

105 CFU/mL was indicative of lower urinary tract infection in catheterized patients (77).  

This inconclusive threshold definition has remained a challenge to this day. A 2010 

review by Schmiemann et al. even states, “…the minimum level of bacteruria demonstrating an 

infection of the urinary tract has not be defined in scientific literature or standardized by 

microbiology laboratories (82)” This debate concerning what constitutes a true UTI is clouded 

by the recent discovery of resident communities of microbes in the lower urinary tract, now 

called the urinary microbiota. 

Discovery of Urinary Microbiota/Microbiome 

 The dogma of “urine is sterile” was even challenged back when it was established in the 

mid-1800s. In addition to his two types of urine decomposition, William Roberts described a 

much less common condition wherein he detected bacteria in non-decomposing urine (73). He 

noticed that the urine remained clear and acidic for up to 10 days, but he was able to detect 

bacteria. He proposed that the bacteria were not from the urine but from the mucus membrane of 

the bladder (73). Although he did not admit that these bacteria resided in the bladder or urine 
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constantly, this was one of the first instances where bacteria were detected in an otherwise 

healthy individual. 

In the 1980s, when Dr. Rosalind Maskell performed scientifically rigorous studies that 

provided compelling evidence to disprove the prevailing dogma that urine was sterile in the 

absence of a clinically relevant infection (81). In one of her studies, Dr. Maskell collected supra-

pubic aspirate (SPA) urine specimens from women suffering from a whole host of lower urinary 

tract disorders, including dysuria and interstitial cystitis (81). She then plated the SPA samples 

and incubated the plates in different conditions for a longer period. Dr. Maskell showed the 

presence of bacteria in these SPA samples and hypothesized that other bacterial species are likely 

present in the urinary tract. She further hypothesized that it is either a dysbiosis of commensal 

flora and/or an unknown uropathogen that is causing these women to suffer from lower urinary 

tract disorders other than a UTI (81).  

Unfortunately, her findings were not supported by the clinical community and were even 

refuted by several groups (83-85). In 1981, Brumfitt et al. reported no difference in Lactobacilli 

species detected between healthy women and women with dysuria (84). In 1982, Seal and 

Cuthbert reported seeing no difference in growth of “fastidious” bacteria between women with 

and without lower urinary tract symptoms (83). These groups detected bacteria similar to Dr. 

Maskell, but did not entertain the idea that what they had detected could possibly be part of a 

commensal flora. 

Dr. Maskell was not the only one to hypothesize that other bacteria may influence 

symptoms in lower urinary tract disorders. Dr. Thomas Hooton and colleagues (2013) obtained 

transurethral catheter (TUC) specimens from women suffering from cystisis and found evidence 
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of many Gram-positive bacteria, such as lactobacilli, staphylococci, streptococci and 

Gardnerella vaginalis (80). Hooton and colleagues did not go into detail about whether these 

Gram-positive bacteria are a consequence or a cause of cystitis, but they did suggest a re-

evaluation of the use of midstream urine cultures to make an accurate diagnosis of a patient with 

lower urinary tract symptoms and to consider the idea of resident bacteria flora in the bladder 

(80). 

The discovery of the Human Microbiome has opened the world up to the idea that the 

human body is a rich microbial environment (86). Many body sites, including the gut (87), skin 

(88), and vagina (89) possess unique communities of microbies (called microbiota) that influence 

the day-to-day functions of that body site (88, 90, 91). However, the bladder was one site of the 

human body that was sampled and tested but not reported by the initial Human Microbiome 

Project (HMP) due to adherence to the dogma that “urine is sterile.” 

 The first work to look at the urinary microbiota focused on male patient populations (92-

94). In 2010, Nelson et al. collected midstream voided urines and performed 16S rRNA gene 

sequencing to detect bacterial DNA in these samples (94). Detection of this DNA (called the 

microbiome) indicated the presence of bacterial genomes in urine previously thought to be 

sterile. They further found a difference in the bacterial communities between men with and 

without sexually transmitted infections (STIs). In fact, the microbiomes of the men with STIs 

were predominately from anaerobic or uncultivated bacteria (94).  

Around the same time, the group now known as the Loyola Urinary Research and 

Education Collaborative (LUEREC) asked whether bacterial DNA could be detected in women, 

while also addressing the issue of vulvo-vaginal contamination (95). First, they collected a SPA 
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sample to directly sample the bladder. Using 16S rRNA gene sequencing, they compared the 

SPA sample to a skin swab of the SPA insertion site, a vaginal swab, a mistream-voided urine 

and TUC urine. They found that all the samples had detectable bacterial communities. The SPA 

and TUC samples had similar bacterial profiles and were distinct from the midstream-voided 

urine, vaginal swabs or skin swabs (95). Because the TUC and SPA samples resembled each 

other and because the SPA method of collection bypassed vulvo-vaginal contamination, the 

authors of this study concluded that the TUC sample was a reasonable collection method to 

sample the bladder microbiota/microbiome (95). 

 At this point, there was compelling evidence that bacterial DNA could be detected in 

urine; one question however remained: does the bacterial DNA found in urine speciemens 

represent live bacteria? Many of the genera detected by DNA sequencing were cultivatable but 

not under the standard urine culture conditions typically used in clinical microbiology 

laboratories. Therefore, LUEREC researchers developed an expanded quantitative urine culture 

(EQUC) protocol to culture the bacteria whose DNA had seen detected previously (96). The 

EQUC protocol plates a greater amount of urine (100 uL) on a greater selection of media with 

incubation in an array of atmospheric conditions for 48 hours (Table 8 in Methods and 

Materials) (96). The result is that many organisms detected by DNA sequencing can be cultured. 

 These first studies showed that there was bacterial DNA present in the bladder (a urinary 

microbiome) and that this DNA represented live bacteria (the urinary microbiota) (95, 96). 

Throughout our work, we have used these two techniques (16S rRNA gene sequencing and 

EQUC) to get a comprehensive picture of bacterial communities in the lower urinary tract, 

especially the bladder.  
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Relation of Urinary Microbiome to Lower Urinary Tract Diseases and Disorders 

The existence of microbiome/microbiota in the bladder has completely changed what is 

known about bladder health and disease. Many groups have worked to identify correlations 

between the female urinary microbiota (FUM) and various lower urinary tract diseases and 

disorders including overactive bladder (OAB), urgency urinary incontinence (UUI), interstitial 

cystitis/painful bladder syndrome (IC/PBS), kidney stones, chronic kidney disease (CKD), and 

diabetes. These are described below in this section; the next section will address how the new 

knowledge of the FUM is changing the way we view UTI and UTI symptoms. 

The first lower urinary tract disease is OAB. OAB is characterized as urinary urgency 

with or without incontinence and is often associated with frequency of urination and nocturia 

(97). Hilt et al. and Thomas-White et al. found differences in the urinary microbiota and 

microbiome (respectively) in TUC urine specimens from OAB (N=60) and non-OAB (N=60) 

patients. Compared to non-OAB patients, the OAB patients had higher bacterial diversity as well 

as an increase in Gardnerella dominant profiles (96, 98). In addition, Thomas-White et al. 

showed an association with bacterial diversity and treatment response (Appendix D). Patients 

with OAB were given an anticholinergic drug, Solifenacin (Vesicare), which prevents binding of 

acetylcholine to the muscarinic receptor on the detrusor muscle (99). Thomas-White et al. found 

that a less diverse microbiota correlated with reponse to treatment with Solifenacin while a more 

diverse microbiota correlated with poor or no response to treatment. These data suggest that the 

microbiota might play a role in the etiology of OAB. A similar study of treatment efficacy and 

the urinary microbiota/microbiome with the anti-β3 adrenoceptor drug known as Mirabegron 

(Myrbetriq) is ongoing and described in Appendix N. 
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UUI is another lower urinary tract disorder in which we see trends with the 

microbiome/microbiota (100, 101). UUI is considered a subset of OAB; however, it primarily 

involves involuntary urinary leakage with a sensation of urge (102). In Brubaker et al., 155 

women with UUI were recruited as part of a clinical trail to assess cystoscopic onabotulinum 

toxin A infection or active oral medication for UUI treatment (101). Using 16S rRNA 

sequencing, 39% (N=60/155) had a detectable microbiome (101). These ‘sequence-positive’ 

patients had significantly higher Urgency Urinary Incontinence Episodes (UUIE) per day than 

‘sequence-negative’ individuals (5.71±2.6 vs. 4.72±2.86, p=0.0045) (101). Similarly, in Pearce 

et al., 51% of patients (N=93/182) were ‘sequence-positive’ and had a higher number of baseline 

UUIE compared to ‘sequence-negative’ patients (5.66±2.5 vs 4.20±2.1, p=<0.0001)(100). In a 

case-controlled study, Pearce et al. found detectable differences in the bacterial species present in 

women with and without UUI (Appendix B, Figure B.6) (103). A total of ten bacterial species 

were found to be associated with UUI, while only Lactobacillus crispatus was found to be 

associated with non-UUI. These trends contrast somewhat with the findings of Karstens et al.. 

These authors also detected bacteria in catheterized urine of adult women with and without UUI. 

However, in their smaller sample (UUI=10, non-UUI=10), they found lower levels of bacterial 

diversity in the UUI cohorts compared to the non-UUI cohorts (104). 

Another lower urinary tract disease of interest is IC/PBS. IC/PBS is defined as “an 

unpleasant sensation (pain, pressure, discomfort) perceived to be related to the urinary bladder, 

associated with lower urinary tract symptoms of more than six weeks duration, in the absence of 

infection or other identifiable causes” (105). Currently, there are conflicting reports on whether 

the microbiome/microbiota contribute to IC/PBS. Siddiqui et al. show that IC/PBS patients have 
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lower bacterial diversity with an increase in Lactobacillus compared to healthy controls (106). 

While Abernethy et al. agree with the decreased bacterial diversity, they report lower levels of 

Lactobacillus compared to healthy controls (107). Our group has conducted a case-control study 

and, even with a lower sample size, we concluded that IC/PBS symptoms may not be related to 

differences in the FUM (Appendix M). More research on this topic of IC/PBS must be done in 

order to make any solid conclusions on whether there is an association with the 

microbiome/microbiota. 

Other associations with the microbiome/microbiota have been found in other urologic-

related diseases. First, our group detected bacteria in kidney stones. These bacteria were often 

uropathogenic bacteria, suggesting a bacterial component to stone formation (Appendix C) 

(108). Second is a microbiome/microbiota component to CKD. Kramer et al. found that high 

bacterial diversity in midstream-voided urines was associated with higher estimated glomerular 

filtration rate (eGFR) in patients with non-dialysis-dependent CKD (109). Finally, several groups 

have shown lower bacterial diversity in midstream-voided urines of patients with type 2 diabetes 

mellitus (T2DM) compared to those without T2DM (110, 111). 

All of these data provide evidence for correlations between the FUM and various lower 

urinary tract disesases. However, it is still unclear whether these correlations are biomarkers of 

disease or if they play a role in the etiology of the disease. Yet, one thing remains true and that is 

how the existence of the FUM is changing the way we look at and interpret diagnostic cultures 

for UTI. 

How the Urinary Microbiome is Changing the View of Urinary Tract Infection 

The existence of the FUM is a major change in the clinical microbiology world because 
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the presence of a resident flora challenges the current diagnostic standards for UTI. One case 

where diagnosis of UTI is relevant to patient outcomes concerns patients undergoing pelvic 

organ prolapse (POP) and UI surgery. Using a design similar to that of Edward Kass, when he 

assessed the urine of patients undergoing kidney surgery, an early study used the standard urine 

culture (SUC) to assess bacteria on urine obtained by TUC on the day of surgery. This study 

showed that 8% of patients had urinary microbes detectable by SUC, but a further 46% of 

patients had microbes undetected by SUC, but identified via sequencing. On the day of surgery, 

the SUC-positive population tended to be dominated by Enterobacteriaceae (E. coli and 

relatives); 32% of these patients went on to develop a post-operative UTI. By contrast, the SUC-

negative group had only a 3.7% post-operative UTI rate; those with sequencing-detectable 

microbiomes tended to be dominated by Lactobacillus instead of Enterobacteriaceae (112, 113). 

These data not only illustrate the poor detection of SUC methods, but also suggests that some 

microbiome profiles may predispose the bladder to infection. 

Indeed, LUEREC continually found a 90% false-negative rate with SUC compared to 

EQUC (96, 98, 103, 114, 115). This led us to question whether the SUC protocol was efficient at 

detecting and diagnosing UTIs. This work is described in more detail in Appendices F-I. In 

summary, Price et al. showed that SUC routinely missed many uropathogens that EQUC 

detected. We are currently performing a clinical trail to see if these missed uropathogens impact 

patient outcomes. The proposal for this clinical trial is summarized in Appendix I.  

One trend we noticed while performing these studies was the amount of uropathogens 

detected in patients with lower urinary tract symptoms (96, 98, 103, 114). Many of these 

uropathogens were in lower CFU/mL than Kass’ threshold of ≥105 CFU/mL of urine (114, 116). 
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Not only did we detect classic uropathogens (i.e.. UPEC, K. pneumoniae, Enterococcus faecalis), 

but also organisms now deemed “Emerging Uropathogens” (117). We tend to see these 

“Emerging Uropathogens” in patients with UUI and SUI, which raises the question: “Are these 

patients suffering from the diagnosed disorder or are they suffering from an undiagnosed UTI?” 

Emerging Uropathogens 

The emergence within clinical microbiology laboratories of mass spectrometry-based 

identification of bacterial isolates and the use of enhanced urine culture protocols (e.g., EQUC) 

to detect a broader range of bacteria has brought to light several organisms that are now 

considered “Emerging Uropathogens.” These “Emerging Uropathogens” are primarily Gram-

positive bacteria that have been isolated in high numbers in urine samples from patients 

exhibiting symptoms of UTI (117, 118). Very little is known about the molecular mechanisms of 

pathogenesis used by these “Emerging Uropathogens.” In addition, many of these “Emerging 

Uropathogens” have no published antimicrobial susceptibility breakpoint guidelines by Clinical 

and Laboratory Standards Institute (CLSI) or the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST). This means that clinicans are treating patients based on few 

published clinical studies (117, 119). I have summarized what is known for each “Emerging 

Uropathogen” and their antimicrobial susceptibility to the common antibiotics used to treat UTI 

in Table 4. 

In this section, I am going to review what little is known about several “Emerging 

Uropathogens.” This includes Actinotignum schaalii, Alloscardovia omnicolens and 

Corynebacterium urealyticum (117), all of which we have detected in our urinary microbiome  
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Table 4. Summary of activity of common UTI antimicrobial agents against “Emerging 
Uropathogens” 
 

Antibiotic Number of 
Strains Tested 

MIC Range 
(μg/L) 

Susceptibility 
(%) 

References 

Actinotignum schaalii 
Nitrofurantoin 60 0.12-32 98 (120) (121) (122, 123) 
Trimethoprim-Sulfamethoxazole 92 0.094 to ≥32 40 (120, 124) (121-123, 125) 
Fosfomycin 3 NA 33 (120, 126)  
Ciprofloxacin 169 2 to ≥32 1 (120-122, 124) (125, 127) 

(123) 
Levofloxacin 48 0.5 to ≥32 90 (123) 
Amoxicillin-Clavulanate 34 0.016-0.38 100 (124, 125) (126) 
Ceftriaxone 71 0.00-0.32 100 (122, 124, 127) (123) 
Aminoglycoside  
     Gentamicin 
     Kanamycin 
     Amikacin 

 
61 
1 
1 

 
0.12-2 

NA 
1.5 

 
100 
100 
100 

 
(120, 125) (127)  
(128) 
(127) 

Aztreonam NA NA NA  
Alloscarovia omnicolens 

Nitrofurantoin 30 0.06 to ≥512 100 (129) 
Trimethoprim-Sulfamethoxazole NA NA NA  
Fosfomycin 30 4 to ≥2048 100 (129) 
Ciprofloxacin 30 0.12 to ≥32 100 (129) 
Levofloxacin 30 0.25 to ≥32 100 (129) 
Amoxicillin-Clavulanate 30 0.06-0.5 97 (129) 
Cefdinir NA NA NA  
Ceftriaxone NA NA NA  
Aminoglycoside  
     Gentamicin 
     Kanamycin 
     Amikacin 

 
30 
NA 
NA 

 
4 to ≥256 

NA 
NA 

 
100 
NA 
NA 

 
(129) 

Aztreonam NA NA NA  
Corynebacterium urealyticum 

Nitrofurantoin NA NA NA  
Trimethoprim-Sulfamethoxazole NA NA NA  
Fosfomycin NA NA NA  
Ciprofloxacin 64 0.1 to ≥128 100 (130) 
Levofloxacin NA NA NA  
Amoxicillin-Clavulanate NA NA NA  
Cefdinir NA NA NA  
Ceftriaxone NA NA NA  
Aminoglycoside  
     Gentamicin 
     Kanamycin 
     Amikacin 

 
9 

NA 
NA 

 
10 ug* 

NA 
NA 

 
0 

NA 
NA 

 
(131) 

Aztreonam NA NA NA  
NA=Not available; *Only tested one concentration of the antibiotic 



 
 

   
  

27 

studies (96, 98, 100, 103, 114). A separate section is devoted to the “Emerging Uropathogen” 

Aerococcus urinae, which is of particular interest to the clinical community.  

Actinotignum schaalii (formerly called Actinobaculum schaalii) was first identified in 

1997 based on 16S rRNA gene sequencing of five clinical isolates (2 from blood and 3 from 

urine) (132). A. schaalii is a Gram-positive facultative anaerobe whose growth requires a full 48 

hours of growth on a blood agar plate (BAP) in 5% CO2 atmospheric conditions. These 

fastidious growth conditions have made it difficult to culture the organism or led clinical 

microbiologists to overlook and/or misclassify A. schaalii as contamination (132). It is most 

frequently reported as the cause of a UTI, but also has been reported in cases of bacteremia, 

abcesses and endocarditis (133-135). The majority of UTI cases that report A. schaalii are of 

older male patients with underlying urologic conditions (136, 137). Our recent work has 

highlighted the presence of A. schaalii in the older female population in women with symptoms 

of either UUI or UTI (96, 103, 114). 

Another “Emerging Uropathogen” detected by our studies is Alloscarodvia omnicolens.  

A. omnicolens is a Gram-positive bacillus that is considered to be a commensal member of the 

oral microbiota (138). There is little published on the clinical significance of A. omnicolens, but 

the few published case studies suggest that it is an organism of significance (139, 140). One case 

report from Japan described a woman with uterine cancer who had undergone extensive urologic 

surgery whose blood cultures resulted in pure isolation of A. omnicolens (140).  A retrospective 

was performed to evaluate the clinical significance of A. omnicolens from urine cultures and 

found over a ten-month period that fifteen patients grew A. omnicolens in their urine at ≥104 

CFU/mL. Fourteen of the fifteen patients were females with ages ranging from 11 to 83 years 
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old. However, only four of these patients had a positive urinanlysis (UA), so the authors 

suggested caution when interpreting pure cultures of A. omnicolens for infection (141).  

Finally, Corynebacterium urealyticum is a Gram-positive facultative anaerobe associated 

with UTIs (142, 143). C. urealyticum (previously known as Corynebacterium group D2) is 

considered the most common cause of encrusting cystitis, which is a chronic inflammatory 

condition where the bacterium causes localized ulcerations with deposits of ammonium 

magnesium phosphate (also known as struvite) (144). Struvites are a form of kidney stone (145). 

Formation of struvite stones occurs via secretion of urease from C. urealyticum. As stated above 

in Pathogenesis of Classic Uropathogens, urease is a common enzyme secreted by 

uropathogens to survive the bladder environment. Just like other “Emerging Uropathogens,” C. 

urealyticum is often missed by the SUC protocol because it is a slow growing fastidious 

organism.  

  All of these “Emerging Uropathogens” are becoming recognized as true pathogens of the 

urinary tract. One “Emerging Uropathogen” not reviewed in this section that is now recognized 

as a pathogen by the clinical community is Aerococcus urinae.  

Aerococcus urinae 

Aerococcus urinae is one of eight species in the Aerococcus genus (146). The other seven 

species in the genus include: A. christensenii, A. viridans, A. sanguinicola, A. urinaehominis, A. 

urinaeequi, A. suis and A. vaginalis. Aerococci are Gram-positive facultative anaerobic cocci. 

When Gram-stained, these organisms appear in clusters that resemble staphylococci (Figure 

3A). When grown on blood agar plates (BAPs), these organisms appear as alpha-hemolytic 

organisms similar to streptococci and enterococci (Figure 3B).  
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This similarity to other organisms has led to mischaracterization by clinical 

microbiologists of Aerococcus species as either Streptococcus or Staphylococcus (147). In this 

section, I will review everything that is known about the different Aerococcus species with a 

large emphasis on A. urinae, as this organism has become a major concern in the clinic because  

 

 

Figure 3. Images of A. urinae A. Gram-stain image of A. urinae. Image modified from 
Lainhart et al. 2018 (119) B. Grown on BAP. Image of isolate UMB0080 grown on BAP for 48 
hours.  

 

it is highly resistant to many antibiotics (148) and, when undiagnosed, can cause invasive and 

life-threatening sepsis (149, 150). 

Aerococcus Infection of Lobsters  

Aerococcus was first proposed as a new genus by Williams et al. in 1953 (151). However, 

there were reports of these organisms causing infection in lobsters before they were officially 

classified as Aerococcus. Several studies in 1947 described a microorganism causing the deadly 

disease known as gaffkemia in American lobster (152-154). The microorganism causing this 
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disease was known as Gaffkya homari, but it has since been renamed Aerococcus viridans (155). 

Gaffkemia or red-tail disease is when lobsters become lethargic, anorexic and exhibt a pink 

abdomen (156). Gaffkemia is considered one of the most detrimental diseases to the commercial 

clawed lobster industry and is a reason why A. viridans has remained an important organism to 

study even though it rarely infects humans (156).  

 A. viridans infects lobsters through damage to their exoskeletons. Upon entry, the 

bacteria colonize the hepatopancreas (a digestive gland that provides the functions of the liver 

and pancreas) and heart of the lobster where they multiply rapidly (157). This ability to rapidly 

multiply within the lobster host overwhelms the innate immune response of the lobster leading to 

death.  

There are only a few groups that have looked into virulence factors of A. viridans in 

relation to the lobster host (158, 159). Early in the 1980s, Johnson et al. showed that A. viridans 

was phagocytosed by haemocytes in the lobster and that A. viridans formed aggregations within 

the haemocytes. Subsequently, A. viridans survive in the haemocytes using the cytoplasm as a 

source of nutrients (158). Recently, in 2016, Clark et al. demonstrated that virulent strains of A. 

viridans express a thick polysaccharide capsule and proposed that this capsule aided in the 

bacterium’s ability to evade the lobster’s innate immune response (159). In addition, they found 

that lobsters challenged with a high dose (107 CFU) of A. viridans all died early during infection 

studies compared to lobsters challenged with a low dose (102 CFU) of A. viridans (159).  

Aerococcus and Urinary Tract Infections 

Aerococci were not thought to be a cause of human disease (including UTI) because, 

until the 1980s, A. viridans was the only known species of Aerococcus (160). Specifically, as 
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stated above, Aerococci colonies from urine would often be misidentified as either Streptococcus 

or Staphylococcus and deemed vulvo-vaginal contamination (117). 

The first studies where these colonies were found in urine cultures defined the organisms 

as Aerococcus-like organisms (ALO). Later, sequencing of the 16S rRNA gene deemed these 

ALO as either A. urinae or A. sanguinicola (147). In 1989, Christensen et al. looked at patient 

charts for instances where the UTI was thought to be caused by ALO at a hospital in Denmark 

during a four month period (160). They found that 11/29 patients had a pure culture of ALO, 

while the remaining 18 patients had ALO co-cultured with another bacterium (most commonly 

E. coli, N=17/18). In all these patients, ALO was detected at ≥106 CFU/mL with only 5 patients 

not exhibiting symptoms of UTI. The majority of these patients were female (N=20/29) with a 

median age of 75 years old.  Christensen performed a similar study a few years later with a larger 

patient size and found similar results (161) (Table 5).  

Following Christensen, many investigators performed either retrospective chart reviews 

or small one-year investigations into the presence of ALO or A. urinae in urine cultures (Table 

5). Collectively, these studies show that A. urinae is found predominantly in older women with 

symptoms of UTI and underlying urologic issues (148) (Table 5). However, several studies have 

shown A. urinae to be the case of extremely foul-smelling urine in young boys ranging in age 

from 5 to 12 years old (162-166). 

A. urinae is an “Emerging Uropathogen” that does have published antimicrobial 

susceptibilities with CLSI (167) and EUCAST (168).  Table 6 summarizes the known 

antimicrobial susceptibilities of A. urinae for antibiotics commonly used for UTIs. It must be 
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noted that some of the commonly used antibiotics for UTI cannot be used against A. urinae 

(those with + in Table 6) or have a high resistance rate (Table 6).  

In brief, A. urinae is intrinsically resistant to sulfamethoxazole (169). Trimethoprim 

resistance is also reported, but it depends on which medium is used to test the antibiotic 

resistance (170). Finally, there have also been reports of resistance to fluoroquinolones such as 

ciprofloxacin (176, 177). This high resistance to commonly used antibiotics for UTI makes the 

need to develop new therapies for A. urinae critical.  
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Table 5. Summary of UTI Studies with ALO/A. urinae  
  

Study Species Number of 
Patients 

Number Exhibiting  
UTI Symptoms 

Percentage of  
Pure Culture (%) Mean Age Percent  

Female (%) Reference 

Christensen, 
1989 ALO 29 24a 37.9% 75 68.9% (160) 

Christensen, 
1991 ALO 63 52a 57.1% 74 53.9% (161) 

Schuur, 1997 A. urinae 40 39b 82.5% 82.5 for women 
77.5 for men 50% (169) 

Sierra-
Hoffman, 2005 A. urinae 54 32c 10% >65 91% (171) 

Cattoir, 2010 A. urinae 29 29 Not Reported 73 76% (172) 
Shelton-
Dodge, 2011 A. urinae 57 45 Not Reported 82 71.9% (173) 

Senneby, 2015 A. urinae 64 Not Reported 75% 79 50% (174) 
 

aUTI symptoms defined as Dysuria (painful urination), Fever and Pyuria (blood in urine) 
bUTI symptoms defined as Dysuria, Pollakiuria (abnormal frequency), Abdominal Pain, Flank Tenderness, Fever, General Discomfort 
cUTI symptoms defined as Dysuria, Frequency, Nocturia, Fever, Myalgias, Chills, Altered Mental Status and Suprapubic Pain 
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Table 6. Summary of activity of common UTI antimicrobial agents to A. urinae.  
 

Aerococcus urinae 

Antibiotic Number of Strains 
Tested 

MIC Range 
(μg/L) 

Susceptibility 
(%) References 

Nitrofuratonin 58 0.125 to 4.0 Not Reported (174) 
Trimethoprim-Sulfamethoxazole 128 0.25 to 8 Not Reported (170) 
Fosfomycin+ N/A N/A N/A  
Ciprofloxacin 58 0.125 to ≥32 Not Reported (174) 
Levofloxacin 128 0.5 to >8 84% (170) 
Amoxicillin-Clavulanate+ N/A N/A N/A  
Cefdinir+ N/A N/A N/A  
Ceftriaxone 128 ≤0.015 to 4 96% (170) 
Aminoglycoside  
     Gentamicin 
     Kanamycin 
     Amikacin 

 
56 

N/A 
56 

 
4 to 256 

N/A 
16 to >512 

 
0% 
N/A 
0% 

 
(175) 

Aztreonam+ N/A N/A N/A  
NA=Not available; +Antibiotic not used for treatment against Gram-positive organisms 
 

Aerococcus and Invasive Infections  

A. urinae is not only thought to be the cause of UTIs but also has been thought to cause 

more invasive style infections including bacteremia and infective endocarditis. Similar to cases 

of UTI, many groups have performed either retroactive retrospective chart reviews or small one-

year investigations into the presence of ALO or A. urinae in blood cultures (Table 7). In brief, 

Christensen et al. first described two cases of ALO bacteremia with one of the cases ending in 

fatal infective endocarditis (178). Several years later, Christensen at al. reported on 17 cases of 

ALO bacteremia (149). The majority of these bacteremia cases were older men (Median=78 

years). Fifty-nine percent (N=9/17) of patients were diagnosed with urosepticemia, where 90% 

(N=9/10) grew ALO in their urine. Thirty-five percent (N=6/17) of these individuals were 
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Table 7. Summary of Invasive Infection Studies with ALO/A. urinae   
 

Study Species Diagnosis 
Number 

of 
Patients 

Underlying 
Urologic 

Condition(s)a 

Mean 
Age 

Percent 
Male (%) 

Number of 
Fatalities 
due to IE 

Reference 

Christensen, 
1991 ALO Bacteremia 

IE 
2 

(1)b UI, LUTC 72 100% 1 (178) 

Christensen, 
1995 ALO Bacteremia 

IE 
17 
(6)b BPH, LUTC, KS 78 88% 5 (149) 

Kristensen, 
1995 A. urinae IE 1 UTI 78 100% 1 (179) 

Skov,1995 A. urinae IE 1 UTI 81 100% 1 (180) 
Gritsch, 1999 A. urinae IE 1 UTI 43 100% 1 (181) 
Zbinden, 
1999 A. urinae IE 2 rUTI 64 100% 0 (182) 

Schuur, 1999 A. urinae Soft-Tissue Infection 
IE 

2 
1 

UR, Catheter, 
Prostate Resection  79 100% 0 (183) 

Ebnother, 
2002 A. urinae IE 1 UTI, BPH 75 100% 0 (184) 

Colakoglu, 
2008 A. urinae Bacteremia 

Peritonitis 
2 
1 None 43 67% 0 (185) 

Kass, 2008 A. urinae IE 1 BPH 77 100% 1 (186) 
Brugger, 
2009 A. urinae IE 1 KS, BPH 62 100% 1 (187) 

de Jong, 
2010 A. urinae Bacteremia 

IE 
4 

(3)b rUTI, LUTS, BPH 81 50% 2 (150) 

Senneby, 
2012 A. urinae Bacteremia 

IE 
16 
(3)b 

LUTC, BPH, KS, 
UTI 86 94% 0 (188) 
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Table 7. Summary of Invasive Infection Studies with ALO/A. urinae  (continued) 
 

Study Species Diagnosis 
Number 

of 
Patients 

Underlying 
Urologic 

Condition (s)a 

Mean 
Age 

Percentage 
Male (%) 

Number of 
Fatalities 
due to IE 

Reference 

Sunnerhagen, 
2015 A. urinae IE 14 LUTC, BPH, 

KS, Dysuria 79 71% 0 (189) 

Melnick, 
2016 A. urinae IE 1 Previous UTI 74 100% 1 (190) 

Kotkar, 2016 A. urinae IE 1 N/A 54 100% 0 (191) 
Tathireddy, 
2017 A. urinae IE 1 Prior KS 

Removal  69 100% 1* (192) 

Yabes, 2018 A. urinae IE 1 UR 43 100% 0 (193) 
a BPH=Benign Prostate Hyperplasia; KS=Kidney Stone; LUTC=Lower Urinary Tract Cancer; LUTS=Lower Urinary Tract 
Symptoms; rUTI=Recurrent UTI; UI=Urinary Incontinence; UR=Urinary Retention; UTI=Urinary Tract Infection; 
bSub-set of the individuals with bacteremia diagnosed with IE 
*Died of heart failure one year post A. urinae IE  
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diagnosed with infective endocarditis (IE) with 83% (N=5/6) dying from infection.  

 Many of these invasive cases of ALO/A. urinae involve older males with underlying 

urologic conditions (Table 7). It is worth noting that these invasive infections are still a rare 

occurance. However, these rare invasive infections lead one to hypothesize that A. urinae infects 

the bladder of an individual and then goes on to cause more invasive infections starting with 

urosepticemia and then leading to possibly fatal IE. One group studied A. urinae pathogenesis in 

the context of IE, where it was shown to induce platelet aggregation and form biofilms (194). 

However, the pathways involved in these processes and the pathogenesis of A. urinae in the 

context of the bladder remain unknown.  

Aerococcus and Other Lower Urinary Tract Disorders 

Many of the studies referenced in Table 5 mention patients having other lower urinary 

tract symptoms or diseases. Shurr et al. described 45% of patients who complained of UI with 

the majority being women (12/20 women) (169).  

Sierra-Hoffman et al. and Shelton-Dodge described individuals as being “colonized” with 

A. urinae (171, 173). This classification of UTI vs “colonized” patient was made by whether the 

patient exhibited two or more symptoms of UTI (Dysuria, Frequency, Nocturia, Fever, Myalgias, 

Chills, Altered Mental Status and Suprapubic Pain) (171). Therefore, if a patient was only 

experiencing frequency or only nocturia, he/she was characterized as “colonized” with A. urinae. 

However, many of these symptoms overlap with symptoms of other lower urinary tract disorders 

(described above). This begs the question, are the “colonized” patients actually suffering from an 

underdiagnosed UTI?  
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Figure 4. A. urinae Cultured in Individuals with Lower Urinary Tract Diseases. Heat map 
showing the relative proportion with which we culture each genus (y-axis) in each patient 
population (x-axis). Highlighted in the red box is the proportion that we culture A. urinae in each 
patient population. 

 

During our studies of the FUM and lower urinary tract disorders, we have consistently 

isolated A. urinae from individuals experiencing lower urinary tract symptoms (Figure 4, red 

highlighted box). To date, we have only cultured A. urinae from three asymptomatic individuals. 

This supports our hypothesis that A. urinae is a pathogen of the urinary tract and must be studied 

to understand its lifestyle in the bladder. 
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Summary of Aerococcus 

It is important to note the theme throughout Tables 5 and 7 is the involvement of urinary 

tract symptoms/conditions with A. urinae infections. Specifically, the majority of the invasive 

infections occurred in individuals with some sort of underlying urologic condition. This 

highlights the need to understand the pathogenesis of A. urinae in the context of the bladder in 

order to further avoid these rare instances of invasive infection with A. urinae. 

Lesson in Genetics (Reverse vs Forward Genetics) 

It is critical to study the lifestyle of A. urinae in the context of the bladder to aid in future 

therapies. The pathogenesis of classical uropathogens is known, in large part, because they are 

genetically tractable organisms. For example, a critical step in the pathogenesis of UPEC is the 

recognition and binding of Type 1 pili to mannosylated uroplakins on the surface of the 

urothelium (17, 18). This was discovered in large part because the researchers had a null 

mutation in the Type 1 pili gene and noticed a decrease in colonization, invasion and persistence 

of UPEC in the bladder (17). This is a classic reverse genetics approach where one deletes a gene 

of interest and determines the phenotypic consequence. This approach is the basis for much of 

the research on UPEC pathogenesis and several other genetically tractable organisms. When 

molecular genetics exists in an organism, one can easily delete and/or replace gene(s) of interest. 

However, A. urinae is not yet a genetically tractable organism. This makes studying the 

molecular basis for pathogenic features, such as virulence or colonization/adherence factors by 

conventional means, very difficult.  
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To study the pathogenesis of a genetically intractable organism like A. urinae, one can 

apply a forward genetics approach. In a forward genetics approach one identifies a mutant 

phenotype and then determines the genetic basis for that phenotype. In short, one identifies a 

phenotype of interest, performs mutagenesis to select and/or screen for mutants of that phenotype 

and then maps the mutations to identify the responsible gene(s). A strong strategy is to use 

various types of mutagens to generate different types of mutations to construct a large and 

diverse library of mutants. Often, chemical mutagens are used. The most commonly used 

chemical mutagen is ethylmethanesulfonate (EMS), as it is highly mutagenic and induces point 

mutations. These point mutations are the result of transitions from C-G pairs to T-A pairs via 

alkylation of the G base (195). This alkylation is not reversible, which creates a strong non-

reversible mutant phenotype. However, there are other equally strong chemical mutagens, such 

as ones that induce frame-shifts (i.e., ICR-191). Conversely, base analog chemical mutagens, 

such as 2-aminopurine or 5-bromouracil, are reversible and thus valuable when performing a 

second round of mutagenesis to find true reversions, which permits confident assignment of 

genotype to phenotype. It is ideal to use all the chemical mutagens above to induce multiple 

types of mutations so that one can confidently link the phenotype to the genotype in a forward 

genetics approach.  

Recently, a forward genetics approach that combines chemical mutagenesis with whole 

genome sequencing was developed by the Valdivia and Bastidas labs to investigate the poorly 

genetically tractable organism, Chlamydia (196). In brief, Kokes and co-workers (2015) 

generated a library of chemically mutagenized Chlamydia and subsequently identified all gene 
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variants in this library via whole genome sequencing. This approach led them to discover a 

bacterial factor in Chlamydia important for regulating cytoskeletal rearrangement during 

infection of a host cell (196). This is a key example of how one can use this approach to study 

the pathogenesis of a genetically intractable organism and can be applied to other genetically 

intractable organisms like A. urinae. 

Summary of Introduction 

UTIs are considered the most common bacterial infection in the world. UTIs are caused 

by diverse uropathogens, about which there is a great deal of research into the molecular 

mechanisms of their pathogenesis. Unfortunately, the pathogenic lifestyle of these uropathogens 

has been explored almost exclusively in the context of the old dogma that the bladder is sterile. 

Recent evidence debunks this dogma, revealing compelling evidence of microbiota in the urinary 

bladders of adult women (the female urinary microbiota, FUM). The FUM differs in women with 

and without lower urinary tract disorders, including UTIs. Many of the organisms found 

associated in individuals with lower urinary tract symptoms are considered “Emerging 

Uropathogens.” These emerging uropathogens are typically Gram-positive bacteria that have 

been isolated in large numbers in urine samples from patients exhibiting UTI symptoms, but very 

little is known about the molecular mechanisms that underlie their pathogenesis. An emerging 

uropathogen of interest in the clinical community is A. urinae, a Gram-positive, alpha-hemolytic 

bacterium of major clinical concern because it is highly resistant to many antibiotics and, when 

undiagnosed, can cause invasive and life-threatening sepsis. Yet, the pathogenesis of A. urinae in 

the context of the bladder remains to be studied. Our evidence suggests that A. urinae contributes 
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to symptoms of UTI and those of UUI. To begin to investigate A. urinae’s role in lower urinary 

tract disorders, one must establish the early stages of A. urinae’s lifestyle in the bladder 

environment.  

The earliest stage of uropathogenesis is attachment and colonization to the urothelium. I 

found that A. urinae exhibits 3 unique in vitro phenotypes that could be relevant to urothelial cell 

interaction. The first two are indicative of biofilm formation while the third is indicative of 

quorum sensing. I characterized these three phenotypes and began to look for gene(s) that may 

be responsible for these phenotypes. 

Another stage in uropathogenesis is evasion of the immune system of the host’s urinary 

bladder. Classical uropathogens, such as UPEC, evade this immune response employing a 

variety of mechanisms that range from being internalized by the bladder epithelium (urothelium) 

to altering urothelial-signaling pathways. I hypothesized that A. urinae evades the immune 

system by altering TLR signaling in the urothelium. I exposed human urothelial cells to A. 

urinae and monitored urothelial cell ability to initiate, exacerbate or propagate an innate immune 

response. These results have formed a foundation on which we can begin to understand A. 

urinae, its pathogenesis, and its mechanisms for interaction with the urothelium. 



 
 

   
 

43 

CHAPTER TWO 

MATERIALS AND METHODS 

Isolation of Clincial Isolates 

Patients and Sample Collection 

Following Loyola institutional review board (IRB) approval, female participants gave 

verbal and written consent for chart abstraction and urine collection with analysis for research 

purposes. Patients were recruited as part of separate studies (98, 108, 197, 198). Urine was 

collected via transurethral catheter from participants for the period of March 2013 to May 2016 

at the Female Pelvic Medicine and Reconstructive Surgery center of Loyola University Medical 

Center. A portion of each urine sample was placed in a BD Vacutainer Plus C&S Preservative 

Tube (Becton Dickinson and Co; Franklin Lakes, NJ) and sent to our lab for both a standard 

urine culture and our EQUC protocol.  

Standard Urine Culture  

The clinical microbiology laboratory staff processed each catheterized urine sample using 

the standard culture procedure. Standard urine culture was performed by inoculating 0.001 mL of 

urine onto a 5% sheep blood agar plate (BAP) and MacConkey agars (BD BBL™ Prepared 

Plated Media, Becton Dickinson and 94 Co; Sparks, MD) and streaking the entire plate surface 

to obtain quantitative colony counts. The plates were incubated aerobically at 35°C for 24 hours 

(Table 8). Each separate morphological colony type was counted and identified in any amount. 

The detection level was 103 CFU/mL, represented by 1 colony of growth on either plate. If no  
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Table 8. Comparison of Standard Urine Culture and Expanded Quantatative Urine 
Culture 
 

Protocol 
(Volume) Media Condition Incubation Time 

SUC  
(1μL) 

Blood, 
MacConkey 

Aerobic 
35°C 24 hr 

EQUC 
(100μL) 

Blood, 
Chocolate, 

CNA 

5% CO2 
35°C 48 hr 

Blood Aerobic 
35°C 48 hr 

Anaerobic Anaerobic 
35°C 48 hr 

 

growth was observed, the culture was reported as “no growth” bacteria at lowest dilution, i.e., 

1:1000). 

Expanded Quantitative Urine Culture (EQUC) 

Each catheterized urine sample also was processed using the EQUC procedure (96). For 

EQUC, 0.1 mL of urine was inoculated onto BAP, chocolate and colistin, and nalidixic acid 

(CNA) agars (BD BBL™ Prepared Plated Media), streaked for quantitation, and incubated in 5% 

CO2 at 35°C for 48 hours. Another BAP was inoculated with 0.1 mL of urine and incubated in 

room atmosphere at 35°C for 48 hours. Next, 0.1 mL of urine was inoculated onto CDC 

anaerobe 5% sheep blood agar plates (BD BBL™ Prepared Plated Media) and incubated under 

anaerobic conditions at 35°C for 48 hours. The detection level was 10 CFU/mL, represented by 1 

colony of growth on any of the plates. Each morphologically distinct colony type was isolated on 

a different plate of the same media to prepare a pure culture that was used for identification.  
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Identification of Pure Isolates 

Matrix assisted laser desorption ionization–time of flight mass spectrometry (MALDI-

TOF MS) was used to identify each morphologically distinct colony. The direct colony method 

was performed. Using toothpicks, we applied a small portion of a single isolated colony to the 

surface of a 96-spot, polished, stainless steel target plate (Bruker Daltonik GmbH, Leipzig, 

Germany) in a manner that created a thin bacterial film. The spot was left to dry at room 

temperature for 1 minute, whereupon 1.0 μL of 70% formic acid was applied to each sample and 

allowed to dry at room temperature for 10 minutes. Then, 1.0 μL of the matrix solution, 

comprised of saturated α-cyano-4-hydrocinnamic acid (Bruker Daltonik) in an organic solvent 

(High-Pressure Liquid Chromatography-Mass Spectrometry [HPLC-MS]-grade water, 100% 

Trifluoroacetic Acid, and Acetonitrile; Fluka) was then applied to each sample and allowed to 

co-crystallize at room temperature for 10 minutes. The prepared sample target was placed in the 

MicroFlex LT mass spectrometer (Bruker Daltonik), and the results were analyzed by MALDI 

Biotyper 3.0 software (Bruker Daltonik). A bacterial quality control strain (Escherichia coli 

DH5α) was included in each analysis. A single measurement was performed once for each 

culture isolate. 

MALDI Data Analyses  

MALDI Biotyper 3.0 software Realtime Classification was used to analyze the samples. 

In the Realtime Classification program, log score identification criteria are used as follows. A 

score between 2.000 and 3.000 is species-level identification, a score between 1.700 and 1.999 is 

genus-level identification, and a score that is below 1.700 is an unreliable identification. A 

Realtime Classification log score was given for each bacterial isolate sample for every condition 
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from which it was isolated. 

Storage of Clinical Isolates  

Once the classification of each bacterial isolate was confirmed, a pure culture of the 

bacterial isolate was placed in a Cryovial with Brucella Broth with 10% Glycerol (Hardy 

Diagnostics; Santa Maria, CA) and frozen at -80°C. 

Growth of Clinical Isolates 

 A list of all the isolates used in this document can be found in Table 9 and Table 11. 

Described below is a summary of the growth conditions and experiments of the clinical isolates 

in this document.   

 
Table 9. List of Clinical Isolates Other Than A. urinae Used in this Document 
 

Strain Diseasea Species 
UMB0040 OAB Lactobacillus crispatus 
UMB0139 OAB Aerococcus sanguinicola 
UMB0240 OAB Aerococcus viridans 
UMB0884 Control Aerococcus christensenii 
UMB1026 UTI Streptococcus agalactiae 
UMB1047 UTI Streptococcus agalactiae 
   
NU14 N/A Uropathogenic E. coli 
UTI89 N/A Uropathogenic E. coli 

a OAB, overactive bladder; UTI, urinary tract infection 

 

Aerococcus Isolates 

Aerococcus strains were first struck from the frozen stock directly onto a BAP agar plate 

and placed in 5% CO2 atmospheric conditions at 35°C for 48 hours. To have substantial growth 

of Aerococcus to be used in assays, a 1 μL loopful of Aerococcus colonies were incoculated into 
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either Tryptic Soy Broth (TSB) (Sigma Aldrich) or Brain Heart Infusion Broth (BHIB) (Sigma 

Aldrich) and then grown statically in 5% CO2 atmospheric conditions at 35°C for 48 hours. 

Several in vitro phenotypes are observed with Aerococcus isolates. To observe the 

‘flocking’ phenotype, A. urinae was sub-cultured into either TSB or BHIB and then grown 

statically in 5% CO2 atmospheric conditions at 35°C for 48 hours. To observe the ‘hockey puck’ 

phenotype, A. urinae was sub-cultured onto either Tryptic Soy agar (TSA) (Sigma Aldrich) 

plates supplemented with 0.5% glucose (TSA+Glu) or Brain Heart Infusion (BHI) (BD 

Biosciences; San Jose, CA) agar plates supplemented with 0.5% glucose (BHI+Glu) and grown 

in 5% CO2 atmospheric conditions at 35°C for 48 hours. To observe the ‘pigmentation’ 

phenotype, A. urinae was sub-cultured onto BHI agar plates supplemented with Congo Red dye 

and 0.5% Glucose (BHI+CR+Glu) and grown in 5% CO2 atmospheric conditions at 35°C for 48 

hours. Experiments to observe the in vitro phenotypes were performed in triplicate. 

Lactobacillus Isolates 

Lactobacillus strains were first struck from the frozen stock directly onto a CNA agar 

plate and placed in 5% CO2 atmospheric conditions at 35°C for 48 hours. To have substantial 

growth of Lactobacillus to be used in assays, a 1 μL loopful of Lactobacillus colonies was 

incoculated into 5.0 mL of MRS Broth (Sigma Aldrich) and then grown statically in 5% CO2 

atmospheric conditions for 48 hours. 

UPEC and Urinary E. coli Isolates 

Each UPEC strain or urinary E. coli isolate was first struck from the frozen stock directly 

onto a BAP agar plate and grown in aerobic conditions at 35°C for 24 hours. To have substantial 

growth to be used in assays, a single colony of E. coli was incoculated into 5.0 mL of Luria 



 
 

   
 

48 

Broth (LB) and then grown shaking in aerobic conditions at 35°C for 24 hours. 

Streptococcus Isolates  

Streptococcus strains were first struck from the frozen stock directly onto a BAP agar 

plate and placed in 5% CO2 atmospheric conditions at 35°C for 48 hours. To have substantial 

growth of Streptococcus to be used in assays, a 1 μL loopful of Streptococcus colonies were 

incoculated into 5.0 mL of TSB and then grown statically in 5% CO2 atmospheric conditions for 

48 hours.  

Growth Curves 

Each clinical isolate chosen for a growth curve was first struck from frozen stock directly 

onto a BAP agar plate and placed in 5% CO2 atmospheric conditions at 35°C for 48 hours. To 

have substantial growth of the clinical isolate to be used for the growth curve assay, a 1 μL 

loopful of the clinical isolate was incoculated into TSB and then grown statically in 5% CO2 

atmospheric conditions at 35°C for 48 hours. Next, the 48-hour clinical isolate cultures were 

standardized to an optical density (OD) of 0.05 at 600 nm in a 5.0mL tube of TSB in triplicate 

for each clinical isolate. These tubes were placed in 5% CO2 atmospheric conditions and then 

monitored for growth with OD every 2 hours. Measurements were taken every 2 hours for the 

first 16 hours and then every 12 hours. For each clinical isolate, a growth curve was performed in 

three technical replicates.  

Biofilm Assay 

To observe biofilm formation by A. urinae, an isolate was first struck from frozen stock 

directly onto a BAP agar plate and placed in 5% CO2 atmospheric conditions at 35°C for 48 

hours. To have substantial growth of the clinical isolate to be used for the growth curve assay, a 
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1 μL loopful of the clinical isolate was incoculated into BHIB and then grown statically in 5% 

CO2 atmospheric conditions at 35°C for 48 hours. Next, the 48-hour clinical isolate cultures were 

standardized to an OD of 0.05 at 600 nm in 1.0 mL of media testing in triplicate in a 24-well 

plate (Falcon). The following five media was tested for biofilm formation:  

1. Dulbecco’s Modified Eagle’s Medium (Corning) supplemented with 5% Fetal 

Bovine Serum (Gibco) (DMEM+5% FBS) 

2. TSB  

3. BHIB 

4. TSB+Glu  

5. BHIB+Glu 

The 24-well plate was placed in 5% CO2 atmospheric conditions at 35°C for 48 hours. 

After 48 hours of incubation, the A. urinae cells were stained with crystal violet for biofilm 

formation. In brief, the liquid was removed and the A. urinae cells were washed two times with 

1X phosphate-buffered saline (PBS). Next, the A. urinae cells were fixed with 1.0 mL of 

methanol for 10 minutes. The methanol was removed and the A. urinae cells were allowed to dry 

for 15 minutes. After drying, 1.0 mL of crystal violet (BD BBL™; Sparks, MD) was added to 

the A. urinae cells to stain for 5 minutes. Next, the crystal violet was removed and the A. urinae 

cells were washed three times with 1.0 mL of 1X PBS. Next, 1.0 mL mixture of 20% Acetone 

and 80% Ethanol (Ace/Eth) were added to each well. Then, 0.5 mL of the mixture was added to 

an equal volume of 0.5 mL Ace/Eth in another 24-well plate. Finally, the OD of the wells was 

measured at an absorbance of 550 nm. If the OD was >4.5, another dilution was performed, 

diluting 0.5 mL of the mixture to an equal volume of fresh 0.5 mL Ace/Eth. The value obtained 
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was multiplied by the number of times that the sample had been diluted, and the absorbance of 

the negative control was subtracted. Each isolate was tested in triplicate at least three times. 

Autoinducer Assay 

 Each clinical isolate or Visick-Wolfe (VW) A. urinae mutant isolate chosen for the 

autoinducer assay was first struck from frozen stock directly onto a BAP agar plate and placed in 

5% CO2 atmospheric conditions at 35°C for 48 hours. To have substantial growth of the clinical 

isolate or VW A. urinae mutant isolate to be used for the autoinducer assay, a 1 μL loopful of the 

clinical isolate or VW A. urinae mutant isolate was incoculated into BHIB and then grown 

statically in 5% CO2 atmospheric conditions at 35°C for 48 hours. Next, the 48-hour clinical 

isolate or VW A. urinae mutant isolate cultures were standardized to an OD of 1.0 at 600 nm in 

1.0 mL. Cells were washed two times with 1X PBS. The strains of interest were then set up as 

seen in Figure 5. 

 
 

Figure 5. Autoinducer Assay Set Up- Depicted is the basic set up for the autoinducer assay. 
Each middle spot is 10 μL of the strain of interest while each streak is 30 μL of the strain of 
interest. 
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Spot Characterization Assay  

Each VW A. urinae mutant isolate chosen for the spot characterization assay was first 

struck from frozen stock directly onto a BAP agar plate and placed in 5% CO2 atmospheric 

conditions at 35°C for 48 hours. To have substantial growth of the VW A. urinae mutant isolate 

to be used for the spot characterization assay, a 1 μL loopful of the VW A. urinae mutant isolate 

was incoculated into BHIB and then grown statically in 5% CO2 atmospheric conditions at 35°C 

for 48 hours. Next, the 48-hour VW A. urinae mutant isolate cultures were standardized to an 

OD of 1.0 at 600nm in 1.0 mL. Cells were washed two times with 1X PBS and then 10 μL spots 

were placed on BHI+CR+Glu agar plates. These spots were allowed to dry and then the plates 

were placed in a 5% CO2 incubator and monitored overtime for a week. Every 24 hours, the 

plates were removed to take a picture of the spots. 

Chemical Mutagenesis Assays 

Ethylmethanesulfonate (EMS) Treatments 

To generate red A. urinae ‘pigmentation’ mutants, the chemical mutagen EMS (Sigma 

Aldrich) was used. In brief, A. urinae was grown statically in 5% CO2 atmospheric conditions for 

48 hours. Next, the 48-hour A. urinae cultures were standardized to an OD of 1.0 at 600 nm for 

four 1.0 mL tubes. These four 1.0 mL cultures were washed two times with 1X PBS and then 

three of the four 1.0mL cultures were treated with 20 ug/mL of EMS for 60 minutes. As a 

control, one 1.0 mL tube remained untreated. After the 60 minutes of treatment, each culture was 

washed three times with 1X PBS to remove the chemical mutagen. After washes, each tube was 

re-suspended in 1.0 mL of fresh BHIB and mixed with 4.0 mL of fresh BHIB. These cultures 

will be placed in the 5% CO2 incubator for 48 hours to allow the cells to grow. After the 48 
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hours, the cultures were standardized to an OD of 1.0 at 600 nm for 1.0 mL for each treatment 

and control tube. Each treatment and control group was serially diluted (1:10) and plated onto 

BHI+CR+Glu agar plates to screen for red colony mutants. These plates were placed in the 5% 

CO2 incubator for 48 hours and then screened for red colonies. Each potential mutant colony was 

struck onto another BHI+CR+Glu plate to 1) confirm it was a red mutant and 2) confirm that it 

was A. urinae. To confirm that the colony was A. urinae, MALDI-TOF MS was used as 

described above.  

ICR-191 Treatments  

Red A. urinae ‘pigmentation’ mutants were also generated using the frame-shift chemical 

mutagen ICR-191 (Sigma Aldrich). In brief, A. urinae was grown statically in 5% CO2 

atmospheric conditions for 48 hours. Next, the 48-hour A. urinae cultures were standardized to 

an OD of 1.0 at 600 nm for each treatment group described below. Fresh 1.5 mL of BHIB was 

mixed in equal amounts with the standardized culture of A. urinae cells.  As a control, three no-

treatment tubes were set aside. Next, the A. urinae cells were treated with the following 

concentrations of ICR-191 in triplicate: 5 mg, 10 mg, 15 mg, and 20 mg. These tubes were 

placed in the 5% CO2 incubator for 24 hours. After 24 hours, serial dilutions (1:10) of the 

cultures were performed and then plated on BHI+CR+Glu agar plates. These plates were placed 

in the 5% CO2 incubator for 48 hours and then screened for red colonies. Each potential mutant 

colony was struck onto another BHI+CR+Glu plate and a blood agar plate (BAP) to 1) confirm it 

was a red mutant and 2) confirm that it was A. urinae. To confirm that the colony was A. urinae, 

MALDI-TOF MS was used as described above.  
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2-aminopurine (2-AP) Treatments  

To generate revertant black ‘pigmentations’ colonies of the red ‘pigmentation’ mutants, 

the base analog mutagen 2-AP (Sigma Aldrich) was used. In brief, each red ‘pigmentation’ 

mutant of A. urinae was grown in BHIB for 48 hours and then standardized the 48-hour culture 

to an OD of 0.5 at 600 nm in four 1.0mL tubes. One tube of the red ‘pigmentation’ mutant cells 

in BHIB was set aside for a no treatment control. Three tubes of the red ‘pigmentation’ mutant 

cells in BHIB were treated with 10 mM concentration of 2-AP. All tubes were placed in the 5% 

CO2 incubator for 24 hours. After 24 hours, the tubes were removed from the incubator. The red 

‘pigmentation’ mutant cells were washed two times with 1X PBS and then plated onto 

BHI+CR+Glu agar plates. The plates were set in the 5% CO2 incubator for 48 hours then 

screened for revertant black ‘pigmentation’ colonies. Each potential revertant colony was struck 

onto another BHI+CR+Glu plate and a BAP to 1) confirm it was a revertant black ‘pigmentation’ 

colony and 2) confirm that it was A. urinae. To confirm that the colony was A. urinae, MALDI-

TOF MS was used as described above. 

Whole Genome Sequencing of Aerococcus Isolates 

DNA Extraction 

A total of 24 A. urinae isolates, 15 A. urinae mutant isolates, and 3 Aerococcus sp. 

isolates were chosen for whole genome sequencing (WGS). All the Aerococcus isolates were 

grown on BAP in 5% CO2 conditions for 48 hrs and then pelleted. To extract genomic DNA, 

cells were resuspended in 0.5 mL DNA extraction buffer (20 mM Tris-Cl, 2 mM EDTA, 1.2% 

Triton X-100, pH 8) followed by addition of 50 µL lysozyme (20 mg/mL) and 30 µL 

mutanolysin. After a 1 hour incubation at 37°C, 80 µL 10% SDS and 20 µL proteinase K were 
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added, followed by a 2 hours incubation at 55°C. Then, 210 µL of 6 M NaCl and 700 µL phenol-

chloroform were added. After a 60-minute incubation with rotation, the solution was centrifuged 

at 13,500 rpm for 10 minutes, and the aqueous phase extracted. An equivalent volume of 

isopropanol was added; after a 10-minute incubation, the solution was centrifuged at 13,500 rpm 

for 10 minutes. The supernatant was decanted and the DNA pellet precipitated using 600 µL 

70% ethanol. Following ethanol evaporation, the DNA pellet was resuspended in nuclease-free 

H2O and stored at −20°C. 

Genome Sequencing, Assembly and Annotation 

Genomic DNA was diluted in water to a concentration of 0.2 ng/µL. Library preparation 

was performed using the Nextera XT DNA library preparation kit (Illumina), according to the 

manufacturer’s instructions with 1 ng of input DNA. Each strain was sequenced using the 

Illumina MiSeq platform and the MiSeq reagent kit v2 (300-cycles) to produce 150-bp paired-

end reads. Sequencing reads were parsed into individual folders according to the respective 

barcodes. The resulting sequences reads were trimmed with Sickle (199) and the assembly was 

performed using the SPAdes assembler (200). Raw sequence data and assembled genomes were 

deposited in NCBI’s SRA and WGS databases, respectively. SRA record numbers are 

SRR6973109 through SRR6973128 and WGS record numbers are QMGT00000000 through 

QMHM00000000. 

Mutant Alignment Analysis 

The main program used to align the assembled mutation genomes to the wild-type 

reference genome was BreSeq (201). BreSeq generates an annotated file that shows where all 
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base substitution, short insertion or deletion, and large deletion events have occurred in the 

mutant genomes compared to the wild-type reference genome.  

Phylogenetic Analysis  

The phylogenetic analysis was conducted by extracting amino acid sequences of 40 

universal single copy marker genes (202, 203) from the Aerococcus genomes using SpecI (204). 

A. christensenii (UMB0884), A. sanguinicola (UMB0139) and A. viridans (UMB0240) were 

used to root the tree of all 24 A. urinae isolates and the 5 publicly available strains of A. urinae. 

The protein sequences were concatenated and aligned with MAFFT v. 7.20 (205), and 

maximum-likelihood trees were constructed using FastTree (206) with default settings. All 

phylogenetic trees were visualized in iTOL (207).  

Functional Genomic Analysis 

Each genome was annotated using RAST (208). A custom python script was written to 

conduct reciprocal blastp queries using the BLAST+ package (209) to identify homologous 

genes amongst the A. urinae genomes. Referring to RAST-predicted annotations, function 

assignments were made for each identified gene family. Custom python scripts were developed 

to identify gene families associated within phenotypic and phylogenetic groups. 

Functional analysis also was performed using RAST. RAST gene annotations utilize the 

manually curated hierarchical subsystem library (210), which includes functional assignment 

covering all modules of cellular machinery. A custom python script was written to identify the 

number of unique number of coding regions for each genome and each level of functional 

classification: Category, Subcategory, Subsystem, and Role. Next, pairwise genome comparisons 
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of the number of unique coding regions for each level of functional classification were 

conducted. Presence/absence statistics were calculated for all genomes for each functional 

classification and manually inspected further. 

Treatment of Urothelial Cell Assays 

Dr. Phong Le established several immortalized human urothelial cell (HUC) lines from a 

non-malignant bladder. The following assays are all performed with one of these HUC lines 

known as Huro18H7.  

Adherence/Invasion Assay 

The infection assay with the immortalized HUC line, Huro18H7, was designed and 

optimized by Dr. Meghan Pearce using other protocols as guidance (211-214). Four days prior to 

infection of HUCs, strains of A. urinae were streaked onto BAP agar plates and incubated in 5% 

CO2 atmospheric conditions at 35°C for 48 hours. Next, a 1 μL loopful of the A. urinae colonies 

were incoculated into BHIB and then grown statically in 5% CO2 atmospheric conditions at 

35°C for 48 hours. Two days prior to infection, strains of UPEC were streaked onto LB agar and 

incubated overnight in aerobic conditions at 37°C. Then, a single colony of UPEC strain of 

interest was inoculated into 5.0 mL of LB broth and incubated overnight in aerobic conditions at 

37°C shaking. To prepare the HUCs, the day before infection, HUCs were counted with a 

hemocytometer and then diluted to 1x105 cells/mL in Thymic Epithelial (TE) medium. Next, 1 

mL aliquots of urothelial cells were placed into a 24-well tissue culture treated plate and 

incubated overnight at 37°C in 5% CO2 to allow the cells to adhere to the well. On the day of 

infection, the A. urinae 48-hour culture and the UPEC 24-hour culture were standardized to an 

OD of 1.0 at 600 nm and then re-suspended DMEM+5% FBS. The HUCs were examined to see 
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that they had adhered to the wells. The old media was removed by aspiration and the HUCs were 

washed with 1.0 mL 1X PBS. In triplicate for both adherence and invasion, HUCs were treated 

with 108 cells of A.urinae or UPEC in DMEM+5%FBS. A total of six wells were treated with 

DMEM+5% FBS alone to serve as untreated HUCS.  

To detect adherent A. urinae or UPEC cells at 3 hours post infection, HUCs were washed 

three times with 1X PBS and then detached from the well using 0.05% Trypsin-EDTA 

(Corning). The HUCs and bacterial cells were serially diluted and plated to determine the CFUs 

of either A. urinae or UPEC present.  

To detect invading A. urinae or UPEC cells, each well was washed three times with 1X 

PBS at 2 hours post infection. Then, each well was treated with 1.0 mL of DMEM+5%FBS 

supplemented with the antibiotics Penicillin and Streptomycin [Pen/Strep (10,000 Units/mL of 

Penicillin and 10,000ug/mL of Streptomycin)] (Hyclone) for 1 hour. After the hour with 

antibiotic treatment, HUCs were washed three times with 1X PBS and then treated for 5 minutes 

with 500 uL of Triton-X 100 (Sigma Aldrich). The 500 uL of Triton-X 100 treated HUCs were 

serially diluted and plated to determine CFU of either A. urinae or UPEC present. 

Cytotoxicity Assay  

To test the cytotoxicity of A. urinae cells to HUCs, I stained the HUCs with a trypan-blue 

staining protocol. To prepare the A. urinae cells, I grew the A. urinae in BHIB for 48 hours and 

then standardized the 48-hour culture to an optical OD of 1.0 at 600 nm and then re-suspended in 

DMEM+5% FBS. To prepare the HUCs, the day before infection, HUCs were counted with a 

hemocytometer and then diluted to 1x105 cells/mL in TE medium. Next, 1 mL aliquots of 

urothelial cells were placed into a 24-well tissue culture treated plate and incubated overnight at 
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37°C in 5% CO2 to allow the cells to adhere to the well. HUCs were treated with A. urinae cells 

in various conditions: A. urinae cells in normal conditions, in diluted conditions, in conditions 

with antibiotic, heat-killed and cell-free spent culture supernatant (CF-SCS). Here is a 

description on how each A. urinae condition was prepared: 

-For the A. urinae cells in normal conditions, A. urinae cells were re-suspended in 

DMEM+5% FBS.  

-For the A. urinae cells in diluted conditions, A. urinae cells were re-suspended in 

DMEM+5% FBS. 1:10 dilutions serial dilutions of the A. urinae cells were performed 

down to a dilution of around 103 A. urinae cells. 

-For A. urinae cells treated with antibiotic, A. urinae cells were re-suspended in 

DMEM+5% FBS+1% Penicillin-Streptomycin. These cells sat in the media with 

antibiotic for 1 hour prior to treatment of HUCs.  

-For heat-killed A. urinae cells, A. urinae cells were re-suspended in 1X PBS and placed 

in a 65° heat bath for 1 hour. After the heat bath, the cells were spun down at 13,500 rpm 

for 5 minutes and then re-suspended in DMEM+5% FBS.  

-To prepare the CF-SCS from A. urinae cells, A. urinae was grown up in DMEM+5% 

FBS for 48 hours. The A. urinae cells were spun down at 13,500 rpm for 5 min and then 

the supernatant was filter-sterilized with a 0.2 µm filter.  

The HUCs at 105 cells/well were treated with the groups of A. urinae described above. After 

various time points of treatment, the percent viability of the urothelial cells was measured with 

Trypan Blue (Lonza) staining for dead cells. 
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Cytokine Bead Array 

 To measure the cytokines being produced by HUCs in response to treatment with A. 

urinae, I used a cytokine bead array and flow cytometry. To prepare the A. urinae cells, I grew 

the A. urinae in BHIB for 48 hours, standardized the 48-hour culture to an optical OD of 1.0 at 

600 nm, and then re-suspended in DMEM+5% FBS. To prepare the HUCs, the day before 

infection, HUCs were counted with a hemocytometer and then diluted to 1x105 cells/mL in TE 

medium. Next, 1 mL aliquots of urothelial cells were placed into a 24-well tissue culture treated 

plate and incubated overnight at 37°C in 5% CO2 to allow the cells to adhere to the well. HUCs 

were treated with A. urinae cells re-suspended in DMEM+5% FBS. At various time points of 

treatment, the 1.0 mL supernatant was removed and then sterilized with a 0.2 μm filter. This 

filtered supernatant was used to measure the cytokine production with the Cytokine Bead Array 

(CBA) Human Inflammatory Cytokine Kit (BD Biosciences; San Jose, CA). 

 To perform the CBA with the supernatant samples, a master mix of beads was prepared 

first to have an aliquot 10 ul of the master mix per sample. For each sample tested, 1 μl of each 

bead and 1 μl of each detection reagent was added to the master mix. Standards were provided in 

the CBA Human Inflammatory Cytokine Kit and prepared in the Assay Diluent from the kit. 

These standards are also included in the calculation for preparation of the master mix.  

Next, 5 μL of each sample was mixed with 10 μL of the master mix in a 96-well V-

bottom plate (Corning). The plate was placed in the Eppendorf Thermomixer at 25°C shaking at 

600 rpm for 2 to 2½ hours. After the incubation period, 185 μL of the Fluorescence-Activated 

Cell Sorting (FACS) wash buffer was added to each well with sample. The plate was placed in 

the Thermo Scientific Sorvall Legend XTR centrifuge and spun down at 2000 rpm at 4°C for 6 



 
 

   
 

60 

minutes. After spinning, the supernatant was removed and the pellet was resuspended in 200 μL 

of FACS buffer and then transferred to microdilution tubes for analysis via flow cytometry on 

the FACSCanto Flow Cytometer.  Data from the FACSCanto Flow Cytometer were analyzed on 

FlowJo (www.flowjo.com).  

Measurement of TLR Expression 

To measure the expression of TLRs on the surface of HUCs in response to treatment with 

A. urinae, I used flow cytometry. A. urinae cells and HUCs were prepared as described above. 

HUCs were treated with A. urinae cells re-suspended the in DMEM+5% FBS. After various time 

points of treatment, HUCs were washed three times with 1X PBS and then detached from the 

well using 0.05% Trypsin-EDTA. The HUCs were then stained for 30 minutes antibodies 

conjugated to fluoroflores to detect the receptors on the HUC cell surface (Table 9). The stained 

HUCs were brought for analysis via flow cytometry on the LSR Fortessa. Data from the LSR 

Fortessa were analyzed on FlowJo (www.flowjo.com). 

 
Table 10. List of Antibodies and Measured HUC Receptors 
 

HUC Receptor Conjugated Fluorofore Company 
TLR-1 FITC ThermoFisher 
TLR-2 PerCP R&D Systems 
TLR-4 PEcy7 eBioscience 
TLR-6 PE ThermoFisher 
CD14 APC Invitrogen 

Human Leukocyte Antigen-DR 
Isotype  

(HLA-DR) 
Brilliant Violet 421 BioLegend 

 

 

http://www.flowjo.com/
http://www.flowjo.com/
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Statistical Analyses 

Statistical analyses were performed using R software version 2.15.1 (R Development 

Core Team, 2014). For continuous variables, Student’s t-tests were applied. For categorical 

variables, Pearson chi-square and Fisher’s exact tests were performed. Results were considered 

significant when the p-value was less than 0.05. 
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CHAPTER THREE 

EXPERIMENTAL RESULTS 

Description of Aerococcus urinae Clinical Isolates 

 In this document, I have characterized a total of 240 isolates of Aerococcus urinae 

isolated from 222 samples obtained from various areas of the genitourinary tract (Table 11). In 

brief, 98 samples were transurethral catheter urines, 68 were midstream voided samples, 33 were 

vaginal swabs, 25 were perineal swabs, 1 sample was taken from the upper urinary tract near the 

kidney, 1 sample was a foreskin swab and 1 sample was a urethral swab (Table 11).  

Only four A. urinae isolates were taken from three separate asymptomatic control 

patients while the remaining 236 A. urinae isolates were from patients experiencing some sort of 

lower urinary tract disorder (Table 11). The majority of the samples came from patients that 

were diagnosed with UUI (N=111). Twenty-eight samples were from patients diagnosed with 

OAB. Twenty-two samples were from patients with diabetes seeking care for some sort of 

incontinence. Eleven samples were from patients with a UTI. Fourteen samples were from 

patients undergoing surgery for Benign Prostate Hyperplasia (BPH). Four samples were from 

control patients in the BPH study; these patients were undergoing urologic surgery but did not 

have BPH. Five samples were from patients with Stress Urinary Incontinence (SUI) and another 

five were from patients with IC/PBS. We had one sample from a patient with a kidney stone. 

Fifteen samples were from patients seeking clinical care at the urogynecology office, 



 
 

 
 

63 

but had no official diagnosis reported (Table 11). 

In all of the patient samples, A. urinae was never isolated in pure culture. The median 

number of isolates in a sample from which A. urinae was isolated was 8 (2-27). There was a 

statistically higher number of isolates present in non-urine cultures than urine cultures [11 vs. 8 

(2-24), p=3.76e-8].   

There was a difference in the relative amount of A. urinae present in cultures from the 

samples. The average percentage of A. urinae in all the samples was 12.2% (±20.5%). There was 

a larger average percentage of A. urinae isolates in urine samples compared to non-urine samples 

[13.7% (±23.0%) vs. 8.4% (±10.8%), p=0.09).     

There was a range of urine characteristics for the 160 samples from which A. urinae 

isolates were isolated (Table 11). Only 129 of the 160 urine samples had a complete 

characteristic profile of the urine that includes color, turbidity and pH, but the majority of these 

urines were yellow (86.0%, N=111/129) and clear (82.2%, N=106/129). The urine pH ranged 

from values of 4.0-7.0, but the majority of the urine samples fell in the smaller pH range of 5.0-

6.0 (79.8%, N=103/129). 

We see no correlation between a patient’s lower urinary tract symptoms and the amount 

of A. urinae present in the urine culture. We also see no correlation between any of the clinical 

markers mentioned above (color, turbidity and pH) and the amount of A. urinae cultured. These 

data suggest there is no clinical marker we can use to distinguish between non-infectious and 

infectious A. urinae. In addition, we cannot claim that A. urinae is non-infectious because we 

have only isolated it from three asymptomatic control patients. However, there may be a way to 

determine whether to treat A. urinae found in the bladder based on different in vitro phenotypes.
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Table 11. Description of Clinical Isolates of A. urinae 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

71 Transurethral 
Catheter 4 week OAB Yellow Clear 7 4 110110 90.82 

80 Transurethral 
Catheter Baseline OAB Yellow Clear 5 5 21120 0.28 

88 Transurethral 
Catheter Baseline OAB Light 

Yellow Cloudy 5 6 960 15.63 

126 Transurethral 
Catheter 4 week OAB Yellow Clear 5 5 1630 4.91 

166 Transurethral 
Catheter 4 week OAB Yellow Clear 6 3 1510 66.23 

168 Transurethral 
Catheter 4 week OAB Yellow Clear 5 6 660 22.73 

197 Transurethral 
Catheter 12 week OAB Light 

Yellow Clear 7 2 100010 99.99 

232 Transurethral 
Catheter 12 week OAB Yellow Clear 5 6 2085 0.96 

239 Transurethral 
Catheter Baseline OAB Yellow Clear 5 15 3360 1.49 

260 Transurethral 
Catheter 12 week OAB Yellow Clear 5 4 675 1.48 

263 Transurethral 
Catheter 12 week OAB Yellow Clear 5 3 10040 0.20 

267 Transurethral 
Catheter Baseline OAB Yellow Clear 6 7 110 27.27 

274 Transurethral 
Catheter Baseline OAB Orange Clear 6 9 550 1.82 

337 Transurethral 
Catheter Baseline OAB Yellow Clear 4.5 13 210 4.76 

350 Transurethral 
Catheter Baseline OAB Light 

Yellow Clear 7 5 60 16.67 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

372 Transurethral 
Catheter 4 week OAB Light 

Yellow Clear 4.5 7 90 11.11 

397 Transurethral 
Catheter 4 week OAB Yellow Clear 5.5 8 210 4.76 

401 Transurethral 
Catheter 4 week OAB Orange Clear 6 27 133660 74.82 

441 Transurethral 
Catheter Baseline OAB Light 

Yellow Clear 4 7 2280 0.44 

461 Transurethral 
Catheter 12 week OAB Yellow Clear 5 10 22860 10.94 

487 Transurethral 
Catheter 12 week OAB Yellow Clear 5 12 11000 0.27 

509 Transurethral 
Catheter Baseline OAB Light 

Yellow Cloudy 6 11 1710 4.68 

526 Transurethral 
Catheter Baseline OAB Yellow Cloudy 5 5 101580 0.03 

532 Transurethral 
Catheter 12 week OAB Yellow Clear 4.5 9 20380 0.10 

553 Transurethral 
Catheter Baseline SUI Yellow Clear 4 4 1530 0.65 

574 Transurethral 
Catheter Baseline UUI Yellow Clear 5 11 1540 1.30 

606 Transurethral 
Catheter Baseline SUI Yellow Clear 4.5 2 30 33.33 

617 Transurethral 
Catheter Baseline UUI Yellow Clear 7.5 5 120 8.33 

621 Transurethral 
Catheter Baseline SUI Yellow Clear N/A 5 2400 25.00 

637 Transurethral 
Catheter Baseline OAB Yellow Clear 6 24 9910 10.09 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

689 Transurethral 
Catheter 12 week OAB Light 

Yellow Clear 7 2 100010 99.99 

690 Transurethral 
Catheter 12 week OAB Light 

Yellow Clear 7 2 100010 99.99 

722 Transurethral 
Catheter Baseline Control Yellow Clear  8 380 2.63 

757 Transurethral 
Catheter 4 week OAB Yellow Clear 5.5 8 210 4.76 

864 Transurethral 
Catheter Baseline UUI N/A N/A N/A 9 1240 0.81 

970 Transurethral 
Catheter Baseline SUI Light 

Yellow Clear 6 6 10080 0.40 

1016 Transurethral 
Catheter Baseline SUI Yellow Clear 6 4 160 6.25 

1111 Transurethral 
Catheter Baseline UTI N/A N/A N/A 5 53530 1.87 

1129 Vaginal Swab End-of-
Treatment IC/PBSA N/A N/A N/A 6 460000 21.74 

1198 Transurethral 
Catheter Baseline UTI N/A N/A N/A 7 211120 0.47 

1226 Transurethral 
Catheter Baseline UTI N/A N/A N/A 8 111750 8.95 

1233 Transurethral 
Catheter Baseline UTI N/A N/A N/A 8 111750 8.95 

1236 Midstream 
Voided 12 week IC/PBSA Yellow Clear 5 10 103500 0.10 

1393 Midstream 
Voided Visit 2 Diabetic N/A N/A N/A 13 1300 7.69 

1445 Midstream 
Voided Visit 2 Diabetic N/A N/A N/A 11 500000 6.00 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

1514 Midstream 
Voided Baseline Diabetic Yellow Clear 5.5 13 89000 1.12 

1552 Midstream 
Voided Visit 2 Diabetic Yellow Cloudy 5.5 15 476000 1.05 

1603 Midstream 
Voided Visit 1 Diabetic Yellow Clear 6 N/A N/A N/A 

1633 Midstream 
Voided Visit 2 Diabetic Yellow Clear 6 7 33100 15.11 

1702 Midstream 
Voided Baseline Diabetic Yellow Clear 5.5 10 18400 5.43 

1728, 1734, 
1736, 1741 

Transurethral 
Catheter Baseline UUI Yellow Clear 6 8 1600 0.94 

1743, 1753 Vaginal Swab Baseline UUI N/A N/A N/A 13 350575 1.85 
1782, 1783 Vaginal Swab Baseline UUI N/A N/A N/A 11 471750 1.59 
1796, 1800 Perineal Swab Baseline UUI N/A N/A N/A 10 592600 0.86 

1812 Midstream 
Voided Baseline UUI Yellow Clear 7 7 36300 0.28 

1815, 1819 Vaginal Swab Baseline UUI N/A N/A N/A 11 471750 1.59 

1838 Midstream 
Voided Visit 2 Diabetic Yellow Clear 6 5 46300 10.80 

1884 Perineal Swab Baseline UUI N/A N/A N/A 8 27150 18.42 

1898 Transurethral 
Catheter Baseline UUI Yellow Cloudy 5.5 2 20000 50.00 

1899 Vaginal Swab Baseline UUI N/A N/A N/A 10 50066 18.58 
1905, 1907 Vaginal Swab Baseline UUI N/A N/A N/A 8 104953 10.80 

1910 Vaginal Swab Baseline UUI N/A N/A N/A 8 104953 10.80 
1933 Perineal Swab Baseline UUI N/A N/A N/A 12 287949 0.35 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

1940 Transurethral 
Catheter Baseline UUI Yellow Clear 6 4 65 30.77 

1942, 1946 Midstream 
Voided Baseline UUI Yellow Clear 6 13 66533 10.27 

1943 Vaginal Swab Baseline UUI N/A N/A N/A 9 59050 8.47 

1974 Midstream 
Voided Visit 2 Diabetic Yellow Cloudy N/A 14 135900 3.68 

2043 Midstream 
Voided Visit 3 Diabetic Yellow Clear 5.5 9 8400 15.48 

2126 Transurethral 
Catheter Baseline UUI Yellow Clear 5.5 10 380 6.58 

2140 Transurethral 
Catheter Baseline Unknown Yellow Clear 6 8 71330 0.70 

2159 Transurethral 
Catheter Baseline Unknown Yellow Clear 6 10 660 1.52 

2203 Transurethral 
Catheter Baseline Unknown Yellow Clear 6 5 101110 0.03 

2295 Midstream 
Voided Baseline BPH Yellow Clear 6 4 1070 0.93 

2284, 2324 Vaginal Swab Baseline UUI N/A N/A N/A N/A N/A N/A 

2325 Transurethral 
Catheter Baseline UUI Yellow Cloudy 6 N/A N/A N/A 

2353, 2354 Transurethral 
Catheter Baseline UUI N/A N/A N/A 6 16797 0.30 

2364, 2367 Vaginal Swab Baseline UUI N/A N/A N/A 8 134075 3.92 
2378, 2382 Perineal Swab Baseline UUI N/A N/A N/A 8 130900 1.15 

2387, 2390 Transurethral 
Catheter Baseline UUI Yellow Clear 5 6 122 22.13 

2412 Vaginal Swab Baseline UUI N/A N/A N/A 14 299841 0.33 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 
2415, 2419 Perineal Swab Baseline UUI N/A N/A N/A 8 223250 45.35 

2430 Transurethral 
Catheter Baseline Unknown Yellow Clear 5.5 5 420 2.38 

2439 Vaginal Swab Baseline UUI N/A N/A N/A 14 299841 0.33 

2469 Transurethral 
Catheter Baseline Unknown Yellow Clear 5 6 4230 0.95 

2491 Midstream 
Voided Visit 1 Diabetic Yellow Clear 6 9 130500 7.66 

2508, 2515 Vaginal Swab Baseline UUI N/A N/A N/A 13 457033 0.29 
2519 Perineal Swab Baseline UUI N/A N/A N/A 16 408450 0.49 

2535 Midstream 
Voided Baseline UUI Yellow Clear 7.5 10 128017 1.30 

2561 Midstream 
Voided Visit 2 Diabetic Yellow Cloudy 5.5 5 80500 12.42 

2762, 2788 Vaginal Swab Baseline UUI N/A N/A N/A 10 245517 3.60 

2778 Midstream 
Voided Baseline UUI Yellow Cloudy 5.5 10 174700 14.37 

2804 Midstream 
Voided 

 BPH Yellow Clear 7 3 13360 74.85 

2879 Transurethral 
Catheter 8 week UUI Yellow Clear 5.5 4 210 19.05 

2885 Transurethral 
Catheter Baseline UUI Yellow Clear 5 4 85 11.76 

2893, 2898 Vaginal Swab 12 week UUI N/A N/A N/A 10 207433 1.54 
2903 Perineal Swab 12 week UUI N/A N/A N/A 11 152133 1.66 

2941 Midstream 
Voided Baseline UUI Yellow Cloudy 5.5 10 105683 0.19 

2970 Vaginal Swab 12 week UUI N/A N/A N/A 10 32750 13.74 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 
2982 Perineal Swab 12 week UUI N/A N/A N/A 17 476500 0.52 

3003 Midstream 
Voided 12 week UUI Yellow Clear 6 14 462017 21.86 

3020 Midstream 
Voided Baseline UUI Yellow Clear 5 14 212533 0.05 

3025 Vaginal Swab Baseline UUI N/A N/A N/A 12 232483 43.10 
3040 Perineal Swab Baseline UUI N/A N/A N/A 18 138950 0.22 
3121 Vaginal Swab 12 week UUI N/A N/A N/A 9 455517 24.15 

3130, 3132 Perineal Swab 12 week UUI N/A N/A N/A 10 25134 19.36 

3153 Midstream 
Voided 12 week UUI Yellow Cloudy 5.5 6 215800 46.34 

3221 Transurethral 
Catheter 8 week UUI Yellow Cloudy 5 18 251255 0.01 

3237 Transurethral 
Catheter 4 week UUI Yellow Clear 5.5 18 1805 0.83 

3302 Transurethral 
Catheter Baseline UUI Yellow Clear 6 12 10438 0.10 

3323 Perineal Swab Baseline UUI N/A N/A N/A 13 709133 7.12 

3333 Midstream 
Voided Baseline UUI Yellow Clear 5.5 12 471900 0.92 

3342 Midstream 
Voided Visit 2 Diabetic Yellow Cloudy 5.5 3 1700 29.41 

3403 Midstream 
Voided Baseline UTI Yellow Cloudy 5 4 400 25.00 

3419 Midstream 
Voided Visit 3 Diabetic Yellow Clear 6 10 157300 0.64 

3440 Transurethral 
Catheter Baseline UUI Yellow Clear 7.5 8 995 1.51 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

3592 Midstream 
Voided Visit 3 Diabetic Yellow Cloudy 5.5 9 205100 0.34 

3638 Midstream 
Voided Visit 4 Diabetic Yellow Clear 6 9 126200 0.32 

3669 Transurethral 
Catheter 12 week UUI N/A N/A N/A 3 200110 0.00 

3673 Vaginal Swab 12 week UUI N/A N/A N/A 5 360100 16.66 
3680 Perineal Swab 12 week UUI N/A N/A N/A 6 460200 21.73 

3684 Midstream 
Voided 12 week UUI N/A N/A N/A 5 420100 16.66 

3723 Transurethral 
Catheter Baseline Unknown Yellow Clear N/A 4 101040 0.01 

3869 Transurethral 
Catheter 8 week UUI Yellow Clear 6 6 600 1.67 

4025 Transurethral 
Catheter 8 week UUI N/A N/A 5 13 13760 0.29 

4041 Midstream 
Voided 60 Day BPH Yellow Cloudy 6 7 5688 33.40 

4089 Perineal Swab 12 week UUI N/A N/A N/A 15 190366 3.15 

4114 Transurethral 
Catheter Baseline UUI Yellow Clear 5 9 7615 1.18 

4130 Transurethral 
Catheter 4 week UUI N/A N/A 5 9 23355 1.71 

4239 Midstream 
Voided 90 day BPH Yellow Clear 5.5 8 1521 0.66 

4271 Perineal Swab Baseline UUI N/A N/A N/A 15 90483 0.11 

4427 Midstream 
Voided Pre-op BPH N/A N/A N/A 7 2465 10.14 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

4568 Midstream 
Voided Visit 4 Diabetic Yellow Clear 5.5 6 185000 5.41 

4576 Transurethral 
Catheter 12 week UUI Yellow Clear 6 5 190 7.89 

4583 Transurethral 
Catheter 4 week UUI Orange Clear 7 13 43365 2.31 

4604 Transurethral 
Catheter Baseline Unknown Yellow Clear 5 7 690 1.45 

4704 Midstream 
Voided 90 day BPH Yellow Cloudy 5 7 3463 17.33 

4761 Midstream 
Voided Pre-op BPH Yellow Clear 5 5 150 6.67 

4867 Perineal Swab Baseline UUI N/A N/A N/A 20 355000 0.56 
4870 Vaginal Swab Baseline UUI N/A N/A N/A 19 286950 0.07 

4882 Transurethral 
Catheter Baseline UUI Yellow Clear 5 8 206 14.56 

4893 Vaginal Swab Baseline UUI N/A N/A N/A 12 321450 1.35 
4904 Perineal Swab Baseline UUI N/A N/A N/A 8 703500 14.21 

4909 Midstream 
Voided Baseline UUI Yellow Clear 5 11 261233 2.04 

5025 Vaginal Swab 12 week UUI N/A N/A N/A 13 167950 1.64 
5035 Perineal Swab 12 week UUI N/A N/A N/A 16 143499 0.23 

5042, 5090 Midstream 
Voided 12 week UUI Yellow Clear N/A 17 238850 0.49 

5098 Vaginal Swab Baseline UUI N/A N/A N/A 17 450733 0.03 

5258 Transurethral 
Catheter 12 week UUI Yellow Clear 5.5 7 4215 0.83 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

5266 Transurethral 
Catheter 12 week UUI Yellow Clear 5.5 6 2627 1.33 

5293 Transurethral 
Catheter Baseline Unknown N/A N/A N/A 7 90 33.33 

5311 Midstream 
Voided 90 DAY BPH Yellow Clear 5.5 9 16337 0.37 

5417 Midstream 
Voided Visit 3 Diabetic Yellow Cloudy 5.5 5 195000 2.56 

5440 Transurethral 
Catheter Baseline UUI N/A N/A N/A 8 419 15.27 

5445 Vaginal Swab Baseline UUI N/A N/A N/A 9 319566 12.00 
5455 Perineal Swab Baseline UUI N/A N/A N/A 11 362450 1.86 

5467 Midstream 
Voided Pre-op BPH_Control Orange Clear 5.5 10 4716 0.64 

5548 Midstream 
Voided 90 day BPH Yellow Clear 5 5 462 3.25 

5567 Midstream 
Voided Pre-op BPH_Control Yellow Clear 5.5 9 1062 3.77 

5582 Transurethral 
Catheter 8 week UUI Yellow Clear 5.5 6 22430 0.85 

5628 Transurethral 
Catheter Return 1 UTI Yellow Clear 5.5 2 50 20.00 

5682 Vaginal Swab Baseline UUI N/A N/A N/A 13 1016100 0.01 

5702 Transurethral 
Catheter Baseline Unknown N/A N/A N/A 3 80 12.50 

5710 Transurethral 
Catheter Baseline Unknown Yellow Clear 5 4 12500 4.00 

5776 Midstream 
Voided Visit 2 Diabetic Yellow Cloudy N/A 5 18200 0.55 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

5792 Transurethral 
Catheter Baseline UUI Yellow Clear 5.5 4 70 42.86 

5842 Midstream 
Voided Pre-op BPH Yellow Clear 5 12 3243 9.25 

5863 Transurethral 
Catheter Baseline Unknown Yellow Clear 5 5 790 1.27 

5903 Perineal Swab Baseline UUI N/A N/A N/A 8 280500 17.83 

5938 Midstream 
Voided Baseline UUI Yellow Clear 4.5 4 64000 1.56 

5956 Vaginal Swab Baseline UUI N/A N/A N/A 9 336500 0.33 

5973 Transurethral 
Catheter 4 week UUI Yellow Clear 5.5 5 409200 0.0024 

5975 Midstream 
Voided 30 day BPH Yellow Clear 5 10 780 2.56 

5980 Midstream 
Voided Pre-op BPH_Control Yellow Clear 5.5 10 1090 20.64 

6039 Vaginal Swab Baseline UUI N/A N/A N/A 10 33017 15.45 
6088 Perineal Swab 12 week UUI N/A N/A N/A 8 812000 14.78 

6151 Upper Urinary 
Tract Baseline Kidney Stone N/A N/A N/A 2 90 88.89 

6163 Vaginal Swab 12 week UUI N/A N/A N/A 8 131600 0.23 

6195 Transurethral 
Catheter Baseline Unknown Yellow Clear 6 2 20000 50.00 

6232 Transurethral 
Catheter Baseline Unknown Yellow Clear 5.5 9 31610 0.92 

6249 Midstream 
Voided Pre-op BPH Yellow Clear 5 11 1360 4.04 

6289 Midstream 
Voided 12 week IC/PBSA Yellow Clear 5 9 82300 0.49 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 
6296 Vaginal Swab 12 week IC/PBSA N/A N/A N/A 11 128000 0.08 

6306 Midstream 
Voided Visit 2 Diabetic Yellow Cloudy 5.5 6 73600 3.40 

6444 Midstream 
Voided 60 day BPH Yellow Cloudy 5.5 8 2255 0.67 

6497 Transurethral 
Catheter Baseline Control N/A N/A N/A 2 20 50.00 

6509 Midstream 
Voided 12 week UUI Yellow Clear 5.5 8 375000 0.53 

6511 Perineal Swab 12 week UUI N/A N/A N/A 10 356833 1.12 

6587 Midstream 
Voided 30 day BPH_Control Yellow Clear 6 14 42610 23.47 

6625 Transurethral 
Catheter Baseline Unknown Yellow Clear 7 11 620 8.06 

6782 Transurethral 
Catheter Baseline Unknown N/A N/A 5.5 2 10090 0.89 

6852 Transurethral 
Catheter Baseline UUI Yellow Clear 7.5 9 565 1.77 

6872 Perineal Swab Baseline UUI N/A N/A N/A 9 717833 0.14 
6965 Perineal Swab Baseline UUI N/A N/A N/A 9 325667 3.38 

7049 Transurethral 
Catheter Baseline UUI Light 

Yellow Clear 5 7 140 7.14 

7058 Midstream 
Voided Visit 2 Diabetic Light 

Yellow Cloudy 4.5 7 187600 26.65 

7137 Vaginal Swab Baseline UUI N/A N/A N/A 9 271150 0.63 

7144 Midstream 
Voided Baseline UUI N/A N/A N/A 8 237667 0.29 

7153 Perineal Swab Baseline UUI Yellow Clear 6 9 123833 1.62 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

7228 Transurethral 
Catheter Baseline UUI N/A N/A N/A 7 3767500 26.54 

7235 Vaginal Swab Baseline UUI Yellow Clear 7.5 9 174 8.05 
7245 Perineal Swab Baseline UUI N/A N/A N/A 10 128500 7.78 

7248 Midstream 
Voided Baseline UUI N/A N/A N/A 4 2040000 0.98 

7288 Vaginal Swab Baseline UUI Yellow Clear 8.5 8 262666 19.04 

7363 Midstream 
Voided Visit 4 Diabetic N/A N/A N/A 11 70983 1.06 

7377 Midstream 
Voided Pre-op BPH Yellow Clear 6 7 960 7.81 

7382 Transurethral 
Catheter Baseline UUI Yellow Cloudy 4.5 9 2042 1.47 

7395 Vaginal Swab Baseline UUI N/A N/A N/A 9 53333 18.75 

7412 Transurethral 
Catheter 4 week UUI Yellow Clear 5.5 9 565 1.77 

7480 Transurethral 
Catheter Baseline UUI Yellow Clear 6 3 1545 7.77 

7535 Transurethral 
Catheter 4 week UUI Yellow Clear 7 5 176845 99.15 

7574 Transurethral 
Catheter 8 week UUI Yellow Clear 5 5 670240 0.01 

7783 Transurethral 
Catheter Baseline UTI Yellow Clear 5.5 2 20 50.00 

7835 Transurethral 
Catheter Baseline UTI N/A N/A 6.5 6 13800 5.07 

7838 Transurethral 
Catheter Baseline IC/PBSA N/A N/A N/A 2 20 50.00 
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Table 11. Description of Clinical Isolates of A. urinae (continued) 
 

UMB Number Sample Type Timepoint Diseasea Color of 
Urine 

Turbidity 
of Urine pH Number of 

Isolates in Urine 
Total CFU 

of Urine 
Percentage of 

A. urinae Present 

7968 Midstream 
Voided Return 1 UTI N/A N/A N/A 6 110530 90.47 

8048 Transurethral 
Catheter Baseline UUI Dark 

Yellow Cloudy 5 5 4035 1.36 

8052 Midstream 
Voided Baseline UTI Yellow Clear 7 5 3230 4.64 

8065 Transurethral 
Catheter Baseline UTI N/A N/A 7 3 106000 0.94 

8082 Urethral Swab Baseline Unknown N/A N/A N/A 6 5425 36.87 
8096 Foreskin Swab Baseline Unknown N/A N/A N/A 6 4300 11.63 

N/A=Not available 
a UUI, Urgency urinary incontinence; OAB, overactive bladder; UTI, urinary tract infection; SUI, stress urinary incontinence; BPH, 
Benign Prostate Hyperplasia; IC/PBSA, Interstitial Cystitis/Painful Bladder Syndrome 

 



 
 

 
 

78 

Growth Characteristics of A. urinae in vitro 

 A. urinae is a facultative anaerobic organism. It requires an atmosphere enriched with 

CO2 and 48 hours to get robust colony growth (Figure 3B, above in Literature Review). A 

representative growth curve for A. urinae in TSB is shown in Figure 6. When inoculated into a 

broth culture, A. urinae has an extended lag phase lasting around 4 hours and an exponential 

phase from around 4 hours to 16 hours. A. urinae reaches stationary phase around 16 hours. 

 

 

 

Figure 6. Representative Growth Curve of Aerococcus urinae. This is a representative growth 
curve of A. urinae grown in TSB. A. urinae (UMB0080) was inoculated at a starting OD of 0.05. 
OD was measured every 2 hours for the first 16 hours of growth and then every 8 hours after 
that. The red line shows the growth curve with the average optical density for three biological 
replicates of A. urinae UMB0080. 
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A. urinae can exhibit at least three unique in vitro phenotypes that could be relevant to 

urothelial cell interaction (Figure 7). The first is a ‘flocking’ phenotype observed when A. urinae 

cells are grown in TSB or BHIB (Figure 7A). The second is a ‘hockey puck’ phenotype 

observed when the cells are grown on BHI+Glu (Figure 7B). Finally, the ‘pigmentation’ 

phenotype occurs when cells are grown on BHI+CR+Glu (Figure 7C). 

 

 
 
Figure 7. in vitro Phenotypes of A. urinae. A. ‘Flocking’ Phenotype. A. urinae (strain 
UMB0080) forms aggregates in a liquid culture when grown statically in TSB or BHI for 48 hrs 
in 5% CO2 atmospheric conditions. A. urinae cells gather at the bottom of the tube but, once the 
tube is disturbed by flicking, the ability of A. urinae cells to form aggregates becomes apparent. 
B. ‘Hockey Puck’ Phenotype. When A. urinae is grown on BHI+Glu (or TSA+Glu (not 
shown)) agar plates for 48 hrs in 5% CO2 atmospheric conditions (strain UMB0080), the 
resultant colonies maintain their shape when pushed across the agar surface (indicated by the 
black arrow). C. ‘Pigmentation’ Phenotype. A. urinae (strain UMB0080) forms black colonies 
when grown on BHI+Congo Red (CR)+Glu agar plates for 48 hours in 5% CO2 atmospheric 
conditions.  
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The first two are indicative of the adhesive capacity to form biofilms, whereas the third is 

indicative of a population (quorum)-based behavior. Adhesion and quorum sensing are two 

properties typically associated with interactions with epithelial cells, such as the urothelium. A 

complete characterization of the 240 A. urinae isolates and one A. urinae strain from the 

American Type Culture Collection (ATCC) was performed for all of these phenotypes (Table 

12). A breakdown and further analysis of each phenotype is described in this section. 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes. 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB0071 Positive Red Positive Red Negative Negative Negative Negative Negative Negative 

UMB0080 Positive Black Positive Opaque-Bullseye Small Positive Positive Positive Negative Negative Negative 

UMB0088 Positive Black Positive Opaque-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB0126 Positive Black Positive Opaque-Bullseye Small Positive Positive Positive Positive Negative Negative 

UMB0166 Positive Black Positive Opaque-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB0168 Positive Black Positive Opaque-Bullseye Small Positive Positive Positive Negative Positive Negative 

UMB0197 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB0232 Positive Black Positive Red Small Positive Positive Positive Positive Negative Negative 

UMB0239 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB0260 Positive Black Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB0263 Positive Black Positive Red-Bullseye Small Positive Positive Positive Negative Positive Negative 

UMB0267 Positive Black Positive Red Negative Negative Positive Negative Negative Negative 

UMB0274 Positive Black Positive Red-Bullseye Negative Small Positive Positive Negative Negative Negative 

UMB0337 Positive Black Positive Red Small Positive Positive Hyper 
Positive Negative Hyper 

Positive Negative 

UMB0350 Positive Opaque-Bullseye Positive Red Small Positive Negative Positive Negative Negative Positive 

UMB0372 Positive Black Positive Red-Bullseye Small Positive Positive Positive Negative Positive Negative 

UMB0397 Positive Opaque Positive Red Small Positive Negative Positive Negative Positive Positive 

UMB0401 Positive Black Small Positive Red Small Positive Positive Positive Negative Negative Positive 

UMB0441 Positive Black Positive Red-Small Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB0461 Positive Red Small Positive Red Negative Positive Negative Negative Negative Negative 

UMB0487 Positive Black Positive Opaque-Bullseye Positive Positive Positive Negative Positive Negative 

UMB0509 Positive Black Positive Opaque-Bullseye Small Positive Positive Positive Negative Positive Negative 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB0526 Positive Black Positive Red Small Positive Negative Negative Negative Negative Negative 

UMB0532 Positive Black Positive Red Small Positive Positive Negative Negative Positive Negative 

UMB0553 Positive Black Small Positive Red Negative Positive Positive Negative Positive Positive 

UMB0574 Positive Black Positive Red-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB0606 Positive Red Small Positive Red Negative Negative Negative Negative Negative Negative 

UMB0617 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Positive 

UMB0621 Positive Black Positive Red-Bullseye Negative Negative Negative Positive Negative Positive 

UMB0637 Positive Opaque-Bullseye Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB0689 Positive Opaque-Bullseye Positive Red Small Positive Positive Positive Negative Positive Positive 

UMB0690 Positive Red-Bullseye Positive Red Negative Negative Negative Negative Negative Negative 

UMB0722 Positive Negative Negative Negative Negative Negative Negative Negative Negative Negative 

UMB0757 Positive Black Positive Red Small Positive Negative Negative Negative Negative Negative 

UMB0864 Positive Negative Negative Negative Negative Negative Hyper 
Positive Negative Hyper 

Positive Negative 

UMB0970 Positive Red Negative Red Negative Positive Positive Negative Positive Negative 

UMB1016 Positive Black Positive Black Small Positive Positive Negative Negative Negative Negative 

UMB1111 Positive Black Positive Red Negative Positive Positive Negative Positive Positive 

UMB1129 Positive Black Positive Red Small Positive Negative Negative Negative Negative Negative 

UMB1198 Positive Black Positive Black Positive Positive Negative Negative Negative Negative 

UMB1226 Positive Opaque-Bullseye Positive Red Small Positive Positive Positive Negative Positive Negative 

UMB1233 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB1236 Positive Black Positive Opaque Negative Positive Positive Positive Negative Negative 

UMB1393 Positive Black Positive Opaque Negative Positive Positive Positive Negative Positive 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB1445 Positive Black Small Positive Red Small Positive Positive Positive Positive Positive Positive 

UMB1514 Positive Red Negative Black Negative Negative Negative Negative Negative Negative 

UMB1552 Positive Opaque Positive Red Positive Positive Negative Negative Negative Positive 

UMB1603 Positive Opaque Positive Red Negative Negative Negative Negative Negative Negative 

UMB1633 Positive Opaque-Density Positive Red Negative Positive Negative Positive Negative Positive 

UMB1702 Positive Black (Smooth) Positive Red Negative Positive Positive Negative Positive Positive 

UMB1728 Positive Black Positive Red Small Positive Positive Hyper 
Positive Negative Hyper 

Positive Positive 

UMB1734 Positive Black Positive Red-Bullseye Small Positive Positive Positive Positive Positive Positive 

UMB1736 Positive Black Positive Red Negative Positive Hyper 
Positive Negative Hyper 

Positive Negative 

UMB1741 Positive Black Positive Red Negative Positive Hyper 
Positive Negative Hyper 

Positive Negative 

UMB1743 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB1753 Positive Black Positive Red Negative Positive Positive Positive Positive Positive 

UMB1782 Positive Black Positive Red Small Positive Positive Positive Positive Positive Positive 

UMB1783 Positive Black Positive Black Negative Positive Positive Negative Positive Positive 

UMB1796 Positive Black Positive Black Negative Positive Positive Positive Positive Positive 

UMB1800 Positive Opaque Positive Red with Opaque Density Small Positive Positive Negative Negative Negative Negative 

UMB1812 Positive Black Positive Black Negative Positive Positive Negative Positive Positive 

UMB1815 Positive Black Positive Black Small Positive Positive Positive Negative Positive Negative 

UMB1819 Positive Opaque Positive Red with Opaque Density Small Positive Positive Negative Negative Negative Negative 

UMB1838 Positive Black Positive Red Negative Positive Positive Negative Negative Negative 

UMB1884 Positive Opaque Positive Opaque Small Positive Negative Negative Negative Negative Negative 

UMB1898 Positive Black Positive Red-Bullseye Positive Positive Positive Negative Positive Negative 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB1899 Positive Black Positive Red Small Positive Negative Negative Negative Negative Negative 

UMB1905 Positive Black Positive Opaque Small Positive Negative Negative Negative Positive Small 
Positive 

UMB1907 Positive Black Positive Red Positive Positive Negative Positive Negative Positive 

UMB1910 Positive Black Positive Red-Bullseye Positive Positive Negative Negative Negative Negative 

UMB1933 Positive Black Positive Red Negative Positive Positive Positive Negative Positive 

UMB1940 Positive Black Positive Black-Bullseye Small Positive Positive Positive Negative Negative Positive 

UMB1942 Positive Red Negative Red Negative Negative Positive Negative Negative Positive 

UMB1943 Positive Black Positive Red Negative Negative Negative Negative Negative Negative 

UMB1946 Positive Black Positive Red Negative Positive Positive Positive Positive Positive 

UMB1974 Positive Black Small Positive Black-Red Ring Negative Positive Positive Negative Negative Negative 

UMB2043 Positive Red Positive Red Negative Negative Negative Negative Negative Negative 

UMB2126 Positive Black Positive Black Positive Positive Positive Negative Negative Positive 

UMB2140 Positive Black Positive Black Positive Positive Negative Negative Negative Negative 

UMB2159 Positive Black Positive Black-Bullseye Positive Positive Positive Negative Positive Negative 

UMB2203 Positive Black Positive Black Positive Positive Negative Negative Negative Negative 

UMB2284 Positive Black Small Positive Black Small Positive Positive Positive Negative Positive Positive 

UMB2295 Positive Opaque Positive Opaque Small Positive Positive Negative Positive Negative Positive 

UMB2324 Positive Opaque Positive Opaque Small Positive Positive Positive Positive Positive Negative 

UMB2325 Positive Opaque-Bullseye Positive Red-Bullseye Positive Positive Negative Negative Positive Positive 

UMB2353 Positive Opaque-Bullseye Positive Red Small Positive Negative Negative Negative Negative Positive 

UMB2354 Positive Red-Bullseye Positive Red-Bullseye Positive Positive Negative Negative Negative Negative 

UMB2364 Positive Red Positive Red Small Positive Positive Negative Negative Negative Positive 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB2367 Positive Red Positive Red Small Positive Positive Negative Negative Negative Positive 

UMB2378 Positive Red Positive Red-Bullseye Positive Positive Negative Negative Negative Positive 

UMB2382 Positive Red Positive Red Small Positive Positive Negative Negative Negative Positive 

UMB2387 Positive Red-Bullseye Positive Red-Bullseye Positive Positive Negative Negative Negative Positive 

UMB2390 Positive Opaque Positive Red-Bullseye Positive Positive Negative Negative Negative Negative 

UMB2412 Positive Opaque Positive Red-Bullseye Positive Positive Negative Negative Negative Negative 

UMB2415 Positive Opaque Positive Red-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB2419 Positive Black Positive Red-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB2430 Positive Black Positive Red-Bullseye Positive Negative Negative Negative Negative Positive 

UMB2439 Positive Opaque Positive Red-Bullseye Positive Positive Negative Positive Negative Positive 

UMB2469 Positive Black Positive Black Small Positive Positive Positive Negative Positive Negative 

UMB2491 Positive Opaque Positive Red-Bullseye Positive Positive Positive Positive Positive Hyper 
Positive 

UMB2508 Positive Black Positive Red-Bullseye Positive Positive Positive Positive Positive Positive 

UMB2515 Positive Black Positive Black-Red Ring Positive Positive Negative Positive Negative Negative 

UMB2519 Positive Black Positive Red-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB2535 Positive Black Positive Red-Bullseye Small Positive Positive Negative Positive Negative Negative 

UMB2561 Positive Black Positive Red-Bullseye Small Positive Positive Positive Positive Positive Negative 

UMB2762 Positive Black Positive Red-Bullseye Small Positive Positive Negative Positive Negative Positive 

UMB2778 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB2788 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB2804 Positive Black Small Positive Black Small Positive Positive Positive Positive Positive Positive 

UMB2879 Positive Red with Opaque 
Density Positive Red Negative Negative Negative Positive Negative Positive 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB2885 Positive Opaque-Bullseye Positive Red-Bullseye Small Positive Positive Positive Negative Positive Negative 

UMB2893 Positive Black Positive Black Small Positive Positive Negative Negative Negative Negative 

UMB2898 Positive Opaque Positive Red-Bullseye Small Positive Positive Negative Positive Negative Positive 

UMB2903 Positive Black Positive Black Small Positive Positive Negative Negative Negative Negative 

UMB2941 Positive Opaque Positive Red Positive Negative Negative Negative Negative Positive 

UMB2970 Positive Black Positive Red Positive Positive Negative Negative Negative Negative 

UMB2982 Positive Black Positive Black Negative Negative Positive Negative Positive Negative 

UMB3003 Positive Black Positive Opaque Positive Positive Positive Negative Positive Negative 

UMB3020 Positive Opaque Positive Red Small Positive Negative Negative Negative Negative Negative 

UMB3025 Positive Red Negative Red Negative Negative Negative Negative Negative Positive 

UMB3040 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB3121 Positive Black Positive Red-Bullseye Positive Negative Negative Positive Negative Negative 

UMB3130 Positive Black Positive Red-Bullseye Positive Positive Negative Negative Negative Negative 

UMB3132 Positive Black Positive Red with Black Density Positive Positive Positive Negative Positive Positive 

UMB3153 Positive Black Positive Red-Bullseye Positive Positive Positive Negative Positive Negative 

UMB3221 Positive Black Small Positive Black Small Positive Positive Positive Negative Negative Positive 

UMB3237 Positive Black Positive Black Small Positive Positive Positive Negative Positive Negative 

UMB3302 Positive Red Negative Red Negative Negative Positive Negative Negative Negative 

UMB3323 Positive Red Negative Red Negative Negative Positive Negative Negative Negative 

UMB3333 Positive Red Negative Red Negative Negative Positive Negative Negative Negative 

UMB3342 Positive Opaque Positive Red Small Positive Negative Negative Negative Negative Positive 

UMB3403 Positive Black Positive Red Negative Positive Negative Positive Positive Positive 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB3419 Positive Black Positive Opaque Positive Positive Positive Negative Negative Positive 

UMB3440 Positive Red Positive Red Small Positive Positive Negative Negative Negative Positive 

UMB3592 Positive Black Positive Black Small Positive Negative Positive Negative Positive Positive 

UMB3638 Positive Black Positive Red-Bullseye Small Positive Positive Positive Positive Positive Positive 

UMB3669 Positive Black Positive Black Positive Positive Positive Negative Positive Negative 

UMB3673 Positive Red Negative Red Negative Negative Negative Negative Negative Negative 

UMB3680 Positive Black Positive Red with Density Positive Positive Positive Negative Negative Negative 

UMB3684 Positive Black Positive Red with Density Positive Positive Negative Positive Positive Negative 

UMB3723 Positive Black Positive Red-Bullseye Small Positive Negative Positive Negative Negative Negative 

UMB3869 Positive Black Positive Black Small Positive Negative Positive Negative Positive Negative 

UMB4025 Positive Red Positive Red Positive Positive Negative Negative Negative Positive 

UMB4041 Positive Black Positive Red-Bullseye Negative Positive Hyper 
Positive Negative Negative Positive 

UMB4089 Positive Opaque Positive Red Positive Positive Negative Negative Negative Positive 

UMB4114 Positive Black Positive Red Negative Positive Positive Negative Positive Negative 

UMB4130 Positive Black Positive Red Negative Negative Positive Negative Positive Negative 

UMB4239 Positive Opaque Positive Red Positive Positive Negative Negative Negative Positive 

UMB4271 Positive Red Small Positive Red Small Positive Negative Positive Positive Negative Negative 

UMB4427 Positive Black Positive Black Small Positive Positive Positive Negative Negative Negative 

UMB4568 Positive Opaque Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB4576 Positive Black Positive Red Negative Negative Negative Negative Negative Negative 

UMB4583 Positive Black Positive Red Negative Negative Negative Negative Negative Negative 

UMB4604 Positive Black Positive Red Negative Positive Negative Negative Negative Negative 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB4704 Positive Black Positive Red-Bullseye Small Positive Positive Negative Negative Positive Positive 

UMB4761 Positive Red Small Positive Red Small Positive Negative Negative Negative Negative Negative 

UMB4867 Positive Opaque Positive Red-Bullseye Small Positive Positive Positive Positive Positive Positive 

UMB4870 Positive Opaque Positive Red-Bullseye Positive Positive Positive Positive Positive Positive 

UMB4882 Positive Black-Bullseye Positive Red Negative Positive Negative Negative Negative Negative 

UMB4893 Positive Black Positive Black Positive Negative Positive Positive Positive Negative 

UMB4904 Positive Red Small Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB4909 Positive Opaque Positive Red Negative Positive Negative Negative Negative Negative 

UMB5025 Positive Black Positive Black Positive Negative Positive Negative Positive Small 
Positive 

UMB5035 Positive Black Positive Black Positive Positive Positive Positive Positive Positive 

UMB5042 Positive Opaque Positive Red Positive Negative Negative Negative Negative Negative 

UMB5090 Positive Red Positive Red Small Positive Negative Negative Negative Negative Positive 

UMB5098 Positive Opaque Positive Red-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB5254 Positive Negative Negative Negative Negative Negative Negative Negative Negative Negative 

UMB5258 Positive Black Positive Opaque-Density Negative Positive Positive Negative Positive Negative 

UMB5266 Positive Black Positive Opaque-Density Negative Positive Negative Negative Negative Positive 

UMB5293 Positive Black Positive Red Negative Positive Negative Negative Negative Negative 

UMB5311 Positive Black Positive Red-Bullseye Positive Positive Hyper 
Positive Negative Hyper 

Positive Negative 

UMB5417 Positive Black Positive Red-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB5440 Positive Black-Bullseye Positive Red Negative Positive Positive Negative Positive Negative 

UMB5445 Positive Black Positive Opaque Positive Positive Hyper 
Positive Negative Positive Negative 

UMB5455 Positive Red-Bullseye Positive Red-Bullseye Small Positive Positive Negative Positive Positive Positive 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB5467 Positive Black Small Positive Black Negative Positive Positive Positive Positive Positive 

UMB5548 Positive Black Positive Black Positive Positive Negative Positive Negative Positive 

UMB5567 Positive Black Small Positive Black Negative Positive Positive Positive Positive Positive 

UMB5582 Positive Black Positive Red Negative Negative Positive Negative Positive Positive 

UMB5628 Positive Black Positive Red Small Positive Positive Negative Negative Negative Positive 

UMB5682 Positive Opaque Positive Red-Bullseye Small Positive Positive Positive Positive Negative Positive 

UMB5702 Positive Black Positive Red Small Positive Negative Negative Negative Negative Positive 

UMB5710 Positive Red Negative Red Negative Negative Negative Negative Negative Negative 

UMB5776 Positive Black Small Positive Black Small Positive Negative Hyper 
Positive Negative Positive Positive 

UMB5792 Positive Black Positive Red Small Positive Positive Negative Negative Positive Negative 

UMB5842 Positive Black Positive Opaque Small Positive Negative Negative Negative Negative Negative 

UMB5863 Positive Red Positive Red Negative Negative Negative Positive Negative Positive 

UMB5903 Positive Red-Bullseye Small Positive Red-Bullseye Small Positive Negative Negative Negative Negative Negative 

UMB5938 Positive Red-Bullseye Small Positive Red-Bullseye Small Positive Positive Negative Negative Negative Negative 

UMB5956 Positive Red Positive Red Positive Positive Negative Negative Negative Negative 

UMB5973 Positive Black Positive Red Negative Negative Negative Negative Negative Negative 

UMB5975 Positive Black Positive Black Positive Negative Negative Positive Negative Positive 

UMB5980 Positive Black Positive Red-Bullseye Positive Negative Positive Negative Positive Positive 

UMB6039 Positive Black Small Positive Black Small Positive Positive Positive Positive Negative Positive 

UMB6088 Positive Black Positive Black Small Positive Negative Negative Negative Positive Negative 

UMB6151 Positive Black Positive Red Small Positive Positive Positive Positive Positive Positive 

UMB6163 Positive Opaque Positive Opaque Small Positive Negative Hyper 
Positive Negative Small 

Positive Positive 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB6195 Positive Opaque-Bullseye Positive Red Small Positive Positive Negative Positive Negative Negative 

UMB6232 Positive Opaque-Bullseye Positive Red Small Positive Negative Negative Negative Positive Negative 

UMB6249 Positive Black Positive Black Small Positive Positive Positive Negative Negative Negative 

UMB6289 Positive Black Positive Red-Bullseye Positive Positive Positive Hyper 
Positive Negative Positive 

UMB6296 Positive Black Positive Red-Bullseye Positive Positive Positive Hyper 
Positive Positive Positive 

UMB6306 Positive Opaque Positive Opaque Positive Positive Negative Negative Negative Negative 

UMB6444 Positive Black Positive Black Positive Positive Negative Hyper 
Positive Negative Hyper 

Positive 

UMB6497 Positive Opaque Positive Red Negative Positive Negative Negative Negative Negative 

UMB6509 Positive Opaque Positive Opaque Positive Positive Negative Negative Negative Negative 

UMB6511 Positive Opaque-Bullseye Positive Red-Bullseye Positive Positive Negative Negative Negative Negative 

UMB6587 Positive Black Positive Black Positive Positive Negative Hyper 
Positive Negative Negative 

UMB6625 Positive Opaque Positive Red Negative Positive Negative Negative Negative Negative 

UMB6782 Positive Black Positive Red Small Positive Positive Negative Negative Negative Negative 

UMB6852 Positive Red Positive Red Negative Negative Positive Negative Positive Negative 

UMB6872 Positive Opaque Positive Opaque Positive Positive Positive Positive Negative Negative 

UMB6965 Positive Black Small Positive Black Small Positive Negative Negative Negative Negative Negative 

UMB7049 Positive Black-Bullseye Positive Red Negative Negative Hyper 
Positive Negative Hyper 

Positive Negative 

UMB7058 Positive Opaque Positive Opaque-Bullseye Positive Positive Negative Negative Negative Negative 

UMB7137 Positive Opaque-Bullseye Positive Red-Bullseye Positive Negative Negative Positive Negative Positive 

UMB7144 Positive Red-Bullseye Positive Red-Bullseye Positive Positive Negative Negative Negative Negative 

UMB7153 Positive Black Positive Red-Bullseye Negative Positive Negative Negative Negative Negative 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB7228 Positive Red Negative Red Negative Negative Negative Negative Negative Negative 

UMB7235 Positive Opaque Positive Red Negative Negative Hyper 
Positive Negative Negative Negative 

UMB7245 Positive Red Positive Red Negative Positive Negative Negative Negative Positive 

UMB7248 Positive Opaque Positive Red Negative Negative Positive Negative Negative Positive 

UMB7288 Positive Black Positive Black Small Positive Negative Hyper 
Positive Negative Positive Negative 

UMB7363 Positive Black Positive Black-Bullseye Negative Positive Hyper 
Positive Negative Negative Hyper 

Positive 

UMB7377 Positive Black Positive Black-Bullseye Small Positive Negative Hyper 
Positive Negative Negative Hyper 

Positive 

UMB7382 Positive Black Positive Red-Black Density Small Positive Negative Negative Negative Negative Negative 

UMB7395 Positive Black Positive Black Positive Negative Negative Negative Negative Negative 

UMB7412 Positive Black Positive Red Negative Negative Hyper 
Positive Negative Hyper 

Positive Negative 

UMB7480 Positive Black Positive Black Negative Positive Negative Negative Positive Negative 

UMB7535 Positive Black Positive Red Small Positive Negative Negative Negative Negative Positive 

UMB7574 Positive Black Positive Red Small Positive Negative Negative Negative Negative Negative 

UMB7783 Positive Black Positive Red-Bullseye Small Positive Negative Negative Hyper 
Positive Negative Hyper 

Positive 

UMB7835 Positive Black Positive Red-Bullseye Small Positive Negative Negative Negative Positive Hyper 
Positive 

UMB7838 Positive Red-Bullseye Positive Red-Bullseye Small Positive Negative Positive Positive Negative Hyper 
Positive 

UMB7968 Positive Black Positive Red Small Positive Positive Negative Positive Negative Hyper 
Positive 

UMB8048 Positive Black Positive Black Small Positive Negative Hyper 
Positive Negative Negative Hyper 

Positive 

UMB8052 Positive Black Negative Black Negative Negative Positive Negative Positive Negative 

UMB8065 Positive Red Negative Red Negative Negative Negative Negative Negative Negative 
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Table 12. Characterization of Clinical Isolates of A. urinae for in vitro Phenotypes (continued) 
 

Sample 
Number 

Alpha 
Hemolysis 

Congo Red 
Phenotype 

(0.5% Glucose) 

Congo Red In Agar 
(0.5% Glucose) 

Congo Red Phenotype 
(No Glucose) 

Congo Red In Agar 
(No Glucose) 

Hockey Puck 
Phenotype 

(BHI 5%CO2) 

Flocking 
Phenotype 

(TSB) 

Stuck to 
Bottom 

(TSB) 

Flocking 
Phenotype 

(BHI) 

Stuck to 
Bottom 

(BHI) 

UMB8082 Positive Opaque Positive Black-Bullseye Negative Positive Positive Negative Positive Negative 

UMB8096 Positive Opaque Positive Black-Bullseye Negative Positive Hyper 
Positive Negative Hyper 

Positive Negative 
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The ‘Hockey Puck’ Phenotype  

When A. urinae was grown on BHI+Glu agar plates for 48 hours in 5% CO2 atmospheric 

conditions, the resultant colonies maintained their shape when pushed across the agar surface 

(Figure 8). This phenotype suggests that A. urinae cells have strong adhesive properties. 

 

 

Figure 8. 'Hockey Puck' Phenotype of A. urinae. Left image is a representative image of 
strain A. urinae UMB0088 in positive conditions (BHI+Glu in 5% CO2 conditions) for the 
‘hockey puck’ phenotype. Right image is a representative image of strain A. urinae UMB0088 
in negative conditions (BHI+Glu in Anerobic conditions) for the ‘hockey puck’ phenotype.  

 
In addition, the capacity of the colony to glide across the surface when pushed suggests that a 

surfactant may be produced to allow the colony to move effortlessly across the surface.  

It can be seen from Table 12 that the A. urinae isolates differ in their ability to form the 

‘hockey puck’ phenotype. In addition, there are many conditions that influence the ability of the 

A. urinae strains to form the ‘hockey puck’ phenotype. In Figure 8, it can be seen that the 

aerobic conditions affect the formation of the ‘hockey puck’ phenotype. In addition, the ‘hockey 

puck’ phenotype varies with the sugar used to supplement the agar (Figure 9). This extensive  
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Figure 9. Testing of Different Sugars for 'Hockey Puck' Phenotype. Images to the left are the 
A. urinae colonies before distruption and the images to the right are the A. urinae colonies after 
disrtuption (as indicated by the black arrow in each image). Each plate of Tryptic Soy Agar 
(TSA) was supplemented with 0.5% of the sugar listed. 

 
Table 13. Summary of ‘Hockey Puck’ Phenotype Testing Different Sugars 
 

Sugar Supplemented UMB0080 UMB0088 
0.5% Glucose + + 

0.5% Arabinose - - 
0.5% Fructose + + 
0.5% Galactose + - 
0.5% Maltose - - 
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sugar analysis was performed with two isolates (UMB0080 and UMB0088) of A. urinae and 

each isolate gave different results (Table 13).  

The ‘Flocking’ Phenotype  

A. urinae forms aggregates in liquid culture when grown statically in TSB or BHIB for 

48 hours in 5% CO2 atmospheric conditions. Before disruption, A. urinae cells gather at the 

bottom of the tube but, once disrupted, the A. urinae cells form aggregates. A. urinae has three 

levels in the ability to form the ‘flocking’ phenotype (Figure 10). The first level is comprised of 

non-flocking (NF) isolates that cannot form aggregates. The second level is comprised of  

 
 
Figure 10. 'Flocking' Phenotype of A. urinae. These are representative images of the 
‘flocking’phenotype of A. urinae. The left image is considered a non-flocking (NF) isolate of A. 
urinae (UMB0722). The middle image is considered an intermediate (Int) isolate of A. urinae 
(UMB0080). The right image is considered a hyper-flocking (HF) isolate of A. urinae 
(UMB3669). 
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Figure 11. Further characterization of hyper flocking phenotype. A) Vortex of hyper 
flocking isolate. Hyper-flocking isolate UMB3669 was grown as described in methods. The Pre-
Vortex image shows the normal disruption of UMB3669 after static growth for 48 hours in 5% 
CO2 conditions. The Post-Vortex image shows UMB3669 after vortexing for 1 minute. B) 
Hyper flocking isolate in PBS. Image shows hyper isolate UMB3669 washed in 1X PBS buffer. 

 
intermediate flocking (Int) isolates able to flock in at least one of the media tesed (TSB or 

BHIB). The third level is comprised of hyper-flocking (HF) isolates that form aggregates 

regardless of the media and even remain intact after vortexing for up to one minute and when 

cells are washed in sterile PBS (Figure 11). 

Since the ‘hockey puck’ phenotype was affected by the sugars present in the media, I 

asked if sugars also had an effect on the ‘flocking’ phenotype. Overall, the addition of sugars to 

the liquid media increased the amount of A. urinae cells present (data not shown). With all 

supplemented sugars, the ‘flocking’ phenotype was maintained but the size of the ‘flocks’ 

decreased in the presence of galactose and arabinose, whereas the size of the ‘flocks’ increased  
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Figure 12. 'Flocking' Phenotype in the Presence of Various Sugars. Top row of images is A. 
urinae strain UMB0080 grown in TSB supplemented with 0.5% of different sugars at 48 hours. 
Bottom row of images is an oil immersion 1000X microscopic view of the A. urinae cells 
grown in the conditions indicated above.  

 
Table 14. Summary of ‘Flocking’ Phenotype Testing Different Sugars 
 

Sugar Supplemented UMB0080 UMB0088 
No Sugar + - 

0.5% Glucose + - 
0.5% Arabinose - - 
0.5% Fructose + + 
0.5% Galactose - - 
0.5% Maltose + + 

 

in the presence of glucose, fructose and maltose (Figure 12). Another clinical strain of A. urinae 

was tested in this similar manner; different results were generated (Table 14).    

The ‘Pigmentation’ Phenotype 

A. urinae formed black colonies when grown on BHI+CR+Glu agar plates for 48 hours in 

5% CO2 atmospheric conditions, but not when the glucose was left out of the medium (Figure  
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Figure 13. 'Pigmentation' Phenotype. Left image is representative image of A. urinae grown 
on BHI+Congo Red supplemented with 0.5% Glucose. Right image is a representative image of 
A. urinae grown on BHI+Congo Red without Glucose. The strain used in both images is 
UMB0080. 

 

13). This Pigmentation Phenotype has been seen in Staphylococcus aureus and is associated with 

the presence of a biofilm operon in S. aureus (215, 216). All 240 A. urinae isolates and the 1 A. 

urinae strain from ATCC were characterized for the ‘pigmentation’ phenotype with and without 

glucose (Table 12). 

This ‘pigmentation’ phenotype is density-dependent, spreading from areas of high-cell 

density to areas of low-cell density (Figure 14). This density-dependence suggests that this 

phenotype is due to quorum sensing, a bacterial cell-to-bacterial cell communication process that 

requires the production and detection of signaling molecules (217).  

To further support the hypothesis that the Pigmentation Phenotype is due to quorum 

sensing, I determined that some natural variants deficient for the black ‘pigmentation’ phenotype 



 
 

   
 

99 

 
 
Figure 14. A. urinae Density-Dependent 'Pigmentation' Phenotype. The black colony 
‘pigmentation’ phenotype is spreading from areas of high-cell density (top of plate) to areas of 
low-cell density (bottom of plate). The strain in this image is UMB0080. 

 

 

 
 
Figure 15. Representative Image of Natural Red Variants in Presence and Absence of 
Natural Black Variant The black colony phenotype of A. urinae is dependent upone quorum 
sensing as red natural variants (Left-UMB2918, Bottom-UMB3002, Right-UMB3323) turn black 
in the presence of a wild-type donor strain (UMB0080) (A) but remain red in the absence (B).  
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 (red natural variants) form black pigmentation in the presence of a wild-type donor strain (black 

natural variant) (Figure 15). These results suggest that these natural red variants are unable to 

produce a soluble factor, but are still able to detect it.  

 To test if A. urinae black natural variants produce a soluable factor to induce the black 

pigment in red natural variants, I treated a red natural variant of A. urinae with supernatant from 

a black natural variant (Figure 16). I found that supernatants from either the mid-exponential 

growth phase or an overnight culture were unable to induce the black pigmentation in the red 

natural variant (Figure 16). This suggests that bacterial cells of the black natural variant must be 

present for induction of the black pigment in the red natural variant.   

 

Figure 16. Supernatant Treatment Experiment of a Red Natural Variant of A. urinae. A. A 
red natural variant (UMB3302) in the presence of a black natural variant (UMB0080). B. The red 
natural variant untreated condition. C. The red natural variant treated with supernatant from an 
overnight culture of the black natural variant. D. The red natural variant treated with supernatant 
from the mid-exponential growth phase of the black natural variant.  
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There is an additional feature to this ‘pigmentation’ phenotype that can be seen in 

Figures 13-15. This additional feature is the formation of the black pigment within the agar plate 

(Figure 17A). This black pigment production in the agar can occur regardless of whether the A. 

urinae colonies produce the black pigment (Figure 17B). In addition, the production of black 

pigment in the agar does not depend on the presence of glucose (data not pictured but 

documented in Table 12). At this time, we do not know what is responsible for this black 

pigmentation in the agar plate.  

 

 

 
 
Figure 17. 'In Agar' Production of the 'Pigmentation' Phenotype. A. Black Colony Isolate 
(UMB0080). The left side of the image is of the top of the culture plate of an isolate that is 
producing black pigment. The right side of the image is the bottom of the culture plate. B. Red 
Colony Isolate (UMB1514). The left side of the image is of the top of the culture plate. The 
right side of the image is the bottom of the culture plate of an isolate that is not producing black 
pigment. 
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Biofilm Formation 

A previous study found that A. urinae could induce platelet aggregation and form 

biofilms on plastic in standing culture, demonstrating the adhesive capacity of this bacterium 

(194). We therefore asked if the clinical isolates of A. urinae were also able to form a plastic 

attached biofilm.  

I tested a total of twenty-four A. urinae clinical isolates in five different media 

compositions (Figure 18 and 19). We saw varying degrees of A. urinae’s ability to form biofilm 

on plastic in standing culture, similar to previously published results (194). There was no relation 

between any of the in vitro phenotypes and the ability to form a plastic attached biofilm (Figure 

18 depicts ‘flocking’ phenotype comparison, ‘hockey puck’ and ‘pigmentation’ not shown). We 

did see an increase in biofilm formation across all isolates with the addition of glucose to the 

media (Figure 19, compare TSB ± glucose and BHI ± glucose to non-glucose conditions).  
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Figure 18. Biofilm Formation in A. urinae organized by ‘Flocking’ Phenotype.  
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Figure 19. Biofilm Formation in A. urinae organized by Medium Composition 

 

Summary 

 In summary, A. urinae has the ability to form various in vitro phenotypes. The ‘hockey 

puck,’ ‘flocking’ and plastic-adherent biofilm formation phenotypes demonstrate the adhesive 

capabilities of this organism. These adhesive properties could be key features in uropathogenesis 

because they aid in protection from the innate immune response and antimicrobial agents to 

allow for persistence within the bladder (3). The ‘pigmentation’ phenotype is a density-

dependendent phenotype and suggests that this phenotype is due to quorum sensing, a bacterial 
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cell-to-bacterial cell communication process that requires the production and detection of 

signaling molecules (217). Quorum sensing has been shown in other bacteria to play a major role 

in colonization and attachment (218).  

It is important to determine the gene(s) responsible for these in vitro phenotypes in A. 

urinae because it is the next step in determining the pathogenesis of A. urinae in the bladder. The 

next section and the last section of this chapter are my attempts at identifying the gene(s) 

responsible for the in vitro phenotypes. 
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Whole Genome Sequencing Comparison of Clinical Isolates to Identify Genes Responsible 

for Flocking Phenotype 

Selection of Clinical Isolates to Sequence 

 To determine the gene(s) responsible for any of the in vitro phenotypes described above, 

we focused on clinical isolates of A. urinae (Tables 11 and 12). I had characterized 240 clinical 

isolates but could not feasibly perform whole genome sequencing on all them. Therefore, I 

decided to focus on A. urinae isolates cultured from transurethral catheter (TUC) samples, as 

these are the samples that we know were sampled directly from the bladder (95). Next, I 

generated a heat map using the in vitro phenotypes of these TUC samples (N=85 at the time of 

analysis) (Figure 20). This heat map was used to select for genome sequencing A. urinae clinical 

isolates with a wide range of in vitro phenotypes.  

We chose 24 clinical A. urinae strains isolated from women with and without lower 

urinary tract symptoms (Table 11). Nine isolates were collected from seven patients diagnosed 

with OAB, nine isolates from eight patients diagnosed with UUI, and three isolates from three 

patients diagnosed with SUI. One A. urinae isolate (UMB7968) was cultured from a case of UTI, 

as defined by patient symptoms and culture of >100,000 cfu/ml of A. urinae as the sole 

uropathogen, verified by the clinical microbiology lab using MALDI-TOF MS as described 

above. Finally, two isolates were cultured from two asymptomatic control patients. 

In addition to the 24 clinical isolates of A. urinae, isolates from 3 other Aerococcus 

species were selected for the genome comparison analysis described below. All three were 

isolated via the same method and during the same time period as indicated for the 24 A. urinae 

strains. Aerococcus christensenii (UMB0884) was cultured from an asymptomatic control
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Figure 20. Heat Map of A. urinae Clinical Isolate Phenotypes- List of each in vitro phenotype condition is on the X-axis. The far 
left Y-axis is a clustering of the clinical isolates based on their in vitro phenotypes. The far right Y-axis is a list of all the clinical 
isolate strains. The vertical black line on the far left Y-axis was drawn to define the eight groups of clinical isolates. The horizontal 
black lines through the heat mat are a further definition of the eight groups. 
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patient, while Aerococcus sanguinicola (UMB0139) and Aerococcus viridans (UMB0240) were 

cultured from two different patients with OAB. 

Genomic diversity amongst A. urinae strains 

We sequenced the genomes of the 24 A. urinae isolates and those of 3 other Aerococcus 

species. For the 24 A. urinae isolates, the number of de novo assembled scaffolds ranged from 

16-661; the genome sizes averaged 2.16 ± 0.26 Mb, with on average 1927 ± 272 protein coding 

regions (Table 15). 

Prior to this work, only five A. urinae genomes were publicly available through 

GenBank. These five publicly available A. urinae strains were isolated from a variety of sources 

from human patients with diverse diagnoses (Table 16). Genome annotation of the five 

previously sequenced genomes and our 24 newly sequenced genomes revealed a core A. urinae 

genome composed of 1,355 genes (the table is too large to insert into this current document). The 

vast majority of the functionality encoded in the core genome remains unknown, as only 34% 

(456/1355) of these genes have a predicted function.  

Examination of functionality encoded coding regions within the A. urinae genomes  

To compare the genomes of the 24 A. urinae strain isolated from the female urinary 

bladder to those of the five publicly available strains, we performed a phylogenetic analysis as 

described in the methods. All 29 A. urinae strains were highly related (Figure 21 and 22). 

Strains within the phylogenetic trees were overlaid with color-coding based on the two in vitro 

phenotypes (‘hockey puck’ and ‘flocking’), suggesting an association between phylogeny and 

the flocking phenotype (Figure 21, left tree).   
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 Table 15. Aerococcus urinae genome statistics and genome accession numbers  
 
Strain Biosample 

Accession # 
Total Sequence Length #Protein Coding Genes # rRNA # tRNA # contigs N50 Coverage 

ACS-120-V-Col10a NC_015278 2,080,974 1726 12* 60* 1* n/a 32* 
ATCC 51268 GCA_002087935 1,949,279 1733 11 58 20* 223909* 231* 
AU3 GCA_001649715 1,935,027 1708 8 34 72* 86556* 5.6* 
CCUG36881 NZ_CP014161 1,974,262 1721* 12* 60* 1* n/a 594* 
NBRC15544 GCA_001544335 1,946,900 1728 12* 58* 26* 203385* 191* 
UMB0071 QMGT00000000  2,165,595 1957 10 56 16 473403 315.31 
UMB0080 GCA_002871915** 1,975,336 1738 7 56 42 90474 272.53 
UMB0088 GCA_002884955** 1,966,441 1723 6 56 43 119115 559.29 
UMB0126 GCA_002847705** 1,977,544 1738 3 55 49 71410 137.20 
UMB0232 GCA_002847625** 1,975,554 1744 3 54 50 77938 135.28 
UMB0239 QMGU00000000  2,199,127 1965 10 56 18 363962 262.97 
UMB0267 QMGV00000000  1,994,012 1798 8 54 19 491645 231.96 
UMB0337 QMGW00000000  2,053,412 1824 7 56 27 162363 395.74 
UMB0509 QMGX00000000  1,916,698 1692 8 56 21 216848 274.82 
UMB0553 QMGY00000000  2,075,787 1831 10 58 21 460162 151.13 
UMB0574 QMGZ00000000  2,988,484 2804 7 62 661 414093 73.09 
UMB0621 QMH100000000  1,992,056 1750 7 57 67 219129 245.00 
UMB0722 QMHB00000000  1,950,170 1733 9 56 20 223909 430.40 
UMB1016 QMHC00000000  2,214,818 1971 10 56 23 745560 185.76 
UMB1741 QMHD00000000  2,414,999 2155 10 65 341 107370 194.66 
UMB2325 QMHE00000000  2,635,024 2371 12 59 360 200801 192.49 
UMB2354 QMHF00000000  2,124,722 1867 10 56 52 322458 237.53 
UMB2879 QMHG00000000  2,183,261 1942 10 56 19 147048 245.25 
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Table 15. Aerococcus urinae genome statistics and genome accession numbers (continued) 
 
Strain Biosample 

Accession # 
Total Sequence Length #Protein Coding Genes # rRNA # tRNA # contigs N50 Coverage 

UMB3440 QMHH00000000  2,101,137 1849 11 56 19 394503 168.50 
UMB3669 QMHI00000000  2,037,773 1817 7 56 31 153106 224.85 
UMB5628 QMHJ00000000  1,958,227 1740 8 56 20 384596 214.55 
UMB6497 QMHK00000000  2,096,758 1805 10 56 119 99618 22.51 
UMB7382 QMHL00000000  2,613,901 2472 8 57 366 209328 143.10 
UMB7480 QMHM00000000  2,210,396 1950 6 55 135 94561 214.83 

* Genome assembly retrieved from NCBI’s WGS. Assembly and annotation statistics reported are those from NCBI record. 
** Genome assembly was deposited prior to this study. In this study, genomes were reassembled and annotated and those statistics are 
reported in the table. 

Color-coding of isolates is based on ‘flocking’ phenotype: Green and Green Highlighted+Hyper-Positive; Green=Positive; 
Red=Negative; Grey=Unknown
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Table 16. List of publicly available A. urinae genomes included in this work.  
 
Assembly Accession Species Isolation Source Patient Diagnosis 

ASM154317v1 Aerococcus urinae CCUG36881 Human Urine Urinary Tract Infection 

ASM19320v1 Aerococcus urinae ACS-120-V-
Col10a 

Vagina Unknown 

ASM154433v1 Aerococcus urinae NBRC15544 Unknown Unknown 

ASM16497v1 Aerococcus urinae AU3 Blood Bacteremia 

ASM208793v1 Aerococcus urinae ATCC 51268 Human Urine Urinary Tract Infection 

 

 

 
 
 
Figure 21. Core genome phylogenetic comparison of A. urinae isolates from the bladder. A 
total of 29 A. urinae genomes were compared using 40 universal single copy marker genes. 
Three other species of Aerococcus were used to root the tree. Each A. urinae isolate from our 
collection was color-coded based on their ability to form either the ‘flocking’ or ‘hockey-puck’ 
phenotypes. The tree on the left depicts color-coding for the ‘flocking’ phenotype and the tree on 
the right depicts the color-coding for the ‘hockey-puck’ phenotype. 
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Figure 22. Phylogenetic tree of A. urinae isolates with bootstrap values. A total of 29 A. 
urinae genomes were compared using 40 universal single copy marker genes. Three other 
species of Aerococcus were used to root the tree. Bootstrap values are to the left of the branch. 
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Figure 23. Difference in annotated coding sequences between hyper-flocking and non-
flocking isolates. Pairwise genome comparisons of the number of unique coding regions for 
each level of functional classification were conducted. Presence/absence statistics were 
calculated for all genomes for each functional classification and manually inspected further. Five 
Categories depicted in the X-axis of the top graph are significantly different between the hyper-
flocking isolates and non-flocking isolates (p=0.044025). The bottom table shows names of the 
23 Subsystems driving the statistical difference between the hyper-flocking isolates and the non-
flocking isolates. The top graph depicts the average unique coding regions between the hyper-
flocking and non-flocking isolates in the 23 Subsystems that were driving statistical significance 
in the five categories.  
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Since we observed clustering of the 3 A. urinae strains that exhibit the ‘hyper-flocking’ 

phenotype, we asked whether there were certain gene(s) that were present in these three strains 

compared to the 13 A. urinae clinical isolates that did not flock (non-flocking isolates). We 

assessed the gene annotations for each genome at each of the following functional classification 

levels: Category, Subcategory, Subsystem, and Role. At each level, we compared the number of 

coding sequences (CDS) annotated for the hyper-flocking isolates and the non-flocking isolates. 

A total of 5 Categories had a statistically significant difference between the hyper-flocking and 

non-flocking isolates (p=0.044025) (Figure 23, top graph). We looked deeper to determine if 

specific Subsystems drove the statistical significance in the 5 Categories and found a total of 23 

different Subsystems that appeared to drive the statistical significance (p=0.044025) (Figure 23, 

bottom table). We decided to focus on the 7 Subsystems where the CDS were either higher in 

the hyper-flocking isolates or completely absent from the hyper-flocking isolates (Figure 24). 

Compared to the 13 non-flocking isolates, the 3 hyper-flocking isolates were significantly 

enriched for CDS predicted to encode proteins involved in β-Glucoside Metabolism and L-

ascorbate utilization (Figure 24B). Specifically, with respect to β-Glucoside metabolism, there 

were 11 genes that encode proteins in the pathway and all 11 genes were absent in the non-

flocking isolates (Table 17). The majority of the 11 encoded proteins are members of two PTS 

systems used for importing and metabolizing β-glucoside sugars.  
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Figure 24. Functional Annotation Comparison of Hyper-Flocking Isolates vs. Non-Flocking 
Isolates. A) Coding Sequence Difference. Average coding sequence difference between the 
hyper-flocking and non-flocking isolates. Graph is paired down to the seven specific Subsystem 
that depict either CDS being higher in the hyper-flocking isolates or completely absent from the 
hyper-flocking isolates. The colored dot under each pair of bars corresponds to the name of the 
Subsystem in panel B. B) Phylogenetic Tree with Specific Subsystem Comparison. This 
phylogenetic tree is a modified version of the trees seen in Fig. 2. This tree focuses on only the 
hyper-flocking and non-flocking isolates. Next to each isolate is an array of colored dots that 
correspond to the specific Subsystem(s) that is present in the genome of that isolate.



 
 

   
 

116 

Table 17. Coded Protein Difference of Hyper-Flocking Isolates vs. Non-Flocking Isolates for Beta-Glucoside Metabolism and 
Tryptophan Synthesis. 
 
 Hyper-Flocking Isolates Non-Flocking Isolates 

 
 

Tryptophan 
Synthesis 

Anthranilate phosphoribosyltransferase (EC 2.4.2.18)* 
Indole-3-glycerol phosphate synthase (EC 4.1.1.48) 

Para-aminobenzoate synthase, amidotransferase component (EC 2.6.1.85) 
Phosphoribosylanthranilate isomerase (EC 5.3.1.24)* 

Tryptophan synthase beta chain (EC 4.2.1.20)* 

Anthranilate phosphoribosyltransferase (EC 2.4.2.18)* 
Indole-3-glycerol phosphate synthase (EC 4.1.1.48) 

Para-aminobenzoate synthase, amidotransferase component (EC 2.6.1.85) 
Phosphoribosylanthranilate isomerase (EC 5.3.1.24)* 

Tryptophan synthase alpha chain (EC 4.2.1.20)* 
Tryptophan synthase beta chain (EC 4.2.1.20)* 

 
 
 

Beta-Glucoside 
Metabolism 

Outer surface protein of unknown function, cellobiose operon 
PTS system, Beta-glucoside-specific IIA component (EC 2.7.1.69) 
PTS system, Beta-glucoside-specific IIC component (EC 2.7.1.69) 

Transcriptional antiterminator of lichenan operon, BglG family 
PTS system, cellobiose-specific IIA component (EC 2.7.1.69) 

PTS system, Beta-glucoside-specific IIB component (EC 2.7.1.69) 
Beta-glucosidase (EC 3.2.1.21) 

PTS system, cellobiose-specific IIB component (EC 2.7.1.69) 
6-phospho-beta-glucosidase (EC 3.2.1.86) 

PTS system, cellobiose-specific IIC component (EC 2.7.1.69) 
Beta-glucoside bgl operon antiterminator, BglG family 

 
 
 
 
 

Entire Operon is missing 

* Denotes the coding regions in tryptophan synthesis that are also part of the auxin biosynthesis pathway. Highlighted in red are the 
differences in genes between the two isolate types. 
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CDS depleted in the hyper-flocking isolates are involved in tryptophan synthesis, auxin 

biosynthesis, D-sorbital (D-glucitol) and L-sorbose utilization, D-tagatose and galactitol 

utilization, and mannose metabolism (Figure 23). Tryptophan synthesis and auxin biosynthesis 

pathways are linked in that the 4 coding regions for auxin biosynthesis are part of the subsystem 

“Tryptophan synthesis.” Specifically, the hyper-flocking isolates are missing the gene for the 

tryptophan synthase alpha chain (EC 4.2.1.20) (Table 17), which is responsible and required for 

the last step in biosynthesis of tryptophan (219). It is also thought to contribute to auxin 

biosynthesis (220). In conclusion, genome comparisons between hyper-flocking and non-

flocking strains reveal significant differences that could contribute to bacterial interactions 

within the host. 

Summary 

 In summary, these WGS data show that the A. urinae isolated from women suffering an 

array of lower urinary tract disorders are highly related. We also found several possible genes 

responsible for the ‘flocking’ phenotype. Although A. urinae remains a genetically intractable 

organism, these data help lay the groundwork for future investigation once it becomes a 

genetically manipulatable organism. 
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Interaction of A. urinae with Human Urothelial Cells (HUCs) 

Adherence of A. urinae to HUCs 

To determine whether the differences seen in in vitro phenotypes and the genomic 

profiles translated to differences in their interactions with urothelial cells, we compared the 

ability of two A. urinae strains to adhere to HUCs in vitro: strain UMB0722 is a non-flocker 

(NF), negative for both phenotypes; and UMB0080 has an intermediate phenotype (Int), only 

flocking in TSB.  

 Monolayers of HUCs were treated with 108 CFU/mL of each A. urinae strain and the 

UPEC strain UTI89 for three hours. When looking at the raw CFU counts (Figure 25A), we 

could not determine if A. urinae or UPEC adheres to HUCs because the control wells of the 

bacterial cells alone had CFU counts similar to that of the wells with HUCs and bacterial cells 

and the starting inoculum. However, when looking at the percent of adherent bacteria (Figure 

25B), we observed a larger percentage of UMB0080 (Int) adhering to HUCs compared to 

UMB80 (Int) alone (47.9% vs. 18.7%, p=0.579). We also observe that UPEC is adherent to 

HUCs when looking at the percent of adherent bacteria (Figure 25B) supporting previous 

reports.  

 

 

 



 
 

   
 

119 

 
 
 
Figure 25. Adherence of Int vs NF A. urinae Isolates. A. Raw Colony Forming Units of 
Bacterial Cells. Comparison of two A. urinae strains (UMB0080-Int and UMB0722-NF) to 
UPEC strain UTI89. Blue bars represent the starting inoculum for each strain. Red bars are 
conditions with bacterial cells and HUCs and green bars are conditions with bacterial cells alone. 
B. Percentage of Adherent Bacterial Cells. Comparison of two A. urinae strains (UMB0080-
Int and UMB0722-NF) to UPEC strain UTI89. Red bars are conditions with bacterial cells and 
HUCs and green bars are conditions with bacterial cells alone. 
 

Cytotoxicity to HUCs 

Although we cannot conclude whether A. urinae directly adheres to urothelial cells, we 

can ask how the HUCs respond to A. urinae. First, we asked if A. urinae was cytotoxic to the 

HUCs. Other Gram-positive uropathogens, such as Enterococcus faecalis or Streptococcus 

agalactiae have been shown to be cytotoxic to urothelial cells in both in vitro and in vivo 

conditions (221). To test the cytotoxicity effects of A. urinae to HUCs, we infected monolayers 

of HUCs with A. urinae at a multiplicity of infection (MOI) of 300 (108 cells). At 3 hours post-

infection, HUCs were stained with Trypan blue solution to determine the percentage of cells that 

remain viable (Figure 26). These results demonstrate that A. urinae is statistically as cytotoxic to 

HUCs as UPEC (UTI89 and NU14, Figure 26). HUC viability ranged between 45-60% when  
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Figure 26. Percent Viability of Urothelial Cells with Various Treatments at 3 hours. Three 
different strains of A. urinae were chosen for testing based on their ability to flock. UMB0080 is 
an Int isolate, UMB0722 is a NF isolate, and UMB3669 is a HF isolate. For positive controls, I 
treated the HUCs with two different strains of UPEC (NU14 and UTI89) and two strains of GBS 
from our UMB isolate collection (UMB1026 and UMB1047). For negative controls, I treated 
HUCs with various TLR agonists (LPS, PAM2 and PAM3) as well as Lactobacillus crispatus 
(LC40). *=p-value<0.05, **=p-value<0.001. Statistics are a comparison to Untreated Control. 

 

treated with A. urinae cells. These results also support previous reports that GBS is cytotoxic to 

HUCs (Figure 26, GBS-UMB1026 and UMB1047). In addition, we can see that Lactobacillus 

crispatus is not cytotoxic to HUCs supporting the hypothesis that L. crispatus is a symbiotic 

bacterium in the bladder (Figure 26-LC40). 

A. urinae cells must be present and alive in order for the cytotoxic effect (Figure 27A). 

Even though a little bit of killing can be seen in the antibiotic and heat-killed groups, not all A. 

urinae cells were killed at this antibiotic concentration and during this time period (Figure 27B,  
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Figure 27. Cytotoxicity of A. urinae in Various Culture Conditions at 3 hours. A. Percent 
Viability of HUCs. A. urinae (UMB0080) and UPEC (UTI89) in various conditions. First is 
Normal (N) where bacterial cells are re-suspended in DMEM+5%FBS. Next is Antibiotic (Ab) 
which is a 1 hour pre-treatment of the bacterial cells with antibiotic in the media. Next is 
Supernatant (Supe) where cell-free supernatant of bacterial cells is obtained to treat HUCS. 
Finally, there is the heat-kill (HK) condition where the bacterial cells are heat-killed for 1 hour at 
65°C. **=p-value<0.001. Statistics are a comparison to Untreated Control. B. Colony Forming 
Units (CFU/mL) of A. urinae (UMB0080) and UPEC (UTI89). 
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Figure 28. Percent Viability of HUCs treated with Dilutions of A. urinae and UPEC for 3 
hours. A. urinae and UPEC were serially diluted 1:10 in DMEM+5%FBS prior to treatment of 
HUCs. **=p-value<0.001. Statistics are a comparison to Untreated Control. 

 

red bars). This can be seen in the bacterial cells counts in Figure 27B. It is also apparent that the 

A. urinae bacterial cells did not replicate at a rapid rate, as the post treatment CFU (Figure 27B, 

red bars) was less than the inoculum CFU  (Figure 27B, green bars). 

To see the cytotoxic effects of A. urinae at 3 hours, there needs to be at least 107 [UMB80  

(-1)] cells present (Figure 28). In dilutions of A. urinae cells from 106 [UMB80 (-2)] to 104 

[UMB80 (-4), I observed little to no cytotoxic effect on HUCs (Figure 28). In terms of MOI, A. 

uriane is cytotoxic to HUCs the MOI is 30 or greater. These results are similar to the amount of 

cells of UPEC needed to cause cytotoxic effects to HUCs.  
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Figure 29. Cytotoxicity Assay with Buffer and Acidic Conditions at 3 hours. A. Percent 
Viability of HUCs. A. urinae (UMB0080) and UPEC (UTI89) were prepared for treatment in 
either normal media conditions or media with HEPES buffer. **=p-value<0.001. Statistics are a 
comparison to Untreated Control.  B. Colony Forming Units (CFU/mL). 

 

While performing these cytotoxicity assays, I noticed that the media was acidifying in the 

treatment wells with bacteria and HUCs, leaving open the possibility that the acidified media 

was killing the HUCs and not the bacterial cells. However, A. urinae and UPEC remained 

cytotoxic to HUCs even in buffered treatment conditions (Figure 29). 

Finally, we asked whether the differences seen in in vitro phenotypes and the genomic 

profiles translated to differences in their interactions with urothelial cells. We treated HUCs with  
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Figure 30. Percent Viability of HUCs treated with various A. urinae ‘Flocking’ Strains. A. 
urinae bacterial cells were prepared in various conditions. First is Normal where bacterial cells 
are re-suspended in DMEM+5%FBS. Second is with Antibiotic, which is a 1-hour pre-treatment 
of the bacterial cells with antibiotic in the media. Third is Supernatant where cell-free 
supernatant of bacterial cells is obtained to treat HUCS. Finally, there is the heat-kill condition 
where the bacterial cells are heat-killed for 1 hour at 65°C. 

 

six different A. urinae strains based on their difference in the ‘flocking’ phenotype: two strains 

were intermediate ‘flocking’ isolates (UMB0080 and UMB0232), two strains were non-flocking 

isolates (UMB0722 and UMB6497) and finally two strains that were hyper-flocking isolates 

(UMB1741 and UMB3669).  
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I obtained similar results with the intermediate isolate UMB80 as I had seen previously in 

Figures 26-29. It also appears that the other intermediate flocking isolate UMB232 behaves in a 

similar manner as UMB80 (Figure 30, Intermediate Flocking). The non-flocking isolates 

(UMB722 and UMB6497) appear to not be as cytotoxic to the HUCs as the intermediate 

flocking isolates (Figure 30, Non-flocking). The hyper-flocking isolates (UMB1741 and 

UMB3669) appear to have cytotoxicity levels similar to the intermediate flocking isolates. 

Regardless of the flocking phenotype of the A. urinae, the A. urinae cells need to be alive (i.e., in 

normal conditions) to see any cytotoxicity to HUCs. 

Immune Response of Human Urothelial Cells to Aerococcus urinae 

 Human urothelial cells can mount an innate immune response initiated by recognition of 

uropathogens via TLRs (24); the activation of these TLRs leads to the expression and production 

of pro-inflammatory cytokines (38). First, we asked whether A. urinae was able to initate the 

production of pro-inflammatory cytokines in HUCs in vitro. Then, we asked if A. urinae changed 

the expression of various TLRs on the surface of HUCs 

Cytokine Production 

We chose to test the rapid response of HUCs to treatment of A. urinae; therefore, we 

treated the HUCs for a short amount of time (6 hours). To measure cytokine production from the 

HUCs in response to A. urinae, we used the CBA Human Inflammatory Cytokine Kit (BD 

Biosciences; San Jose, CA). This kit measures the following six cytokines: IL-1β, IL-6, IL-8, IL-

10, IL-12p70 and TNF. When we treated HUCs with A. urinae at an MOI of 300 (108 CFU) for 6 

hours, we were only able to obtain measureable amounts of IL-6 and IL-8 (Figure 31). We were  
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Figure 31. Cytokine Production of HUCs with A. urinae Treatment at 6 hours. Levels of 
cytokines (IL-8 and IL-6) being produced by HUCs in response to treatment with 108 bacterial 
cells of A. urinae (UMB0080) and L. crispatus (UMB0040). For positive controls, HUCs were 
treated with various TLR agonists (LPS, PAM2 and PAM3). *=p-value<0.05. Statistics are a 
comparison to Untreated Control. 

 

unable to obtain any measureable amounts of IL-1β, IL-10, IL-12p70 or TNF in any of the 

treatment conditions. We noticed a statistically significant inhibition of cytokine expression from 

HUCs by A. urinae compared HUCs alone (IL-8: 0.011 pg/cell vs. 0.033 pg/cell, p=0.00003; IL-

6: 0.007 pg/cell vs. 0.038 pg/cell, p=0.0000008) (Figure 31). We saw a similar statistically 

significant inhibition of cytokine production in the presence of Lactobacillus cripsatus for IL-8  
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Figure 32. Cytokine Production of HUCs in Co-Treatment Conditions at 6 hours. Levels of 
cytokines (IL-8 and IL-6) being produced by HUCs in response to treatment with 108 A. urinae 
(UMB0080) cells and co-treatement condition with A. urinae and TLR agonist LPS. *=p-
value<0.05. Statistics reflect the comparison between UMB80-108 and UMB80/LPS. 

 

but not for IL-6 (IL-8: 0.013 pg/cell vs. 0.033 pg/cell, p=0.002; IL-6: 0.034 vs. 0.038, p=0.284)  

(Figure 31). 

We next asked if this inhibition could be suppressed by the presence of the TLR-agonist, 

LPS. Co-treatment of HUCs with A. urinae and LPS resulted in statistically significant recovery 

of the suppression of cytokine production per HUC (IL-8: 0.011 pg/cell vs. 0.029 pg/cell, 

p=0.0007; IL-6: 0.007 pg/cell vs. 0.018 pg/cell, p=0.0.002) (Figure 32). This mutual  
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Figure 33. Cytokine Production of HUCs Treated with Varying Bacterial Cell Dilutions at 
6 hours. Levels of cytokines (IL-8 and IL-6) being produced by HUCs in response to treatment 
with two dilutions (108 and 106) of bacterial cells A. urinae (UMB0080) and L. crispatus 
(UMB0040).  

 

suppression suggests that the A. urinae-dependent inhibition and LPS-induced activation work 

against each other and likely via the same pathway. 

Finally, we asked whether the bacterial inhibition by A. urinae and L. crispatus depended 

on the amount of bacterial cells present. We therefore treated HUCs with a lower MOI of 

bacterial cells (MOI=3) for 6 hours (Figure 33). There was a slight inhibition of suppression 

when fewer bacterial cells were present (Figure 33, 106 cell treatment conditions); however, this 
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anti-suppression was not statistically significant at this time. This suggests that a large number of 

bacterial cells must be present for inhibition of cytokine production.  

Overall, we observed inhibition of cytokine production from HUCs when they are treated 

with bacterial cells for a short period of time (6 hours). This inhibition appears to occur 

regardless of the bacterial species since we see the suppression with both A. urinae and L. 

crispatus. 

TLR Expression 

An HUC can respond to a stimulus and then either increase or descrease its expression of 

various receptors on the cell surface (24). In order to measure this change in expression one has 

to look at longer treatment periods, for 24 to 48 hours. We therefore decided to measure the TLR 

expression of HUCs in response to A. urinae by looking at TLR expression at 48 hours. We 

measured the following HUC receptors because of their involvement with the innate immune 

response in the urothelium (see Chapter 1, Evasion of the Immune Response): TLR-1, TLR-2, 

TLR-4, TLR-6, CD14 and HLA-DR. After treatment of HUCs with A. urinae at an MOI of 3 

(106 cells) for 48 hours, we only saw differences in surface level expression of TLR-4 and TLR-

6 (Figure 34). Figure 34A shows representative FLOW gates for of TLR-4/CD14 and TLR-

6/CD14 surface expression. As we can see from Figure 34B, there is an increase in surface level 

TLR-4 and TLR-6 expression on HUCs when bacterial cells were present compared to untreated 

HUCs. This increase was statistically significant in the case of TLR-6 expression (UMB0080: 

79.7% vs 34.0%, p=0.029; UMB0040: 81.8% vs 34.0%, p=0.025) (Figure 34B). We saw no 

difference in the double positive populations of TLR-4/CD14 or TLR-6/CD14, which suggests  
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Figure 34. Surface Expression of TLRs on HUCs Post Treatment with Bacterial Cells for 
48 hours. A. Representative FLOW Images. The top row is gated on TLR-4 and CD14, while 
the bottom row is gated on TLR-6 and CD14. B. Percent of TLR-4 and TLR-6 Positive Cells 
in Each Condition. *=p<0.05. Statistics are a comparison to Untreated Control. 

A. 

B. 
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that these receptors are not being activated, as CD14 must be present to activate the appropriate 

downstream signals in urothelial cells (35). 

Since the bacteria were changing the expression of TLRs on the surface of HUCs, we 

hypothesized that the bacteria interact with the HUCs to either help promote or inhibit their 

response to immune signals. One immune signal released by immune cells in the urothelium to 

initiate an immune response is interferon-gamma (IFN-γ), which increases the expression of 

TLR-4 on the urothelial surface (222). We first treated HUCs with A. urinae at an MOI of 3 (106 

cells) for 24 hours and then added 100 ng of IFN-γ for another 24 hours to simulate the innate 

immune response in the bladder. At 48 hours, we measured the surface level TLR expression in 

conditions treated with IFN-γ and conditions without treatment. Again, we only detected 

differences in the surface level expression of TLR-4 and TLR-6 (Figure 35). We know that the 

IFN-γ activated the urothelial cells because we saw an increase in expression of both TLR-4 and 

TLR-6 in untreated wells (Figure 35). We saw a statistically significant decrease in surface level 

TLR expression when IFN-γ was added to conditions where bacterial cells were present (Figure 

35). 

Next, we asked whether this bacterial suppression of surface TLR expression in response 

to IFN-γ affected cytokine production of the HUCs. Again, we were only able to obtain 

measureable amounts of IL-6 and IL-8 and we saw no difference in the ability of HUCs to 

produce these two cytokines (Figure 36).  

 

 



 
 

   
 

132 

 

 

Figure 35. Surface Level TLR Expression of HUCs with and without IFN-γ at 48 hours. 
Left graph shows the percentage of TLR-6 positive cells. Right graph shows the percentage of 
TLR-4 positive cells. *=p-value<0.05. Statistics are a comparison between the conditions with 
and without IFN-γ treatment. 

 

 

 
 
Figure 36. Cytokine Production of HUCs with and without IFN-γ at 48 hours. Left graph 
shows the production of cytokine IL-8. Right graph shows the production of cytokine IL-6.  
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Summary 

 At this time, we remain unsure whether A. urinae directly adheres to HUCs but we can 

conclude that A. urinae in high CFU is cytotoxic to HUCs. In regards to the innate immune 

response of HUCs, we saw that FUM bacteria (A. urinae and L. crispatus) inhibit the immediate 

cytokine response when high CFU of bacterial cells are present. We also saw that FUM bacteria 

alter the surface level TLR expression of HUCs. It appears that this alteration of surface level 

TLR expression by the FUM bacteria has an effect on the HUCs ability to response to other 

innate immune signals (IFN-γ).  
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Forward Genetics Approach to Determine Genotype of Black Pigmentation Phenotype 

 As mentioned in Chapter 1, a forward genetics approach that combines chemical 

mutagenesis with whole genome sequencing was developed by the Valdivia and Bastidas labs to 

investigate the genetically intractable organism, Chlamydia (196). In this section of my 

document, I will summarize my attempt at using a forward genetics approach to determine the 

gene(s) of A. urinae responsible for the black colony pigment of the ‘pigmentation’ phenotype.  

Ethylmethanesulfonate (EMS) Mutagenesis Results 

Using the EMS mutagenesis protocol described above (Materials and Methods), I was 

able to generate 80 mutants of the A. urinae isolate UMB0080. These mutants were deemed the 

Visick-Wolfe (VW) mutant collection and I will refer to them as VW mtuants throughout the 

reminder of the document. The breakdown of each VW mutant and their Pigmentation 

Phenotype can be seen in Table 18.   

Table 18. Breakdown of VW Mutant Pigmentation Phenotype 
 

Pigmentation Phenotype Number of VW Mutants 
Red 24 

Red with Black Density 32 
Opaque 11 

Smooth Black 13 
 

A full characterization of all 80 mutants was performed. First, each VW mutant was 

characterized for the ‘flocking’ phenotype in either TSB or BHIB. Next, each VW mutant was 

characterized for their ability to form the ‘hockey puck’ phenotype on TSA plates supplemented 

with various sugars. As described above, certain clinical strains of A. urinae are red but can turn 

black in the presence of a wild-type donor strain (Figure 15). UMB0080 is a wild-type donor 
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strain; therefore, we sought to determine if each VW mutant of UMB0080 was able to “donate” 

the black pigmentation to red clinical isolates of A. urinae that have the ability to become black. 

A summary of this characterization of VW mutants can be found in Table 19. 

Heat maps were generated to show the full characterization of the 80 mutants for all three 

phenotypes (Figure 37). We hypothesized that if the three phenotypes were related to one 

another, there would be a clustering of the ‘pigmentation’ phenotype on the left hand side of 

Figure 37; however, this was not in the case, as there was not clear clustering of the mutants 

with respect to the ‘pigmentation’ phenotype when the entire characterization was plotted for 

each isolate. Instead, there was only a clustering of isolates when each phenotype profile was 

plotted separately (Figures 38-40). We observed no relationship between the ‘hockey puck’ or 

‘flocking’ phenotypes with the ‘pigmentation’ phenotype because the mutants did not cluster 

with respect to the ‘pigmentation’ phenotype (Figure 38 and 39, left side y-axis). This led us to 

conclude that the ‘flocking,’ ‘hockey puck’ and ‘pigmentation’ phenotypes are not related to one 

another.  
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Table 19. Characterization of VW Mutants for in vitro Phenotypes 
 

Strain BHI+Congo 
Red+Glu 

Congo 
Red 

Donor 

Flocking
-TSB 

Flocking
-BHI 

Hockey 
Puck-
TSA 

Hockey 
Puck-
BHI 

Hockey 
Puck-

BHI_Glu 

Hockey 
Puck-

BHI_Fru 

Hockey 
Puck-

BHI_Gala 

Hockey 
Puck-

BHI_Mal 

Hockey 
Puck-

BHI_Ara 
UMB0080
-Reference Rough Black + + - - - + + - - - 

VW1 RBD - + - - - - - - - - 
VW2 Smooth Black + - - - - + + - - - 
VW3* Red - + - - - - - - - - 
VW4 Smooth Black + - - - - + + - - - 
VW5 RBD + + + - - - - - - - 
VW6 Red + + - - - + + - - - 
VW7* Opaque + + - - - + + - - - 
VW8* Opaque + + - - - + - - - - 
VW9 Opaque + + - - - + - - - - 
VW10 Opaque + + - - - - - - - - 
VW11 Red - - - - - - - - - - 

VW12* Opaque + + - - - + - - - - 
VW13* Red - - - - - - - - - - 
VW14* Opaque + + + - - - - - - - 
VW15 Smooth Black + - - - - - - - - - 
VW16 Smooth Black + - - - - - - - - - 

VW17* Opaque + + + - - + - - - - 
VW18 Red + + - - - + + - - - 
VW19 Red + + - - - - + - - - 

VW20* Opaque + + - - - + + - - - 
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Table 19. Characterization of VW Mutants for in vitro Phenotypes (continued) 
 

Strain BHI+Congo 
Red+Glu 

Congo 
Red 

Donor 

Flocking
-TSB 

Flocking
-BHI 

Hockey 
Puck-
TSA 

Hockey 
Puck-
BHI 

Hockey 
Puck-

BHI_Glu 

Hockey 
Puck-

BHI_Fru 

Hockey 
Puck-

BHI_Gala 

Hockey 
Puck-

BHI_Mal 

Hockey 
Puck-

BHI_Ara 
VW21* Opaque + + - - - + + - - - 
VW22 RBD + - - - - + - - - - 
VW23 Opaque + - - - - + - - - - 

VW24* Red - - - - - + + - - - 
VW25 Red + + + - - + + - - - 

VW26* Opaque + - - - - + + - - - 
VW27* Opaque + - - - - + - - - - 
VW28* Opaque + - - - - + + - - - 
VW29 Smooth Black + - - - - - - - - - 
VW30 Smooth Black - - - - - - - - - - 
VW31 Smooth Black - - - - - - - - - - 
VW32 Opaque + - - - - - - - - - 

VW33* Smooth Black + - - - - - - - - - 
VW34 Smooth Black + - - - - - - - - - 

VW35* Opaque + + + - - + - - - - 
VW36* Opaque - + + - - Hyper + - - - - 
VW37 Red - - - - - + - - - - 
VW38 Red - Hyper + Hyper + - - - - - - - 

VW39* Opaque + + Hyper + - + Hyper + - - - - 
VW40* Red - - - - - - - - - - 
VW41* Red + - - - - - - - - - 
VW42* Opaque - + Hyper + - - + - - - - 
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Table 19. Characterization of VW Mutants for in vitro Phenotypes (continued) 
 

Strain BHI+Congo 
Red+Glu 

Congo 
Red 

Donor 

Flocking
-TSB 

Flocking
-BHI 

Hockey 
Puck-
TSA 

Hockey 
Puck-
BHI 

Hockey 
Puck-

BHI_Glu 

Hockey 
Puck-

BHI_Fru 

Hockey 
Puck-

BHI_Gala 

Hockey 
Puck-

BHI_Mal 

Hockey 
Puck-

BHI_Ara 
VW43* Opaque + + Hyper + - - + + - - - 
VW44 RBD + - + + - Hyper + - - - - 
VW45 Opaque - + - - - + + + + + 
VW46 Red + - - - - + - - - - 
VW47 RBD - - - - - - - - - - 

VW48* Red - - - - - - - - - - 
VW49* Opaque + + - + + Hyper + + + + + 
VW50* Red - + - - + + - - - - 
VW51 Red - + - + + + Hyper + + - - 
VW52 RBD + + Hyper + + + Hyper + - - - - 
VW53 Red - + + + + + + + + - 
VW54 Red - - - - + - - - - + 
VW55 Red - - - - - - - - - - 
VW57 Red + + - - + + - - - - 
VW58 Red - + - - + Hyper + Hyper + - - - 
VW59 Black + + + - - Hyper + - - - - 
VW60 Black + + + - - + + - - - 
VW61 Red + + - + - + + - - - 
VW62 Red + - - - - + + + + + 
VW63 Black + + + + - Hyper + - - - - 
VW64 Black + + - + - + - - - - 

VW65* Red - - - - - - - - + - 
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Table 19. Characterization of VW Mutants for in vitro Phenotypes (continued) 
 

Strain BHI+Congo 
Red+Glu 

Congo 
Red 

Donor 

Flocking
-TSB 

Flocking
-BHI 

Hockey 
Puck-
TSA 

Hockey 
Puck-
BHI 

Hockey 
Puck-

BHI_Glu 

Hockey 
Puck-

BHI_Fru 

Hockey 
Puck-

BHI_Gala 

Hockey 
Puck-

BHI_Mal 

Hockey 
Puck-

BHI_Ara 
VW66* Red - - - + - - - - - - 
VW67* OBD + + + - - + - - - + 
VW68* Maroon + + - + + + + - - - 
VW69 RBD + + - - - - - - - - 
VW70 RBD + - - + + + + + + + 
VW71 RBD + - - + + + + - - - 
VW72 OBD + + + + + + - - - - 
VW73 RBD + - - - + + - - - - 
VW74 Red + + - - - + + - - - 
VW75 Red + - - - - + - + - + 
VW76 Red + + + + + + - + - + 
VW77 Red + + + - - + + - - - 
VW78 Red + - - + + + - - - - 
VW79 Red + - - + - + - + - - 

VW80* Red + - - - - + + - - - 
VW81 RBD + - - - + + + - - - 

 
*Denotes confirmed VW mutants  (see section Confirmation of VW Mutants below); RBD=Red with Black Density; OBD=Opaque 
with Black Density 



 
 

   
 

140 

 
Figure 37. Full VW Mutant Phenotypic Profile- List of each phenotype on the X-axis. The far left Y-axis is a characterization of the 
VW strain for the ‘pigmentation’ Phenotype. The far right Y-axis is a list of all the VW mutant strains. 
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Figure 38. VW Mutant 'Hockey Puck' Phenotype Profile- List of each ‘hockey puck’ phenotype Condition is on the X-axis. The 
far left Y-axis is a characterization of the VW strain for the ‘pigmentation’ phenotype. The far right Y-axis is a list of all the VW 
mutant strains.   



 
 

   
 

142 

 
Figure 39. VW Mutant 'Flocking' Phenotype Profile- List of each ‘flocking’ phenotype condition is on the X-axis. The far left Y-
axis is a characterization of the VW strain for the ‘pigmentation’ phenotype. The far right Y-axis is a list of all the VW mutant strains.   
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Figure 40. VW Mutant 'Pigmentation' Phenotype Profile- List of each ‘pigmentation’ phenotype condition is on the X-axis. The 
far left Y-axis is a characterization of the VW strain for the ‘pigmentation’ phenotype. The far right Y-axis is a list of all the VW 
mutant strains. 
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ICR-191 Mutagenesis Results 

We were limited in the type of mutation generated with EMS. This chemical mutagen 

typically transitions C-G pairs to T-A pairs. It is possible that another type of chemical mutagen 

or UV mutagenesis may be more successful in generating different types of mutants that I was 

unable to obtain with EMS. Thus, as an alternative approach, I used a chemical mutagen (i.e., 

ICR-191) that causes frameshifts. The advantage of using multiple types of mutations is that a 

diverse collection of mutants helps one confidentially link the phenotype to the genotype in a 

forward genetics approach.   

In an attempt to make some frameshift mutants, I performed a mutagenesis with the 

chemical mutagen ICR-191. This protocol was performed three times with no successful 

isolation of red mutant colonies. See Table 20 for a full summary of results. The initial screen 

for each experiment yielded a large number of potential mutants that were confirmed to be A. 

urinae when struck out onto BAP for MALDI-TOF MS confirmation. However, after the 

confirmation with MALDI-TOF MS and subsequent streaking onto BHI+CR+Glu plates, there 

was a natural reversion back to wild-type black.  

Table 20. Summary of ICR-191 Experiments 
 

Experiment  
Number 

Number of  
Potential Mutants 

Number of  
Confirmed A. urinae 

Number of  
Actual Red Mutants 

1 15 15 0 
2 23 23 0 
3 19 19 0 
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Sequencing and Alignment of Mutant Genomes 

 Based on the full phenotype clustering heat map (Figure 37), I chose 15 red VW mutant 

strains for whole genome sequencing and bioinformatics analysis to determine the genotype 

responsible for the black colony color of the ‘pigmentation’ phenotype. Specifically, in BreSeq, 

trimmed reads of the VW mutant of interest were aligned to the assembled reference genome, 

which was the wild-type A.urinae isolate UMB0080. BreSeq generated an annotated file that 

shows where all base substitution, short insertion or deletion, and large deletion events occurred.  

Table 21 shows a summary of the number of total mutations, confident mutations and true 

mutations for the 15 red VW mutant genomes. Breseq detected a large number of mutations 

within each VW mutant, which is to be expected with the chemical mutagen EMS. Out of the 

hundreds of mutations detected in each VW mutant, BreSeq consensus mode was confident in a 

smaller number, on the magnitude of dozens instead of hundreds (Table 21, Confident 

Mutations column). When looking closer into the confident mutations for each VW mutant, I 

realized that all 15 red VW mutants had several of the same exact mutation present. To 

determine which mutations were “true” mutations, I ran BreSeq again but instead of aligning 

trimmed reads of each VW mutant to the assembled wild-type reference genome, I aligned the 

trimmed reads from the wild-type reference genome to the assembled wild-type reference 

genome. This produced a list of confident mutations that were the same mutations I had seen 

repeated in the individual VW mutants. Once I subtracted the output from the reference-to-

reference alignment, a list of “true” mutations for each VW mutant was generated (Table 21, 

True Mutations, column). 
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Table 21. Breseq Analysis Results 
 

Strain Total Mutations Confident Mutations True Mutations 
VW1 509 19 7 

VW3* 515 20 10 

VW6 521 24 12 

VW9 492 16 7 

VW11 513 27 15 

VW13* 524 23 11 

VW18 553 29 17 

VW25 517 20 6 

VW38 559 29 17 

VW40* 547 34 22 

VW41* 535 27 17 

VW46 524 27 17 

VW48* 536 30 18 

VW55 520 22 9 

VW57 560 24 14 

 
*Denotes confirmed VW mutants  (see section Confirmation of VW Mutants below) 

  

This list produced a total of 73 unique genes in which mutations had been identified in 

the 15 red VW mutant isolates. Looking more closely at the list, there were 5 genes that were 

present in more than half of the VW mutants (≥ 8 VW mutants). These 5 genes encode 

thioredoxin reductase, carbamate kinase/mobile element protein, galactose operon repressor, 

GalR-LacI family transcriptional regulators/L-asparaginase, mobile element protein, and tRNA-

Glu-TTC/tRNA-Ser-GCT. This pipeline is a great first step in starting to determine which 

gene(s) are responsible for the ‘pigmentation’ phenotype.  
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Revertant Analysis 

 To show that genes are truly responsible for a phenotype, a complementation analysis 

should be performed. In the case of a non-genetically manipulatable organism, such as A. urinae, 

an alternative approach known as revertant analysis must be performed. This revertant analysis 

involves performing a second round of mutagensis on the VW mutants.  

2-aminopurine Mutagenesis. When I attempted to revert the red VW mutants back to 

the wild-type black pigment, using 2-aminopurine as described in Materals and Methods, there 

appeared to be natural revertants. In the no treatment group conditions, black pigment colonies 

appeared on the plates Figure 40, right image. All black colonies were confirmed to be A. 

urinae using MALDI-TOF and this black phenotype persisted when struck onto subsequent 

BHI+CR+Glu agar plates. This demonstrated that the red VW mutant of A. urinae has the ability 

to naturally revert back to this black pigment.  

 

 
Figure 41. Representative Images of 2-Aminopurine Treatment Results. Left image is a 
plate from the group treated with the chemical mutagen 2-aminopurine. Right image is a plate 
from the control group that was not treated with a chemical mutagen. 
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Natural Revertants. I performed a spot characterization assay with VW mutants to 

further characterize the mutants for wrinkled colony formation. After six days, all red VW 

mutants formed papillae in each spot. These papillae were sub-cultured onto BAP to confirm that 

they were A. urinae with MALDI-TOF. Once confirmed, they were sub-cultured onto 

BHI+CR+Glu agar plates to confirm the color of the colony seen in the papillae (Figure 42, top 

image). Even though this was a long incubation time, these papillae could be seen as early at 72 

hours for some strains. This experiment was performed in triplicate with all red VW mutant 

strains and papillae grew for every strain.  

Figure 42, top image is a representative time course for each of the strains. All papillae 

were confirmed to be A. urinae. However, when the papillae were subbed onto BHI+CR+Glu 

agar plates to confirm the pigment phenotype, all papillae exhibited the black pigment 

phenotype. Figure 42, bottom images are representative of what the sub-cultured papillae look 

like on BHI+CR+Glu agar plates. This suggests that all mutants are subject to natural reversion. 

The frequency at which this natural reversion occurs could prove troublesome when attempting 

to determine the genotype responsible for this phenotype using chemical mutagenesis. 
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Figure 42. Spot Characterization Assay with VW Red Mutants- A time course of the spot 
assay with emersion of papillae at 144 hours. Bottom Images. The sub-culture results of papillae 
of mutant VW13. 

 

Confirmation of VW Mutant Phenotypes  

During the revertant analysis described above, I struck out VW mutants from the freezer 

to confirm that each strain maintained the phenotypes documented in Table 19. The majority of 

the VW mutants did not maintain any of the phenotypes documented in Table 19 upon re-culture 

[62.5%, (50/80), Table 22]. This includes 10 of the 15 red VW mutants, I had decided to 

sequence and analyze, as described above.  
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Table 22. Confirmation of VW Mutant Numbers 
 

Pigmentation Phenotype Number of VW Mutants Number of Confirmed Mutants 
Red 24 11 

Red with Black Density 32 0 
Opaque 11 18 

Smooth Black 13 1 
 

Therefore, I decided to end this line of investigation of generating mutants of one clinical 

isolate of A. urinae to instead focus on the natural clinical isolates. The clinical isolates are 

positive and negative for all the in vitro phenotypes (Table 12) and we used this information to 

choose different clinical isolates to perform WGS and determine the gene(s) responsible for the 

in vitro phenotypes (see Whole Genome Sequencing Comparison of Clinical Isolates to 

Determine Genes Responsible for the Flocking Phenotype above for this analysis). 
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CHAPTER 4 

DISCUSSION 

Introduction 

 The goal of my dissertation was to begin to establish the steps of pathogenesis for the 

“Emerging Uropathogen” A. urinae in the context of the bladder environment. There is very little 

known about the molecular mechanisms of pathogenesis for these “Emerging Uropathogens” 

that are primarily Gram-positive organisms. Beginning to understand the pathogenesis of A. 

urinae in the context of the bladder will help us understand how Gram-positive uropathogens 

cause disease in the bladder. This knowledge can help in the development of new and novel 

therapies to treat these types of bladder infections.    

 The goal of my dissertation was to establish a base knowledge of the pathogenesis of A. 

urinae in the bladder. I set out to study two very important stages of pathogenesis for a 

uropathogen: colonization/attachment to the urothelium and evasion of the innate immune 

response. This work is a combination of studying the A. urinae’s phenotypes related to infection 

and studying the host’s response to the A. urinae.  

 Through the completion of this dissertation, I characterized clinical isolates of A. urinae 

for their ability to exhibit an array of in vitro phenotypes related to pathogenesis in the bladder. 

In addition, I performed a comprehensive bioinformatics analysis to determine gene(s) 

responsible for one of the in vitro phenotypes (‘flocking’). Finally, I showed that members of the  
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FUM (including A. urinae) influence the innate immune response of HUCs. Below, I will 

summarize my results, discuss how these results demonstrate that A. urinae is a bad player in the 

bladder and describe how our understanding of these results are just the initial steps that need to 

be taken to understand A. urinae’s pathogenesis in the bladder. When appropriate, I will suggest 

additional experiments that can further our knowledge of the molecular mechanisms of A. urinae 

pathogenesis in the bladder. 

Implications and Discussion 

First, our group reguarly cultures urines and other samples from the lower urinary tract 

for different studies of the FUM in relation to lower urinary tract disorders. During the reading of 

these cultures, we characterize every bacterial morphology found on the culture plates and then 

store these bacterial isolates down in a Urinary MicroBiota (UMB) isolate collection. This UMB 

collection includes one of the largest collections of A. urinae isolates in the world. To date, our 

collection includes more than 330 clinical isolates of A. urinae and this work has looked 

specifically at 240 of these clinical isolates. All but three A. urinae clinical isolates were sampled 

from individuals who were experiencing LUTS. It is unclear whether A. urinae is a contributor 

or the cause of the symptoms in these individuals but the evidence is overwhelming that A. 

urinae is a uropathogen.  

 I demonstrated that A. urinae has the ability to form various in vitro phenotypes. There 

are three phenotypes (‘hockey puck,’ ‘flocking,’ and plastic-adherent biofilm formation) that 

demonstrate A. urinae’s adhesive capabilities. These adhesive properties could be key features in 

uropathogenesis because they may help A. urinae attach to the urothelium as well as aid in 
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protection from the innate immune response and antimicrobial agents to allow for persistence 

within the bladder (3). Also, there is a density-dependent phenotype (‘pigmentation’) that 

suggests A. urinae has a quorum sensing system. Quorum sensing has been shown in other 

bacteria to play a major role in colonization and attachment (218). 

Three phenotypes (‘hockey puck,’ ‘flocking,’ and ‘pigmentation’) have been seen in the 

past in other organisms but this is the first time they are being reported in A. urinae. First, the 

‘hockey puck’ phenotype has been seen in Moraxella catarrhalis, which is a human respiratory 

tract pathogen (223). The ‘hockey puck’ phenotype is used as a diagnostic marker by clinical 

microbiology labs as a first line of confirmation that an organism is M. catarrhalis (224). It is 

still unknown what gene(s) are responsible for this phenotype and whether or not it is important 

for virulence in M. catarrhalis or A. urinae.  

 Second, the ‘flocking’ phenotype has been seen in other organisms such as Streptococcus 

and Staphylococcus. The term used to describe the ‘flocking’ behavior in these organisms is just 

aggregation. Many reports deem aggregation as a virulence factor for strains of Streptococcus 

and Staphylococcus (225-228). Specifically, in Streptococcus sanguinis, aggregative strains 

cause more severe disease and are key to the pathogenesis of this organism in the case of IE 

(226). It is possible that ‘flocking’ positive strains of A. urinae are more virulent than ‘flocking’ 

negative strains of A. urinae.  

 Finally, there is the ‘pigmentation’ density-dependent phenotype where A. urinae 

colonies turn black from areas of high cell density to areas of low cell density in the presence of 

glucose. This particular black pigmentation on agar plates supplemented with Congo Red has 
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been seen in the Staphylococcus epidermidis (215, 216, 229, 230). It was shown that the black 

pigmentation was associated with the presence of the ica biofilm operon; however, no further 

work was performed to determine what caused the colonies to turn black when cultured on agar 

plates supplemented with Congo Red (229). We were unable to find any homologues to the ica 

biofilm operon in A. urinae at this time. 

 In addition, this density-dependent ‘pigmentation’ phenotype suggests that A. urinae has 

a quorum sensing system present. Our data, which shows the induction of the black pigment in a 

natural red variant in the presence of a natural black variant (Figure 15), futher support this 

hypothesis. However, we only see the induction of the black pigment when bacterial cells are 

present and not with supernatant only (Figure 16), which is contradictory to classic quorum 

sensing models (60). These data suggest an alternative model for the black pigment in A. urinae, 

which is protein diffusion of membrane-associated proteins. Protein diffusion in lipid membranes 

is a key part in many cellular signaling cascades (231, 232). It is possible that the black pigment 

is the result of protein diffusion to the surface membrane of A. urinae in response to a signal of 

sugar. This would be an interesting line of investigation to pursue in the future. 

I characterized all 240 clinical isolates of A. urinae for the three phenotypes (‘hockey 

puck,’ ‘flocking,’ and ‘pigmentation’) and characterized 24 of these clinical isolates for biofilm 

formation. These clinical isolates displayed different abilities to form these various phenotypes 

(Table 11). The ability of the isolates to exhibit the phenotype varied based on the conditions 

under which they were grown. 
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One condition feature of a clinical isolate’s ability to exhibit or not exhibit a phenotype 

was the addition of the sugar glucose. With the ‘hockey puck’ and ‘flocking’ phenotypes, a 

single isolate might be positive or negative for that phenotype depending on the type of sugar 

added to the media (Figure 9 and Figure 12). With the ‘pigmentation’ phenotype, the ability to 

produce the black pigment was dependent on the addition of glucose to the media. Finally, the 

ability of A. urinae to form a biofilm on plastic increased when glucose was added to the media. 

These results suggest the existence of a signal associated with sugar metabolism that induces the 

phenotypes. It would be worth investigating the role these sugars play in the ability of A. urinae 

to exhibit these phenotypes. 

 In this work, we also performed a comprehensive bioinformatics analysis on 24 of the 

240 clinical isolates of A. urinae. All 24 A. urinae clinical isolates were obtained from a variety 

of women experiencing LUTS; however, they were all highly related (Figure 20). We wanted to 

use the whole genome sequences of these isolates to try and determine the gene(s) responsible 

for the in vitro phenotypes. We decided to focus on the ‘flocking’ phenotype because the 3 

hyper-flocking isolates clustered phylogenetically. We compared their genomes to those of the 

13 isolates that did not flock and found significant differences in the predicted metabolic 

capacities. The first of these differences was that the non-flocking isolates lacked an operon that 

is predicted to encode two systems for the import and initial metabolism of β-glucosides. The 

epithelial lining of the bladder, known as the urothelium, is lined with a polysaccharide 

glycosaminoglycan (GAG) layer. This GAG layer is known to contain β-linked disaccharide 
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repeating units (233). It is possible that the hyper-flocking isolates’ ability to metabolize these β-

disaccharide units helps enhance their survival in vivo.  

Another difference between the non-flocking and hyper-flocking isolates is that non-

flocking isolates have a complete tryptophan and auxin biosynthesis pathway, while the hyper-

flocking isolates lack the tryptophan synthase α chain. The tryptophan synthase α chain 

catalyzes the last step in de novo biosynthesis of tryptophan and is thought to contribute to auxin 

biosynthesis. The absence of this gene in the hyper-flocking isolates suggests that they cannot 

synthesize tryptophan or auxin. Auxin is a phytohormone important for plant cell growth and 

development and is produced by both symbiotic and pathogenic plant bacteria (234). The 

chemical name for auxin is indole-3-acetic-acid (IAA) and indole has been shown to be an 

intercellular signaling molecule between bacteria in the gut microbiome (235). Indole is 

produced by both Gram-negative and Gram-positive species but a lot of the work done to study 

indole signaling has been done in the context of Gram-negative bacteria (235). Specifically, in E. 

coli, addition of indole was shown to decrease biofilm formation (236) and decrease cell 

adherence to epithelial cells (237). Additional studies are needed to determine if auxin or IAA 

acts in similar signaling events in A. urinae and are proposed in the Future Directions section 

below.  

This work has some limitations. A major limitation was the inability to complete the 

forward genetics approach to study the gene(s) responsible for the in vitro phenotypes of A. 

urinae. My attempts to use chemical mutagenesis to produce ‘pigmentation’ mutants of A. urinae 

were successful but incomplete. I produced 30 VW mutants with 11 of the VW mutants being a 
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red mutant. We sequenced 45% (5/11) of the red VW mutants and have an idea of some of the 

gene(s) that are responsible for the black ‘pigmentation’ phenotype. However, I did not pursue 

this line of investigation because the majority of the VW mutants that I produced [62.5%, 

(50/80)] did not maintain their phenotype, including the majority of the red ‘pigmentation’ 

mutants (Table 42).  

There are several reasons as to why I think the majority of the red ‘pigmentation’ mutants 

did not maintain their phenotype. The first is that this density-dependent ‘pigmentation’ 

phenotype may be important for A. urinae cell survival. This concept is supported by the fact that 

A. urinae red ‘pigmentation’ mutants naturally revert back to the black ‘pigmentation’ (Figure 

41 and 42). This ease of natural reversion suggests that this ‘pigmentation’ phenotype is 

important for A. urinae and that it may involve a large gene network with redundancy to help 

maintain the phenotype. If this were the case, then a more directed mutagenic approach would be 

needed.  

In addition, A. urinae may have a very efficient system that can repair or reverse the 

alkylation events induced by the chemical mutagen EMS. Some literature suggests that some 

DNA bases changed by EMS can gradually hydrolyze from the deoxyribose on the DNA 

backbone and leave an apurinic site (195). This leaves an unstable site that would require an 

immediate repair. At this time, A. urinae’s repair system remains unknown due to lack of 

knowledge of the genome.  

Another major limitation to studying these in vitro phenotypes of A. urinae and whether 

or not these phenotypes are important for survival in the bladder environment is that A. urinae is 
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a genetically intractable organism. This means we are unable to perform classic “reverse” 

genetics such as deleting a gene and seeing if it affects the phenotype. Until one can genetically 

manipulate A. urinae, there are limits in making a solid connection between an observed 

phenotype and the genotype responsible for that phenotype in this organism.  

To our knowledge, this work is the first to characterize the interaction of A. urinae with 

HUCs. I demonstrated that high numbers of A. urinae were cytotoxic to HUCs in vitro and that 

A. urinae cells must be alive in order to observe the cytotoxic effects. By killing HUCs, it shows 

that A. urinae can break the barrier function of the urothelium and disseminate to lower layers of 

the urothelium. This breaking of the barrier function is a key step in surviving and persisting in 

the bladder environment.  

Another step in pathogenesis for a uropathogen is evasion of the innate immune response. 

I also began to show how members of the FUM, including A. urinae, inhibit the immediate 

cytokine response when high CFU of bacterial cells are present. This inhibition of the immediate 

cytokine response demonstrates that A. urinae can inhibit the innate immune response of the 

urothelium. We know that UPEC-induced inhibtion of cytokine production is lost when genes for 

LPS biosythnesis or outer membrane proteins are deleted (44, 45). It may be the case that A. 

urinae also alters its outer components to avoid activation. However, in our case, we see that the 

HUCs are constantly producing high amounts of IL-6 and IL-8 and that A. urinae dampens this 

response (Figure 31). It is unclear how A. urinae inhibits immediate cytokine suppression. It 

could be that A. urinae alters its surface to not be recognized or it could be that A. urinae directly 
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binds to the TLR receptor to block activation. I believe this is an important distinction and a line 

of investigation that must be explored. 

We also observed that FUM bacteria alter the surface level TLR expression of HUCs. I 

showed that this alteration of surface level TLR expression by the FUM bacteria has an effect on 

the HUCs ability to response to other innate immune signals (IFN-γ). This inhibition of surface 

TLR expression and response to innate immune signals suggest that the bacteria are actively 

dampening the innate immune response of the urothelium. This can be seen as advantageous for 

both pathogenic and commensal organisms of the FUM. In both cases (pathogenic and 

commensal organisms), suppressing the HUC’s response to innate immune signals would allow 

the bacteria to colonize the urothelium without the threat of being recognized and destroyed by 

the immune system. A key next step is to repeat these experiments and see that these trends 

remain. 

Future Directions 

This dissertation is just the foundation of a whole course of investigations into the 

pathogenesis of A. urinae in the context of the bladder environment. I have already alluded to 

some future directions in the Implications and Discussion section above; for example, testing 

the addition of more sugars to determine the sugar signal for each in vitro phenotype, performing 

more replicates of the interaction of A. urinae with the HUCs to test the innate immune response 

and determining how A. urinae inhibits the innate immune response. In this section, I will give a 

more in-depth discussion and suggestion of immediate actions that can take place to help move 

this work along. 
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Roles of Auxin Biosynthesis and β-Glucoside Metabolism in ‘Flocking’ Phenotype 

 One line of investigation that can be started immediately is to relate Auxin biosynthesis 

and β-Glucoside metabolism with the ability of a clinical isolate to exhibit the ‘flocking’ 

phenotype.  

First, the non-flocking A. urinae isolates that have the auxin or indole biosynthesis genes 

present must be tested for production of indole. A common biochemical test done in the clinical 

microbiology lab is the indole test. There are two different methods for the indole test to be able 

to differentiate between weak and strong indole producing organisms (224). The first method is 

incubating the organism of interest in an overnight broth culture and then adding Kovac’s 

reagent to the culture (224). If the organism produces indole, the Kovac’s reagent will turn pink. 

The second method is known as the spot test method for organisms known to rapidly produce 

indole (224). The combination of these two methods can be used to determine the range of an 

organism’s ability to produce indole.  

I would suggest first testing the clinical strains of A. urinae with both methods to get a 

range of A. urinae’s ability to produce indole. The next step would be determining if indole 

production of A. urinae is important for virulence control or biofilm formation. A simple first 

test would be to add indole to hyper-flocking strains that are unable to produce indole and see if 

there is a decrease in their ability to form aggregates. In addition, I suggest investigating if indole 

has a similar suppressive effect on A. urinae’s ability to form a biofilm on plastic as seen with E. 

coli. One could ask if non-indole producing A. urinae isolates can form biofilms on plastic better 

than indole producing A. urinae isolates. Another line of investigation involving indole is 
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adherence to HUCs in vitro. It is known that E. coli attachement to epithelial cells decreases in 

the presence of indole; therefore, one could ask does indole decrease A. urinae’s ability to attach 

to HUCs in vitro? At this time, we have not shown that A. urinae directly attaches to HUCs in 

vitro but once it has been shown this would be an easy test to determine if indole decreases A. 

urinae’s ability to interact with HUCs. 

 Next, the hyper-flocking isolates of A. urinae that were significantly enriched for CDS 

predicted to encode proteins involved in β-Glucoside Metabolism (Table 17) must be tested for 

their ability to metabolize β-Glucoside. One way to test if these hyper-flocking isolates can 

metabolize β-Glucoside is to add cellobiose to the media of the hyper-flocking isolates and see if 

there is an increase in the biomass. In addition, one could add cellobiose to non-flocking isolates 

and see if there is no change in biomass or if there is a negative effect on the bacterial cells 

because they are unable to metabolize this complex sugar. 

Until we are able to genetically manipulate A. urinae, we are unable to see if the gene(s) 

in the auxin biosynthesis pathway or the β-Glucoside metabolism pathway are important for A. 

urinae exhibiting the ‘flocking’ phenotype. If A. urinae becomes a genetically tractable 

organism, then the first genes I would suggest deleting are those found in Table 17 and then see 

how that deletion affects the ‘flocking’ phenotype.  

Completion of VW Mutant Analysis 

Another line of investigation is the completion of the forward genetics approach to 

determine the gene(s) responsible for the black ‘pigmentation’ phenotype of A. urinae. I was able 

to produce 30 VW mutants of A. urinae using EMS chemical mutagenesis. There are 11 of the 
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30 VW mutants that are red mutants. I suggest that more rounds of EMS chemical mutagenesis 

should be complete to generate more red VW mutants. 

Only 5 of the 11 red VW mutants have been sequenced and analyzed with the Breseq 

pipeline. I suggest that the remaining 6 red VW mutants be sequenced and analyzed with Breseq 

to add to our knowledge of what gene(s) may be involved with the black ‘pigmentation’ 

phenotype.  

Making A. urinae a Genetically Tractable Organism 

One of the most important next steps in studying the pathogenesis of A. urinae is to make 

it a genetically tractable organism. In Appendix O, I summarize my attempts at introducing 

DNA into A. urinae. All my attempts to introduce DNA into A. urinae, either naturally with 

conjugation or transformation or unnaturally with electroporation, were unsuccessful. This is not 

uncommon in Gram-positive organims as they are reputed to be difficult to genetically 

manipulate because standard techniques mentioned above are inefficient (238, 239) and plasmids 

are often unstable in Gram-positive bacteria (240). This is a problem that many researchers are 

facing in microbiome work because various groups find associations of certain Gram-postive 

bacteria with disease or health but they are unable to show mechanistically how that Gram-

positive bacterium contributes to health or disease because the bacterium is not genetically 

tractable. However, this all may change as one group may have found a way to transfer DNA to 

these genetically intractable organisms (241). 

In summary, Brophy et al. developed an approach based on the integrative and 

conjugative element known as ICEBs1 from Bacillus subtilis. ICEBs1 is part of a large family of 



 
 

 
 

163 

mobile genetic elements known as ICEs that are able to integrate into the chromosome and 

propagate by host replication and cell division (242). Brophy et al. created a donor strain known 

as XPORT that transports miniaturized versions of ICEBs1 into genetically intractable bacteria. 

They tested the XPORT system with 57 different bacterial species and had a 61% success rate. I 

propose utilizing this system to make A. urinae a genetically tractable organism.  

Bioinformatics Homolog Approach 

Until we can make A. urinae a genetically tractable organism, we can turn to 

bioinformatics to help give us insight into the genome of A. urinae and what gene(s) are involved 

in its pathogenesis. The bioinformatics comparison of the 24 whole genome sequences of A. 

urinae showed that majority of the core genome of A. urinae remains unknown [34%, 

(456/1355)]. Because much of the genome remains unknown, we need to start using comparative 

genomic methods to see if A. urinae contains the exact genes and/or homologues of genes that 

are known to be important for the pathogenesis of other uropathogens.  

There are two types of comparative genomic methods out there one can use to try and 

relate genotype to phenotype. The first method is the program Breseq (201) that was used in this 

document. One can compare two genomes and the output is all the possible differences present 

between the genomes. This method is great in pinpointing the exact base-pair mutation or 

possible deletion of a gene but it is impossible to narrow down what genetic content actually 

relates to the phenotype. The second method is where one determines whether what genes are 

present or absent in the genomes and does not account for any possible homologues or 
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mutations. Examples of these programs include the RAST annotation pipeline (243), as well as 

the BASys bacterial annotation system (244). 

 Currently, members of the LUEREC team are working to create a bioinformatics method 

that combines these two methods to not only get a list of genes that are present and absent but 

also homologues and polymorphisms so that one can make the connection between phenotype 

and genotype. For example, with the density-dependent ‘pigmentation’ phenotype, we would 

compare the genomes of a black-pigmented and red-pigmented A. urinae clinical isolate to a list 

of potential gene(s) involved with quorum sensing in Gram-positive organisms, such as 

autoinducer-2 or an autoinducing peptide. The output of this comparison would be a list of 

potential homologues to those quorum-sensing genes of interest. This will help shed light on 

whether gene(s) exist in A. urinae that relate to quorum sensing.  Another part of the output is a 

list of differences in the genomes of the black- and red-pigmented clinical isolates of A. urinae. 

This would allow one to be able to narrow down the potential gene(s) that are involved in the 

‘pigmentation’ phenotype of A. urinae.  

Investigation of Sugar Signals for Biofilm-like Phenotypes 

As stated above, all of the in vitro phenotypes of A. urinae appear to be enhanced with 

the addition of glucose to the media (i.e. ‘hockey puck’ formation and increased biofilm on 

plastic). This suggests the existence of a signal involving sugar metabolism that induces the 

phenotypes, which are primarily phenotypes related to biofilm formation. 

Sugars are carbon sources for bacteria and one of the most important regulatory 

mechanisms that involves metabolism of carbon sources is known as carbon catabolite repression 
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(CCR) (245). In CCR, bacteria inhibit the expression of functions when a preferred carbon 

source is present. In Gram-positive organisms, CCR is achieved with transcription repression. 

Specifically, Bacillus subtilis, the catabolite control protein A (CcpA) is responsible for 

decreasing biofilm formation when high levels of glucose are present (246). A similar process 

occurs in Staphylococcus epidermidis biofilm formation, where the presence of glucose inhibits 

expression of the ica biofilm operon genes even though the S. epidermidis cells exhibit a biofilm 

phenotype (247).  

One way to determine if CCR is involved in any of the in vitro phenotypes of A. urinae 

would be to determine if CCR elements common in Firmicutes, such as CcpA, have homologs in 

A. urinae using the Bioinformatics Homolog Approach outlined above. At the same time, one 

could grow A. urinae cells in the presence or absence of glucose and look at the expression of 

either sugar transporters or transcription activators as these are known to be controlled via CCR 

(245). I would hypothesize that if CCR were playing a role in A. urinae exhibiting these 

phenotypes, we would see an inhibition in the expression of sugar transporters or transcription 

activators when glucose is present.  

A. urinae and Innate Immune Response in HUCs 

I observed that A. urinae dampens the immediate secreation of cytokines and the surface 

level expression of TLRs. This raises the question, how does A. urinae suppress the innate 

immune response? A classic approach used to study the evasion of the innate immune response 

by UPEC in the bladder is to delete genes of UPEC and seek the role they play in enhancing or 

suppressing the innate immune response of the urothelium. Unfortunately, we are not able to do 
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this with A. urinae but that does not mean this line of investigation needs to be stopped. Instead, 

we can look on the host side and ask how A. urinae suppresses the innate immune response of 

the HUCs. 

One way to look at how A. urinae suppresses the innate immune response in HUCs is to 

use reverse genetics with the HUCs. Research groups wishing to delete any gene of interest in 

eukaryotic cells are now using the genome editing system known as the CRISPER-Cas9 system 

(248). Many research groups have been using this system in a screen, where each gene in the 

eukaryotic cell is deleted and one looks for a loss of a phenotype of interest (249-253), including 

genes involved in immune responses of eukaryotic cells (251). In the case of A. urinae and the 

innate immune response, the CRISPR-cas 9 system could be used to delete every single gene in 

the HUC. Once this deletion library is complete, one could treat this deletion library with 

bacterial cells of A. urinae and screen for loss of suppression, either in production of cytokines or 

surface level expression of TLR.  

A. urinae is not the only organism about which we can ask these questions. We have 

evidence that the other members of the urinary microbiota (L. crispatus) also play a role in 

shaping the urothelial’s response to inflammatory signals. It would be worth treating HUCs with 

other members of the FUM or even a consortium of organisms from the FUM and see how they 

shape the innate immune response of the HUCs.  

A. urinae and Neurotransmitter Pathways in HUCs 

As stated in the Introduction, the urothelium is a neuronal-like epithelial layer with the 

ability to sense and produce its own neurotransmitters or neuromediators (254). Urothelial cells 
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express a number of receptors and ion channels similar to different nerve cells elsewhere in the 

body and this allows the cells to secrete various signals that can activate, inhibit or modulate the 

surround sensory neurons (254). The etiology for many lower urinary tract disorders is either the 

enhancement or inhibition of these neuronal-like pathways in the urothelium. For example, OAB 

is thought to be caused by an overproduction of the neurotransmitter acetylcholine (Ach), which 

binds to nicotinic and cholinergic receptors on the detrusor urinae muscle and causes contraction 

and the feeling of urgency (97).  

A lot of recent literature has highlighted the connection of the microbiota and the brain 

(255). It is well recognized that the gut microbiota can affect the brain’s physiological, 

behavioral and cognitive functions but the exact mechanism is not fully understood. 

Interestingly, gut bacteria have been shown to synthesize neurotransmitters such as gamma 

amino acid, butyric acid, 5- hydroxytryptamine (HT), dopamine, and short chain fatty acids 

(SCFAs) (256). The production of these neurotransmitters by the gut microbiota has been shown 

to influence the human body, including the brain (257). 

Since we have shown that A. urinae is associated with individuals with OAB (103), A. 

urinae may be producing neurotransmitters, such as Ach, or other signaling molecules that affect 

the urothelium. It would be interesting to test if treatment of HUCs with A. urinae increased 

HUCs production of Ach or treatment of HUCs with A. urinae may increase the muscarinic 

receptors on HUCs to make them more sensitive to the Ach that is present. 

It is also possible that other members of the FUM may alter the urothelium’s ability to 

sense and produce these signals. This is not too far fetched an idea since the urothelium-based 
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hypothesis for LUTS states that changes in the urothelial receptor function and neurotransmitter 

release may lead to enhancement of involuntary bladder contractions (258).  

I believe that this is a critical next step in the urinary microbiome world because now that 

we have shown the existence of a FUM, we must understand how it interacts with and influences 

the urothelium. 

Conclusion 

We are just beginning to understand the lifestyle of A. urinae in the bladder environment. 

My hope is that this dissertation formed a foundation upon which we can begin to understand A. 

urinae pathogenesis and the mechanisms by which this microbe interacts with urothelium. A 

continuation of this work should have major implications for treatment of A. urinae in the 

context of a subset of lower urinary tract disorders. In addition, I believe my work has laid the 

groundwork for how the urothelium initiates an immune response to invading uropathogens, 

specifically Gram-positive uropathogens. The knowledge from this dissertation can be applied to 

other organisms (both commensal and pathogenic) of the FUM and help increase our knowledge 

of how the urothelium interacts with the FUM. 
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These appendices provide the texts of all current publications that are not directly related 

to the dissertation. The dissertation itself combined with the following appendices represents the 

entirety of my graduate work. At the beginning of each appendix section, the manuscript citation 

will be listed, followed by a short summary of the work. The full manuscript text, all figures and 

tables, and complete methods are included. Please note that due to ongoing optimization and 

validation, the methods listed in each appendix section may vary from the methods listed in the 

main thesis. If there was any further work that did not make it into publication, such work will be 

listed in the addendum following each appendix section. 



 
 

 
 

171 

 

 

 

 

 

 

 

APPENDIX B 

THE FEMALE URINARY MICROBIOME: A COMPARISON OF WOMEN WITH AND 

WITHOUT URGENCY URINARY INCONTINENCE 

 

Pearce, M. M., Hilt, E. E., Rosenfeld, A. B., Zilliox, M. J., Thomas-White, K., Fok, C., 
Kliethermes, S., Schreckenberger, P. C., Brubaker, L., Gai, X. and Wolfe, A. J. 

The Female Urinary Microbiome: a Comparison of Women with and without Urgency Urinary 
Incontinence. MBio. 2014 Jul 8;5(4):e01283-14. doi: 10.1128/mBio.01283-14. PMID: 25006228 
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Overview of Appendix B 

This paper was the first comparison between women with UUI and asymptomatic 

continent controls. Women with UUI and asymptomatic controls were recruited at Loyola’s 

urogynecgology department. At the baseline visit, all UUI women underwent a clinical 

assesment, provided a catheterized urine specimen, and were prescribed 5mg of an 

anticholinergic. The asymptomatic controls also underwent clinical assessment and provided a 

catheterized urine specimen. This paper is the description and comparison of the two cohorts at 

baseline. All samples underwent 16S rRNA gene sequencing and EQUC. Another publication, 

Thomas-White & Hilt et al. 2015 (Appendix D) (98), describes the conclusion of the study.  

In this work, we found that the microbiota/microbiomes of UUI women were more 

diverse than asymptomatic control women, by total species isolated and number of OTUs. In 

addition, we identified a single bacterial species, Lactobacillus crispatus that was associated with 

asymptomatic controls and 10 species associated with UUI, including Actinobaculum schaalii, 

Actinomyces neuii, Aerococcus urinae, Arthrobacter cumminsii, Corynebacterium coyleae, 

Corynebacterium riegelii, Gardnerella vaginalis, Lactobacillus gasseri, Oligella urethralis, and 

Streptococcus anginosus. Finally, this paper included an analysis of the comparison of 16S 

rRNA gene sequencing to EQUC and found that the two methods of testsing were comparable 

and that they both have strengths and weaknesses. 

Abstract 

Bacterial DNA and live bacteria have been detected in human urine in the absence of 

clinical infection, challenging the prevailing dogma that urine is normally sterile. Urgency 

urinary incontinence (UUI) is a poorly understood urinary condition characterized by symptoms 
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that overlap urinary infection, including urinary urgency and increased frequency with urinary 

incontinence. The recent discovery of the urinary microbiome warrants investigation into 

whether bacteria contribute to UUI. In this study, we used 16S rRNA gene sequencing to classify 

bacterial DNA and expanded quantitative urine culture (EQUC) techniques to isolate live 

bacteria in urine collected by using a transurethral catheter from women with UUI and, in 

comparison, a cohort without UUI. For these cohorts, we demonstrated that the UUI and non-

UUI urinary microbiomes differ by group based on both sequence and culture evidences. 

Compared to the non-UUI microbiome, sequencing experiments revealed that the UUI 

microbiome was composed of increased Gardnerella and decreased Lactobacillus. Nine genera 

(Actinobaculum, Actinomyces, Aerococcus, Arthrobacter, Corynebacterium, Gardnerella, 

Oligella, Staphylococcus, and Streptococcus) were more frequently cultured from the UUI 

cohort. Although Lactobacillus was isolated from both cohorts, distinctions existed at the species 

level, with Lactobacillus gasseri detected more frequently in the UUI cohort and Lactobacillus 

crispatus most frequently detected in controls. Combined, these data suggest that potentially 

important differences exist in the urinary microbiomes of women with and without UUI, which 

have strong implications in prevention, diagnosis, or treatment of UUI.  

New evidence indicates that the human urinary tract contains microbial communities; 

however, the role of these communities in urinary health remains to be elucidated. Urgency 

urinary incontinence (UUI) is a highly prevalent yet poorly understood urinary condition 

characterized by urgency, frequency, and urinary incontinence. Given the significant overlap of 

UUI symptoms with those of urinary tract infections, it is possible that UUI may have a 

microbial component. We compared the urinary microbiomes of women affected by UUI to 
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those of a comparison group without UUI, using both high-throughput sequencing and extended 

culture techniques. We identified statistically significant differences in the frequency and 

abundance of bacteria present. These differences suggest a potential role for the urinary 

microbiome in female urinary health.  

Introduction 

The female urinary tract is a previously overlooked microbial niche. Recent detection of 

bacterial DNA (95, 259, 260), and live bacteria (79, 96) in urine from women with and without 

lower urinary tract symptoms has provided compelling evidence that the female urinary tract 

possesses its own unique microbiota. Research into the roles of these bacterial communities in 

urinary health and disease requires sensitive and specific detection and classification. Although 

the comparatively low bacterial load in urine challenges such effort, expanded culture conditions 

have allowed researchers to detect bacteria at lower levels than previously used techniques. For 

example, we recently reported that bacteria overlooked by standard culture conditions are 

cultivable by adjusting the growth conditions to include increased urine volume, diverse growth 

media and atmospheric conditions, and lengthened incubation time (96). Using expanded 

quantitative urine culture (EQUC), we isolated bacteria from 80% of examined urine samples 

collected by transurethral catheter, most (92%) of which had been reported as “no growth,” using 

a standard clinical microbiology urine culture protocol and a 103-CFU/ml threshold (96). Despite 

this significant advance, many urinary bacteria cannot be cultured under these conditions. Thus, 

culture-independent methods for bacterial detection, such as high-throughput sequencing of the 

16S rRNA gene, have emerged as the predominant research technique, especially as they become 

increasingly accessible due to declining sequencing cost and improved bioinformatics  
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tools (261).  

There is a clinical need for these improved research techniques. For example, urgency 

urinary incontinence (UUI) is poorly understood chronic urinary condition that is often attributed 

to abnormal neuromuscular signaling and/or functioning. However, alternative or 

complementary mechanisms beyond neuromuscular abnormalities must be considered, since 

UUI pharmacological treatments aimed at the overactive bladder are ineffective in approximately 

half of the pharmacologically treated UUI population (97, 102). 

UUI is common, affecting 1.5 to 22% of the U.S. population, most frequently women and 

the elderly (102). Affected patients experience a sudden, intense need to urinate with involuntary 

urine loss that detracts from the patient’s quality of life (262). A proportion of UUI cases resolve 

over time; however, it is a chronic condition for most women (102). There is a large 

socioeconomic burden, with the costs of UUI in the United States projected to reach $76.2 

billion by 2015 (263).  

The clinical diagnosis of UUI requires exclusion of urinary tract infections (UTI); thus, 

infectious etiology is not considered for UUI. Given the clinical similarly of UUI and UTI 

symptoms, however, we and others have recently used expanded culture techniques (79, 96) and 

quantitative PCR (259) to show the presence of bacteria in standard culture- “negative” urine 

samples collected from UUI patients.  

In this analysis, we utilized both 16S rRNA gene sequencing and EQUC to characterize 

the microbiome in urine obtained by transurethral catheter from women seeking treatment for 

UUI and a comparison group of women without UUI. Utilizing both techniques, we identified 
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statistically significant differences in the frequency and abundance of bacteria present, 

suggesting a potential role for the urinary microbiome in female urinary health. 

Results 

Cohort Description. 

Table B.1 displays the UUI symptoms by cohort. Consistent with the intended 

composition of the cohorts, the UUI cohort reported more distress on both the urinary and 

prolapse subscales of the Pelvic Floor Distress Inventory (PFDI) (urinary distress inventory 

[UDI], 102 [±47] versus 11 [±11] [P < 0.05]; Pelvic Organ Prolapse Distress Inventory [POPDI], 

70 [±52] versus 28 [±32] [P < 0.05]). The UUI cohort also reported more-severe overactive 

bladder (OAB) symptoms (66 [±23] versus 4 [±7]; P < 0.05) and decreased quality of life as 

measured by health- related quality of life (HRQL) (56 [±25] versus 99 [±3]; P < 0.05) compared 

to the non-UUI cohort. Table B.1 also displays the participant demographics by cohort. Marital 

status, diabetes, smoking, and prior pelvic surgeries did not differ by group. However, the UUI 

cohort was heavier (body mass index [BMI], 32 [±8] versus 28 [±6]; P = 0.01), less likely to be 

using estrogen (27% versus 61%; P < 0.05), and older (63 [±12] versus 49 [±14]; P < 0.05). 

Sequence-Based Characterization of Female Urinary Microbiome. 

 Bacterial DNA was detected in similar proportions of urine samples (UUI, 63.9% 

[23/36]; non-UUI, 65.8% [25/38]). The lack of bacterial detection in the remaining samples may 

be due to low bacterial load, insufficient bacterial lysis, and/or primer bias rather than being 

conclusive evidence of no bacteria in these urine samples.  

 Further analyses were performed on the samples with detectable bacterial DNA (for UUI, 

n = 23; for non-UUI, n = 25). The sequences from these samples were classified into 22 phyla, 
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34 classes, 69 orders, 150 families, and 386 genera. The most abundant phyla detected were 

Firmicutes, with a median abundance of 60%, followed by Actinobacteria (16%), Proteobacteria 

(1.5%), and Bacteroidetes (0.6%). From each sample, the majority of sequences could be 

classified to the genus level. The two exceptions (C031 and C033) were predominantly 

Enterobacteriaceae (Figure B.1). In the remainder of the samples, the percentage of sequences 

per sample that could not be classified to the genus level ranged from 0.02 to 24.1%. At the 

genus level, the majority of urine samples were dominated by one or two bacterial families or 

genera, most frequently Lactobacillus and Gardnerella (Figure B.1). Urine samples with the 

same dominant taxa clustered together in a dendrogram generated via hierarchical clustering of 

the Euclidean distance between urine samples (Figure B.2). We observed six groups, now 

termed urotypes, which were named based on either the dominant family or genus (Gardnerella, 

Sneathia, Staphylococcus, Enterobacteriaceae, and Lactobacillus) or the lack of a dominant 

family or genus (“diverse”). The most frequent urotype in both cohorts was Lactobacillus (43% 

UUI and 60% non-UUI controls), followed by Gardnerella (26% UUI and 12% non-UUI 

controls) (Table B.2). Three urotypes were present in both cohorts (Gardnerella, Lactobacillus, 

and diverse). The Staphylococcus and Sneathia urotypes were present only in the UUI cohort, 

whereas the Enterobactericeae urotype was present only in the Non-UI cohort; however, these 

differences were not statistically significant at our current sample size (Figure B.1 and Table 

B.2).  

 We calculated the frequency that each genus was observed in each cohort (Figure B.3A). 

While Lactobacillus was detected in every sample in both cohorts, some genera were observed 

more frequently in one cohort than in the other. For example, Gardnerella (99% UUI, 60% non-  
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Table B.1. Participant demographics and symptoms 
 

 Value for group (n
a
)
b or statistic 

Characteristic UUI  
(60) 

Non-UI 
Controls 

(58) 

p-value 

Demographics    
Age (yrs) 63 (±12) 49(±14) <0.05 
Race [no. (%)]   0.42 

Caucasian 50 (83) 41(77)  
African American 10 (17) 11 (21)  
Asian 0 (0) 1(2)  

Estrogen Status [no. (%)]   <0.05 
Estrogen Positive 16 (27) 31 (61)  
Estrogen Negative 43 (73) 20 (39)  

BMI (kg/m
2
) 32 (±8) 28 (±6) 0.01 

Hypertension [no. (%)] 21 (35) 9 (17) 0.03 
Coronary artery disease [no. (%)] 9 (15) 1 (2) 0.02 

Symptoms    
Symptom score

d
 66 (±23) 4 (±7) <0.05 

Health related quality of life (HRQL)
d
 56 (±35) 99 (±3) <0.05 

Urinary Distress Inventory (UDI)
e
 102 (±47) 11 (±11) <0.05 

Pelvic Organ Prolapse Distress Inventory 
(POPDI)

e
 

70 (±52) 28 (±32) <0.05 

Colorectal-Anal Distress Inventory 
(CRADI)

e
 

71 (±61) 43 (±62) 0.02 

an, no. of subjects. bMean ± SD or no. (%). 
cPearson’s chi-square and Fisher’s exact tests were used with categorical variables. Student’s 
t test was used with continuous variables. 
dBased on OAB questionnaire. 
eBased on Pelvic Floor Disease Inventory. 
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Table B.2. Urotype frequency by cohort 
 

 No. (%) of participants for group (n
a
) p-value

c
 

Urotype UUI (23)
b
 Non-UI Controls 

(25)
b
 p-value 

Gardnerella 6 (26) 3 (12) 0.23 
Sneathia 2 (9) 0 (0) 0.22 
Diverse 4 (17) 5 (20) 0.99 
Staphylococcus 1 (4) 0 (0) 0.48 
Enterobacteriaceae 0 (0) 2 (8) 0.49 
Lactobacillus 10 (43) 15 (60) 0.39 
an, no. of subjects. cFisher’s exact test. bAnalysis performed on the subset of samples 
with detectable bacterial DNA. 

 

Figure B.1. Urinary microbiome profile by cohort based on 16S rRNA gene V4 
sequencing. Stacked bar plots depict the sequence abundances of the 15 most abundant 
genus- or family-level taxa in the UUI and non-UUI cohorts. Taxa were ranked according 
to mean abundance across all samples. The y-axis represents the percentage of sequences 
for a particular bacterial taxon; the x-axis represents the study participants separated by 
cohort. The family Enterobacteriaceae could not be classified to the genus level. The 
remainder of sequences was combined in the category labeled Other. 
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UUI; P = 0.003) and Aerococcus (74% UUI, 28% non-UUI; P = 0.002) were detected more 

frequently in the UUI cohort than in the non-UUI one. Conversely, Staphylococcus (61% UUI, 

92% non-UUI; P = 0.01) was observed less frequently in the UUI cohort than among non-UUI 

women. Actinobaculum (61% UUI, 44% non-UUI; P = 0.24) and Sneathia (22% UUI, 4% non-

UUI; P = 0.09) exhibited a trend toward increased detection in the UUI cohort; however, this 

difference was not statistically significant at our current sample size. 

 By calculating frequency, all samples are weighted similarly regardless of sequence 

abundance. For example, urine samples collected from control participants C013 and C036 both 

contained Lactobacillus sequences; however, the sequence abundances differed. For C013, 

Lactobacillus represented more than 99% of the sequences; for C036, Lactobacillus represented 

less than 5% of the total sequences (Figure B.1). To further investigate these differences, the 

median sequence abundance was calculated and compared between the cohorts (Figure B.3). 

The UUI cohort exhibited decreased Lactobacillus (14% UUI, 67% non-UUI; P = 0.01) and 

increased Gardnerella (4% UUI, 0% non-UUI; P = 0.003) sequence abundances compared to 

those for the control cohort. Figure B.S2 in the supplemental material displays the distribution of 

the 15 most abundant taxa detected by sequencing. 

To measure the richness of the UUI and non-UUI urinary microbiomes, the number of 

observed operational taxonomic units (OTUs) and the Chao1 estimator were calculated. To 

measure diversity, the Shannon index and inverse Simpson index were calculated. Overall, the 

urinary microbiome exhibited an average of 97 OTUs per urine, a Chao1 index of 7,210, an 

inverse Simpson’s index of 1.72, and a Shannon index of 3.93 (Table B.3). There were no 

statistically  
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Figure B.2. Clustering of the urinary microbiome into urotypes. The 
dendrogram was based on hierarchical clustering of the Euclidean distance 
between samples in the combined UUI and non-UUI cohorts. The dashed line 
depicts where the clades were divided into 6 urotypes: Gardnerella, Sneathia, 
Diverse, Staphylococcus, Enterobacteriaceae, and Lactobacillus. The Stacked bar 
plot below the dendrogram depicts the sequence abundances of the overall most 
abundant taxa. 
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Figure B.3. Comparison of sequence-based urinary microbiome by cohort. The frequency 
(A) and median sequence abundance (B) of the overall most abundant taxa detected by 
sequencing were calculated. The families Enterobacteriaceae, Lachnospiraceae, and 
Ruminococcaceae could not be classified to the genus level. In panel A, a combination of 
Pearson chi-square and Fisher’s exact tests was used to compare the frequency of genera 
detected by sequencing between the cohorts. “*” represents a P value of <0.05. In panel B, a 
Wilcoxon rank sum test was used to compare the median sequence abundances between the 
cohorts. IQR, interquartile range. “*” represents P values of <0.05. 
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Table B.3. Richness and diversity measures of the urinary microbiome 
 

Metric Total 
[mean(SD)] 

UUI (n=23)
a
 Non-UUI controls 

(n=25)
a
 

p-value
b
 

  Mean 
(SD) 

Min-
Max 

Mean 
(SD) 

Min-
Max 

 

No. of observed 97.02 86.35 25-155 106.84 39-201 0.08 
OTUs (richness) (40.6) (36.89)  (42.17)   
Chao1 estimator 7,210 5, 977 2,688- 8,344 1,697- 0.12 
(richness) (5331) (4647) 20,021 (5,750) 22,997  
Shannon index 1.72 (0.96) 1.70 0.17-

3.68 
1.74 0.30-3.83 0.88 

(diversity)  (0.91)  (1.02)   
Inverse Simpson 3.93 (4.28) 3.69 1.03- 4.15 1.07- 0.71 
(diversity)  (3.39) 16.08 (5.07) 20.40  
a Analysis performed on the subset of samples with detectable bacterial DNA. Min, 
minimum; Max, maximum. 
b Student’s t test. 

 

significant differences between the UUI and non-UUI control cohorts based on these estimators 

of richness and diversity. 

Culture-Based Characterization of the Female Urinary Microbiota 

Of the urine specimens assayed via EQUC, 71/90 (78.9%) grew bacterial species, while 

64 of the 71 (90.1%) that grew bacterial species were deemed culture negative (no growth) by 

standard culture. For the UUI and control cohorts, standard culture had false-negative rates of 

90.3% and 90.0%, respectively. This highlights the limitations of the standard clinical 

microbiology protocol. 
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Rarefaction curves comparing the number of bacteria species to the number of urine 

samples assayed reveal that the UUI cohort curve began to plateau at a higher number of isolates 

than the non-UUI cohort curve (Figure B.4), indicating that these two cohorts possess different 

urinary microbiota. In support of this supposition, there was a statistically significant difference  

  

 

 
between the median numbers of bacterial isolates cultured from the UUI women and those for 

the non-UUI women (4 [interquartile ratio (IQR) = 1 to 7] versus 1 [IQR = 1 to 7]; P < 0.001). 

The frequencies at which we culture each genus were compared between cohorts. Nine genera 

(Actinobaculum, Actinomyces, Aerococcus, Arthrobacter, Corynebacterium, Gardnerella, 

Oligella, Staphylococcus and Streptococcus) were more frequently isolated from the UUI cohort 

Figure B.4. Rarefaction curves of the cultured bacterial species by cohort. The plot 
depicts the number of species cultured via EQUC by the number of urine samples assayed. 
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than from controls (Figure B.5). Four of these genera were isolated solely from the UUI cohort 

(Actinobaculum, Aerococcus, Arthrobacter, and Oligella); the concentrations ranged from 10 

CFU/ml to 100,000 CFU/ml. Using matrix-assisted laser desorption ionization–time of flight  

 

 

 
 
mass spectrometry (MALDI-TOF MS), the majority of the cultured isolates were classified to the 

species level, one taxonomic level further than was achievable with V4 sequencing. 

This finer level of resolution revealed additional differences between the cohorts. For 

example, the genus Lactobacillus was frequently detected in both cohorts; however, when 

examination at the species level was done, distinct differences were detected between cohorts. 

Lactobacillus gasseri was more frequently isolated from the UUI cohort (27% UUI, 9% non-

 

 

 

 

 

 

 

 

 

Figure B.5. Genus-level comparison of cultured urinary microbiota by cohort. The 
Pearson chi-square and Fisher’s exact tests were used to compare the frequencies of the 
genera isolated from urine via EQUC. *, P <0.05; **, P < 0.001. 
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UUI; P = 0.02), whereas Lactobacillus crispatus was more frequently isolated from the control 

cohort (4% UUI, 18% non-UUI; P = 0.037) (Figure B.6). Also, Actinobaculum schaalii, 

Actinomyces neuii, Aerococcus urinae, Arthrobacter cumminsii, Corynebacterium coyleae,  

 

 

 
 

Gardnerella vaginalis, Oligella urethralis, and Streptococcus anginosus were more frequently 

isolated from UUI women (see Table B.S2 in the supplemental material). 

Comparison of Culture Versus Sequencing for Defining the Urinary Microbiome. 

More than half (58%; 30/52) of specimens examined by both EQUC and 16S rRNA gene 

sequencing tested positive for bacteria by both techniques. Bacteria were cultured from 14 (27%)  

Figure B.6. Species-level comparison of cultured urinary microbiota by cohort. The 
Pearson chi-square and Fisher’s exact tests were used to compare the frequencies of the 
species isolated from urine via EQUC. *, P < 0.05; **, P < 0.01. 
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A 

B 

Figure B.7. Comparison of taxa detected by 16S rRNA gene sequencing and EQUC. (A) 
Comparison of sequence status and EQUC status for the 52 urine samples that were assayed 
by both methods. (B) Comparison of the taxa detected by sequencing and culture of the 
sequence-positive, EQUC-positive urine samples (n = 30). Each square was color coded 
based on whether the taxa were detected by sequence only (green), EQUC only (red), 
sequence and EQUC (yellow), or neither sequence nor EQUC (gray). 
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sequence-negative urine samples, while bacterial DNA was sequenced from 3 (6%) EQUC- 

negative urine samples. Altogether, bacteria were detected in 90% (47/52) of urine samples by 

EQUC or sequencing or both. Only 10% (5/52) of the urine samples tested negative for bacteria 

by both approaches (Figure B.7A). Of the 30 urine samples that were positive by both 

sequencing and EQUC, there was considerable overlap in terms of the bacterial taxa detected 

(Figure B.7B).  

A total of 18 different genera were cultured, the majority of which were detected by 

sequencing, thus providing additional evidence of their presence in the urinary microbiome and 

indicating that many of the sequenced genera represent live bacteria. In some urine samples, 

EQUC detected genera that were not detected by sequencing; however, these nine genera were 

detected by sequencing in other urine samples, demonstrating that these genera could be 

amplified by the universal primers. Trueperella was the only cultured genus that was not 

detected at the sequencing level in any of the urine samples. In contrast, some genera, such as 

Atopobium, were detected via sequencing but not by culture, suggesting that even the expanded 

culture technique was limited. 

Discussion 

This analysis directly compared the urinary microbiome of women with UUI to that of 

women without UUI symptoms. We used two independent yet complementary techniques, 16S 

rRNA gene sequencing and extended culture, to characterize the female urinary microbiome. 

Both techniques identified statistically significant differences in the frequency and 

abundance of bacteria. These differences suggest a potential role for the urinary microbiome in 

female urinary health and warrant further study. 
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Each technique detected similar but not identical microbiome profiles. High-throughput 

sequencing provided the broader view of the bacteria present in the bladder, regardless of ability 

to cultivate the organisms. On the other hand, the cultured isolates could be identified to the 

species level, thus providing a finer level of resolution for the female urinary microbiome. 

Furthermore, these cultured isolates can be utilized in future studies to further investigate their 

potential for symbiosis or pathogenesis. Combined, these complementary techniques yielded 

overlapping results and provided the most complete description of the female urinary 

microbiome to date. 

In both cohorts, one or two genera dominated the majority of the sequence profiles. The 

two most frequently detected genera, by both sequencing and culture, were Lactobacillus and 

Gardnerella. The former are lactic acid-producing, facultative anaerobic bacteria known to play 

protective roles in the vaginal tract by decreasing pH and producing various bacteriostatic/cidal 

compounds (264, 265). The latter are also facultative anaerobic bacteria frequently isolated in the 

vaginal tract, often in association with bacterial vaginosis. In this study, Lactobacillus was 

detected at similar frequencies in both cohorts but displayed lower median sequence abundance 

for women with UUI than for those without UUI. Furthermore, at the species level, the 

Lactobacillus species differed between cohorts. Whereas L. gasseri was more frequently cultured 

in samples from the UUI cohort, L. crispatus was more frequently cultured in samples from 

controls. Why the distribution of these two Lactobacillus species differs between women with 

and without UUI remains unknown, but it is possible that these two members of the normal 

vagina flora perform distinct functions in the bladder. A similar scenario seems to be developing 
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for Gardnerella, which was detected more frequently and in increased sequence abundance for 

the UUI cohort than for the non-UUI cohort. Since Gardnerella was detected in the urine of 

women without UUI, it is unlikely that the simple presence of Gardnerella indicates a dysbiotic 

environment. G. vaginalis can be cultured from the vaginal tracts of women with and without 

bacterial vaginosis (266, 267). G. vaginalis strains isolated from these two groups of women 

vary in their ability to adhere and induce cytotoxicity, suggesting the possibility of pathogenic 

and symbiotic strains of G. vaginalis (267). Whether the isolates identified by MALDI-TOF MS 

as Gardnerella species fall into the latter category remains to be determined. 

Several bacterial genera were more frequently sequenced and cultured from the urine of 

women with UUI, including Actinobaculum, Actinomyces, Aerococcus, Arthrobacter, and 

Oligella. Interestingly, many of these genera contain emerging uropathogens, including 

Actinobaculum schaalii, Aerococcus urinae, Oligella urealytica, and Arthrobacter cumminsii 

(146, 268-271). Whether these bacteria contribute to UUI is unknown at this time. 

In addition to Lactobacillus and Gardnerella, many of the genera detected in the urinary 

microbiome are often found in the vaginal tract, including Bifidobacterium, Enterococcus, 

Actinomyces, Prevotella, and Atopobium (89, 266). Since the urine samples in this study were 

collected via transurethral catheter, as opposed to a voided approach, these genera are likely true 

inhabitants of the urinary tract and not vaginal contamination. This contention is supported by 

our previous demonstration that the microbiome sequence profile of catheterized urine is distinct 

from that of voided urine and instead closely resembles that of urine collected via suprapubic 

aspiration, which bypasses the vagina and urethra (95). Genera found in both the urinary and 
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vaginal tracts could suggest a shared urogenital microbiome. Alternatively, there could be 

differences at the species or strain levels, such that the vaginal and urinary community members 

differ. It is easy to imagine that the specific conditions of these quite different environmental 

niches could select for different traits. 

Two genera, Corynebacterium and Streptococcus, were cultured more frequently from 

UUI women yet were detected at similar frequencies by sequencing. A third genus, 

Staphylococcus, was more frequently cultured from UUI women but more frequently detected by 

sequencing in the control cohort. The simplest explanation for these discrepancies would be that 

certain species of these genera do not grow under the current EQUC conditions. Efforts to further 

extend this new protocol are planned. Although the urinary microbiome shares a number of 

genera in common with other microbial sites within the human body, two key differences set the 

urinary microbiome apart. Compared to the colon, which contains 10
11 to 10

12 CFU/g (272), on 

average, the urinary tract microbiome consists of <10
4 CFU/ml total bacteria. In our study, the 

median amount of bacteria per urine was 85 CFU/ml. The urinary microbiome, with a median 

inverse Simpson index of 2.3 and Shannon index of 1.5, is also less diverse than other microbial 

sites in the human body, such as the skin, mouth, and gastrointestinal tract (273, 274). Taken 

together, these findings suggest that the bladder is a relatively unique microbial site within the 

human body and may be more akin to other low-abundance sites, such as the eye (275). 

Changes in microbial diversity within a niche have been linked to disease. Examples 

include decreased fecal microbiome diversity associated with Clostridium difficile infection 

(276) and increased vaginal microbiome diversity associated with bacterial vaginosis (277). In 
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this study, we did not detect large differences in sequence-based diversity between the two 

cohorts. It is possible that we were unable to detect a difference due to the lack of power with our 

small sample size. Alternatively, the amount of diversity within the urinary microbiome of UUI 

women may not differ from that for non-UUI women. Instead, the key distinction might be the 

bacterial types that are present. Although we did not detect differences in richness or diversity by 

sequence, we detected differences in the species richness between the cohorts by culture. A 

greater number of bacterial species were cultured from the UUI cohort than from the non-UUI 

control cohort. This finding further demonstrates the power of utilizing multiple approaches to 

define a microbial community. 

The urine of UUI women was more likely to contain Actinomyces, Aerococcus, and 

Gardnerella and less likely to contain Lactobacillus than urine collected from women without 

UUI. The mechanism behind this observation is unknown. One possibility is that the UUI 

bladder selects for some bacteria over others, and as such, the presence of these organisms in the 

bladder could serve as a marker for dysbiosis. Another possibility is that these bacteria contribute 

to UUI symptoms, a supposition supported by the observation that each of the genera associated 

with the UUI cohort contains at least one reported pathogenic species. Taken together, this study, 

along with others, will eventually allow us to define a core or common urinary microbiome that 

can be used to detect alterations to that community. 

A limitation of this analysis is that our UUI and non-UUI cohorts differed in several 

characteristics that may have clinical relevance for the female urinary microbiome. Thus, we are 

unable to say whether age, BMI, or hormonal status affects our findings, and it is possible that 

our findings are related to these differences rather than to urinary symptomatology. 
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Studies that describe the female urinary microbiome in large, well-characterized 

populations have not been published. Future studies, with larger sample sizes, will be required to 

evaluate these potentially important differences. Studies describing the longitudinal stability of 

the female urinary microbiome (including populations undergoing treatment for urinary 

disorders) are also lacking. Such studies should be prioritized given the emerging evidence that 

the female urinary microbiome may yield important clinical information. 

Materials and Methods 

Study Design and Population  

Following Loyola institutional review board (IRB) approval, participants gave verbal and 

written consent for chart abstraction and urine collection with analysis for research purposes. 

Participants were recruited from the clinical practice of the Female Pelvic Medicine and 

Reconstructive Surgery Center of Loyola University Medical Center between August 2012 and 

February 2014. These included women undergoing UUI treatment (UUI cohort) and a 

comparison group of women not bothered by urinary symptoms (non-UUI control cohort). All 

women were screened for potential study participation using the validated symptom 

questionnaire, the Pelvic Floor Distress Inventory (PFDI) (278, 279). Exclusion criteria for both 

cohorts included current UTI (based on urine dipstick) or history of recurrent UTI, antibiotic 

exposure in the past 4 weeks for any reason, immunologic deficiency, neurological disease 

known to affect the lower urinary tract, pelvic malignancy or radiation, untreated symptomatic 

pelvic organ prolapse (POP) greater than POP-Q stage II (vaginal protrusion more than 1 cm 

outside of the vaginal hymen), or pregnancy. Clinical and demographic information were 

abstracted from the electronic medical record. Enrolled participants completed the long form of 
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the PFDI and the Overactive Bladder Questionnaire (OAB-q) (280). Premenopausal woman and 

postmenopausal women taking any form of estrogen replacement were considered estrogen 

positive. 

Sample Collection 

Urine was collected aseptically via transurethral catheter. A portion of the urine sample 

was placed in a BD Vacutainer Plus C&S preservative tube for culturing. A separate portion for 

sequencing was placed at 4° C for <4 h following collection; 10% AssayAssure (Thermo 

Scientific; Waltham, MA) was added before storage at −80° C. The first urine samples collected 

(14 UUI samples and 8 non-UUI control samples) were screened exclusively by 16S rRNA gene 

sequencing; this was before we implemented EQUC. Subsequent urine samples (22 UUI and 30 

non-UUI control samples) were screened by both 16S rRNA gene sequencing and EQUC. The 

final urine samples (23 UUI and 15 non-UUI control samples) were screened only by EQUC 

without high-throughput sequencing. Thus, we used EQUC for 45 UUI and 45 non-UUI samples 

and 16S rRNA gene sequencing for 36 UUI and 38 non-UUI samples. 

Urine Culture: For standard urine culture, we struck 0.001 ml of urine onto 5% sheep blood 

(BAP) and MacConkey agars (BD BBL prepared plated media), which were incubated 

aerobically at 35°C for 24 h. Each separate morphological colony type was counted and 

identified in any amount. The detection level was 1,000 CFU/ml, represented by 1 colony of 

growth on either plate. If no growth was observed, the culture was reported as “no growth,” 

indicating no growth of bacteria at the lowest dilution, i.e., 1:1,000. For EQUC, we struck 0.1 ml 

of urine onto BAP, chocolate and colistin, naladixic acid (CNA) agars (BD BBL prepared plated 
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media), which were incubated in 5% CO2 at 35°C for 48 h (see Figure B.S1). A second set of 

BAPs was inoculated with 0.1 ml of urine and incubated in room atmosphere at 35°C and 30°C 

for 48 h. We also inoculated 0.1 ml of urine onto each of two CDC anaerobe 5% sheep blood 

agar plates (BD BBL prepared plated media) and incubated either in a Campy gas mixture (5% 

O2, 10% CO2, and 85% N) or under anaerobic conditions at 35°C for 48 h. The detection level 

was 10 CFU/ml, represented by 1 colony of growth on any of the plates. Finally, to detect any 

bacterial species that may be present at quantities lower than 10 CFU/ml, 1.0 ml of urine was 

placed in thioglycolate medium (BD BBL prepared tubed media) and incubated aerobically at 

35°C for 5 days. If growth was visually detected in the thioglycolate medium, the medium was 

mixed, and a few drops were plated on BAP and CDC Anaerobe 5% sheep blood agars for 

isolation and incubated aerobically and anaerobically at 35°C for 48 h. Each morphologically 

distinct colony type was isolated on a different plate of the same medium to prepare a pure 

culture that was used for identification. Matrix-assisted laser desorption ionization–time of flight 

mass spectrophotometry (MALDI-TOF MS) with the MALDI Biotyper 3.0 software program 

(Bruker Daltonics, Billerica, MA) was used to identify the bacterial isolates, as described 

elsewhere (96). To determine the false-negative rate, the following equation was used: the 

number of false negatives (EQUC positive, standard negative) divided by the sum of the number 

of true positives (EQUC positive) and false negatives (EQUC positive, routine negative).  

DNA isolation from urine  

We used a previously validated DNA extraction protocol developed for the Human 

Microbiome Project. The protocol includes the addition of the peptidoglycan-degrading enzymes 

mutanolysin and lysozyme, which ensure robust lysis of Gram-positive and Gram- negative 
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species, to isolate genomic DNA from urine samples (281). Briefly, 1 ml of urine was 

centrifuged at 13,500 rpm for 10 min, and the resulting pellet was resuspended in 200 µl of filter-

sterilized buffer consisting of 20 mM Tris-Cl (pH 8), 2 mM EDTA, 1.2% Triton X-100, and 20 

µg/ml lysozyme and supplemented with 30 µl of filter-sterilized mutanolysin (5,000 U/ml; 

Sigma-Aldrich, St. Louis, MO). The mixture was incubated for 1 h at 37°C, and the lysates were 

processed through the DNeasy blood and tissue kit (Qiagen, Valencia, CA) according to the 

manufacturer’s protocol. DNA was eluted into 50 µl of buffer AE, pH 8.0, and stored at −20°C.  

16S rRNA Gene Library Generation and MiSeq Sequencing 

Sequencing was performed using a MiSeq desktop sequencer (Illumina, San Diego, CA). 

First, a 16S rRNA gene amplicon library was generated via two consecutive PCR amplifications. 

In the first reaction, the variable 4 region (V4) of the 16S rRNA gene was amplified using the 

universal primers 515F and 806R, which were modified to encode the Illumina MiSeq 

sequencing primer sequence at the 5′ end (see Table B.S1 in the supplemental material). 

Reaction mixtures were incubated at 94°C for 2 min to denature the DNA template and amplified 

for 30 cycles at 94°C for 30 s, 55°C for 30 s, and 72°C for 90 s. To ensure complete 

amplification, samples were incubated at 72°C for an additional 10 min. Ten-microliter aliquots 

of each reaction mixture were run on a 1% agarose gel. Samples containing a band of 

approximately 360 bp were considered PCR positive and subjected to further library preparation. 

Samples with no visible amplified product were considered PCR negative and not processed 

further. The PCR-positive reaction mixtures were diluted 1:50 and amplified for an additional 10 

cycles, utilizing primers encoding the required adapter sequences for Illumina MiSeq sequencing 

and an 8-nucleotide (nt) sample index (see Table B.S1), using the PCR conditions described 
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above. Unincorporated nucleotides and remaining primers were removed via use of the 

QIAquick PCR purification kit (Qiagen, Valencia, CA), and the DNA concentration of the eluted 

product was determined by Nanodrop spectroscopy (Thermo Scientific; Waltham, MA). One 

hundred nanograms of each sample amplicon was pooled and run through a 1% agarose gel. The 

final product, which includes the V4 region and the adapter sequences (390 to 450 bp in length 

depending upon the length of the V4 region), was gel extracted via the QIAquick gel extraction 

kit and further purified via Agencourt AMPure XP-PCR magnetic beads (Beckman Coulter, 

Pasadena, CA). The final concentration of the pooled DNA was determined via Nanodrop 

spectroscopy and diluted in EBT (Elution Buffer with Tris; Illumina, San Diego, CA) to 2 nM. 

An equal volume of 0.2 N NaOH was added, incubated at room temperature for 5 min, and 

quenched with hybridization buffer (Illumina, San Diego, CA) to a final concentration of 8 pM. 

The Human Microbiome Project mock community HM-782D (BEI Resources, ATCC, 

Manassas, VA), a standard used to optimize our approach, was mixed 1:1 with randomly 

generated PhiX libraries, which are added to help focus the cameras on the sequencing clusters. 

This mixture was added to the sample library at equal volumes and placed in the 2 × 250 bp 

sequencing reagent cartridge according to the manufacturer’s instructions (Illumina, San Diego, 

CA). 

Care was taken to avoid bacterial DNA contamination by utilizing DNA-free reagents 

when applicable, filter sterilizing all solutions through a 0.2 µM filter, and working in a PCR- 

clean hood. To control for the introduction of contaminating DNA, negative controls for 

extraction (no urine) and PCR (no template) were included in each experiment. The extraction 

negative control for each experiment was sequenced to identify spurious genera likely introduced 
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from contaminated reagents and materials. 

Sequence Analysis  

The Illumina MiSeq post-sequencing software preprocessed sequences by removing 

primers and sequence adaptors. Using the open-source software program mothur (v 1.31.2), the 

paired-end reads were assembled and contigs of incorrect length (<285 bp or >300 bp) and/or 

contigs containing ambiguous bases were removed (282, 283). These modified sequences were 

aligned to the SILVA reference database, and any potential chimeric sequences were detected 

and removed using the program UCHIME (284). The remaining sequences were taxonomically 

classified, using a naive Bayesian classifier (285) and the mothur-formatted RDP training set v9, 

and clustered into operational taxonomic units (OTUs), an operational definition of a species-

level cluster based on sequence similarity, using a 97% cutoff. The software program 

METAGENassist was used to link OTU nomenclature to taxonomic assignments (286). All 

samples were processed in duplicate, and the percent reads of the replicates were averaged for 

downstream analysis. Stacked bar plots based on sequence abundance were produced for each 

sample. Euclidean distance was calculated between samples, and the complete method was used 

for hierarchical clustering via R software, version 2.15.1 (287). 

Richness and diversity metrics, including the number of observed OTUs, Chao1 

estimator, Shannon index, and inverse Simpson’s index, were calculated using mothur and were 

based on subsampling to the number of sequences in the sample with the least coverage. Urine is 

a low- biomass environment, and thus the sequencing results are more likely to be influenced by 

extraneous DNA arising from reagents and resources; therefore, only reads representing >0.01% 

of the sample total were included in the stacked bar plots, dendrogram, and frequency and 
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abundance analyses. 

Statistical Analysis 

Statistical analyses, comparing participant demographics and symptoms, were performed 

using the SPSS software program, version 19. For continuous variables, Student’s t tests were 

applied. For categorical variables, Pearson chi-square and Fisher’s exact tests were performed. 

Results were considered significant when the P value was less than 0.05. 

Statistical analyses of the microbiome data were performed using the SAS software 

program, version 9.3. The Wilcoxon rank sum tests were used to compare the median 

abundances for the 15 most abundant sequenced taxa and all cultured genera between groups. 

The frequencies of detected genera were compared between groups, using either the Pearson chi-

square or Fisher’s exact test, depending on assumption validity. No adjustments for multiple 

comparisons were made, since these analyses were considered descriptive. 
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Supplemental Material 

 
Figure B.S1. Outline of EQUC procedure. 
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Figure B.S2. Distribution of taxa detected by sequencing. The distribution of the top 15 
most abundant taxa detected by sequencing is displayed as box plots. 
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Table B.S1. 16S ribosomal DNA (rDNA) V4 Amplicon Library Primers 

Primer Primer sequence (5’ to 3’) 

Primary PCR primers 

Modified 
515F 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA 

Modified 
806R 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTA
AT 

Secondary PCR primers 
501 AATGATACGGCGACCACCGAGATCTACACTAGATCGCTCGTCGGCAGCGTC 
502 AATGATACGGCGACCACCGAGATCTACACCTCTCTATTCGTCGGCAGCGTC 
503 AATGATACGGCGACCACCGAGATCTACACTATCCTCTTCGTCGGCAGCGTC 

504 AATGATACGGCGACCACCGAGATCTACACAGAGTAGATCGTCGGCAGCGTC 

505 AATGATACGGCGACCACCGAGATCTACACGTAAGGAGTCGTCGGCAGCGTC 

506 AATGATACGGCGACCACCGAGATCTACACACTGCATATCGTCGGCAGCGTC 

507 AATGATACGGCGACCACCGAGATCTACACAAGGAGTATCGTCGGCAGCGTC 

508 AATGATACGGCGACCACCGAGATCTACACCTAAGCCTTCGTCGGCAGCGTC 

701 CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGG 

702 CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGG 

703 CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGG 

704 CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGG 

705 CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGG 

706 CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGG 

707 CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGG 

708 CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGG 

709 CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCGG 

710 CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGG 

711 CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCGG 

712 CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCGG 
The adapter sequences are underlined in the 501 and 701 secondary primer sequences. The same sequences are 
found in each of the 500 and 700 primer series. The 8-nucleotide sample indices are bolded. 
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Table B.S2: Species that are statistically significant different in the two cohorts 

Bacteria UUI 
(N=45) 

Non-UUI 
Control 
(N=45) 

p-value 

Actinobaculum schaali 7 (16%) 0 (0%) 0.0061 

Actinomyces neuii 5 (11%) 0 (0%) 0.0278 

Aerococcus urinae 11 (24%) 0 (0%) 0.000244 

Arthrobacter cumminsii 7 (16%) 0 (0%) 0.0061 

Corynebacterium coyleae 6 (13%) 0 (0%) 0.0131 

Corynebacterium riegelii 10 (22%) 2 (4%) 0.0115 

Gardnerella vaginalis 2 (4%) 8 (18%) 0.0373 

Lactobacillus crispatus 12 (27%) 4 (9%) 0.02 

Lactobacillus gasseri 16 (36%) 3 (7%) 0.0006389 

Oligella urethralis 7 (16%) 0 (0%) 0.0061 

Streptococcus anginosus 5 (11%) 0 (0%) 0.0278 
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APPENDIX C 

 THE INTERACTION BETWEEN ENTEROBACTERIACEAE AND CALCIUM 

OXALATE DEPOSITS  

 

Barr-Baer, E., Saxena,V., Hilt, E.E., Thomas-White, K., Schober, M., Li, B., Becknell, 
B., Hains, D.S., Wolfe, A.J., and Schwarderer, A.L. The Interaction between 

Enterobacteriaceae and Calcium Oxalate Deposits, PLoS One. 2015 Oct 
8;10(10):e0139575. DOI: 10.1371/journal.pone.0139575. eCollection 2015.  

PMID: 26448465 
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Overview of Appendix C 

This paper describes a pilot study on the microbiota/microbiome of kidney stones done in 

collaboration with Andy Schwaderer at Nationwide Children’s Hospital. It is the first 

documented case of bacterial DNA and live bacteria in oxalate kidney stones (a type of stone not 

normally associated with bacteria). Dr. Schwaderer’s lab was able to take the E. coli isolates 

from our EQUC protocol, add them back into mice, and induce stone formation. The mice 

infected with E. coli had an increased bacterial and stone burden compared to those not infected. 

Abstract 

Background. The role of calcium oxalate crystals and deposits in UTI pathogenesis has not been 

established. The objectives of this study were to identify bacteria present in pediatric urolithiasis 

and, using in vitro and in vivo models, to determine the relevance of calcium oxalate deposits 

during experimental pyelonephritis. 

Methods. Pediatric kidney stones and urine were collected and both cultured and sequenced for 

bacteria. Bacterial adhesion to calcium oxalate was compared. Murine kidney calcium oxalate 

deposits were induced by intraperitoneal glyoxalate injection and kidneys were transurethrally 

inoculated with uropathogenic Escherichia coli to induce pyelonephritis 

Results. E. coli of the family Enterobacteriaceae was identified in patients by calcium oxalate 

stone culture. Additionally Enterobacteriaceae DNA was sequenced from multiple calcium 

oxalate kidney stones. E. coli selectively aggregated on and around calcium oxalate monohydrate 

crystals. Mice inoculated with glyoxalate and uropathogenic E. coli had higher bacterial burdens, 

increased kidney calcium oxalate deposits and an increased kidney innate immune response 

compared to mice with only calcium oxalate deposits or only pyelonephritis. 
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Conclusions. In a murine model, the presence of calcium oxalate deposits increases 

pyelonephritis risk, likely due to preferential aggregation of bacteria on and around calcium 

oxalate crystals. When both calcium oxalate deposits and uropathogenic bacteria were present, 

calcium oxalate deposit number increased along with renal gene transcription of inner stone core 

matrix proteins increased. Therefore, renal calcium oxalate deposits may be a modifiable risk 

factor for infections of the kidney and urinary tract. Furthermore, bacteria may be present in 

calcium oxalate deposits and potentially contribute to calcium oxalate renal disease. 

Introduction 

Approximately 10% of people develop a kidney stone during their lifetime (288). 

Calcium oxalate (CaOx) accounts for 74% of stones (289). Considerable overlap in CaOx urine 

super- saturation exists between individuals with and without kidney stones; therefore, urine 

chemistries cannot be the only factor in stone formation (290). Magnesium-ammonium-

phosphate (struvite) stones form as a result of a urinary tract infection (UTI) with a urease-

producing bacterium and are a conglomeration of bacteria, struvite crystals and protein matrix 

(145). Furthermore emerging evidence indicates an interaction between bacteria and CaOx 

kidney stones. First, patients with kidney stones are more likely to have UTIs than the general 

population (291, 292). Second, in previous studies, bacteria have been cultured from 19–32% of 

CaOx stones, with non-urease-producing E. coli most commonly present (293, 294). E. coli, a 

major member of the Gram-negative bacterial family Enterobacteriaceae, is a contributor to a 

wide range of kidney pathologies ranging from pyelonephritis to kidney allograft rejection (295, 

296). Despite its role in other pathologies, the association between E. coli and CaOx disease has 

not been extensively investigated. 
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Traditionally, the urinary tract has been considered sterile; however, high throughput 

sequencing technology and enhanced quantitative urine culture (EQUC) protocols have 

identified a urinary microbiome in culture-negative urine samples (95, 96, 103). Whether kidney 

stones also have a microbiome has not yet been evaluated. The objectives of this study were to 

determine whether bacteria are present in human CaOx kidney stones and, using in vitro and in 

vivo models, evaluate potential associations between E. coli and renal CaOx deposits. 

Materials and Methods 

Human Studies. 

Patients and Sample Collection. Human studies were approved by the Nationwide 

Children’s Hospital (NCH, Columbus, OH) Institutional Review Board (IRB13-00709) and 

adhered to the Declaration of Helsinki. Inclusion criteria consisted of patients with a kidney 

stone removal procedure by the NCH Urology Division. Exclusion criteria consisted of a history 

of known struvite, cysteine or uric acid stones. Written consent was obtained from legal 

guardians if the research subject was a minor additionally assent was obtained if children were ≥ 

9 years of age. Following kidney stone removal, the urologist bisected the stone. Half of the 

stone was placed in a sterile eppendorf tube and the other half was sent for routine clinical stone 

analysis (Louis C. Herring and Company, Orlando FL) Upper tract and bladder urine was 

collected with the kidney stones during the stone removal procedure. Immediately following 

sample acquisition, study staff was notified to process the samples. Patient history, including 

urine chemistries, were recorded and urine oxalate, calcium and citrate to creatinine ratios were 

compared to reported normal ranges (297, 298). 

Sample Processing. Stone fragments were rinsed with sterile PBS, and then 
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homogenized in a bullet blender (Next Advance, Averill Park, NY). Stone homogenate and urine 

were aliquoted between urine C&S preservative (Becton Dickenson, Franklin Lakes NJ, United 

States) and 10% AssayAssure universal urine collection media (Thermo Scientific, Waltham 

MA) for culture and sequencing analysis, respectively. Sterile PBS with and without bullet 

blender beads was used as control to evaluate for contamination during stone processing. 

Enhanced Quantitative Urine Culture (EQUC). 0.1 mL of urine or kidney stone 

homogenate was inoculated onto BAP, Chocolate, Colistin, Naladixic Acid (CNA) agars or CDC 

anaerobe 5% sheep blood agar plates (BD BBL™ Prepared Plated Media) and EQUC was 

performed as previously described (96). The detection level was 10 CFU/mL. Matrix Assisted 

Laser Desorption Ionization Time of Flight Mass Spectrophotometry (MALDI-TOF MS) was 

used to identify the bacterial isolates. 

DNA Isolation and 16S Amplicon Sequence Analysis. DNA extraction along with 16S 

rRNA gene library generation and DNA sequencing with a MiSeq desktop sequencer (Illumina, 

San Diego, CA) were performed as described previously (103). The DNA from the kidney stones 

was extracted as described previously with the exception that we used lysis buffer ALT in the 

Qiagen DNeasy kit. All samples were processed in duplicate, replicas were comparable; 

therefore, only the first replica was used for downstream analysis. Since urine is a low biomass 

environment, genera were reported only if a group representing 10% of the total reads in at least 

one sample; the rest of the reads are reported as “other” (96, 103). 

In vitro Studies. CaOx monohydrate and dihydrate crystals were generated as previously 

described (299). For the in vitro binding assay 100μg of CaOx or control silicon dioxide crystals 

(Strem Chemicals, Newburyport, MA) were mixed with 1x10
5 colony forming units (CFU)/ml 
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GFP-labeled uropathogenic E. coli (UPEC, a gift from Matthew Mulvey, University of Utah) and 

incubated in Luria Broth (LB) in a 37°C orbital shaker (Thermo Scientific, Waltham MA). 

Silicon dioxide crystals were chosen as a control because they are commercially available and 

similar in size (10–20 nm) to the generated CaOx crystals. Additionally, silicon has been 

reported to cause kidney stones in human and is a well-established kidney stone component in 

veterinary medicine (300, 301). 

To quantify the area of crystals, Keyence BZ-II analyzer software was used. The area of 

the crystals was outlined using the Freehand Line feature of the Area Measure function. Within 

the area of the crystal, GFP-expressing UPEC were then counted within the area of the stone 

using the Count function. The same technique was employed for the background, outlining an 

area of the background using the Freehand Line and then counting the E. coli within the outlined 

area. A ratio of E. coli per μm
2 area was then generated by dividing the number of E. coli by the 

corresponding outlined area. 

Murine Studies 

Mice. In vivo murine studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) protocol AR12-00067 and adhered to NIH Guide for the Care and Use of 

Laboratory Animals or the equivalent. C57BL/6 mice (Jackson lab, Bar Harbor, Maine, Stock 

no. 000664) aged 6–10 weeks of were used for induction of pyelonephritis and/or CaOx 

nephropathy. Mice were euthanized by CO2 inhalation at the end of the study for assessment of 

kidney bacterial burden, CaOx deposits and kidney innate immune gene transcript evaluation. 

Induction of Kidney CaOx Induced Nephropathy and Pyelonephritis. Kidney CaOx deposits 
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were induced in mice by injecting sodium glyoxalate (80mg/kg/day of glyoxalate (Sigma 

Aldrich, St Louis, MO) intraperitoneally (i.p.); this causes CaOx deposits to appear by 3 days 

and to peak at day 6 (302). Equivalent normal saline was used as negative control. Experimental 

pyelonephritis was induced by inoculating 108 colony forming units (CFU) of the uropathogenic 

E. coli (UPEC strain; CFTO73) transurethrally with a second inoculum of the same size 

performed 4 hours later (303). 

Experimental Groups: Innate Immune Response Induced by CaOx Deposits. 

 1. CaOx deposits: Sodium glyoxalate injection i.p for 6 days 
 
 2. Negative control: Normal saline (NaCl) injections i.p. for 6 days 
 

Male C57BL/6 mice were used for this experiment and evaluated at peak kidney CaOx 

deposition. The goal was to identify candidate innate immune genes to study the interaction of 

CaOx deposition and UPEC at an early time point. 

Experimental Groups: Early Innate Immune Response with CaOx Deposits and UPEC, 

Alone or in Combination. 

 1. Kidney CaOx deposits: Sodium glyoxalate injection i.p. for 3 days 
 
 2. UPEC inoculation: NaCl injections i.p. for 3 days, UPEC inoculation on day 1 
 

3. Kidney CaOx deposits and UPEC inoculation: Sodium glyoxalate injection i.p. for 3 

days and 108 CFU UPEC inoculation on day 1. A schematic of the experimental 

design for this group is presented in Figure C.1. 

 4. Negative control: NaCl injection i.p. for 3 days 
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Figure C.1. Induction of CaOx deposits and experimental pyelonephritis in mice 

 
The 3-day CaOx treatment/2-day experimental pyelonephritis time period was chosen 

because C57BL/6 mice clear infections by 3rd day (303). Female mice were used for this 

experiment because UPEC inoculation is not possible with the male murine anatomy. 

Outcome Studies. 

Kidneys were bisected longitudinally and bacterial burden was determined by plating 

serial dilutions of half-kidney homogenate on a LB plate. The other half kidney was used for 

CaOx deposit and/or pyelonephritis confirmation or snap frozen for RNA extraction. Kidney 

deposits were visualized and quantified with Pizzolato staining using BZII analyzer software 

(Figure C.S1). Kidneys were cultured for bacterial burden as previously described (304). The 

local renal CaOx induced innate immune response was determined using the RT2 Profiler 

Antibacterial Response Array (Qiagen, Valencia, CA, Catalog no. PAM148Z) according to the 
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manufacturer’s directions. Gene expression was normalized using a panel of five housekeeping 

genes (Actb, B2m, Gapdh, Gusb, and Hsp90ab1). Targeted PCR was performed using KicqStart 

SYBR green primers (Sigma-Aldrich, St Louis, MO) for candidate innate immune genes 

identified in RT2 profiler assay. Gapdh (Real Time Primers, LLC, Elkins Park, PA) was used as 

a housekeeping gene for targeted PCR. All PCR reactions were performed on a 7500 PCR 

system (Applied Biosystems, Carlsbad, CA). 

Statistics. 

Statistical analysis was performed and graphs were generated using Prism software 

(GraphPad Software Inc, La Jolla, CA). The D’Agostino-Pearson Omnibus Test was used to 

determine if data was normally distributed. Differences between groups were compared with the 

Student’s T-test or One-Way Anova if data was normally distributed; otherwise, the Mann 

Whitney or Kruskal Wallis methods were used. Percentages were transformed to arcsine values 

for analysis. Arrays were analyzed with the RT2 Profiler Data Analysis Software. For targeted 

PCR, expression was quantified using the 2-ΔΔCt method and normalized values to the reference 

gene Gapdh. 

Results 

Patients. 

Five patients were enrolled (Table C.1) between August 2013 and February 2014. Patient 

5 did not have documented CaOx stones, but had a history of hypercalciuria and a urine pH of 6, 

inconsistent with struvite. Only patients 1 and 2 had a history of UTIs. No patients were 

diagnosed with a UTI during or 30 days prior to the stone removal procedure. However, patient 1 
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was treated for a UTI following stone removal. 

Table C.1. Patient characteristics 

^ different stone from same patient than stone used for microbiome sequencing. 
# random urine sample. Citrate/creatinine (Cit/Cr) normal is > 0.18 mg/mg. 
Oxalate to creatinine normal is < 0.1 mg/mg. Calcium/creatinine (Ca/Cr) normal 
is < 0.21 mg/mg. 

 

Bacteria and/or Bacterial DNA is Present in Pediatric Kidney Stones. 

To guide murine studies and determine which, if any, bacteria are present in pediatric 

kidneys stones, we screened a limited number (5) of patients by EQUC and 16S rRNA gene 

sequencing. Bacterial DNA and live bacteria were detected in the kidney stones, upper tract (UT) 

urine, and bladder urine (Figure C.2). From each of these 5 patients, we obtained kidney stones,  

Subj Age 
(yrs) 
/sex 

Dx Procedure Stone analysis 24 urine stone risk 
profile (mg/mg) 

1 20/M History of 
tuberculosis 

Right percutaneous 
nephrosto-lithotomy 
for 22 mm stone 

-CaOx monohydrate, 
98%; Protein, 2% 

Cit/Cr, 0.23 Ox/Cr, 
0.02 Ca/Cr, 0.16 
Ca/Cr, 0.23↑ 

2 13/F  Right percutaneous 
nephro-lithotomy for 
16mm stone 

CaOx monohydrate, 
18%; CaOx dihydrate, 
80%; Protein, 2% 

No urine stone risk 
profile completed 

3 15/F  Left ureteroscopy and 
laser lithotripsy for 
5mm stone 

CaOx monohydrate, 
50%; CaOx dihydrate, 
40%; CaPhos (hydroxyl 
form), 8%; Protein, 2% 

Cit/Cr, 0.31 Ox/Cr, 
0.03 Ca/Cr, 0.17 

4 12/F Ovarian 
cyst 

Right ureteroscopy 
and laser lithotripsy 
for 4mm stone 

CaOx monohydrate, 
55%; CaOx dihydrate, 
15%; CaPhos (carbonate 
form), 8%; CaPhos 
(hydroxyl form), 20%; 
Protein, 2% 

No urine stone risk 
profile completed 

5 12/M Seizures, 
treated 
with 
topiramate 

Right ureteroscopy 
and laser lithotripsy 
for 11mm stone 

Not completed. Cit/Cr, 0.13↓ Ox/Cr, 
0.04 Ca/Cr, 
0.10 #Ca/Cr, 0.23↑ 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598009/table/pone.0139575.t001/#t001fn002
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Figure C.2. Kidney stones contain bacteria and/or DNA (A) Bacteria key. (B) All stones 
contained multiple bacterial taxa on sequencing (left column) Bacteria identified included the 
family Enterobacteriaceae (which includes E. coli), and the genera Pseudomonas, 
Gardnerella, Lactobacillus, Brucella, Phyllobacterium and Bradyrhizobium. Bacteria were 
cultured (right column) from 2 stones and represented the most abundant bacteria identified by 
sequencing. (C) Bacteria were only sequenced and cultured from upper tract urine in 1 patient. 
(D) When detected in the bladder urine, the taxa were similar to those observed in the stones, 
although the ratios were often dissimilar. To allow low percentage organisms to be visualized, 
the data was graphed on a logarithmic Y-axis. 
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Figure C.3. UPEC selectively aggregate around CaOx monohydrate crystals Following 
incubation with GFP labeled UPEC, bacteria (green) could be seen aggregating around CaOx 
monohydrate (A, arrows) but not CaOx dihydrate (A, arrowheads) or silicon dioxide (B, 
arrows) crystals. 
At 12 hours, significantly more bacteria per crystal surface area were seen with CaOx 
monohydrate crystals than with CaOx dihydrate crystals, silicon dioxide crystals or 
background. There were no other significant differences between groups. Magnification 40X 
right panels, 100X left panels Scale bars = 20 microns. Incubation time = 6 hours for left 
panels and 12 hours for right panels. 
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bladder urine and/or upper tract urine for a total of 13 samples. Of these 13 samples, EQUC 

isolated viable bacteria from 5 samples: 2 out of 5 kidney stones, 1 out of 5 UT urine samples, 

and 2 out of 5 bladder urine samples. In contrast, 16S rRNA gene sequencing produced data 

from 8 out of 13 samples, including all 5 kidney stones. From these 8 samples, we obtained a 

total of 329,298 sequences. Excluding all sequences that were <0.01% of the reads in any 

sample, we identified 240 genera, 123 families, 66 orders, 42 classes, and 22 phyla.  

From 3 urine samples, we obtained a total of 188,099 sequences. Excluding all sequences 

that were <0.01% of the reads in any sample, we identified 108 genera, 70 families, 39 orders, 26 

classes, and 12 phyla. From the 5 stones, we obtained a total of 158,848 sequences. Excluding all 

sequences that were <0.01% of the reads in any sample, we identified 201 genera, 109 families, 

59 orders, 39 classes, and 19 phyla. All stones contained multiple bacterial taxa; however, 

Pseudomonas (85%) and Enterobacteriaceae (85%) dominated the stones from patients 1 and 2, 

respectively. These taxa were matched by EQUC, which cultured Pseudomonas aeruginosa from 

patient 1 and Escherichia coli from patient 2. Due to the lack of enough diversity in the V4 

region, sequencing could not classify Enterobacteriaceae beyond the family level; however, this 

assignment matches the EQUC results, which identified E. coli. When detected in the bladder 

urines, the taxa were similar to those observed in the stones, although the ratios were often 

dissimilar. For example, whereas Enterobacteriaceae/E. coli dominated the stone microbiome of 

patient 2, Gardnerella was predominant in bladder urine. We selected uropathogenic E. coli 

(UPEC) for further in vitro and in vivo murine studies because experimental models for UPEC 

kidney infections are well established and there was evidence for Enterobacteriaceae/E. coli in 

human stones screened for by complementary EQUC and sequencing approaches. 
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In vitro UPEC and CaOx Culture. 

Uropathogenic E. coli (UPEC) aggregate on and around CaOx monohydrate crystals in 

significantly greater numbers compared to CaOx dihydrate and control silicon dioxide crystals  

(Figure C.3). A time-lapse movie of UPEC aggregation on/around to CaOx is presented in 

Video S1 (online). 

Renal CaOx Deposits Increase the Murine Bacterial Burden Following UPEC Inoculation. 

The bacterial burden was quantified 3 days after CaOx deposits induction (2 days post- 

UPEC inoculation). When both CaOx deposits and UPEC inoculation were present (n = 9), the 

bacterial burden was 181, 38 and 82-fold higher in the right kidney, left kidney and mean kidney, 

respectively compared to UPEC inoculation alone (n = 9); (Figure C.4A-C). Kidney cultures 

from saline control mice or mice inoculated with only CaOx demonstrated no bacterial growth at 

24 hours. 

UPEC Inoculation Results in Increased CaOx Deposition. 

Mice with CaOx deposits and UPEC inoculation (n = 10) had a significantly higher 

number of CaOx deposits per mean 4X image stitch cross section than mice inoculated with 

CaOx alone (n = 10); (Figure C.4D-F). (Figure C.4G-H). Renal CaOx deposits were not seen in 

the saline controls or in mice with UPEC inoculation alone (data not shown). 
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Figure C.4. Bacteria increases the murine CaOx deposit burden. The mean right (A), left 
(B) and combined mean (C) kidney bacterial burdens were lower with UPEC inoculation alone 
compared to kidneys with CaOx deposits and UPEC inoculation at 56,157±1.68x105 versus 
2.14x106±3.34x106; 24,843±69,527 versus 4.5x106±7.83x106 and 40,500±1.12x105 versus 
5.28x106±1.78x106 respectively. To present on a log scale graph, but not during statistical 
analysis, 0 values were assigned a value of 0.01 (D). Following glyoxalate injection, CaOx 
deposits are seen around the corticomedullary junction (arrows) (E) Following UPEC 
inoculation and glyoxalate injection, an increased distribution and number of CaOx deposits 
(arrows) is noted, extending into the medulla (arrowheads). D-E, representative 4X 
magnification image stitches, background cropped for clarity, scale bar = 1000μm. (F) CaOx 
deposit number per mean 4X imaging stitch cross-section area was significantly higher in the 
CaOx deposits and UPEC inoculation group compared to kidney stones alone. There was a 
higher percentage of CaOx deposit/total kidney cross section area (H) with CaOx deposits and 
UPEC than CaOx deposits alone. The location on the scatterplot for the representative images 
(D) and (E) are indicated by an arrowhead and arrow respectively. 
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CaOx Deposits Induce a Murine Renal Innate Immune Response. 

To identify innate immune genes with increased expression in response to CaOx deposits, 

we performed the RT2 Antibacterial Response Array. CaOx deposits induced a robust innate 

immune response at peak (6th day) CaOx deposits formation. Twelve of 84 genes were 

upregulated (>4-fold, P < 0.01) in mice with kidney CaOx deposits (n = 6) compared to saline 

controls (n = 6) (Figure C.5A). The upregulated genes were involved with inflammation, toll-

like receptor signaling and inflammasome formation. A table outlining the 84 genes, heat map 

and complete results are presented in Table C.S1, Figure C.S1, and File S1 (online) 

respectively. 

UPEC and CaOx together protentiate the murine renal innate immunce response 

To determine whether UPEC alters the CaOx induced innate immune response, we 

evaluated expression of innate immune genes in mice with UPEC inoculation alone (n = 5), 

kidney stones alone (n = 6), combined UPEC and CaOx inoculation (n = 6), and saline controls 

(n= 4). We also evaluated the expression of Osteopontin (Spp1) and Calgranulin B (S100A9), 

sincethey encode proteins present in the inner core of CaOx stones (15). No significant 

differences in inflammatory response, toll-like receptor signaling, inflammasome genes or stone 

matrix protein inner core genes were found with UPEC inoculation only, CaOx inoculation only 

or saline control mice. However, when mice were inoculated with both CaOx and UPEC, 2/2 

inflammatory genes, ½ toll-like receptor gene and most notably 2/2 stone matrix protein genes 

were significantly elevated (Figure C.5B-D). 
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Figure C.5. PCR results 
(A) At peak murine CaOx deposit formation (6 days), the RT2 Bacterial Response Array 
revealed that 12/83 genes were significantly up-regulated > 4 fold. These genes included the 
inflammatory genes Chemokine (C-C motif) ligand 5 (Ccl5), Cluster of differentiation 14 
(Cd14), Interleukin 1β (Il1b), Interleukin 6 (Il6), Lysozyme 2 (Lyz2), Mediterranean fever 
(Mefv), and Tumor necrosis factor (Tnf); the toll-like signaling genes, Interleukin–1 receptor-
associated kinase 3 (Irak3) Toll-like receptor adaptor molecule 1 (Ticam1) and Toll-like receptor 
2 (Tlr2) along with the inflammasome genes NLR family, apoptosis inhibitory protein 1 (Naip1) 
and NOD-like receptor family, pyrin domain containing 3 (Nlrp3). (B) In female C57Bl/6 mice, 
targeted RT-PCR revealed that at day 3 the inflammatory genes CD14 and Il6 are not increased 
in UPEC alone inoculated mice or CaOx alone inoculated mice compared to saline control, but 
are when both CaOx deposits and UPEC inoculation are present. (C) Toll-like signaling genes: 
Tlr2 followed a similar pattern to the inflammatory genes while Irak3 was not increased at day 3. 
(D) The inflammasome genes were not up-regulated at 3 days in any of the groups (E) Stone 
matrix protein inner core components were markedly up-regulated, but only when both CaOx 
deposits and UPEC inoculation were present. 
  
 

Discussion 

We hypothesize that bacteria and renal CaOx deposits potentiate individually induced 
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nephropathy (Figure C.6). Urine is not always sterile and contains a microbiome (305, 306). 

Thus, dysbiosis may create a urinary environment conducive to kidney stone formation; 

conversely, CaOx crystals or deposits may form a nidus for bacteria, increasing UTI risk. In 

support of our hypothesis, we have demonstrated that human kidney stones have a microbiome 

(Figure C.2), UPEC aggregate around CaOx monohydrate crystals (Figure C.3), renal CaOx 

deposits potentiate murine pyelonephritis (Figure C.4A-C). UPEC inoculation of the murine 

kidney increases calcium oxalate deposition (Figure C.4D-H) and induces local expression of 

innate immune proteins (Figure C.5) associated with the stone inner core. 

Children with idiopathic hypercalciuria have increased rates of urinary tract infections 

(307, 308). Furthermore, patients with non-struvite kidney stones often have positive urine 

cultures (294). We were able to detect bacteria in human kidney stones but not in upper tract 

urine; this suggests that the CaOx stones represent an area of concentrated bacteria. Our murine 

studies provide the first experimental evidence that renal CaOx deposits increase pyelonephritis 

susceptibility. Despite the frequency of kidney stones and UTIs, the biologic, diagnostic, and 

therapeutic relevance of their association remains largely unknown. Determining whether 

treatment of hypercalciuria and kidney stones reduces UTI risk remains to be determined. 

Additionally, a more extensive evaluation of CaOx crystal and UPEC adhesion forces with 

atomic force microscopy warrants consideration.  

The identification of bacteria in CaOx kidney stones raises the possibility that bacteria or  

bacterial biofilms are components of CaOx stone formation (Figure C.6) as they are in struvite 

stones (145). Four out of 5 (80%) of the kidney stones were positive for Enterobacteriaceae 
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family by sequencing. EQUC identified E. coli, a major member of family Enterobacteriaceae in 

one of the three kidney stones. These complementary methods for bacterial identification 

indicate that Enterobacteriaceae may be associated with pediatric kidney stones. Since the  

 

 
 

 
 

Figure C.6. Speculated mechanisms for bacterial contribution to CaOx stones  
(A) Figure key. (B) Bacteria bind to CaOx crystals that may provide a nidus for 
pyelonephritis or remain persist in a subclinical state (1) and bacterial communities form a 
biofilm (2). The biofilm results in crystal aggregation (3). (C) The bacterial enzymes citrate 
lyase splits citrate resulting in increased CaOx supersaturation (1). CaOx crystals form 
providing a key element of lithogenesis. (D) Bacteria bind to the urothelium (1) that results in 
secretion of innate immune proteins from recruited inflammatory cells (2) and the urothelium 
(3) The innate immune proteins are incorporated as stone matrix proteins. 
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positive cultures were from large kidney stones (Table C.1, Figure C.2) it is possible that 

EQUC may not be sensitive in smaller kidney stones with smaller bacterial loads. Additionally, 

sequencing was positive for Pseudomonas and Gardnerella in 5/5 and 4/5 stones, respectively; 

both species have been detected previously in adult CaOx stones. Sequencing identified bacteria 

in 100% of stones, well above the 19–32% positive CaOx culture rate previously reported (293, 

294). Whenever EQUC identified a bacterium, sequencing also identified it. In contrast, 

sequencing identified many more bacteria than did EQUC. The increased sensitivity of 

sequencing relative to culture may be due to the inability of some bacteria to be readily cultured, 

the ability of sequencing to detect and identify bacteria that are not viable or culturable, and the 

ability of sequencing to detect smaller numbers of bacteria. This increased likelihood of finding 

bacteria with sequencing compared to culture correlates with what has been described previously 

for the urinary microbiome (95). 

We are not aware of prior reports of Bradyrizobium in urine or kidney stones, but it has 

been identified elsewhere in the human microbiome (275). Phyllobacterium is an environmental 

organism (309). Brucella does not appear to be a contaminating organism because it was not 

present in controls including sterile PBS and the bullet blender beads. It also was not found in the 

upper tract urine. Furthermore Brucella is not an environmental organism or found 

spontaneously in mice but may be found in livestock and unpasteurized milk, which the 

investigating facilities do not study (310). Our high throughput sequencing uses the V4 

hypervariable region of the 16S rRNA gene and is therefore only able to classify to the genus 

level. Therefore, what the sequence analysis identified as Brucella could represent an organism 

that has a similar V4 region such as Ochrobactrum (311). Ochrobactrum has been identified in 
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human urine and we submit that our findings may demonstrate that it may also be found in 

kidney stones (312). 

With the exception of patient 1, the upper tract urine was culture-negative and sequence-

negative. Therefore it is unlikely that bacteria DNA from the surrounding upper tract urine 

contaminated the kidney stone. This discrepancy in bacterial loads between the upper tract urine 

and kidney stones could be explained by pre-operative prophylactic antibiotics that patients 

received, which might have had time to sterilize the upper tract urine but not reach the inner 

stone or the bladder urine. Alternatively, the upper tract with higher flow may not be conducive 

to bacterial growth compared to the relative urine stasis in the bladder. Additionally, the CaOx 

surface characteristics may be more prone to bacterial growth or colonization than urine or urine 

epithelial cells. 

We demonstrated that E. coli aggregates around CaOx monohydrate crystals compared to 

CaOx dihydrate crystals and control silicon dioxide crystals. Bacterial adhesion to crystals is 

complex because biological properties very based on crystalline form (313). Future studies will 

include direct evaluation of adhesive forces between a wide variety of crystals and bacteria with 

atomic force microscopy (314). Our findings build upon the findings by Chutipongtanate and co-

workers who demonstrated that bacteria including E. coli interact with CaOx crystals (315). 

Specifically they demonstrated that intact viable, but not dead, bacteria enlarged CaOx 

aggregates (315). 

Traditionally, supersaturation of CaOx has been considered the primary mechanism for 

stone formation. Bacteria in kidney stones or urine may alter urine supersaturation (Figure 

C.6C). Prior research demonstrated that culture positive urine samples have lower citrate levels 
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than culture-negative samples and lower bacterial utilization of citrate via citrate lyase (316, 

317). The correlation of urine chemistries with the urine and kidney stone microbiome was 

beyond the scope of this project, but remains an area for future research. 

Human kidney stones are increasingly recognized to have an inflammatory component 

(318-320). The kidney stone matrix is predominated by inflammatory proteins. It has been 

shown that CaOx crystals induce an inflammatory response through dendritic cell secretion of Il–

1β, inflammasomes are involved in kidney stone pathogenesis and urine Il–6 levels are increased 

in patients with kidney stones (321-324). Furthermore, the innate immune proteins Osteopontin 

(Spp1) and Calgranulin B (S100A9) have consistently been identified in the inner core of CaOx 

deposits (325). A potential mechanism for kidney stone formation consists of bacteria/CaOx 

induction of innate immune proteins that are incorporated into the kidney stone matrix inner 

core, leading to progression from crystalluria to stone formation (Figure C.6D). The finding that 

most inflammatory mediators were not significantly elevated in oxalate loaded mice versus 

saline controls or UPEC alone indicated that the immune response is not due to oxalate 

poisoning but represent synergy between CaOx and UPEC (Figure C.5). A similar mechanism 

occurs in extra-renal calcifications. Specifically, bacteria are present in vascular calcifications 

and innate immune recognition of bacteria accelerates atherosclerosis (326, 327). At an early 

time point in murine CaOx induced disease, an oxalate load or UPEC inoculation individually 

did not significantly increase the innate immune response, whereas the combination of CaOx 

deposit and UPEC inoculation increased both the innate immune response, most importantly the 

stone inner core matrix protein gene expression and the renal CaOx deposit burden. 
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Conclusion 

Kidney stones have a microbiome that includes Enterobacteriaceae. E. coli aggregate 

around CaOx monohydrate crystals, and murine UPEC inoculation is associated with increased 

renal CaOx deposition along with the innate immune response, including increased expression of 

stone matrix proteins, during experimental murine CaOx nephropathy. Further renal CaOx 

depositions increase the bacterial burden during murine pyelonephritis. Perhaps kidney stones 

and/or CaOx crystalluria represents a reversible risk factor that should be screened for in patients 

with recurrent pyelonephritis. Limitations of this study include lack of documentation of stone 

composition in the kidney stone of one patient and the previously mentioned limitations in 

bacterial DNA sequencing technology. Future studies will be needed to confirm whether low 

abundance organisms are passive environmental contaminants or directly involved in 

lithogenesis. Additionally, murine renal CaOx models have key differences from human kidney 

stone disease. We studied human urolithiasis, in vitro CaOx crystals and murine CaOx deposits 

under the broad umbrella of CaOx disease. CaOx deposition in mice occurs acutely and is 

located mostly in the interstitial space. In humans CaOx deposition is mostly tubular and occurs 

over a long period of time. Because of these key differences, our murine findings will need to be 

validated in human patients or an animal model, when one is available that closely approximates 

human urolithiasis, to determine whether bacteria have any relevance in human kidney stone 

disease. Whether bacteria are essential for CaOx kidney stone formation, a disease-modifying 

factor or largely an uninvolved association remains to be determined. However, this study 

provides proof-of-concept that bacteria can worsen the CaOx kidney deposit disease course and 

vice versa. Our screen of 5 kidney stones for bacteria was meant to guide our murine studies, 
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clearly sequencing of a much larger cohort of patients is needed to characterize the kidney stone 

microbiome and determine if the bacteria we identified are frequently present in other cohorts. 

Future studies will also be needed to determine mechanisms responsible for the association 

and/or interaction between bacteria and calcium oxalate disease. 
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Supplemental Material 
 

 

 

Figure C.S1. Quantifying kidney deposits  
(A) Pizzolato stain of a 4X cross-section image stitch (upper panel) in which the CaOx 
deposits are stained black. A zoom view (lower panel) demonstrates individual CaOx 
deposits (B) The “dynamic cell count” feature of the BZ900 microscope software 
identifies and outlines the CaOx deposits (yellow) in the 4X image stitch (upper panel) 
with the outlines of individual software-identified CaOx deposits visible in zoom view 
(lower panel). 
Subsequently the software records the number, major axis and area of the kidney CaOx 
deposits. 
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Appendix C.S Video 1. Not included in this document. Online at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598009/ 

 

Figure C.S2. Heatmap of the antibacterial response array 
A heatmap (upper panel) and table (lower panel) of the RT2 Profiler Antibacterial Response Array 
results. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598009/
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Addendum 

The paper only briefly compares sequencing to culture. Therefore, I have included a table 

that specically shows the comparison between the sequencing to the EQUC culture data (Table 

C.2). Specifically, my part was to culture the Kidney Stones, Upper Urinary Tract (UUT), and 

bladder urine isolates via EQUC (described in Methods of this paper above) and to identify the 

organisms using MALDI-TOF. The culture results are compared to the most abundant species 

sequenced in each sample. Overall, both methods provide similar results. 

Table C.2. Comparison of EQUC results to sequencing 
 

 
 

Site 

 
 

Cultured Organism 

Colony 
Forming 
Units/mL 

Most Abundant 
Sequence 
Organism 

KS-13 

UUT Pseudomonas aeruginosa 10,000 CFU/mL Pseudomonas 

Kidney Stones Pseudomonas aeruginosa 10,000 CFU/mL Pseudomonas 

KS-19 
 

Bladder Urine 
Escherichia coli Gardnerella 

vaginalis 
300 CFU/mL Gardnerella 

UUT None None Negative 

Kidney Stones Escherichia coli 10,000 CFU/mL Enterobacteriacea 

KS-24 
Bladder Urine None None Lactobacillus 

UUT None None Negative 

Kidney Stones None None Brucella 

KS-23 
Bladder Urine None None Negative 

UUT None None Negative 

Kidney Stones None None Brucella 

KS-30 
Bladder Urine Actinomyces turicensis 10 CFU/mL Negative 

Kidney Stones None None Brucella 
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Overview of Appendix D 

These data represent our first evidence that the bladder microbiota/microbiome correlates 

with a health outcome, the response to medication. Urge urinary incontinence (UUI) is primarily 

diagnosed by a patient’s symptoms. Many of the symptoms of UUI overlap with sypmtoms of 

urinary tract infections (UTIs), including frequency and urgency. In addition to symptoms, a 

diagnosis of UUI is contingent upon a negative standard urine culture; therefore, a bacterial 

etiology has not been considered for this disease. Instead, UUI is thought to be caused by 

aberrant signaling to the detrusor muscle, causing contractions and resulting in the urge to 

urinate. All medications aim to block this pathway in one-way or another; however, all 

medications on the market have about an ~50% efficacy rate. Therefore, we asked if there could 

be a bacterial component that would relate to response or lack of response to medication. 

This paper is the conclusion of the study reported on previously (Pearce et al 2014, 

Appendix B) (103). In total, 74 UUI women and 60 asymptomatic controls were recruited. All 

patients had a clinical assessment and provided a catheterized urine sample for 16S rRNA gene 

sequencing and an expanded quantitative urine culture (EQUC). The UUI patients were 

prescribed 5mg of the anticholinergic medication solifenacin. If they had not reported 

improvement from the medication by 4 weeks, they were given the option to increase to a 10mg 

dosage. By 12 weeks, we had 4 groups: asymptomatic controls, UUI patients that responded at 

5mg, UUI patients that responded to 10mg, and UUI patients that did not respond, even with an 

increased dose. We discovered that 5mg responders had a much less diverse (less rich) 

microbiota than 10mg and non-responders.  

These data suggest that a more diverse bladder microbiota is either the result of an 
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environment that will not respond to medication or prevents response to this medication. It also 

suggests that it is possible to predict who will respond to medication by measuring the total 

number of organisms in their bladder prior to treatment. 

Abstract 

Introduction. Many adult women have resident urinary bacteria (urinary 

microbiome/microbiota). In adult women affected by urinary urgency incontinence (UUI), the 

etiologic and/or therapeutic role of the urinary microbiome/microbiota remains unknown. 

Hypothesis. Microbiome/microbiota characteristics will relate to clinically relevant treatment 

response to oral UUI medication. 

Methods. Adult women initiating oral medication treatment for UUI and a comparator group of 

unaffected women were recruited in a tertiary care health care system. All participants provided 

baseline clinical data and urine. Women with UUI were given 5mg solifenacin with potential 

dose escalation to 10mg for inadequate UUI symptoms control at 4 weeks. Additional data and 

urine samples were collected from women with UUI at 4 and 12 weeks. The samples were 

assessed by 16S rRNA gene sequencing and enhanced quantitative urine culturing. The primary 

outcome was treatment response as measured by the validated Patient Global Symptom Control 

(PGSC) questionnaire. Clinically relevant UUI symptom control was defined as a 4 or 5 score on 

the PGSC. 

Results. The diversity and composition of the urinary microbiome/microbiota of women with 

and without UUI differed at baseline. Women with UUI had more bacteria and a more diverse 

microbiome/microbiota. The clinical response to solifenacin in UUI participants was related to 

baseline microbiome/microbiota, with responders more likely to have fewer bacteria and a less 
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diverse community at baseline. Non-responders had a more diverse community that often 

included bacteria not typically found in responders. 

Conclusions. Knowledge of an individual’s urinary microbiome/microbiota may help refine UUI 

treatment. Complementary tools, DNA sequencing and expanded urine culture, provide 

information about bacteria that appear related to UUI incontinence status and UUI treatment 

response in this population of adult women. 

Introduction 

Many adult women undergo treatment for urinary urgency incontinence (UUI), often with 

oral anticholinergic medication, such as solifenacin (102). This medication class targets M3 

muscarinic receptors to decrease smooth muscle contraction, relieving UUI symptoms of 

urgency, frequency and urgency incontinence (102). Although solifenacin decreases urgency 

episodes in approximately 60% of treated patients, symptoms may persist (99, 328, 329) with 

approximately 40% of treated patients reporting bothersome symptoms (330). Clinicians 

recognize this lack of response, although the cause remains unclear and studies into the biologic 

basis for persistent symptoms are lacking. Many UUI-affected patients are considered to have 

idiopathic etiology; however, this view pre-dates emerging evidence of resident urinary bacterial 

communities (urinary microbiota), recently reviewed (305, 306, 331). DNA sequencing and 

expanded urine culture techniques have demonstrated that adult urine is not sterile (79, 95, 96, 

103, 259, 260, 306, 332, 333) and UUI-affected women have different resident bacterial 

compositions than non-UUI control populations (103). 

In this prospective cohort of adult women with UUI, we compared baseline urinary 

microbiota of women with UUI to those of non-affected controls. For UUI-affected women 
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subsequently undergoing clinically indicated UUI treatment with solifenacin, we also determined 

urinary microbiota profiles throughout 12 weeks of treatment, using additional longitudinal 

samples collected at 4 and 12 weeks. We hypothesized that the microbiome/microbiota (e.g. 

diversity, overall community structure, and/or specific organisms) would differ between women 

with and without UUI and between those that responded to solifenacin and those that did not. 

Two complementary bacterial assessments, sequencing and expanded quantitative urine cultures 

(EQUC) (96), were used to overcome the insensitivity of standard urine cultures. EQUC was not 

initially available; however, once this technique was available, it was applied to all remaining 

samples. 

Materials and Methods 

Study Design and Population. 

This 12-week open label study began following Institutional Review Board approval. 
 
Participants gave verbal and written research consent for chart abstraction and urine collection 

with analysis for research purposes. Between August 2012 and July 2014, two cohorts of adult 

women were recruited at a tertiary health care setting, Loyola University Medical Center. 

Potential participants were screened for eligibility using the long version of the validated 

symptom questionnaire, the Pelvic Floor Distress Inventory (PFDI) (278, 279). Women seeking 

UUI treatment were recruited from a specialty Female Pelvic Medicine and Reconstructive 

Surgery center. Comparison controls screened negative for UUI using the PFDI and were 

recruited from women’s health practices within Loyola’s system. These controls were derived 

from a population of gynecologic patients; those who underwent surgical procedures had a 

variety of benign gynecologic conditions, most commonly abnormal uterine bleeding confirmed 
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to be of a benign nature. Enrolled participants also completed the overactive bladder 

questionnaire (OAB- Q) (280). Exclusion criteria for both cohorts included current urinary tract 

infection (UTI) (based on urine dipstick), history of recurrent UTI, antibiotic exposure in the past 

four weeks for any reason, immunologic deficiency, neurological disease known to affect the 

lower urinary tract, pelvic malignancy or radiation, untreated symptomatic pelvic organ prolapse 

(POP) greater than POP-Q Stage II (vaginal protrusion more than one centimeter outside of the 

vaginal hymen) or pregnancy. 

 

Control participants, without overactive bladder symptoms, provided a single 

catheterized urine sample for research purposes as well as clinical and questionnaire data. As 

part of normal clinical care, UUI-affected participants provided a catheterized urine sample prior 

to UUI treatment with solifenacin, which was provided at no cost for 12 weeks. 

Figure D.1. Flow of study participants 
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Participants with UUI also agreed to provide 2 additional catheterized urine samples at 4 

and 12 weeks during UUI treatment for longitudinal analysis. The primary outcome was 

treatment response at 12 weeks. Treatment response was assessed (at 4 and 12 weeks) using the 

validated Patient Global Symptom Control (PGSC) questionnaire (334), which consists of a 

single question that addresses improvement following treatment. Scores of 4 or 5 were defined as 

“response”. PGSC scores ≤ 3 were considered “non-response”; these participants were offered a 

dosage increase to 10mg at 4 weeks. Women whose PGSC score >4 continued the solifenacin 

5mg dose for 8 more weeks until primary outcome assessment at 12 weeks. Thus, definitions for 

3 response groups were determined a priori: non-responders, 5mg responders and 10mg 

responders. Participants who were intolerant of the medication could withdraw at any point 

during the study. The research team assessed adverse events at normally scheduled visits, and at 

other intervals during participant-initiated contact. Figure D.1 shows the flow of UUI- affected 

study participants. The primary outcome was symptomatic response, based on PGSC score, at 12 

weeks. 

Sample Collection and Analysis. 

Urine was collected aseptically via transurethral catheter and a portion placed in a BD 

Vacutainer Plus C&S preservative tube for culture. Urine culture was performed as described 

(96) (E-Methods 1). A separate aliquot for sequencing was placed at 4°C for <4 h following 

collection; 10% AssayAssure (Sierra Molecular; Incline Village, NV) was added before storage 

at -80°C. Our protocols for DNA extraction, library construction, 16S rRNA sequencing and 

bioinformatics analysis have been described (103). All genomic samples were processed in 

duplicate and analysis was performed using mothur software (282). Relative abundance was 
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calculated by generating the percent of total classified reads for each individual. All samples 

were processed in duplicate and the percent reads of replicates were averaged for downstream 

analysis, which included urotype identification and statistical analysis. Urotypes were 

determined as described (103). Briefly, a culture urotype is determined by the dominant (>50%) 

identified organisms within a given sample. A sequencing urotype is determined by first 

clustering sequences using a dendrogram and grouping based on similarity; this usually 

correlates with dominance (>50%) of one organism. Those communities without a dominant 

organism were classified as “Diverse” urotype. Dendrograms were calculated using Bray Curtis 

dissimilarity between samples, and the complete method was used for hierarchical clustering via 

R software, version 2.15.1 (287). To measure the diversity (richness and evenness of species 

within a sample), the alpha diversity (inverse Simpson’s index) was calculated using mothur 

software (282). 

Protocol for the Eexpanded Quantitative Urine Culture (EQUC). 

Full protocol in supplement (Methods D.S1). For standard urine culture, 0.001 mL of 

urine was spread quantitatively onto 5% sheep blood (BAP) and MacConkey agars (BD BBL™ 

Prepared Plated Media), then incubated aerobically (35°C for 24 hours). Any amount of each 

separate morphologic colony type was identified and counted using a detection level of 1,000 

colony forming units (CFU)/mL (represented by 1 colony of growth on either plate). “No 

growth” was reported when no growth was observed, indicating no growth of bacteria at lowest 

dilution, i.e., 1:1000. 

The expanded quantitative urine culture (EQUC) technique uses 0.1 mL of urine spread 

quantitatively onto BAP, Chocolate and Colistin, Naladixic Acid (CNA) agars (BD BBL™ 
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Prepared Plated Media), then incubated in 5% CO2 (35°C for 48 hours). A second set of BAPs 

were inoculated with 0.1 mL of urine and incubated in room atmosphere at 35°C and 30°C for 48 

hours, respectively. In addition, 0.1 mL of urine was inoculated onto each of two CDC Anaerobe 

5% sheep blood agar (ABAP) plates (BD BBL™ Prepared Plated Media), and incubated in either 

a Campy gas mixture (5% O2, 10% CO2, 85% N) or in anaerobic conditions at 35°C for 48 

hours. The detection level was 10 CFU/mL, represented by 1 colony of growth on any of the 

plates. Finally, to detect any bacterial species that may be present at quantities lower than 10 

CFU/mL, 1.0 mL of urine was placed in Thioglycollate Medium (BD BBL™ Prepared Tubed 

Media) and incubated aerobically at 35°C for 5 days. If growth was visually detected, the 

Thioglycollate Medium was mixed and a few drops were plated on BAP and ABAP agars for 

isolation, and incubated aerobically and anaerobically (35°C for 48 hours). Each 

morphologically distinct colony type was isolated on a different plate of the same media to 

prepare a pure culture that was used for organism identification. Matrix-Assisted Laser 

Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) with the MALDI 

Biotyper 3.0 software (Bruker Daltonics, Billerica, MA) was used to identify the bacterial 

isolates (96). To determine the false-negative rate, the following equation was used: the number 

of EQUC positive but standard negative samples divided by the total number of EQUC positive 

samples. To determine the culture diversity within a population, a species accumulation curve 

was generated. Species accumulation curves illustrate the number of unique species cultured and 

identified (using EQUC) with each new patient sampled. When the curve plateaus, it indicates 

that the community is fully sampled and few, if any, new species will be identified. Therefore, it 

also measures the overall diversity of the population by total number of unique species isolated. 
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Statistical Analysis. 

Standard statistical methods were used to compare participant demographics and 

symptom data between UUI patients and controls. Continuous variables are reported as means 

and standard deviations (SD) or medians and interquartile ranges (IQR) and categorical variables 

are reported as frequencies and percentages. Collection of the primary outcomes at 12 weeks was 

necessary for assignment to UUI response groups; therefore, participants who did not provide 

data through 12 weeks were not included in analyses involving response to solifenacin. Fisher’s 

exact and Kruskal-Wallis tests were used to compare demographic and culture (e.g., abundance 

and diversity) information among UUI response groups. For cultured organisms, abundance was 

measured using total CFU/ml; for sequencing, abundance was measured using percent classified 

reads or classified organisms. Post-hoc pairwise comparisons were made using Wilcoxon Rank 

sum tests for continuous variables with significant overall p- values. A kappa statistic was 

estimated to determine agreement between urotype classification from samples with both EQUC 

and sequencing. All statistical analyses were conducted using SPSS software version 19 or SAS 

software v9.4 (SAS Institute, Cary, NC). Significance was assessed at an alpha level of 0.05. 

Results were not adjusted for multiple-comparisons since the analyses are considered descriptive. 

Results 

Population Description Over the Course of the Study. 

Figure D.1 displays the flow of UUI subjects through the 12-week follow-up period. The 

study investigators withdrew participants who had received antibiotics for unrelated clinical 

indications (2) and subjects who underwent a cystoscopy for clinical indications (2). An 

additional 17 participants withdrew by the 4-week visit: 7 due to side effects and 6 lost to follow 
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up. Of the participants who provided UUI symptom response data at 4 weeks, 56% (32/57) 

reported adequate symptom control; all of the remaining 25 accepted dose escalation (10mg 

daily). 

Comparison of Baseline UUI to Controls. 

At baseline, participants included 74 UUI-affected women and 60 controls. The cohorts 

were similar with respect to race/ethnicity, diabetes, and smoking (Table D.1). Participants with 

UUI were more likely to suffer from hypertension [35% versus 18%, p=0.02] and coronary 

artery disease [12% versus 2%, p=0.02]. The UUI population also was older [61.5 years 

(SD:11.5)  versus 49 (SD:14.7), p<0.001], heavier [BMI 32.7 (SD:8.4) versus 28 (SD:5.5), 

p<0.001], and more likely to be estrogen-negative (post-menopausal and not on hormone 

replacement therapy) [88% versus 43%, p-value<0.001]. As expected, UUI symptoms were 

significantly worse in UUI- than non-UUI participants. 

We detected the presence of bacterial DNA in a similar proportion of urine samples for 

each cohort (Controls: 43%, N=26/60, UUI: 50%, N=37/74, p=0.44 Table D.2A). Table D.2A 

and Table D.S2 display the assigned sequence urotypes. In both groups, the majority of samples 

were dominated by Lactobacillus [controls (61.5%, N=16/26), UUI (40.5%, N=15/37), p=0.13]. 

Alpha diversity (measured by the inverse Simpson index) of classified sequences between UUI 

and control was similar (p=0.76). 

A large subset of baseline samples was processed by EQUC (UUI N=59/74, control 

N=52/60). A greater proportion of UUI-affected women had cultivatable bacteria in their urine 

compared to control women (84.7% versus 63.5%, p=0.01). The groups differed in proportion of 

cultured samples characterized by dominant organisms (culture urotypes) (Table D.2A): 
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Lactobacillus [controls (45.5%, N=15/33) versus UUI (22%, N=11/50) p=0.03], and diverse 

[controls (6%, N=2/33) versus UUI (32%, 16/50) p=0.006 Table D.2A]. Relative to controls, 

UUI-affected women had significantly more diversity in unique cultivatable organisms, as 

assessed by the number of unique cultivatable organisms per cohort (UUI= 80, Controls= 36, 

Figure D.2), significantly more cultured bacterial isolates per participant, as measured by the 

median [UUI (2) versus Controls (1), p<0.001, Figure D.2 inset] and significantly more 

cultivatable bacteria, as measured by median number of CFU per mL per urine specimen [UUI: 

340 CFU (IQR: 50-1710) versus Controls: 20 CFU (IQR: 0-305), p=0.002]. 

Characteristics in the Baseline Samples Correlated with Primary Outcome. 

Primary outcome data were available for 50 participants at 12 weeks, with 25 “5mg 

responders”, 15 “10mg responders” and 10 “non-responders”, for an overall response rate of 

80%. At baseline, compared to the withdrawn population, participants with primary outcome 

data weighed less [BMI 31.2 (SD:7.7) versus 35.8 (SD:9.2), p=0.03] and were more likely to 

have had previous pharmacologic treatment for OAB (60% versus 29%, p=0.01). They also had 

greater HRQL scores [61 versus 37, p=0.001] larger urinary distress inventory scores [95 versus 

131, p=0.02] (Table D.S1). We did not detect other significant group differences in baseline 

variables for participants who competed the study. (Table D.S1). 

At baseline, the 3 response groups had similar demographics and symptom severity (Table D.1). 

At 12 weeks, the HRQL scores differed among all response groups (p=0.008). The median score 

for non-responders (70, IQR: 61-86) differed significantly from both responder groups: 5mg 

group (93, IQR: 86-99) and 10mg group (94, IQR: 88-99) (p=0.004 and p=0.008, respectively) 

(Table D.1). 
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Table D.1. Participant demographics and symptoms scores. Comparison of baseline 
demographics between cohorts and response groups. Independent t-tests and Chi-square tests 
used unless otherwise indicated. Fisher's Exact Test due to small, expected cell counts unless 
otherwise indicated. 

 Baseline Baseline: 3 Response Groups 
 UUI 

(N=74) 
Non-UUI 

Control (N=60) 
p-value 5mg 

(N=25) 
10mg 

(N=15) 
Non 

(N=10) 
p-value 

Demographics        
Age (years) [Mean 
(SD)] 

61.5 
(SD:11.5) 

49 
(SD:14.7) 

<0.001a 60 
(SD:12.4) 

63 
(SD:13.5) 

67 
(SD:9) 

0.36b 

Body Mass Index 
(kg/m2) [Mean (SD)] 

32.7 
(SD:8.4) 

28 
(SD:5.5) 

<0.001a 31 
(SD:7.6) 

30 
(SD:7) 

34 
(SD:9) 

0.41b 

Race/Ethnicity*   0.70    0.70 
Non Hispanic 
Caucasian 

56 
(77%) 

43 
(72%) 

17 
(68%) 

12 
(80%) 

9 (90%) 

Hispanic 
Caucasian 

5 
(7%) 

4 (7%) 3 (12%) 2 (13%) 0 (0%) 

African-American 13 
(18%) 

12 
(20%) 

5 
(20%) 

1 
(7%) 

1 (10%) 

Asian 0 (0%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 
Marital Status   0.01    0.71 
Married 38 

(51%) 
37 

(62%) 
15 

(60%) 
8 

(53%) 
5 (50%) 

Separated 3 (4%) 1 (2%) 1 (4%) 0 (0%) 0 (0%) 
Divorced 9 

(12%) 
6 

(10%) 
1 

(4%) 
3 

(20%) 
3 (30%) 

Widowed 14 
(19%) 

1 
(2%) 

4 
(16%) 

2 
(13%) 

1 (10%) 

Single 10 
(14%) 

15 
(25%) 

4 
(16%) 

2 
(13%) 

1 (10%) 

Estrogen Status**   <0.001    0.68 
Estrogen Positive 7 (9%) 32 (53%) 4 (16%) 2 (13%) 0 (0%) 
Estrogen Negative 65 

(88%) 
26 

(43%) 
20 

(80%) 
13 

(87%) 
10 

(100%) 
Unsure 2 

(3%) 
2 

(2%) 
1 

(4%) 
0 

(0%) 
0 (0%) 

Smoking 6 (8%) 4 (7%) 0.51 1 (4%) 1 (7%) 0 (0%) 0.99 
Diabetes 7 

(9%) 
2 

(3%) 
0.14 2 

(8%) 
1 

(7%) 
1 (10%) 0.99 

Hypertension 26 
(35%) 

11 
(18%) 

0.02 9 
(36%) 

5 
(33%) 

7 (70%) 0.13 

Coronary Artery 
Disease 

9 
(12%) 

1 
(2%) 

0.02 2 
(8%) 

2 
(13%) 

1 (10%) 0.84 

Prior Treatment for 
OAB 

37 
(50%) 

0 
(0%) 

<0.001 13 
(52%) 

11 
(73%) 

6 (60%) 0.45 

Vaginal Parity 
[Median, (IQR)] 

2 
(0-2.5) 

2 
(1-3) 

0.02c 2 
(2-3) 

2 
(0-3) 

2 
(0-5) 

0.88c 
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Table D.1. (continued) 
Symptom comparison at baseline and 12 weeks 

 Baseline Baseline: 3 Response Groups  
 UUI 

(N=74) 
Non-UUI 
Control 
(N=60) 

p-value 5mg 
(N=25) 

10mg 
(N=15) 

Non 
(N=10) 

p-value 

Baseline Symptoms 
[Median (IQR)] 

       

Symptom Score d 70 
(55-85) 

0 
(0-5) 

<0.001c 62 
(42-88) 

75 
(65-85) 

69 
(55-78) 

0.61c 

HRQL d 52 
(33-75) 

100 
(98-100) 

<0.001c 68 
(50-76) 

59 
(36-87) 

50 
(31-70) 

0.43c 

UDI e 110 
(61-143) 

8 
(3-17) 

<0.001c 93 
(55-131) 

95 
(52-120) 

98 
(80-149) 

0.63c 

POPDI e 70 
(30-105) 

14 
(0-42) 

<0.001c 68 
(42-129) 

40 
(8-70) 

70 
(8-101) 

0.11c 

CRADI e 66 
(34-112) 

17 
(2-56) 

<0.001c 68 
(44-120) 

43 
(11-81) 

75 
(20-89) 

0.43c 

        
12 Week Symptoms 
[Median (IQR)] 

       

Symptom S,core d    18 
(8-33) 

18 
(5-28) 

54 
(18-63) 

0.01c 

HRQL d    93 
(86-99) 

94 
(88-99) 

70 
(61-86) 

0.008c 

UDI e    22 
(14-59) 

46 
(8-64) 

95 
(58-113) 

0.01c 

POPDI e    32 
(17-68) 

13 
(4-19) 

54 
(32-93) 

0.002c 

CRADI e    24 
(7-89) 

18 
(8-39) 

53 
(32-68) 

0.08c 

aStudent’s T-Test 
bOne-Way ANOVA 
cWilcoxon rank sum test 
dSymptom Score and Health Related Quality of Life Score (HRQL), Based on OAB 
questionnaire 
eUrinary Distress Inventory (UDI), Pelvic Organ Prolapse Distress Inventory (POPDI), 
Colorectal-Anal Distress Inventory (CRADI), based on Pelvic Floor Disease Inventory 
* Self reported by participant 
** Estrogen status is defined as negative if the patient is post-menopausal and not on hormone 
replacement therapy. Estrogen positive is anyone pre-menopausal and/or on hormone 
replacement therapy. 
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The urine samples from all 50 participants with primary outcome data were tested for 

detectable bacteria. At baseline, a similar proportion of each response group had detectable 

bacterial DNA [5mg: 56% N=14/25, 10mg: 46.7% N=7/15, non-responders: 40% N=4/10, 

p=0.66, (Table D.2B)], suggesting that there is no difference in the frequency of samples with 

detectable bacteria present in each response group. In contrast, when we compared bacterial 

community composition by distribution of urotypes (i.e., the number of individuals with 

microbiomes dominated by one organism), the baseline samples from each response group 

tended to be different; however, no statistical testing was conducted due to limited sample sizes. 

Compared to 10mg responders (12.5%, N=1/8), 5mg responders had a larger proportion of 

individuals with Lactobacillus-dominant urine (50%, N=7/14) (Table D.2B). The response 

groups had similar alpha diversities [5mg: 1.6 (IQR: 1.2-3.7), 10mg: 1.9 (IQR: 1.1-6.3), non-

responders: 2.8 (IQR:1.7-4.1), p=0.55]. 

The subset (N=39/50) of baseline urine samples from participants with primary outcome 

data that were cultured with EQUC included 19 “5mg responders”, 13 “10mg responders”, and 7  

“non-responders”. Cultivatable organisms (EQUC) were detected in most participants: 5mg 

responders: 73.7% (N=14/19), 10mg responders: 100% (N=13/13) and non- responders: 85.7%  

(N=6/7) (p=0.13, Table D.2B). The dominant urotype by response group was: 5mg response - 

Lactobacillus-dominant urotype 35.7% (N=5/14); 10mg - diverse urotype 38.5% (N=5/13) and 

30.8% (N=4/13) Streptococcus-dominant urotype; and non-responders – diverse urotype 50%  

(N=3/6). Each response group had a distinct species accumulation curve, with different total 
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Table D.2. Urotype proportions 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Undetermined urotype means the bacterial load 
in the sample was below the detectable threshold 
by either sampling method. 
**50 patients returned for the 12-week visit, 
however, only 48 were sequenced due to unclear 
specimen labeling. These two samples were 
processed by EQUC. 
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Figure D.2. Diversity of cultivatable bacteria is distinct between cohorts and response 
groups at baseline. Species accumulation analysis illustrates the number of unique species 
cultured and identified using expanded quantitative urine cultures (EQUC) with each new 
patient sampled. When the curve plateaus, it indicates that the community is fully sampled 
and few, if any, new species will be identified. Therefore, it also measures the overall 
diversity of the population by total number of unique species isolated. The urgency urinary 
incontinence (UUI) curve represents samples at baseline from individuals who may or may 
not respond. When we divide this curve into each group stratified by response, we see that 
baseline diversity of each groups is distinct, suggesting that baseline diversity could be 
predictive of treatment response. The 5-mg responders (grey triangles) had low diversity, 
with a total of 32 unique species isolated. The 10-mg responders (dark x) had high diversity, 
with a total of 54 unique isolates. Nonresponders (light x) had high diversity, with a total of 
42 unique isolates. The median number of unique species was not significantly different 
between 10-mg responders and nonresponders: 5 [interquartile range (IQR) 3–6] versus 8 
(IQR 3–15), p value = 0.25 but was significantly different between 5-mg and 10-mg 
responders and between 5-mg and nonresponders: 1 (IQR 0–5) versus 5 (IQR 3–6), p 
value = 0.03; and 1 (IQR 0–5) versus 8 (IQR 3–15); p value = 0.02 
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number of unique cultured bacterial isolates: 5mg (32), 10mg (54) and non-responders (42) 

(Figure D.2). Overall, there was a difference in the number of unique species isolated by 

response group (p=0.02). The median number of unique species isolated from each individual 

within each cohort was similar in the 10mg and non-responder groups [5 versus 8, p= 0.25 

Figure D.2 inset]. However, there was a statistically significant difference between the 5mg and 

the other responder groups: [5mg: 1 versus 10mg responders: 5 p= 0.03, or non-responders: 8, p= 

0.02 Figure D.2 inset]. 

Each response group contained several genera that differed from other response groups 

(Figure D.3A), with Actinomyces cultivated more commonly from 10mg responders and non- 

responders than from 5mg responders (p=0.01 and 0.04, respectively). Streptococcus was 

cultivated more commonly from non-responders (p=0.002). In addition, several bacterial species 

differed between response groups (Figure D.3B). 

Primary Outcome Comparison – 12 weeks. 

At 12 weeks, 48 of the 50 participants with primary outcome data were sequenced. Two 

samples were not sequenced due to inconclusive labeling. Of the remaining 48, 23 samples were 

positive for bacterial DNA (Table D.2B). Similar to baseline, the response groups had similar 

proportions of 12-week samples with detectable bacterial DNA [5mg: 43.5% N=10/23, 10mg: 

46.7% N=7/15, and non-responders: 60% N=6/10, p=0.70]. Statistical testing was not performed 

because of limited sample size; however, the 3 response groups trended toward different 

sequence urotype distributions, with larger proportions of Lactobacillus urotypes in 5mg 

responders (70%, N=7/10), compared to 10mg responders (28.6%, N=2/7) and non- responders 

(33.3%, N=2/6) (Table D.2B). The response groups had similar alpha diversity (p=0.18). 
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At 12 weeks, most (86%, N=38/44) EQUC-characterized urines demonstrated 

cultivatable organisms (Table D.2B). At 12 weeks, each response group tended toward different 

culture urotypes distributions: 5mg response - Lactobacillus-dominant urotype 38.9% N=7/18; 

10mg - diverse urotype 23.1% N=3/13 and 23.1% N=3/13 Streptococcus-dominant urotype; and 

non-responders – Lactobacillus 42.8% N=3/7 (Table D.2B). The species accumulation analysis 

of the baseline and 12-week samples show that the 10mg and non-responders decreased in 

diversity by 12 weeks, from 55 unique isolates to 23 for the 10mg group and from 40 to 29 for 

the non-responders. In contrast, the 5mg group increased in diversity, from 32 unique isolates to 

Figure D.3. Detection frequency of genera and significant species between response 
groups. Comparison of frequency of culture-based detection at genus (a) and species (b) 
levels for baseline urine by response group. Fisher’s exact test was used to calculate p 
values. * p = 0.05; ** p = 0.001 
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41 (Figure D.S1). We did not detect a specific single genus that significantly declined in 

responders (5mg or 10mg) (Figure D.S2). At the conclusion of the specimen collection, we 

compared the two methods of bacterial assessment. Approximately half (49.8%, N=119/239) of 

all urine specimens sequenced had detectable bacterial DNA, whereas most specimens (80%, 

N=140/177) cultured with EQUC grew organisms. Among the sequence-positive, culture- 

positive individuals, the urotype classifications were moderately comparable (Kappa = 0.45) 

(335). 

When comparing EQUC to standard culture, we found EQUC detected more organisms 

overall. Of all the urine samples in the study, 81.3% (N=165/203) grew bacteria by EQUC. Of 

those, 149 had been deemed culture negative (“No Growth”) by the standard culture, resulting in 

90.3% false negative rate for standard culture. 

Discussion 

The female urinary microbiota in women affected by UUI appears to differ from a 

comparison group of unaffected women. Using two complementary techniques, we report 

differences in composition (urotype), diversity (number of unique bacterial species) and identity 

of certain bacteria at the genus and species levels. These differences, which were detectable prior 

to UUI treatment, appear related to treatment response. Moreover, following UUI treatment, 

certain microbiota characteristics appear associated with a clinically significant response to 

treatment. Overall, less diversity appears associated with fewer UUI symptoms and with 

treatment response at 5mg. We also found that bacterial diversity in women who required a 

higher dose to achieve adequate symptom control is more similar to the diversity found in non-

responders, indicating that the diversity of cultivatable organisms might be used to predict 
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treatment response. 

The mechanistic relationship between bacterial diversity and UUI symptoms is unknown. 

However, given our findings, important clinical questions regarding UUI etiology or 

consequences will need careful study. In this research work, we selected 2 complementary study 

techniques to assess the bacterial milieu, one of which was developed after we started 

enrollment. Sequencing, which was available at the onset of our study, provided a broad picture 

of bladder bacteria, allowing a more complete analysis of bacterial diversity. In addition, 

sequencing could detect bacteria that even EQUC could not cultivate. However, urine samples 

contain low biomass relative to other anatomical sites (e.g., gut or vagina). Thus, a proportion of 

the study population did not contribute sequencing data. This lack of information was often 

resolved by the use of EQUC. This expanded culture technique for urine became available after 

our study started. EQUC not only confirms that bladder organisms are alive, but it also allows 

phenotyping of low biomass individuals not measurable by sequencing. 

The very low CFUs associated with UUI may prompt consideration of a lower CFU cut-

off (perhaps >10
2
) for a standard urine culture. Others have suggested lowering the culture 

threshold for UTI (76, 77, 79-81) and even for UUI (336); however, these studies focused on 

growing known uropathogens. Here, we showed that the bladder can contain a variety of 

organisms. 

Some are likely non-pathogenic normal flora. Others might have an impact on UUI and 

other lower urinary tract symptoms. Some of these might be protective, whereas others may 

contribute to symptoms. Indeed, we recently reported that detection of urinary microbiota by 

quantitative PCR is associated with a reduced risk of post-instrumentation UTI (101) and an 
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association between Lactobacillus crispatus and the lack of lower urinary tract symptoms (103). 

Furthermore, several bacterial species appear to be associated with UUI (103). Thus, we 

recommend the use of expanded culture conditions until our understanding of unrecognized 

uropathogens improves. EQUC is more likely than sequencing to be readily available in the 

clinical setting, and may prove useful for rapid phenotyping of individual patients, prior to 

treatment selection. This is especially important as no single clinical demographic variable 

adequately predicted treatment outcome. 

We have considered the implications of the minority of samples that were “negative” for 

both techniques. We currently consider this group to be “sub-threshold” rather than “sterile” and 

fully anticipate that the very low biomass individuals will be more fully described as 

technologies evolve. 

The dominance of certain genera, such as Lactobacillus and Gardnerella, may prompt 

thoughts of vaginal contamination. Our use of aseptically collected specimens via transurethral 

catheter by experienced individuals, and our prior publications demonstrating the presence of 

Lactobacillus and Gardnerella in female bladder urine collected through suprapubic aspirates 

(95), supports the evidence that both genera are capable of residing in the bladder. The role of 

these organisms as members of the urinary microbiome and their relationships to vaginal 

microbiota requires further study. Because the bladder and vagina can contain the same species, 

the use of catheterized samples is recommended whenever possible and careful interpretation is 

required when using samples obtained by void. 

It is possible that baseline group differences contributed to our findings. However, since 

UUI incidence increases with age and is therefore linked to menopause status, our sample size is 
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not sufficient to further describe the separate effects of estrogen status, age, and UUI symptoms 

in relation with microbiota diversity. We acknowledge this possibility; yet, we wish to highlight 

the importance of the findings between treatment response groups (Figure D.2). Women with 1-

4 bacterial isolates on EQUC were most likely to respond to the initial 5mg dose of solifenacin, 

whereas women with more diversity (≥5 bacterial isolates) were less likely to respond or needed 

an increased dose. These simple cut-offs, detectable prior to treatment, will require validation in 

larger patient populations. Therefore, in future studies, the use of both EQUC and sequencing for 

all collected urine specimens is recommended. The results are highly complementary, with 

sequencing measuring a broad picture of the population and the EQUC protocol measuring the 

cultivatable organisms within that population. 

Clinicians can benefit from expanded knowledge about the bacterial communities that are 

present in patients with UUI. Although specific changes in clinical management cannot yet be 

recommended, this promising area of research is generating many new hypotheses. In addition, 

our findings should inform the design of larger clinical studies that have potential to personalize 

UUI treatment, provide insight into UUI etiology, and offer promise for novel UUI prevention 

strategies. We believe that related urinary tract disorders may also benefit from this new 

knowledge. 

Conclusions 

The response to oral UUI medication (solifenacin) may relate to individual urinary 

microbiota characteristics that are detectable prior to treatment. Our findings, especially the 

importance of organism diversity, offer promising possibilities for new ideas for prevention and 

treatment of UUI in women. 
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Supplemental Material 

Methods D.S1. Protocol for the Expanded Quantitative Urine Culture (EQUC): For 

standard urine culture, 0.001 mL of urine was spread quantitatively onto 5% sheep blood (BAP) 

and MacConkey agars (BD BBL™ Prepared Plated Media), then incubated aerobically (35°C for 

24 hours). Any amount of each separate morphologic colony type was identified and counted 

using a detection level of 1,000 colony forming units (CFU)/mL (represented by 1 colony of 

growth on either plate). “No growth” was reported when no growth was observed, indicating no 

growth of bacteria at lowest dilution, i.e., 1:1000. 

The expanded quantitative urine culture (EQUC) technique uses 0.1 mL of urine spread 

quantitatively onto BAP, Chocolate and Colistin, Naladixic Acid (CNA) agars (BD BBL™ 

Prepared Plated Media), then incubated in 5% CO2 (35°C for 48 hours). A second set of BAPs 

were inoculated with 0.1 mL of urine and incubated in room atmosphere at 35°C and 30°C for 48 

hours, respectively. In addition, 0.1 mL of urine was inoculated onto each of two CDC Anaerobe 

5% sheep blood agar (ABAP) plates (BD BBL™ Prepared Plated Media), and incubated in either 

a Campy gas mixture (5% O2, 10% CO2, 85% N) or in anaerobic conditions at 35°C for 48 

hours. The detection level was 10 CFU/mL, represented by 1 colony of growth on any of the 

plates. Finally, to detect any bacterial species that may be present at quantities lower than 10 

CFU/mL, 1.0 mL of urine was placed in Thioglycollate Medium (BD BBL™ Prepared Tubed 

Media) and incubated aerobically at 35°C for 5 days. If growth was visually detected, the 

Thioglycollate Medium was mixed and a few drops were plated on BAP and ABAP agars for 

isolation, and incubated aerobically and anaerobically (35°C for 48 hours). Each 

morphologically distinct colony type was isolated on a different plate of the same media to 
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prepare a pure culture that was used for organism identification. Matrix-Assisted Laser 

Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) with the MALDI 

Biotyper 3.0 software (Bruker Daltonics, Billerica, MA) was used to identify the bacterial 

isolates (96). To determine the false-negative rate, the following equation was used: the number 

of EQUC positive but standard negative samples divided by the sum of the EQUC positive and 

standard positive samples and the EQUC positive but standard negative samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

256 

Table D.S1. Comparison of demographics and symptoms of completed and withdrawal 
populations at baseline 

 Completed Study 
(N=50) 

Withdrawal 
(N=24) 

p-value 

Demographics    
Age (years) 
[Mean (Standard Deviation)] 

62.5 (SD:12.2) 59.5 (SD:10) 0.30a 

Body Mass Index (kg/m2) 
[Mean (Standard Deviation)] 

31.2 
(SD:7.7) 

35.8 
(SD:9.2) 

0.03a 

Race/Ethnicity*    
Non Hispanic Caucasian 38 (76%) 17 (71%)  
Hispanic Caucasian 5 (10%) 1 (4%) 0.40 
African-American 7 (14%) 6 (25%)  
Asian 0 (%) 0 (%)  
Marital Status    
Married 28 (56%) 10 (42%)  
Separated 1 (2%) 2 (8%) 0.31 
Divorced 7 (14%) 2 (8%) 
Widowed 7 (14%) 7 (29%)  
Single 7 (14%) 3 (13%)  
Estrogen Status**    
Estrogen Positive 6 (12%) 1 (4%) 0.47 
Estrogen Negative 43 (86%) 22 (92%) 
Unsure 1 (2%) 1 (4%)  
Smoking 2 (4%) 4 (17%) 0.08 
Diabetes 4 (8%) 3 (13%) 0.68 
Hypertension 21 (42%) 11 (46%) 0.75 
Coronary Artery Disease 5 (10%) 4 (17%) 0.46 
Prior Treatment for OAB 30 (60%) 7 (29%) 0.01 
Vaginal Parity [Median (IQR)] 2 (1-3) 2 (0.5-3) 0.56b 

Symptoms [Median (IQR)]    
Symptom Scorec 70 (53-85) 80 (56-86) 0.31b 

Health Related Quality of Life (HRQL)c 61 (42-82) 37 (15-52) 0.001b 

Urinary Distress Inventory (UDI)d  95 (56-131) 131 (108-161) 0.02b 

Pelvic Organ Prolapse Distress Inventory (POPDI)d 59 (15-95) 83 (42-132) 0.13b 

Colorectal-Anal Distress Inventory (CRADI)d 60 (20-112) 71 (43-127) 0.38b 

Fisher's Exact Test due to small, expected cell counts unless otherwise indicated. aStudent’s T-
Test, bWilcoxon rank sum test, cBased on OAB questionnaire, dBased on Pelvic Floor Disease 
Inventory * Self-reported by participant. ** Estrogen status is defined as negative if the patient is 
post-menopausal and not on hormone replacement therapy. Estrogen positive is anyone pre-
menopausal and/or on hormone replacement therapy. 
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Table D.S2. A list of each patient’s urotype. It was included to fulfill the primary aim of the 
clinical trial: to phenotype each individual’s microbiome. Due to its size, it was excluded from 
this document. See PMID: 26423260 Supplementary Table 2. 
 
 
 
 

 
 
Figure D.S1. Species accumulation curves comparing baseline and 12-week diversity by 
response group 
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Figure D.S2. Frequency of detection of bacterial genera at baseline and 12 weeks of all 
responders (5mg and 10mg). Comparison of the frequency of detection for baseline and 12 
week urines in responders (including both 5mg and 10mg responders). There is no one genus that 
decreases significantly over that timeframe in individuals that respond to solifenicin. 
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Addendum 

For the Astellas solefenifin projects (Appendix B and this appendix), we completed many 

comparisons that were not published. Specifically, we were interested in any specific differences 

between the 5mg responders and either the non-responders or 10mg responders, analysis on the 

longitudinal data, and further comparison between sequencing and culture. Overall, the following 

data was inconclusive and therefore most was excluded from any publications. 

We did find a few organisms at baseline that were statistically different between the 5mg 

responds and 10mg responders, as well as the 5mg responders and non-responders (Figure D.4). 

But in a 3-way comparison between all groups, only 4 species were found to be significant, and 

those were published (Figure D.3).  

The longitudinal data requires further investigation. We did not detect a change in the 

overall biomass of each niche over time (Figure D.5), suggesting that neither the treatment, nor 

the response to treatment, influenced bacterial load. We also did not detect a change in the 

overall frequency of species detection (Figure D.6). Therefore, there was no single organism that 

“disappeared” or “appeared” by 12 weeks and would account for symptom improvement. But, 

we did see that diversity in the 10mg and non-responders began to decrease by 12 weeks (Figure 

D.S1), suggesting that diversity is still the main contributing factor. 

In addition, we do not have any comparable longitudinal data from the contols. 

Therefore, we do not know if the changes we see longitudinally in the UUI patients are due to 

medication, symptom improvement or basic every-day fluctuations of the microbiome. These 

data should be re-analyzed once we have a better understanding of longitudinal fluctuations from 

controls. 
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A. 

B. 

Figure D.4. Major genera (A) and species (B) isolated from controls and 3 response 
groups. These figures expand on Figure D.3. It includes controls as well as the response 
groups. (A) The frequency of isolation of common genera followed by the species within that 
geneus. (B) Genera and species present at significantly different frequencies in the 5-mg 
solifenacin responder cohort (red) relative to either the 10-mg responder cohort (green) or the 
non- responder cohort (purple). p < 0.05. Many of these organisms were significantly different 
from 5mg responders in a two-way comparison (shown here) but only 4 organisms were 
significantly different in a 3-way comparison (Figure D.3B). 
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Figure D.5. Solifenacin does not exert a consistent effect upon urinary bacterial abundance. 
Total CFU/ml of baseline, 4-week and 12-week urine samples was plotted for each member of 
the 5-mg responder (top) and non-responder (bottom) groups. A similar lack of consistent effect 
was observed for 10-mg responders (data not shown). Notice that some data are missing, either 
because the sample was not subjected to EQUC or because the EQUC assay was negative. 
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Figure D.6. Solifenacin does not exert a major effect on the frequency of the most common 
FUM genera. For UUI patients, we plotted the frequency of each common genus detected in 
baseline, 4-week & 12-week urine samples. For comparison, we plotted the frequency of the 
same genera in the baseline urine samples of non-UUI controls. 
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APPENDIX E 

GENOMES OF GARDNERELLA STRAINS REVEAL AN ABUNDANCE OF 

PROPHAGES WITHIN THE BLADDER MICROBIOME 

 

Malki, R., Shapiro, J., Price, T.K., Hilt, E.E., Thomas-White, K., Sircar, T., Rosenfeld, A.B., 
Kuffel, G., Zilliox, M.J., Wolfe, A.J., Putonti, C. Genomes of Gardnerella Strains Uncover an 

Abundance of Prophages within the Bladder Microbiome. PloS one 2016;11:e0166757,  
PMID: 27861551 
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Overview of Appendix E 

This work was performed in collaboration with Catherine Putonti’s Lab at the Lakeshore 

Campus of Loyola University Chicago. The majority of this work is bioinformatics based and 

was done in their lab.  

This work is the first publication of Gardnerella genomes isolated from the bladder 

microbiome via our EQUC protocol. This work shows compares the genomes of Gardnerella 

from the bladder to other available published genomes of Gardnerella from other sites. This 

comparison shows that Gardnerella are rich with prophage genes and suggests that these phages 

may play a role in the evolution of these bacteria in the urinary and reproductive tract 

microbiota. 

Abstract 

Bacterial surveys of the vaginal and bladder human microbiota have revealed an 

abundance of many similar bacterial taxa. As the bladder was once thought to be sterile, the 

complex interactions between microbes within the bladder have yet to be characterized. To 

initiate this process, we have begun sequencing isolates, including the clinically relevant genus 

Gardnerella. Herein, we present the genomic sequences of four Gardnerella strains isolated 

from the bladders of women with symptoms of urgency urinary incontinence; these are the first 

Gardnerella genomes produced from this niche. Congruent to genomic characterization of 

Gardnerella isolates from the reproductive tract, isolates from the bladder reveal a large 

pangenome, as well as evidence of high frequency horizontal gene transfer. Prophage gene 

sequences were found to be abundant amongst the strains isolated from the bladder, as well as 

amongst publicly available Gardnerella genomes from the vagina and endometrium, motivating 
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an in depth examination of these sequences. Amongst the 39 Gardnerella strains examined here, 

there were more than 400 annotated prophage gene sequences that we could cluster into 95 

homologous groups; 49 of these groups were unique to a single strain. While many of these 

prophages exhibited no sequence similarity to any lytic phage genome, estimation of the rate of 

phage acquisition suggests both vertical and horizontal acquisition. Furthermore, bioinformatic 

evidence indicates that prophage acquisition is ongoing within both vaginal and bladder 

Gardnerella populations. The abundance of prophage sequences within the strains examined 

here suggests that phages could play an important role in the species’ evolutionary history and in 

its interactions within the complex communities found in the female urinary and reproductive 

tracts. 

Background 

Gardnerella, a member of the Bifidobacteriaceae family, is a genus of facultative 

anaerobes within the vaginal microbiota of both healthy women and those diagnosed with 

bacterial vaginosis (BV) (266, 337-339). Similarly, our group found Gardnerella in urine 

collected from adult female bladders by transurethral catheter (95, 96, 98, 103). This corresponds 

with microbiome studies of voided urine: Gardnerella was present regardless of sex or symptom 

status (94, 260, 332, 333, 340). Furthermore, the bladders of healthy individuals include other 

bacterial taxa also detected within the vaginal microbiota (79, 95, 96, 98, 103, 260, 332, 333, 

340). To date, thirty-nine G. vaginalis isolates from the vagina or endometrium have been 

sequenced (341-346), including four complete genomes; the remaining genomes are represented 

as scaffolds or contigs. Analysis of G. vaginalis genomes found evidence of a large pangenome 

that consists of a modestly sized core genome in addition to strain-specific genes (341, 346). 



 

 
 

266 

Prior investigations of G. vaginalis genomes from the reproductive tract have uncovered 

indications of substantial horizontal gene transfer (HGT), including the acquisition of genes from 

other human-associated taxa (341, 346, 347). In addition to natural competence, G. vaginalis 

may also include phage-mediated gene transfer, as coding regions of bacteriophage (phage) 

origin are ubiquitous within these genomes (346). Similarly, genomic sequences from other 

bacterial taxa within the vaginal microbiota also contain parts of or entire temperate phage 

genomes (348, 349). Prior studies have posited that lysogenic lactobacilli phages could 

contribute to a shift in the vaginal microbiota leading to BV [for a review, see Turovskiy et al 

2011(339)]. Phages have been found to play a crucial role in the structuring of microbial 

communities, including those residing within the human body (350), driving bacterial genetic 

diversity (351) and adaptation to changes in the environment (352). Although several phages 

induced from vaginal lactobacilli have been identified (353, 354), currently no phages have been 

characterized for Gardnerella. While evidence suggests that phages are likely contributors to 

HGT in commensal communities [e.g. (348, 352) and review (355)], the extent of their effect on 

the human microbiome is just now being explored [e.g., (356-358)]. Within many other 

microbiota, including the bladder, the virome remains largely unexplored. 

Herein, we present the genomic sequences of four Gardnerella strains isolated from the 

bladders of adult women with symptoms of urgency urinary incontinence (UUI). Comparative 

genomics between these strains and publicly available isolates revealed a highly conserved core 

genome across the bladder and vaginal isolates. Analogous to prior observations for this species, 

the Gardnerella strains isolated from the bladder also contain a large number of prophage gene 

sequences. The pervasiveness of prophage sequences in Gardnerella genomes from both the 
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female urinary and reproductive tracts motivated our thorough bioinformatic investigation. A 

comprehensive interrogation of the over 400 annotated prophage gene sequences identified here 

provides insight into the adaptive ability of Gardnerella, as well as the larger community of 

phages within the female urinary community. 

Materials and Methods 

Strain Isolation and DNA Extraction. 

The Gardnerella and Gardnerella vaginalis isolates were isolated from transurethral 

catheterized urine specimens of adult women with UUI (98) using the previously described 

Enhanced Quantitative Urine Culture (EQUC) protocol (96). Microbial identification was 

determined using a Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass 

Spectrometer (MALDI- TOF MS, Bruker Daltonics, Billerica, MA) as described (96). Pure 

cultures were stored at -80°C in a 2 ml CryoSaver Brucella Broth with 10% Glycerol, no beads, 

Cryovial, for preservation (Hardy Diagnostics). 

The preserved pure culture isolates were grown on CDC Anaerobic 5% sheep blood 

(Anaerobic BAP) agar (BD BBL™ Prepared Plated Media) under anaerobic conditions at 35°C 

for 48 hours. MALDI-TOF MS was performed for species/genus verification. An isolated colony 

was transferred to 5mL tryptic soy broth (TSB) supplemented with 10% fetal bovine serum 

(FBS) and grown under anaerobic conditions at 35°C for 48 hours. 1 mL of culture was 

collected, and cells were resuspended in 1 mL of buffered saline peptone (PBS). 

Genomic DNA extraction was performed using a phenol-chloroform extraction protocol. 
 
Briefly, cells were resuspended in 0.5 mL DNA Extraction Buffer (20 mM Tris-Cl, 2 mM 

EDTA, 1.2% Triton X-100, pH 8) followed by addition of 50 μL Lysozyme (20mg/mL), 30 μL 
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Mutanolysin, and 5 μL RNase (10 mg/mL). After a 1-hour incubation at 37°C, 80 μL 10% SDS, 

and 20 μL Proteinase K were added followed by a 2-hour incubation at 55°C. 210 μL of 6 M 

NaCl and 700 μL phenol-chloroform were then added. After a 30-minute incubation with 

rotation, the solutions were centrifuged at 13,500 RPM for 10 minutes, and the aqueous phase 

was extracted. An equivalent volume of Isopropanol was then added, and solution was 

centrifuged at 13,500 RPM for 10 minutes after a 10-minute incubation. The supernatant was 

decanted and the DNA pellet was precipitated using 600 μL 70% Ethanol. 

Genome Sequencing, Assembly, and Annotation. 

DNA samples were diluted in water to a concentration of 0.2 ng/μl as measured by a 

fluorometric-based method (Life Technologies) and 5 μl was used to obtain a total of 1 ng of 

input DNA. Library preparation was performed using the Nextera XT DNA Library Preparation 

Kit (Illumina) according to manufacturer’s instructions. The isolates were barcoded, pooled and 

each isolate was sequenced twice, on two separate runs, using the Illumina MiSeq platform and 

the MiSeq Reagent Kit v2 (300-cycles) to produce 150 bp paired-end reads. Sequencing reads 

were parsed into individual folders according to the respective barcodes. 

The following protocol produced an assembly with the least number of scaffolds and the 

highest overall coverage (Table E.1). Reads were paired using Geneious (Biomatters Ltd., 

Auckland, New Zealand) for each isolate for each sequencing run. De novo assembly was 

performed, combining the two runs per isolate, using the Geneious plug-in for Velvet (359) (k = 

99). Sequence contigs were then extended and scaffolds were constructed using the tool 

SSPACE (360). Resulting contigs were again assembled using the Geneious de novo assembler 

at the Medium-Low sensitivity setting. Annotations were performed for each of the contigs using 
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the RAST annotation pipeline (243), as well as the BASys bacterial annotation system (244). 

RISPR arrays were predicted using CRISPRdb (361). A local nucleotide database was created 

for each strain using the protein coding regions predicted by RAST. Each predicted coding 

region was then reciprocally BLASTed (blastn). Genes were determined to be homologs if the 

query coverage and the sequence identity were both greater than 70%. 

Raw sequencing reads as well as assembled contigs are available through NCBI: Gv18-4 

(SRA: SRX1688291, WGS: LWSP00000000), Gv23-12 (SRA: SRX1688198, WGS: 

LWSQ00000000), G26-12 (SRA: SRX1688301, WGS: LWSR00000000), and G30-4 (SRA: 

SRX1688300, WGS: LXJL00000000). E.S1 Table lists the annotated protein functionalities 

within the four strains; annotations are available and can be queried through NCBI. 

Phylogenetic Analysis. 

Single Gene Trees: 16S rRNA gene sequence analysis was performed by excising the 

full length 16S sequence from the assembled genomes and querying each against the NCBI nr/nt 

database via blastn. Sequences producing full-length hits were collected and aligned using 

MUSCLE (362). The phylogenetic tree was constructed using RAxML (363) and visualized 

using PhyloWidget (364). Phylogenetic analysis of the VLY gene sequences was aligned using 

ClustalW (365). As before, RAxML (363) and PhyloWidget (364) were used to derive and 

visualize the tree, respectively. 

Core Genome Tree. While 43 strains are presently publicly available through NCBI for 

G. vaginalis, this study considered only those that were (1) isolated from the vagina or 

endometrium and (2) are documented within the literature (267, 341-345). Supplementary 

Table E.3 lists the 35 publicly available strains meeting these criteria. The species tree was 

https://www.ncbi.nlm.nih.gov/nuccore/LWSP00000000
https://www.ncbi.nlm.nih.gov/nuccore/LWSQ00000000
https://www.ncbi.nlm.nih.gov/nuccore/LWSR00000000
https://www.ncbi.nlm.nih.gov/nuccore/LXJL00000000
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115800/#pone.0166757.s003
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derived by first identifying the core set of genes within the 39 Gardnerella strain sequences 

(genome, scaffold, or contig collections). Incomplete genomes (scaffold or contig status) were 

retrieved from NCBI. Their sequences were individually submitted to the RAST server and 

annotated (243). For the three complete genomes, G. vaginalis 409–05 (NC_013721), 14019 

(NC_014644), and HMP9231 (NC_017456), the ffn format files were retrieved from NCBI’s 

FTP site. The core gene set was determined by first creating a local nucleotide BLAST database 

with the coding regions annotated for the G. vaginalis 14019 strain. Annotated coding regions in 

other sequences were BLASTed locally (using BLASTn, e-value<10−5), returning the top hit 

only. Genes producing hits in all other 38 genomes were identified as members of the core 

genome. The core gene set contains 183 genes (E.S4 Table), a significantly smaller group than 

previously used when considering smaller numbers of strains (341, 346). Each core gene and its 

orthologs were aligned using ClustalW (365). Alignments were concatenated producing a 

concatenated gene alignment (super-gene alignment) using an in-house script in R (available 

upon request). The Maximum- likelihood tree was derived using RAxML (363). Trees were 

visualized using PhyloWidget (364). 

Assessing Presence/Absence of Coding Regions of Interest. 

The absence of coding regions identified with key carbohydrate metabolism 

functionalities within the G26-12 and G30-4 genome analyses was experimentally verified via 

PCR. Coding regions within the Gv18-4 genomic sequence with the following functional 

annotations were retrieved: (1) chitin and N-acetylglucosamine utilization, (2) deoxyribose and 

deoxynucleoside catabolism, (3) D-gluconate and ketogluconates metabolism, (4) formaldehyde 

assimilation, (5) lactose and galactose uptake and utilization, (6) trehalose biosynthesis, uptake 

https://www.ncbi.nlm.nih.gov/nuccore/NC_013721
https://www.ncbi.nlm.nih.gov/nuccore/NC_014644
https://www.ncbi.nlm.nih.gov/nuccore/NC_017456
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and utilization, and (7) xylose utilization. In total, 22 genes were identified. Each was BLASTed 

against the nr/nt database, specifying the genus Gardnerella, to retrieve orthologs from other 

strains. All annotations within the GenBank files retrieved were manually inspected verifying 

similar confirmed/predicted protein functions. Primers were designed for each gene, targeting 

conserved regions amongst all orthologs, and obtained from Eurofins MWG Operon (Huntsville, 

AL). In total, 66 PCR reactions were conducted, testing each of the primer pairs against: Gv18-4 

(serving as a positive control), G30-4, and nuclease-free water (serving as a negative control). 

All Gv18-4 reactions produced amplicons of the expected sizes. G30-4 and the negative controls 

did not produce amplicons. Primer sequences are listed in E.S6 Table. 

Prophage Identification. 

Genes annotated as phage or viral in origin were extracted from each of the genome 

sequence annotations. Local BLAST databases were used for both identifying the orthologous 

clusters of prophage sequences, as well as the putative origin of prophage clusters. First, a local 

nucleotide database was created, including all of the sequences predicted as phage from all 39 

Gardnerella strains. Each individual putative phage coding region sequence was then BLASTed 

(blastn) against this local database (maximum 100 results), detecting identity to itself, as well as 

similarity to other sequences. Each hit was further qualified; hits with a sequence identity and 

query coverage greater than or equal to 80% were considered homologous. Once clusters were 

identified, the sequences within the cluster were aligned using ClustalW(365) and manually 

inspected to guarantee correct clustering (File S1 [not included here due to size]). Identification 

for the origin of each cluster was performed similar to above; the local database used for 

conducting blastn searches was the complete collection of viral RefSeq coding regions. The 
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all.fna.tar.gz file was retrieved from ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/. Homologs 

were called when query coverage was ≥80%. The sequence identity threshold was considerably 

lower ≥35%. A cluster was considered to show no homology to any RefSeq coding region if it 

did not meet both of these conditions. 

Estimating Rates of Phage Acquisition. 

Rates of phage acquisition were estimated using the R package corHMM (366), which 

implements a Hidden Markov Model to estimate the rate of evolution of traits occurring across a 

phylogeny. Each phage was encoded as a binary trait according to its presence/absence as 

visualized in Figure E.3. Using this method to estimate the “rate of evolution,” therefore, 

provides a meaningful proxy for the rate of phage acquisition across the tree. For any given 

phage, the rate of acquisition is expected to scale with its total number of occurrences in the tree, 

and horizontally transmitted phages are expected to have faster relative rates than vertically 

transmitted phages (as seen in Figure E.4). 

Results and Discussion 

Genome Features. 

Four Gardnerella strains were previously isolated from the bladders of four different 

female patients with symptoms of urgency urinary incontinence (98, 103). While MALDI-TOF 

identified two of these strains as G. vaginalis (henceforth denoted as Gv18-4 and Gv23-12), it 

did not resolve the other two strains to the species level (G26-12 and G30-4). 16S rRNA gene 

sequencing for each isolate confirmed the strains belong to the genus Gardnerella (Figure 

E.S1). All four isolates were sequenced, assembled, and annotated and are publicly available via 

NCBI. The genomic sequences varied slightly in size from 1.48 to 1.62 Mbp (Table E.1). 

ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/
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Table E.1. Genomic characteristics of four Gardnerella strains isolated from female 
bladders 
 

Genome G26-12 G30-4 G18-4 G23-12 
Length 1,484,647 1,590,395 1,624,172 1,595,255 
GC% 42.5 41.9 40.9 41.2 
# Protein coding regions 1172 1242 1240 1243 
# RNAs 48 48 45 46 
# CRISPR arrays 5 8 2 4 
# Scaffolds 175 183 324 301 
Max Scaffold Length 57,529 42,968 11,232 11,376 
N50 Length 16,568 20,497 11,232 11,376 
Average Coverage 526 714 197 631 
INSDC ID LWSR00000000 LXJL00000000 LWSP00000000 LWSQ00000000 

 
 

Homologs, as well as strain-specific coding regions, were identified within the genomes 

of these bladder Gardnerella strains (Figure E.1A). Although Gv18-4 and Gv23-12 were 

indistinguishable on the basis of their 16S rRNA sequences (Figure E.S1), instances of both 

strain-specific gene acquisition and loss within their genomes were detected (Table S1 [Not 

included here due to size]). Annotation also revealed the type I CRISPR/Cas system in all four 

genomes, with multiple CRISPR loci per genome (Table E.1). Comparison between the two 

strains identified by MALDI-TOF analysis to the species level (Gv18-4 and Gv23-12) and those 

identified to the genus level (G26-12 and G30-4) revealed disparity in the number of genes with 

the annotated functionalities of carbohydrate metabolism, membrane transport, and cell wall and 

capsule synthesis (Figure E.1B); however, the genetic variation observed between the Gv and G 

strains is statistically significant only for loci that regulate carbohydrate metabolism. Consistent 

with previous studies that illustrated the ability of different Gardnerella strains to ferment and 

use different carbohydrates (267), annotation of the genome for G26-12 and G30-4 suggest that 

https://www.ncbi.nlm.nih.gov/nuccore/LWSR00000000
https://www.ncbi.nlm.nih.gov/nuccore/LXJL00000000
https://www.ncbi.nlm.nih.gov/nuccore/LWSP00000000
https://www.ncbi.nlm.nih.gov/nuccore/LWSQ00000000
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they lack coding regions with the following functionalities: chitin and N-acetylglucosamine 

utilization, trehalose biosynthesis, trehalose uptake and utilization, lactose and galactose uptake 

and utilization, lactose utilization, formaldehyde assimilation, xylose utilization, deoxyribose and 

deoxynucleoside catabolism, D-gluconate and ketogluconates metabolism. The absence of these 

coding regions within the G26-12 and G30-4 genome sequences was confirmed experimentally 

via PCR. 

The genomes of these bladder strains were further examined with respect to the 

presence/absence of coding regions associated with virulence, as previously defined by Yeoman 

et al. (346) (Table E.S2). Genes associated with biofilm formation (glycosylases and 

glycosyltransferases) and epithelial adhesion (fimbria/pili) were identified in all four genomes; 

however, type-1 fimbrial precursors were found only within the genomes of G26-12 and G30-4. 

Genes associated with antibiotic/antimicrobial resistance, including those that encode the ABC- 

type multidrug transport system and the DedA protein [which has been shown to be required for 

drug resistance in E. coli (367)] were present within all four genomes. However, tetracycline 

resistance proteins were encoded within the Gv18-4, Gv23-12, and G26-12 strains, but not in the 

G30-4 strain. Genes associated with protection or evasion from the immune response (alkyl 

hydroperoxide reductase and Rib-family surface protein) were found within all four of the 

bladder strains. Furthermore, the coding region for the vaginolysin (VLY) gene, which is 

selective for human cells (346, 368), was highly conserved within all four strains, in spite of the 

two amino acid substitutions that separate the Gv18-4 strain from the type strain for the genus 

ATCC 14019 (Figure E.S2). Finally, the Gardnerella strains G26-12 and G30-4 contained an 

annotated rRNA methyltransferase associated with Gardnerella cytotoxicity (346) and with  
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Figure E.1. Characterization of predicted coding regions 
(A) Homology and (B) annotated frequency within the four bladder Gardnerella strains. (**p 
value <0.05 between the two predicted Gardnerella strains and the two predicted G. vaginalis 
strains; *p value <0.1). Strains are represented using the same colors in both panels. 
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haemolytic activity in other bacterial species (369). Interestingly, only the Gv18-4 and Gv23-

12strains contained genes that encode sialidase, which has been experimentally proven to 

contribute to mucin degradation in BV (342), although presence of the gene is not predictive of 

actual sialidase activity (370) and thus warrants further investigation. 

Phylogenetic Analysis and the Gardnerella Pangenome. 

In an effort to assess the similarity/difference between Gardnerella strains isolated from 

the female bladder and those isolated from the female reproductive system, all publicly available 

sequenced strains isolated from the vagina or endometrium were retrieved from NCBI (Table 

E.S3). This set includes 35 complete, scaffold, or contig genome sequences. Extending beyond 

the 16S rRNA gene marker, the evolutionary history of this genus was considered by 

investigating sequence homologies within the “core” Gardnerella genome (Methods; Table 

E.S4. In total, 183 genes were identified as belonging to this core gene set, less than identified in 

prior studies of far fewer genomes (341, 346). As shown in Figure E.2, the strains isolated from 

the bladder are not monophyletic, establishing that the Gardnerella core genome does not 

correlate with a single isolation location. Examination of all coding sequences for all 39 

investigated genomes revealed no gene(s) exclusive to the bladder strains. While the vast 

majority of the genes within the core set demonstrated an evolutionary history identical to that of 

the species tree (Figure E.2), genes indicative of intragenic recombination, such as VLY (E.S2 

Figure), were also identified. Nevertheless, the species tree (Figure E.2) we derived largely 

concurs with the tree produced by Ahmed et al. (341), In comparison to the phylogeny of Ahmed 

et al., which included 17 genomes and a core genome of 473 genes, their Group 3 and 4 are both 

contained within Clade A in Figure E.2. Our Clade B corresponds to their Group 2 and our 
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Clade C is within their Group 1; only two of the genomes within Clade C were included in the 

prior analysis of Ahmed et al. (341). As expected, each clade had significantly more homologous 

genes (404, 799, 762 and 635 for Clades A through D, respectively) (Figure E.2A), a likely 

residual of undersampling, biased sampling, and/or clade-specific functional conservation. 

The bladder strains G26-12 and G30-4 were determined to belong to Clade A, which also 

includes three strains isolated from BV+ patients (Figure E.2B). While the phylogeny based 

upon the core gene set does not correspond with isolation location, some clades appear to have a 

higher incidence of strains isolated from patients diagnosed as BV+. Because genes associated 

with virulence are not exclusively present within genomes isolated from symptomatic patients 

(341, 346), it is not surprising that several are included within the core gene set identified here. 

The lack of correspondence between phylogenetic history and symptoms is supported by prior 

studies, which hypothesized that gene expression variation within G. vaginalis strains may 

trigger BV development (371) and single point mutations may result in greater potential for 

cytotoxicity (267). Thus, there appears to be no single gene that correlates with BV symptoms. 

This is, however, not surprising given that G. vaginalis strains are present within both the BV- 

and BV+ vagina (372), and it is but one of the taxa that coincides with BV symptoms (338). 

Mobile Elements. 

The four bladder Gardnerella genomes varied in their number of ORFs predicted to be 

viral (bacteriophage) in origin. The number of prophage gene sequences per genome had no 

correspondence to evolutionary history (Figure E.2). This is true for the four Gardnerella strains 

isolated from the bladder, as well as for the 35 strains isolated from the reproductive system. For  
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Figure E.2. Phylogenetic analysis of Gardnerella strains 

Maximum Likelihood species tree of Gardnerella strains based upon sequence homology 
within the core gene set. (A) Phylogenetic tree listing branch supports and distinction of the 
four clades within the tree. Numbers within black circles indicate the number of homologous 
genes within each clade and the core Gardnerella genome. 

(B) Maximum Likelihood tree including branch lengths and isolation information with respect 
to location and diagnosed symptom. Strains isolated from the bladder and sequenced in this 
study are labeled in red; strains listed in green were isolated from the vagina/endometrium of 
BV+ patients; strains in light blue were isolated the vagina/endometrium of STD+ patients. All 
remaining strains (indicated in black font) were isolated from the vagina or endometrium. 
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example, the G. vaginalis strain JCP8522, a vaginal BV+ strain (342), has only one ORF 

annotated as a phage gene. In contrast, the Gv18-4 strain sequenced as part of this study contains 

the most, 33, phage-like gene sequences within a Gardnerella genome to date. Table E.S5 (not 

included due to size) lists the 442 annotated prophage genes within the 39 genomes examined. 

Due to the incomplete (scaffold/contig) status of the majority of the genomes included in the 

analysis here, we evaluated predicted prophage genes (median length 939 bp) individually. 

To identify homologs, the nucleotide sequences for all annotated prophage genes across 

all Gardnerella genomes were examined. Based upon the combination of sequence identity and 

query coverage, 104 clusters of orthologous prophage genes were identified (File S1 – not 

included due to size). Within larger clusters, prophage homolog sequences were highly 

conserved between genomes. Forty-nine clusters, however, included only a single prophage gene 

sequence, indicative of frequent independent acquisition of viral sequences. This is further 

supported by the variation in prophage genes identified within strains isolated from the same 

patient. While the genomes of JCP8481A and JCP8481B [both isolated from a single patient as 

denoted by A and B (342)] contain the same set of prophage gene sequences, the genomes of 

JCP8151A/B and JCP8017A/B do not (Figure E.3, Table E.S5); this captures the likely 

prevalence of lysogenic phage excision, as well as gene loss, events. Likewise, the genomes of 

00703Bmash, 00703C2mash, and 00703Dmash, which are from sequential isolates from the 

same patient (341), vary in their prophage gene content (Figure E.3, Table E.S5). This diversity, 

even within a single patient, suggests intra-host prophage gene gain/loss. 

Examination of the 37 largest prophage gene clusters suggested that prophage 

introduction within the Gardnerella genus has occurred by both vertical and lateral inheritance. 
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These larger clusters include orthologous prophage gene sequences present within five or more 

Gardnerella genomes; the most pervasive prophage gene sequences were present within 21 of 

the 39 Gardnerella genomes examined here. As shown in Figure E.3, several of the larger 

prophage gene clusters have representatives across the entire phylogenetic tree and some sets of 

clusters appeared to have been lost within particular lineages. Half of the 104 prophage gene 

clusters identified exhibit little to no resemblance to any sequence within the current GenBank 

nr/nt nucleotide database of characterized phage sequences; this includes several of the prophage 

genes within the larger clusters (represented as open circles in Figure E.3). For those prophage 

gene sequences that exhibit homology to characterized phage genes, hits were frequently 

identified to the genomes of Bacillus-, Mycobacterium-, and Staphylococcus- infecting phages. 

Previous targeted gene surveys of the bladder have routinely found Staphylococcus within the 

community (96, 103, 373). 

Although Gardnerella-infecting phages have yet to be isolated, the abundance of 

prophage gene sequences in the genomes (Table E.S5) and the presence of the CRISPR/Cas- 

system (Table E.1) suggests that phages capable of infecting Gardnerella spp. exist. This 

assumption is corroborated by prior analyses of spacer sequences within 21 G. vaginalis 

genomes, in which 70.7% of the spacers showed no homology to sequences within the GenBank 

database (347). While many of the clusters exhibiting homology to sequences in GenBank 

identified lytic phages annotated as infecting an array of different bacterial genera, analysis of 

eleven of the 104 clusters resulted in the description of phages thought to infect a single taxon. 

These included several of the larger clusters shown in Figure E.3: clusters 12, 15, and 30 were 

found to have homology to Bacillus-infecting phages; clusters 22 and 35 were determined to be  
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Figure E.3. Presence/absence of prophage gene sequences from larger clusters. Clusters 
of orthologous prophage genes found within five or more of the 39 Gardnerella genomes are 
shown using a distinct color. Open circles indicate that the prophage sequences belonging to 
the particular cluster show no/poor sequence homology to characterized lytic phages. Closed 
circles indicate moderate (query coverage ≥80%, nucleotide sequence identity ≥35%) to high 
homology to a phage genome sequence record in NCBI. Nucleotide sequence identity for the 
prophage genes in each cluster is indicated by the bar chart at the top of the figure. 
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similar to phages infecting Mycobacterium species; while cluster 29 exhibited a likeness to 

Staphylococcus-infecting phages (Table E.S5). Yet, all of these phages are of the family 

Siphoviridae. Homologies identified for these prophage sequences provide a foundation for 

future work in the isolation of Gardnerella-specific phages. More broadly, these prophage gene 

sequences provide insight into the phage community within the human microbiota. 

Lateral gene acquisition is ubiquitous; however, there is a strong discordance between the 

evolutionary tree (Figure E.2; Figure E.S1) and trees derived from strain:prophage gene 

presence/absence profiles (results not shown). To distinguish clusters acquired via HGT from 

those linearly inherited from a common ancestor, the genomes of 39 Gardnerella strains were 

examined. Clusters were compared given the number of occurrences and the rate of evolution of 

viral infection (Figure E.4). From this analysis, two groups can be observed. The phage gene 

clusters in the top right quadrant appear to have evolved quickly relative to their prevalence 

across strains and have likely been integrated into the Gardnerella genomes via HGT. In 

contrast, the four clusters in the bottom right quadrant appear to have been acquired by vertical 

transmission. Thus, we hypothesize that prophage integration has been occurring over a long 

time scale. Given this evidence of phage-host interactions and the results of recent studies 

illuminating the vital contributions of viruses within other human microbioata [e.g.(357, 358, 

374)], one can surmise that phages are playing a significant role within both the bladder and 

reproductive system communities. 

As the bladder microbiota have only recently been discovered and subsequently surveyed 

(79, 95, 96, 98, 103, 259, 260, 373), their microbiome remains largely uncharacterized. The 
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presence of the CRISPR/Cas system within the four Gardnerella strains sequenced here suggest 

phages are present and prolific within the bladder. Given the existence of both Gardnerella and 

Lactobacillus within both the female bladder (96, 98, 103, 373) and the vaginal (89, 375, 376) 

microbiota, some insight can be gleaned from the latter. It is likely that phages play an important 

role in bacterial genome evolution and potentially disease in both niches. Evidence of phages has 

previously been found within the vaginal microbiota (353, 377). The incidence of Lactobacilli 

phages may have medical significance, as vaginal lactobacilli may be culled or repressed by 

phages within the microbiota leading to BV (353) [see review (339)]. Increased prophage 

numbers within L. crispatus genomes from the human vagina relative to avian isolates suggests 

high frequency of phage within the human microbiota (349). Phage-like sequences within both 

the bladder and vaginal bacterial microbiomes–prophage sequences as well as CRISPR spacer 

sequences–often show little to no homology to characterized sequenced phage species, 

insinuating that numerous genetically diverse phages have yet to be discovered. 

Conclusion 

Comparison of four new bladder-associated Gardnerella genomes to genomes from the 

reproductive system identifies strain-specific and lineage-specific genes, suggesting a large 

Gardnerella pangenome may exist. There is, however, no distinct difference between strains 

isolated from a particular niche. Of particular interest is the high incidence of prophages within 

the Gardnerella genomes and the variability in the number per strain, as well as their putative 

origin. While prior studies into the prophages of vaginal lactobacilli propose that phage may play 

a significant role in community dynamics within the vagina [see review (339)], this proposal has 

yet to be empirically tested. The Gardnerella genome analyses conducted here find evidence of 
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ancient, as well as contemporary, phage infection; the fact that isolates from the same individual 

vary in their prophage gene sequences supports the latter. Bioinformatic inspections of prophage 

and CRISPR spacer sequences find little to no correspondence with characterized phage 

sequences, suggesting that Gardnerella-infecting phages exist, although they have yet to be 

isolated in the laboratory. Nonetheless, evidence presented here suggests that phages play a role 

 

 

 
within the complex microbial communities of both the reproductive tract and the bladder, 

warranting future exploration of their viromes. The continued isolation and empirical 

characterization of Gardnerella species from the human microbiota is necessary to learn whether 

microbiome- virome interactions help to establish and maintain ones’ bladder health and, if so, 

how perturbations of this equilibrium result in bladder pathologies. 

Figure E.4. Determining mechanisms of prophage gene acquisition. Colors correspond with 
the cluster colors in Figure 3. Dashed lines are the mean value for each axis 
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Supplemental Material 

 
 
 

 
 
Figure E.S1. Phylogenetic tree based on the 16S rRNA gene 

Notice that the 16S gene is not sufficient to discriminate between the different clades seen in 
Figure E.2. suggesting horizontal transfer of the 16S gene. 
 
 
 
Table E.S1. Presence/absence of gene functionality within the four bladder isolates. This table 
was excluded from this document due to its large size. It can be found at PMID: 27861551 
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Figure E.S2. Phylogenetic analysis of VLY gene 
(A) Amino acid sequence alignment of four bladder Gardnerella isolates and representatives 
from other clades; clades are indicated to the left of each strain/isolate name. Mismatches within 
the alignment are highlighted (red/blue text). (B) Maximum likelihood phylogenetic tree for the 
VLY gene. Bran supports are indicated. 
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Table E.S2. Presence/absence of virulence genes within the four bladder isolates 
 

Glycosyltransferases (biofilm formation) 
Gv 

18-4 
Gv 

23-12 
G 

26-12 
G 

30-4 
Function 

  X X A/G-specific adenine glycosylase (EC 3.2.2.-) 
X X X X glycosyl transferase, group 1 family protein 
  X  Glycosyl transferase, group 2 family protein 

X X X X Glycosyltransferase 
X X   Glycosyltransferase (EC 2.4.1.-) 
X X X X Multimodular transpeptidase-transglycosylase (EC 2.4.1.129) (EC 

3.4.-.-) 
X X X X probable glycosyltransferase 
X X X X putative glycosyl transferase domain protein 

Fimbria/Pili 
Gv 

18-4 
Gv 

23-12 
G 

26-12 
G 30- 

4 
Function 

  X X Fimbrial subunit type 1 precursor 
   

X 
 

X 
Type-1 fimbrial major subunit precursor (FIG00672113: hypothetical 
protein) 

X X X X TadE pilus assembly (FIG00672510: hypothetical protein) 
 

X 
 

X 
 

X 
 

X 
Type IV prepillin peptidase (Permeases of the major facilitator 
superfamily) 

 
X 

 
X 

 
X 

 Type-II fimbrial major subunit precursor (COG4932: Predicted outer 
membrane protein) 

Antibiotic/Antimicrobial resistance 
Gv 

18-4 
Gv 

23-12 
G 

26-12 
G 30- 

4 
Function 

   
X 

 Multidrug resistance ABC transporter ATP-binding and permease 
Protein 

X X X  Similar to tetracycline resistance protein 
X X X X ABC-type multidrug transport system, ATPase component 
X X X X DedA protein 

Protection function or evasion of immune response 
Gv 

18-4 
Gv 

23-12 
G 

26-12 
G 30- 

4 
Function 

 X X X Alkyl hydroperoxide reductase protein C (EC 1.6.4.-) 
X X X X Alkyl hydroperoxide reductase protein F (EC 1.6.4.-) 
X X X X Rib-family surface protein (FIG00672534: hypothetical protein) 

Cytotoxicity 
Gv 

18-4 
Gv 

23-12 
G 

26-12 
G 30- 

4 
Function 

X X X X Vaginolysin (vly) (Thiol-activated cytolysin) 
  X X RNA binding methyltransferase FtsJ like 
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Table E.S3. List of 35 genomes retrieved from NCBI for genome comparisons 
 

Strain (All G. 
vag) 

 
Isolation Site 

 
Disease State 

 
Size (Mb) 

 
GC% 

 
Accession 

Genome 
Status 

 
Ref 

 
00703Bmash 

 
Vagina 

BV+; STD (Herpes 
simplex virus 2) 

 
1.56605 

 
42.3 

 
ADET01 

 
Contig 

275 

 
00703C2mash 

 
Vagina 

BV+; STD (Herpes 
simplex virus 2) 

 
1.54668 

 
42.3 

 
ADEU01 

 
Contig 

275 

 
00703Dmash 

 
Vagina 

BV-; STD (Herpes 
simplex virus 2) 

 
1.4908 

 
43.4 

 
ADEV01 

 
Contig 

275 

0288E Endometrium BV+ 1.70877 41.2 ADEN01 Contig 275 
1400E Endometrium BV+ 1.71633 41.2 ADER01 Contig 275 
 
14019 

 
Vagina 

 
BV- 

 
1.66735 

 
41.4 

NC_01464 
4 

Complete 
Genome 

280 

 
 
 
14019 MetR 

Laboratory 
culture of 
ATCC strain 
14019 

 
 
 
BV- 

 
 
 
1.6611 

 
 
 
41.3 

 
 
 
LIYA01 

 
 
 
Contig 

279 

1500E Endometrium BV+ 1.54824 43 ADES01 Contig 275 
 
 
284V 

 
 
Endometrium 

BV+; 
STD(Chlamydia 
trachomatis) 

 
 
1.65084 

 
 
41.2 

 
 
ADEL01 

 
 
Contig 

275 

315-A Vagina Unknown 1.65328 41.4 AFDI01 Contig  
3549624 Vagina Unknown 1.73225 41.4 LFWD01 Contig 278 
 
409-05 

 
Vagina 

 
BV+ 

 
1.61755 

 
42 

NC_01372 
1 

Complete 
Genome 

280 

41V Vagina BV- 1.65937 41.3 AEJE01 Contig  
1-May Vagina BV- 1.67284 42 ADAN01 Contig 182 
55152 Endometrium BV+ 1.64319 41.3 ADEQ01 Contig 275 
6119V5 Vagina BV- 1.4996 43.3 ADEW01 Contig 275 
75712 Vagina BV- 1.67297 41.3 ADEM01 Contig 275 
AMD Vagina BV+ 1.60676 42.1 ADAM01 Contig 182 
 
HMP9231 

 
Vagina 

 
BV- 

 
1.72652 

 
41.2 

NC_01745 
6 

Complete 
Genome 

280 

JCM 11026 
(ATCC 14018) 

 
Vagina 

 
BV- 

 
1.66741 

 
41.4 

NZ_AP012 
332 

Complete 
Genome 

277 

JCP7275 Vagina BV+ 1.56223 41 ATJS01 Scaffold 276 
JCP7276 Vagina BV Intermediate 1.65959 41 ATJR01 Scaffold 276 
JCP7659 Vagina BV+ 1.53594 41.9 ATJQ01 Scaffold 276 
JCP7672 Vagina BV- 1.60353 41.2 ATJP01 Scaffold 276 
JCP7719 Vagina BV+ 1.56315 42 ATJO01 Scaffold 276 
JCP8017A Vagina BV+ 1.60792 42.1 ATJN01 Scaffold 276 
JCP8017B Vagina BV+ 1.60225 42 ATJM01 Scaffold 276 
JCP8066 Vagina BV- 1.52073 42.2 ATJL01 Scaffold 276 
JCP8070 Vagina BV+ 1.47925 42.2 ATJK01 Scaffold 276 
JCP8108 Vagina BV+ 1.66559 41.1 ATJJ01 Scaffold 276 
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Table E.S3. continued 
 

Strain (All G. 
vag) 

 
Isolation Site 

 
Disease State 

 
Size (Mb) 

 
GC% 

 
Accession 

Genome 
Status 

 
Ref 

JCP8151A Vagina BV+ 1.56045 42 ATJI01 Scaffold 276 
JCP8151B Vagina BV+ 1.55414 42.2 ATJH01 Scaffold 276 
JCP8481A Vagina BV+ 1.57288 42.9 ATJG01 Scaffold 276 
JCP8481B Vagina BV+ 1.57388 42.9 ATJF01 Scaffold 276 

 
 
Tables E.S4-E.S6 and File S1. were not included due to size. These can be found online at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115800/ 

 
Table E.S4. Core genes Identified for the 39 Gardnerella genomes examined. 
 
Table E.S5. Prophage sequences, clusters and putative orgins within the 39 Gardnerella 
genomes. 
 
Table E.S6. PCR primers for amplification of Gv-specific carbohydrate metabolism coding 
regions. 
 
File E.S1. Fasta sequence for the individual prophage gene clusters. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115800/
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THE CLINICAL URINE CULTURE: ENHANCED TECHNIQUES IMPROVE 

DETECTION OF CLINICALLY RELEVANT MICROORGANISMS  
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Overview of Appendix F 

Our previous work with the female urinary microbiome (reported in Appendix B and 

Appendix D) demonstrated that the standard urine culture (SUC) had a 90% false-negative rate 

compared to our enhanced quantitative urine culture (EQUC). This paper (and Appendix G) was 

our team’s first attempt to determine if EQUC was better able to detect uropathogens than SUC 

and to match these results to patient sypmtoms of urinary tract infections (UTIs). 

We discovered that the operational definition of a UTI was vague and insufficient. We 

found that patients in the urogynecologic population are good at determing if they have a UTI or 

not (this is elaborated more in Appendix G). Next, EQUC detected uropathogens in 84% of 

women who thought they had a UTI, while SUC only detected uropathogens in 33% of those 

women. Finally, our results led us to recommend an optimal version of EQUC to clinical 

microbiology labs to better detect uropathogens in the urogynecologic patient population.  

Abstract 

Enhanced quantitative urine culture (EQUC) detects live microorganisms in the vast 

majority of urine specimens reported as “no growth” by the standard urine culture protocol. 

Here, we evaluated an expanded set of EQUC conditions (expanded-spectrum EQUC) to identify 

an optimal version that provides a more complete description of uropathogens in women 

experiencing urinary tract infection (UTI)-like symptoms. One hundred fifty adult 

urogynecology patient-participants were characterized using a self-completed validated UTI 

symptom assessment (UTISA) questionnaire and asked “Do you feel you have a UTI?” Women 

responding negatively were recruited into the no-UTI cohort, while women responding 

affirmatively were recruited into the UTI cohort; the latter cohort was reassessed with the UTISA 
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questionnaire 3 to 7 days later. Baseline catheterized urine samples were plated using both 

standard urine culture and expanded-spectrum EQUC protocols: standard urine culture 

inoculated at 1μl onto 2 agars incubated aerobically; expanded-spectrum EQUC inoculated at 

three different volumes of urine onto 7 combinations of agars and environments. Compared to 

expanded-spectrum EQUC, standard urine culture missed 67% of uropathogens overall and 50% 

in participants with severe urinary symptoms. Thirty-six percent of participants with missed 

uropathogens reported no symptom resolution after treatment by standard urine culture results. 

Optimal detection of uropathogens could be achieved using the following: 100 μl of urine plated 

onto blood (blood agar plate [BAP]), colistin-nalidixic acid (CNA), and MacConkey agars in 5% 

CO2 for 48 h. This streamlined EQUC protocol achieved 84% uropathogen detection relative to 

33% detection by standard urine culture. The streamlined EQUC protocol improves detection of 

uropathogens that are likely relevant for symptomatic women, giving clinicians the opportunity 

to receive additional information not currently reported using standard urine culture techniques. 

Introduction 

The diagnostic gold standard for clinically relevant urinary tract infection (UTI) 

continues to be questioned for both clinical and research purposes. Since the 1950s, clinical 

practice has relied on detecting ≥105CFU/ml of a known uropathogen using the standard clinical 

urine culture protocol (378). The standard urine culture was initially described for detection of 

patients at risk for pyelonephritis (74); interpretation has been generalized to diagnose lower 

urinary tract infection despite studies reporting limitations of the ≥105-CFU/ml threshold (4, 76-

78). While the clinical focus has centered on various cutoff thresholds, the basic uropathogen 

detection method remains unchanged. 
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Given emerging evidence that documents the presence of urinary microbiota in many 

adult women (79, 95, 96, 98, 103, 259, 260, 373, 379), it is clear that the mere presence of an 

organism should not prompt antibiotic treatment. However, clinicians are likely to benefit from a 

more complete report of organisms present within a symptomatic patient's urine. Recent 

evidence reports bacteria in ∼90% of “no-growth” standard urine cultures (96, 103). We 

hypothesized that, in women experiencing UTI-like symptoms, an improved culture protocol 

would provide a more complete description of potentially treatable, clinically relevant 

uropathogens. This study evaluated various combinations of urine volumes, media, atmospheric 

environments, and incubation durations to determine conditions that optimally balance 

uropathogen detection with feasibility. 

Materials and Methods 

Study Design and Patient Population. 

Following institutional review board (IRB) approval, we enrolled 75 women who 

reported UTI symptoms and 75 who did not based on their yes/no response to the question “Do 

you feel you have a UTI?” Participants were seeking clinical care at Loyola University Medical 

Center's Female Pelvic Medicine and Reconstructive Surgery center between June 2014 and 

August 2015. 

Participants gave verbal and written research consent and provided permission for 

abstraction of their demographic and clinical information from the electronic medical record. At 

baseline, urinary symptoms were characterized using a self-completed, validated UTI symptom 

assessment (UTISA) questionnaire, completed by both cohorts (380). Participants were 

dichotomized based on their yes/no response to the question “Do you feel you have a UTI?” 
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Those who responded affirmatively (UTI cohort) completed the UTISA questionnaire again by 

phone 3 to 7 days post enrollment and were queried about the magnitude of symptom resolution, 

if any. All clinical treatment was individually based on physician assessment of patient 

symptoms and standard urine culture results. Exclusion criteria included age of <18 years, 

pregnancy, catheterization (indwelling or intermittent), or insufficient English skills to complete 

study measures. 

Sample Collection and Analysis 

Consistent with patient care clinical protocol, urine was collected via transurethral 

catheter and then placed into two BD Vacutainer Plus C&S preservative tubes: one sent to the 

clinical microbiology laboratory for diagnostic purposes and one sent to the researchers for 

testing. 

Table F.1 displays all culture protocols used by the clinical microbiology laboratory staff 

and the researchers. The standard urine culture protocol used 1 μl of urine, spread quantitatively 

(i.e., pinwheel streak) onto 5% sheep blood (blood agar plate [BAP]) and MacConkey agars (BD 

BBL Prepared Plated Media; Cockeysville, MD) and incubated aerobically at 35°C for 24 h. The 

modified standard urine culture used the same agars and temperature but changed the incubation 

condition to 5% CO2; if pinpoint growth was seen at 24 h, the agars were held for another 24 h 

under the same conditions. Unrelated to this study, the clinical microbiology laboratory adopted 

the modified standard urine culture for diagnosis during patient recruitment for this study. Thus, 

diagnostic testing for patients 1 to 107 was the standard urine culture, while the modified 

standard urine culture was used for patients 108 to 150. However, this change did not impact 

data presented in this study, as standard urine culture data for patients 108 to 150 were obtained 
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by analyzing the corresponding subset of expanded enhanced quantitative urine culture (EQUC) 

conditions (i.e., 1 μl BAP and MacConkey agars; aerobic, 35°C; 24 h). 

The conditions of the original enhanced quantitative urine culture (EQUC) protocol were 

described previously (96). In this study, we expanded those conditions (i.e., expanded-spectrum 

EQUC protocol), using three urine volumes (1 μl, 10 μl, and 100 μl) and additional plating 

conditions (Table F.1). Each urine sample was spread quantitatively onto BAP, chocolate, and 

colistin-nalidixic acid (CNA) agars (BD BBL Prepared Plated Media) and incubated in 5% CO2 

at at 35°C for 48 h; BAP and MacConkey agars were incubated aerobically at 35°C for 48 h; two 

CDC anaerobic 5% sheep blood (anaerobic BAP) agars (BD BBL Prepared Plated Media) were 

incubated either in microaerophilic Campy gas mixture (5% O2, 10% CO2, 85% N) or 

anaerobically at 35°C for 48 h. Three sets of these conditions were used for each urine sample, 

each using one of the urine volumes, for a total of 21 agars per sample. All agars were 

documented for growth (i.e., for morphologies and CFU per milliliter) at 24 and 48 h, except the 

two anaerobic BAP conditions. Each distinct colony morphology was subcultured at 48 h to 

obtain pure culture for microbial identification. 

Microbial identification was determined using a matrix-assisted laser desorption 

ionization–time of flight mass spectrometer (MALDI-TOF MS; Bruker Daltonics, Billerica, MA) 

as described previously (96). Only clinically relevant microbes (i.e., known and emerging 

uropathogens) were used to calculate uropathogen detection. These uropathogens were selected 

based on previously published case reports of UTI. 
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Table F.1. Summary of urine cultivation protocols for catheterized urine specimens 
 

Protocol Vol (µl) of 
urine Medium or media Conditions 

Incubation(s) (h) 
for microbial 
identification 

Patient sample 
identifiera  

Standard urine 
culture 

1 BAP, 
MacConkey agar 

Aerobic, 35°C 24 1-107 

Modified urine 
culture 

1 BAP, 
MacConkey agar 

5% CO2, 35°C 24, 48 108-150 

Expanded- 
spectrum 
EQUC 

1,10, 
and 100 

BAP, 
MacConkey agar 

Aerobic, 35°C 24, 48 1-150 

  BAP, 
chocolate agar, 

CNA agar 

5% CO2, 35°C 24, 48  

  CDC anaerobic 
BAP 

Anaerobic, 35°C 48  

  CDC anaerobic 
BAPb 

Miroaerophilic gas 
mixture (5% O2, 

10% CO2, 85% N), 
35°C 

48  

Streamlined 
EQUC 

100 BAP, 
MacConkey agarc, 

CNA agar 

5% CO2, 35°C 48 1-150d 

a Refers to the patient samples on which the corresponding protocol assessed the urinary 
microbiota. For diagnosis, the standard urine culture protocol was used on patient samples 1 to 
107; the modified standard urine culture was used on patient samples 108 to 150. For research, 
all patient samples were assessed by expanded- spectrum EQUC. 
bThe CDC anaerobic BAP microaerophilic gas mixture condition was used only for samples 10 
to 150. 
cThe MacConkey 5% CO2 condition was not part of the expanded-spectrum EQUC protocol. 
dThe streamlined EQUC protocol was performed using a subgroup of agars/conditions from the 
expanded- spectrum EQUC protocol; therefore, it was used on all patient samples. 
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UTISA Questionnaire. 

This questionnaire asks the participant to rate the degree of severity and bother for seven 

common UTI symptoms: frequency of urination, urgency of urination, incomplete bladder 

emptying (urinary retention), pain or burning during urination (dysuria), lower abdominal 

discomfort or pelvic pain/pressure, lower back pain, and blood in the urine (hematuria). Scores 

for each symptom range from 0 to 3; a 0 corresponds to no symptom present, whereas a 3 

indicates highest severity or bother. The seven symptoms can be clustered into four symptom 

domains: urination regularity (frequency and urgency), problems with urination (incomplete 

bladder emptying and pain or burning), pain associated with the UTI (abdominal or pelvic pain 

and lower back pain), and blood in the urine (380). 

Statistical Analyses 

Continuous variables were reported as means and standard deviations (SDs) or medians 

and interquartile ranges (IQRs); categorical variables were reported as frequencies and 

percentages. Pearson chi-square tests (or Fisher's exact  tests,  when  necessary)  and  2- sample t 

tests (or Wilcoxon rank sum tests, when appropriate) were used to compare demographics and 

culture results (e.g., abundance and diversity) between cohorts. Measures of alpha diversity 

(diversity within a population) were represented as Shannon diversity indices and/or graphically 

by species accumulation curves (which plot accumulation of unique species per group for each 

additional sample included). All statistical analyses were conducted using SAS software v9.4 

(SAS Institute, Cary, NC) or Systat software version 13.1 (Systat Software Inc., Chicago, IL). 
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Results 

Participant Demographic and Symptoms. 

Table F.2 describes demographics of the two cohorts (75 no-UTI and 75 UTI patients). 

Most participants were white (81%) and overweight (mean body mass index [BMI] = 29.3 

kg/m2). Most participants (92%, 138/150) reported at least one urinary symptom; as expected, 

women in the UTI cohort had higher UTISA questionnaire scores. 

Expanded-spectrum EQUC: urinary microbiota characteristics. 

Nearly all (93% [139/150]) catheterized urine samples grew bacterial colonies with at 

least one combination of the expanded-spectrum EQUC protocol's conditions (Table F.1). The 

no-UTI and UTI cohorts had similar proportions of cultivatable urine samples (89% [67/75] 

versus 96% [72/75]; P = 0.12), similar numbers of total unique species detected per cohort (75 

versus 66), and similar median numbers of species detected per urine sample (3 [IQR = 1 to 5] 

versus 2 [IQR = 1 to 4]; P = 0.12) (see Table S1 in the supplemental material). 

However, the cohorts differed in organism diversity, genus-level composition, and 

species-level composition. The no-UTI cohort had more diversity with greater species richness 

as depicted by species accumulation curves (see Figure F.S1 in the supplemental material) and 

greater alpha diversity as measured by the Shannon diversity index (no-UTI = 3.89 versus UTI = 

3.49). The genera Streptococcus (P = 0.003) and Gardnerella (P = 0.04) were more prevalent in 

the no-UTI cohort, while the genus Escherichia (P < 0.001) was detected more often in the UTI 

cohort (see Figure F.S2). Five species, namely, Gardnerella vaginalis (P = 0.4), Streptococcus 

mitis/oralis/pneumoniae (P = 0.01), Streptococcus parasanguinis (P = 0.02), Streptococcus 

salivarius (P = 0.05), and Streptococcus sanguinis (P = 0.01), were detected more often in the 
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no-UTI cohort; in contrast, the species Escherichia coli (P < 0.001) was more prevalent in the 

UTI cohort (see Figure F.S3). 

The genera Streptococcus (P = 0.003) and Gardnerella (P = 0.04) were more prevalent in 

the no-UTI cohort, while the genus Escherichia (P < 0.001) was detected more often in the UTI 

cohort (see Figure F.S2). Five species, namely, Gardnerella vaginalis (P = 0.4), Streptococcus 

mitis/oralis/pneumoniae (P = 0.01), Streptococcus parasanguinis (P = 0.02), Streptococcus 

salivarius (P = 0.05), and Streptococcus sanguinis (P = 0.01), were detected more often in the 

no-UTI cohort; in contrast, the species Escherichia coli (P < 0.001) was more prevalent in the 

UTI cohort (see Figure F.S3). 

Uropathogen Detection. 

We next modeled our evaluation to uropathogen detection by the expanded-spectrum 

EQUC protocol with regard to the following parameters: detection compared to standard urine 

culture, detection with different urine volumes, and detection using different plating conditions. 

With these findings, we then identified an optimal subset of expanded-spectrum EQUC 

conditions for improved detection of uropathogens, which we call the streamlined EQUC 

protocol. 

Expanded-Spectrum EQUC Versus Standard Urine Culture. 

The expanded-spectrum EQUC protocol detected a total of 182 uropathogens in all the 

catheterized urine samples, 110 uropathogens in the UTI cohort urine samples, and 72 

uropathogens in in the non-UTI cohort urine samples. Whereas the expanded-spectrum EQUC 

did not miss any uropathogen detected by standard urine culture, the standard urine culture  
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Table F.2. Demographic characteristics and symptoms 
 

Clinical variable Entire cohort 
(n=150) 

No-UTI cohort 
(n=75) 

UTI cohort 
(n=75) p-valued 

Age (yr), mean (SD) 62.3 (14.9) 60.6 (12.3) 64.0 (17.1) 0.16a 
BMI (kg/m2), mean (SD) 29.3 (6.3) 28.8 (5.9) 29.9 (6.6) 0.27 a 
Race/ethnicity, no. (%)     
White 121 (81) 59 (79) 62 (83)  
Hispanic 15 (10) 9 (12) 6 (8)  
Black 9 (6) 5 (7) 4 (5) 0.90c 
Asian 4 (3) 2 (3) 2 (3)  
Other 1 (1) 0 (0) 0 (0)  
No. of vaginal deliveries, 
median (IQR) 2 (0-11) 2 (0-6) 2 (0-11) 0.80b 
Sexually active, no. (%) 58 (39) 37 (49) 21 (28) 0.01 
Previous antibiotic treatment, no. (%) 45 (30) 20 (27) 25 (33) 0.37 
Current anticholinergic treatment, no. (%) 26 (17) 9 (12) 17 (23) 0.08 
Type of anticholinergic used, no. (%)     
Oxybutynin 9 (6) 3 (4) 6 (8)  
Solifenacin 8 (5) 3 (4) 5 (7)  
Fesoterodine 4 (3) 2 (3) 2 (3) 

0.75c Tolterodine 2 (1) 1 (1) 1 (1) 
Oxybutynin patch 1 (1) 0 (0) 1 (1)  
Trospium chloride 1 (1) 0 (0) 1 (1)  
Mirabegron (Myrbetriq) 1 (1) 0 (0) 1 (1)  
Previous vaginal estrogen use, no. (%) 32 (21) 11 (15) 21 (28) 0.05 
Current vaginal estrogen use, no. (%) 29 (19) 10 (13) 19 (25) 0.06 
Prior urogynecologic surgery, no. (%) 40 (27) 13 (17) 27 (36) 0.01 
Symptoms of incontinence, 
no. (%) 

    

Stress urinary incontinence 17 (11) 10 (13) 7 (9) 0.44 
Urgency urinary incontinence 26 (17) 11 (15) 15 (20) 0.39 
Mixed urinary incontinence 42 (28) 27 (36) 15 (20) 0.03 
Urgency-frequency syndrome, 
no. (%) 18 (12) 9 (12) 9 (12) 0.99 
Myofascial pain, no. (%) 55 (37) 20 (27) 35 (47) 0.01 
Painful bladder syndrome, pelvic pain, 
and dyspareunia, no. (%) 4 (3) 0 (0) 4 (5) 0.06c 
UTISA score, mean (SD)e     
Urination regularity 6.6 (4.3) 5.4 (4.3) 7.9 (3.9) <0.001a 
Problems with urination 3.4 (3.6) 2.0 (2.5) 5.4 (3.7) <0.001a 
Pain associated with UTI 3.2 (3.6) 2.1 (3.1) 4.3 (3.8) <0.001a 
Blood in the urine 0.2 (0.8) 0.1 (0.4) 0.4 (1.1) 0.08a 

aIndependent t test.  bWilcoxon rank sum test.  cFisher's exact test.dChi-square test used unless 
otherwise indicated. Boldface indicates P values that are significant at ≤0.05. eUTISA scores for 
urinary regularity, problems with urination, and pain associated with UTI range from 0 to 12. 
UTISA scores for blood in the urine range from 0 to 6. 
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protocol detected 33% (60/182) of all detected uropathogens, 50% (55/110) of those detected in 

the UTI cohort, and only 7% (5/72) of those detected in the non-UTI cohort. 

The expanded-spectrum EQUC protocol detected all uropathogens at a higher average 

CFU per milliliter in the UTI cohort than in the no-UTI cohort (Figure F.1). This protocol 

detected E. coli in a total of 50 samples obtained from both cohorts; of these, standard urine 

culture detected E. coli in 88% (44/50). From the UTI cohort alone, expanded-spectrum EQUC 

detected E. coli in 43 samples; of these, standard urine culture detected E. coli in 91% (39/43). In 

contrast, standard urine culture detected a strikingly low fraction (12% [16/132]) of the non- E. 

coli uropathogens detected in the two cohorts by the expanded-spectrum EQUC protocol. This 

percentage was only slightly better in the UTI cohort alone, where standard urine culture 

detected 24% (16/67) of the non-E. coli uropathogens detected by the expanded-spectrum EQUC 

protocol. Therefore, standard urine culture's capacity to detect E. coli dramatically skewed its 

overall uropathogen detection value.  

Expanded-Spectrum EQUC: Urine Volumes. 

Uropathogen detection differed greatly based on expanded-spectrum EQUC urine 

volumes: for 100 μl, 96% detection (174/182); for 10 μl, 65% detection (118/182); and for 1 μl, 

52% detection (95/182) versus standard urine culture (33% [60/182]). Some uropathogens were 

detected equally by all volumes (e.g., E. coli and Pseudomonas aeruginosa); others most often 

required 100 μl for detection (e.g., Aerococcus urinae, Alloscardovia omnicolens, Enterococcus 

faecalis, and Streptococcus anginosus) (see Figure F.S4).  

Expanded-Spectrum EQUC: Plating Conditions. 

Table F.3 displays uropathogens and the number of times that each was cultured under  
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Figure F.1. Average CFU per milliliter of uropathogens between the UTI and no-UTI 
cohorts Depicted are the average CFU per milliliter with which the various uropathogens 
were cultured for both cohorts: UTI (blue bars) and no-UTI (red bars). Average CFU of 
Klebsiella pneumoniae (P = 0.04) and Streptococcus agalactiae (P = 0.02) are significantly 
higher in the UTI cohort (*). Several uropathogens had substantially lower average CFU-per-
milliliter values in the no-UTI cohort than in the UTI cohort: Aerococcus urinae (P = 0.12), 
Enterococcus faecalis (P = 0.09), Escherichia coli (P = 0.08), Staphylococcus aureus (P = 
0.06), and Streptococcus anginosus (P = 0.08). Independent t test (*, P < 0.05). Black bars 
depict common UTI thresholds (≥105 CFU/ml and ≥103 CFU/ml). 
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the various expanded-spectrum EQUC plating conditions. After 48 h incubation, CDC anaerobic 

BAP incubated anaerobically detected the most uropathogens (63% [115/182]), followed by 

BAP in 5% CO2 (62% [112/182]), CDC anaerobic BAP incubated microaerophilically (54%  

[98/182]), chocolate agar in 5% CO2 (53% [96/182]), BAP incubated aerobically (52% 

[94/182]), CNA agar in 5% CO2 (43% [79/182]), and MacConkey agar incubated aerobically 

(34% [62/182]). Although the CNA agar condition detected fewer uropathogens, it ideally 

detected Gram- positive uropathogens when Gram-negative bacteria overwhelmed other agars. 

Table F.3. Optimal detection of specific uropathogens by the expanded-spectrum EQUC 
protocola. 

aListed are the uropathogens and the number of times that each was cultured under each expanded-
spectrum 
EQUC plating condition. The condition(s) that best detected each uropathogen is shaded. 
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For example, of the 47 samples where a Gram-negative uropathogen was present at ≥50,000 

CFU/ml, the CNA agar condition detected 27 underlying Gram-positive uropathogens, all 

ofwhich were missed by standard urine culture (see Table F.S2A in the supplemental material). 

Conversely, of the seven samples where a Gram-positive uropathogen was present at ≥50,000 

CFU/ml, the MacConkey condition detected two underlying Gram-negative uropathogens (see 

Table F.S2B). 

Streamlined EQUC Protocol. 

One hundred microliters of urine plated on a combination of BAP and CNA agars in 5% 

CO2 and MacConkey agar under aerobic conditions would have detected 84% (152/182) of all 

uropathogens detected by the expanded-spectrum EQUC protocol. This is vastly superior to the 

33% (60/182) uropathogen detection by standard urine culture. In the UTI cohort alone, the 

streamlined EQUC protocol (Table F.1) would have detected 91% (100/110) of uropathogens, 

compared to only 52% (57/110) by standard urine culture. 

Symptom Resolution. 

Seventy-nine percent (59/75) of the participants in the UTI cohort completed the follow- up 

UTISA questionnaire. Following clinically selected treatment based on standard urine culture (or 

modified standard urine culture), 59% (35/59) of participants reported symptom improvement, 

while 41% (24/59) reported no improvement (same or worse) (Table F.4). Half (12/24) of the 24 

participants who did not improve had at least one uropathogen detected only by the expanded-

spectrum EQUC protocol, and 13 (54%) had microorganisms of unknown pathogenicity, which 

were detected only by the expanded-spectrum EQUC protocol (see Table S3 in the supplemental 

material). Importantly, all of these missed uropathogens would have also been detected using the  
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Table F.4. Detection of uropathogens in UTI cohort without symptom improvement 
 

  
aUropathogens detected and missed by the standard urine culture in urine samples obtained by 
catheter from the UTI cohort patients who reported feeling the same or worse for the 
postenrollment questionnaire. Antibiotics were prescribed based on the reporting of the standard 
urine culture results. 
bSMZ-TMP, sulfamethoxazole-trimethoprim. 
cLactobacillus species is not considered a uropathogen, but it was detected at >100,000 CFU/ml 
by standard urine culture. 
dAll of the uropathogens detected by the expanded-spectrum EQUC protocol would have been 
detected using the streamlined EQUC protocol. 

Post- enrollment 
questionnaire 

response 
(sample ID) 

 
Antibiotic 
prescribed 

Uropathogen(s) detected by protocol(s): 

Standard urine culture 
and expanded 

spectrum EQUC 

 
Expanded-spectrum EQUC only d 

Same (145) SMZ-TMPb E. coli Strep. anginosus 
Same (048) Nitrofurantoin E. coli Strep. anginosus 
Same (134) SMZ-TMPb E. coli A. urinae, C. riegelii 
Same (033) Ciprofloxacin Kleb. pneumoniae  
Same (060) Nitrofurantoin E. coli  
Same (109) Nitrofurantoin E. coli  
Same (122) Ciprofloxacin E. coli  
Same (135) Nitrofurantoin E. coli  
Same (136) Nitrofurantoin E. coli  
Worse (082) Nitrofurantoin E. coli  
Same (140)  Staph. lugdunensis  
Same (116)  E. coli  
Worse (128)  E. coli  

Same (126)  Lactobacillus speciesc Staph. lugdunensis, Strep. anginosus 

Same (121)   P. mirabilis 
Same (029)   A. urinae, Kleb. Pneumoniae 
Same (139)   Allo. omnicolens, O. urethralis, M. morganii 
Same (052)   Strep. anginosus 
Same (067)   Strep. anginosus 
Worse (025)   Candida albicans 
Worse (112)   Strep. agalactiae, Strep. anginosus 
Worse (142)   E. coli 
Same (084)    
Same (108)    
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streamlined EQUC protocol. Ten of the 24 patients who did not improve had been clinically 

treated with antibiotics based on the finding of a standard urine culture- detected uropathogen. 

However, in 3 (30%) of these 10 patients, the expanded-spectrum EQUC (as well as streamlined 

EQUC) detected an additional Gram-positive uropathogen (Aerococcus urinae, Corynebacterium 

riegelii, or Streptococcus anginosus). 

Discussion 

Accurate diagnosis for women with UTI symptoms is critical, both to target appropriate 

therapy and to limit inappropriate antibiotic use. Our study demonstrates deficiencies in the 

standard urine culture protocol that limit potentially important information that should be 

provided to clinicians. Our findings suggest that improved detection of clinically relevant urinary 

microbes can be achieved in all diagnostic clinical laboratories using the following conditions: a 

100-μl urine sample obtained by transurethral catheter plated onto BAP, CNA, and MacConkey 

agars, with incubation of all agars in 5% CO2 for 48 h. While incubation of MacConkey agar in 

5% CO2 may not improve Gram-negative bacillus recovery, we recommend that all agars be 

incubated in 5% CO2 for the convenience of using a single incubator. All detected uropathogens 

will grow under the conditions described in the streamlined EQUC protocol. 

Our findings support the use of the streamlined EQUC protocol to more fully describe 

uropathogens. We also recommend that 1μl of the catheterized urine be plated onto BAP and 

MacConkey agars and incubated in 5% CO2 for 24 h with an option to incubate for 48 h 

(modified standard urine culture). The streamlined EQUC protocol provides the most thorough 

detection of uropathogens, while the modified standard urine culture ensures accurate colony 

count assessment and is beneficial for species detection of underlying uropathogens when 
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bacterial colony counts of a predominant uropathogen exceed 105 CFU/ml. The need for 

modified standard urine culture inclusion is apparent from the observation that the expanded- 

spectrum EQUC (and the streamlined EQUC) protocols were not 100% sensitive. In the 

expanded-spectrum EQUC protocol, the use of 100 μl urine detected the most microbes and the 

most uropathogens. However, a small number of uropathogens were detected only with the use 

of a smaller urine volume (10 μl). This apparent paradox likely results from microbial 

overcrowding in samples containing high numbers of CFU; in these circumstances, 100 μl was 

not ideal for distinguishing morphologies. While addition of selective media (i.e., CNA and 

MacConkey agars) helped detect underlying uropathogens, some samples contained both Gram-

positive and Gram-negative bacteria at high CFU numbers, likely making the 100-μl expanded-

spectrum EQUC volume less efficient. 

Streamlined EQUC would provide more information to clinicians who are considering 

the clinical need for uropathogen(s) treatment; many of these are currently missed by the 

standard urine culture protocol. Until better information is available concerning the relationship 

between clinically important UTI and CFU per milliliter, we recommend that these testing 

conditions (i.e., streamlined EQUC) be used for patients with recurrent UTIs or patients with 

clear UTI-like symptoms despite a negative standard urine culture result. Nonetheless, it is clear 

that treatment based on standard urine culture results limits diagnostic information that may be 

useful for symptom resolution. This study did not assess symptom relief in patients whose 

uropathogens were detected only with the streamlined EQUC protocol. Such studies are clearly 

needed. 

Compared to the expanded-spectrum EQUC, the standard urine culture missed 67% 
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(122/182) of all detected uropathogens and 88% (116/132) of non-E. coli uropathogens. 

Detection of uropathogens by the standard urine culture was slightly better for the UTI cohort 

alone (50% total missed [55/110]; 76% non-E. coli missed [51/67]). This improvement may 

result from the higher average uropathogen CFU per milliliter in the UTI cohort (Figure F.1), 

making detection by standard urine culture more likely. The data in Table F.1 also reveal that 

the use of one threshold for UTI diagnosis is likely incorrect. Use of the ≥105-CFU/ml threshold 

would result in untreated uropathogens in the UTI cohort (Figure F.1). Lowering the threshold 

to ≥103 CFU/ml, however, creates other concerns. While use of the ≥103-CFU/ml threshold 

would leave fewer uropathogens in the UTI cohort untreated, it would detect some uropathogens 

in the no-UTI cohort. Since individuals in the no-UTI cohort presumably do not have an 

infection (i.e., no/low severity of urinary symptoms), it is unlikely that they would benefit from 

antibiotic use. This creates a problem in diagnosis and treatment of UTIs and is likely the reason 

for the current ambiguity surrounding urine cultures. From these data, we suggest the possibility 

that, for UTI diagnosis, each uropathogen may have its own unique threshold (e.g., ≥102 

CFU/ml for Aerococcus urinae, ≥103 CFU/ml for Streptococcus agalactiae, and ≥104 CFU/ml 

for Klebsiella pneumoniae). 

Our findings in a selected, health care-seeking population of women should be 

generalized with caution to community-dwelling women who may or may not have similar 

microbial profiles in health or during UTI. Microbial characterization of women longitudinally 

may provide additional context for interpretation of standard and streamlined culture results. 

It appears that simple changes to the commonly performed standard urine culture 
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protocol have the capacity to provide potentially useful clinical information. Importantly, the 

urine must be collected by catheter, as we have previously shown that vulvovaginal 

contamination renders clean-catch voided specimens obsolete (95). At this time, we suggest that 

the recommended culture conditions (i.e., streamlined EQUC) be considered both as a 

supplemental test when individuals with UTI-like symptoms have “no growth” via standard urine 

culture and for use with individuals with persistent UTI-like symptoms (i.e., recurrent UTI). 
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Figure F.S1. Species accumulation curves of UTI and No-UTI Cohorts 
Species accumulation data depicts the number of unique species cultured (using the Expanded 
Spectrum EQUC) with each new patient sampled. When the curve plateaus, it indicates that the 
community is fully sampled and few, if any, new species will be identified. Therefore, it also 
measures the overall diversity of the population in terms of species richness. The UTI cohort 
(blue line) is comprised of 66 species. The No-UTI cohort (red line) is comprised of 75 species. 
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Figure F.S2. Frequency of detection of genera in the UTI and No-UTI cohorts 
Depicts the frequency (i.e., percentage) of detection (using the Expanded Spectrum EQUC) of 
the urine samples containing each genus between the UTI (blue bars) and No-UTI (red bars) 
cohorts. Streptococcus (p=0.003), Gardnerella (p=0.04), and Escherichia (p<0.001). 
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Figure F.S3. Species significantly different between the UTI and No-UTI cohorts 
Depicts the frequency (i.e., percentage) of detection (using the Expanded Spectrum EQUC) of 
the species that are statistically associated with either the UTI (blue bars) and No-UTI (red bars) 
cohorts. Gardnerella vaginalis (p=0.04), Streptococcus mitis/oralis/pneumoniae (p=0.01), 
Streptococcus parasanguinis (p=0.02), Streptococcus salivarius (p=0.05) and Streptococcus 
sanguinis (p=0.01) are associated with the No-UTI cohort. Escherichia coli (p<0.001) is 
associated with the UTI cohort. Pearson chi-square and Fisher’s exact test (* p<0,05; **p<0.01, 
*** p<0.001). The species S. mitis, S. oralis, and S. pneumoniae were grouped together because 
they cannot accurately be distinguished using MALDI-TOF MS. 
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Figure F.S4. Detection of Uropathogens by each expanded spectrum EQUC urine volume 
Depicts the total number of times each uropathogen was identified by each of the urine volumes 
(1 µL, 10 µL, 100 µL) in the Expanded Spectrum EQUC protocol as well as the Standard Urine 
Culture protocol: Standard Urine Culture (blue bars), 1µL Expanded Spectrum EQUC (purple 
bars), 10 µL Expanded Spectrum EQUC (green bars), and 100 µL Expanded Spectrum EQUC 
(red bars). 
 
 
Table F.S1. Urinary microbiota characteristics 

 UTI 
(n=75) 

No-UTI 
(n=75) 

p-value 

Cultivatable Urine Samples 72 (96%) 6 (89%) 0.12* 
Total number of unique species 66 75  
Median number of unique specie per isolate, mdn (IQR) 2 (1-4) 3 (1-5) 0.12 ** 
Shannon Diversity index 3.49 3.89  

IQR = Interquartile Range. Mdn = median 
* Chi-Square Test 
**Wilcoxon Rank Sum Test 
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APPENDIX G  

URINARY SYMPTOMS AND THEIR ASSOCIATIONS WITH URINARY TRACT 

INFECTIONS IN UROGYNECOLOGIC PATIENTS 

 

Dune T., Price T.K., Hilt E.E., Thomas-White K.J., Kliethermes S., Brincat C., Brubaker L., 
Schreckenberger P., Wolfe A.J., Mueller E.R. Urinary Symptoms and their Associations with 
Urinary Tract Infections in Urogynecologic Patients. Obstet. Gynecol. 2017 Oct;130(4):718-

725. doi: 10.1097/AOG.0000000000002239. 
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Overview of Appendix G 

 This paper is a continuation of the study reported in Appendix F where we looked to see 

if SUC or EQUC results relate to patients UTI symptoms. This paper concludes that these 

symptoms can be used to predict UTI in a urogynecologic patient population. We found that 

dysuria (pain during urination) was the best symptom predictor of UTI, while symptoms of 

frequency and urgency were not. 

Abstract 

Objective-To assess urinary symptoms associated with urinary tract infection (UTI) in a 

urogynecologic population of women. 

Methods-In this cohort study, we enrolled 150 urogynecologic patients, who completed the 

validated UTI Symptom Assessment questionnaire and contributed transurethral catheterized 

urine samples. The primary measure (UTI diagnosis) was defined in three ways. Self-report (a 

non-culture-based UTI diagnosis) was defined by the Yes/No response to the query, “Do you 

think you have a UTI?” Two culture-based UTI diagnoses also were analyzed: Standard Urine 

Culture (≥104 CFU/mL) and Enhanced Quantitative Urine Culture (≥10 CFU/mL) of any 

uropathogen. Statistical analyses were performed on patient demographics and urinary symptoms 

prevalence among patient groups. 

Results- Although the presence of urinary symptoms of frequency and urgency (respectively) 

differ somewhat between UTI-positive and UTI-negative women [self report (p=0.005 and 

p<0.001), Standard Urine Culture (p=0.038 and p=0.044), or Enhanced Quantitative Urine 

Culture (p=0.059 and p=0.098)], the presence of dysuria (pain or burning) during urination was 

significantly more prevalent in UTI-positive women for all definitions (self report p<0.001, 
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Standard Urine Culture p<0.001 and Enhanced Quantitative Urine Culture p=0.010). 

Furthermore, women reporting dysuria had higher severity and bother scores for all other urinary 

symptoms assessed by the UTI Symptom Assessment questionnaire, compared to women not 

reporting dysuria (frequency p=0.001, urgency p=0.006, dysuria p<0.001) 

Conclusion-Our findings show that, in women seeking urogynecologic care, the presence of 

frequency and urgency of urination did not confirm a culture-based UTI diagnosis. Instead, 

clinicians can more readily detect UTI using the presence of dysuria, which more effectively 

discriminates UTI-positive and UTI-negative individuals, regardless of the culture-based method 

used to diagnose UTI. 

Introduction 

Clinicians typically rely on patient-reported symptoms to diagnose urinary tract infection 

(UTI) in ambulatory adult women. Seven classic UTI symptoms, including frequency and 

urgency in urination are included in the only validated UTI symptom survey (380). Yet many 

clinicians accept that frequency and urgency are non-specific for a culture-based UTI diagnosis 

and frequency and urgency may add little or nothing to a UTI diagnosis in a urogynecologic 

population. 

Clinicians face a dilemma when assessing UTI in urogynecologic patients with chronic 

frequency and urgency. In this population, Fitzgerald et al. found that chronic frequency and 

incontinence of urine were unlikely to be symptoms reliably associated with UTI (381). Thus, 

despite scant evidence, patients and clinicians may rely on changes in baseline symptoms to 

detect UTI (e.g., worsened urgency or frequency, dysuria). In the urogynecologic population, 

clinicians typically assume a non-bacteriologic etiology for urgency and frequency when 
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standard UTI testing is negative. However, recent advances in understanding the female urinary 

microbiota (79, 95, 96, 98, 114, 197, 259, 260, 379) demonstrate that most women have 

detectable bacteria present using an Enhanced Quantitative Urine Culture protocol despite a 

negative Standard Urine Culture (96, 114). This new knowledge complicates our understanding 

of bladder health and disease including UTIs. 

We determined the proportion of patients with symptoms using three different definitions 

of UTI (self-report, Standard Urine Culture, and Enhanced Quantitative Urine Culture). Our goal 

was to determine if urinary symptoms differ among the diagnosis methods, as well as to identify 

symptoms that are the strongest indicators of UTI regardless of diagnosis method. 

Materials and Methods 

 The a priori sample size for this cohort of 150 urogynecologic patients. Participants were 

enrolled following approval by Loyola University Chicago Health Sciences’ Institutional Review 

Board (IRB). Participants were volunteers from consecutively approached adult women seeking 

clinical urogynecologic care at Loyola University Medical Center’s Female Pelvic Medicine and 

Reconstructive Surgery unit between June 2014 and August 2015. Exclusion criteria included 

age <18, pregnancy, catheterization (indwelling or intermittent) or insufficient English skills to 

complete study measures. Participants contributed demographic and questionnaire data, as well 

as single transurethral catheterized urine sample. Two cohorts, each with 75 women, were 

formed based on their self-report of UTI presence using the query: “Do you feel you have a 

UTI?” (Yes/No). All participants completed the validated UTI Symptom Assessment 

questionnaire (380), in which the participants rates the severity and bother for seven common 

UTI symptoms [frequency and urgency of urination, dysuria (pain or burning), difficulty 
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urinating, lower abdominal/pelvic pain or pressure, low back pain, blood in urine]. Scores for 

each symptom range from 0 (no symptom) to 3 (highest severity or bother). The UTI Symptom 

Assessment questionnaire further groups the 7 symptoms into four domains (Appendix 1, 

available online at http://links/lww/com/xxx). Participants who reported UTI symptoms (Yes 

cohort) were also asked to qualitatively document any UTI-related symptoms. 

 Participants were clinically characterized using standard urogynecologic history and 

physical assessments. Consistent with Loyola’s urogynecological clinical care for all patients, 

each patient-participant’s urine was collected aseptically through transurethral catheterization 

and placed into BD Vacutainer Plus C&S preservative tubes. Each specimen was processed by 

two clinical laboratory methods: the Standard Urine Culture method and the Expanded Spectrum 

version of the Enhanced Quantitative Urine Culture method (114). Table G.1 displays the 

parameters of these two culture-based methods. The Standard Urine Culture protocol used 1μL 

of urine, spread quantitatively (i.e., pinwheel streak) onto 5% sheep blood (BAP) and 

MacConkey agars (BD BBL™ Prepared Plated Media, Cockeysville, MD) and incubated 

aerobically at 35°C for 24 hours. The limit of microbial detection for Standard Urine Culture was 

103CFU/mL. The Standard Urine Culture UTI diagnosis definition was ≥104 CFU/mL of a 

uropathogen. The Expanded Spectrum Enhanced Quantitative Urine Culture protocol used 1, 10, 

and 100μL of urine, spread quantitatively (i.e., pinwheel streak) onto 5% sheep blood (BAP), 

MacConkey, Chocolate, CNA and CDC Anaerobic BAP (BD BBL™ Prepared Plated Media, 

Cockeysville, MD) and incubated aerobically, in 5% CO2, anaerobically, or in microaerophilic 

conditions at 35°C for 48 hours, although some plates were documented for growth earlier, at 24 

hours. The limit of microbial detection for the Enhanced Quantitative Urine Culture is 10 

http://links/lww/com/xxx
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CFU/mL. The UTI diagnosis definition for Enhanced Quantitative Urine Culture was ≥10 

CFU/mL of a uropathogen. 

Continuous variables were reported as means and standard deviations (SD) or medians 

with ranges; categorical variables were reported as frequencies and percentages. Pearson Chi-

square tests (or Fisher’s Exact tests, when necessary) and 2-sample t-tests (or Wilcoxon Rank 

 
Table G.1-Summary of Urine Cultivation Protocols and UTI Diagnosis Definitions 

Modified with permission from Price TK, Dune T, Hilt EE, Thomas-White KJ, Kliethermes S, 
Brincat C, et al. The Clinical Urine Culture: Enhanced Techniques Improve Detection of 
Clinically Relevant Microorganisms. J Clin Microbiol 2016;54: 1216-22. Doi: 
10.1128/JCM.00044-16. Copyright © American Society for Microbiology 
BAP= Blood Agar Plate; CNA= Columbia Naladixic Acid Agar; CDC = Centers for Disease 
Control; CFU = Colony Forming Units, UTI = Urinary Tract Infection 
 
Sum tests, when appropriate) were used to compare demographics and culture results (e.g., 

abundance and diversity) between cohorts. All statistical analyses were conducted using SAS 

software v9.4 (SAS Institute, Cary, NC) or SYSTAT software version 13.1 (SYSTAT Software 

Inc., Chicago, IL). 

Results 

 Table G.2 shows the demographics of the 150 participants in this study population (150 

participants); their average age was 62.3 years ± 14.9 years; most were Caucasian (81%) and 
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overweight (mean body mass index 29.3 kg/m2). Nearly all participants [92% (138/150)] 

endorsed symptoms on the UTI Symptom Assessment questionnaire. Additional patient and 

clinical demographics were previously published (114). 

 Using the Standard Urine Culture protocol, only 38% (57/150) of sample grew bacterial 

colonies (11 different species from 10 different genera, median number of 1 microbial species 

per urine sample). In contrast, using the Expanded Spectrum Enhanced Quantitative Urine 

Culture, nearly all samples [93% (139/150)] grew microbial colonies (98 different species from 

Table G.2 Patient Demographics and Symptoms by Self-Report or Dysuria 



 

 
 

321 
36 different genera, median number of 2 microbial species per urine sample). Table G.3 is a list 

of uropathogens that is consistent with the current clinical uropathogen literature. All 11 species 

detected by Standard Urine Culture and 23 of the species detected by the Expanded Spectrum 

Enhanced Quantitative Urine Culture are considered to be uropathogens.  

Table G.3 List of Uropathogens 
 

Uropathogen Number Detected by 
Standard Urine Culture 

Number Detected by 
Expanded Spectrum Enhanced 

Quantitative Urine Culture 
Actinotignum schaalii 0 6 
Aerococcus sanguinicola 0 1 
Aerococcus urinae 1 15 
Alloscardovia omnicolens 0 8 
Candida albicans 0 2 
Candida parapsilosis 0 4 
Citrobacter freundii 1 1 
Citrobacter koseri 0 1 
Corynebacterium riegelii 0 4 
Corynebacterium urealyticum 0 2 
Enterobacter aerogenes 1 3 
Enterococcus faecalis 1 16 
Escherichia coli 44 50 
Klebsiella pneumoniae 4 10 
Morganella morganii 0 1 
Oligella urethralis 0 1 
Proteus mirabilis 2 4 
Pseudomonas aeruginosa 1 1 
Serratia marcescens 0 1 
Staphylococcus aureus 3 7 
Staphylococcus lugdunensis 1 2 
Streptococcus agalactiae 1 10 
 
 Table G.2 also displays the study population dichotomized by self-report. Of the 150 

participants, by our a priori study design, 75 were in each self-reported cohort (Yes/No); there 

two groups were similar demographically (Table G.2). We did not detect significant differences 

in the proportions of urine samples with detected bacteria [No self-reported UTI=89% (67/75) 
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vs. self-reported UTI=96% (72/75); p=0.12] or total unique species per urine sample (75 vs. 66; 

p=0.31). Although the no self-reported UTI cohort had a larger median number of detected 

species per urine sample when compared to self-reported UTI group, the difference was not 

statistically significant [3 (IQR=1-5) vs. 2 (IQR=1-4); p=0.12]. 

 Table G.2 also displays the percentage of patients reporting each UTI sypmtoms. 

Symptoms were endorsed by all women who self-reported UTI (100%; 75/75) and most women 

in the no self-reported UTI population (84%; 63/75). However, women who self-reported UTI 

had higher average scores (severity and bother scores combined) for the seven symptoms of the 

UTI Symptom Assessment questionnaire. In addition to the UTI Symptom Assessment 

questionnaire-measured symptoms, 64/75 women in the self-reported UTI population qualitively 

reported their UTI symptoms and 19% (12/64) indicated the presence of malodorous urine. 

Althought the presence of frequency and urgency of urination differed between the cohorts 

(p=0.038 and p=0.044, respectively); dysuria (pain or burning) was significantly more prevalent 

in the self-reported UTI population (p<0.001). 

 Table G.4 displays the study population dichotomized by culture-based UTI-diagnoses. 

Fifty-seven individuals (38%) met the criterion for UTI using Standard Urine Culture, most 

(91%) of whome also self-reported UTI. Except for age, the Standard Urine Culture defined 

UTI-positive population did not differ demographically from the UTI-negative population. 

 Nearly all (98%) of the Standard Urine Culture defined UTI-positive and a majority [88% 

(82/93)] of the UTI-negative population endorsed symptoms on the UTI Symptom Assessment 

questionnaire. Similar to results by self-reported UTI (Table G.2), the presence of frequency 

(p=0.038) and urgency (p=0.044) of urination differed between the Standard Urine Culture 
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defined cohorts UTI-positive population, but dysuria was even more prevalent (p<0.001) in the 

UTI positive cohort and did a better job of distinguishing the UTI positive and negative cohorts. 

Twenty percent (9/44) of owmen who were both Standard Urine Culture defined UTI-positive 

and self-reported UTI reported malodorous urine. 

Table G.4A. Patient Demographics and Symptoms Defined by Standard or Expanded 
Spectrum Enhanced Quantitative Urine Culture 

 
 



 

 
 

324 
 
Table G.4B. Patient Demographics and Symptoms Defined by Standard or Expanded 
Spectrum Enhanced Quantitative Urine Culture (continued) 

 
 One hundred-ten (73%) women met the criterion for UTI as defined by the Enhanced 

Quantitative Urine Culture; most also self-reported UTI (63%, 69/110). The Enhanced 

Quantitative Urine Culture defined UTI-positive population did not differ demographically from 

the UTI-negative population. Most of the Enhanced Quantitative Urine culture defined UTI-

positive and UTI-negative women endorsed symptoms on the UTI Symptom Assessment 

questionnaire [92% (101/110) and 93% (37/40), respectively]. The presence of frequency 

(p=0.059) and urgency (p=0.098) of urination did no differ between the two cohorts, while 

dysuria was significally more prevalent in the Enhanced Quantitative Urine Culture defined UTI-

positive population (p=0.01). Ninteen percent (11/57) of women who were both Enhanced 

Quantitative Urine Culture defined UTI-positive and self-reported UTI reported malodorous 

urine. 
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Discussion 

 Our findings suggest that, in urogynecologic patients, dysuria is a better clinical clue to 

UTI than frequency or urgency or both. While clinicians and validat4ed UTI measures that 

include urinary urgency and frequency have utilized the Standard Urine Culture as the current 

standard for UTI diagnosis, this approach has not been evaluated in urogynecologica patients. In 

our participants, urgency and frequency correlated poorly with culture –based UTI diagnostic 

tests and did not contribute to a correct UTI diagnosis. Dysuria, however, appeared relevant and 

more specific; therefore, the use of dyuria as a key UTI symptom warrarnts further assessment. 

 Abnormal urinary odor is not included in the currently validated UTI assessment tool, yet 

participants often reported this symptom as a sign of UTI; this correlates with our clinical 

experience. We suggest that odor be included in a modified tool, at least for urogynecologic 

populations. Conversely, hematuria was rarely reported and may have less importance as a UTI-

related symptom in this population. 

It is critical that we improve current UTI detection methods. In response to patient-

reported symptoms, clinicians consider it proper to empirically treat acute uncomplicated UTIs 

in pre-menopausal women who experience infrequent episodes of UTI with typical symptoms, 

e.g. urgency and frequency (4, 382, 383). In urogynecologic populations, however, the chronic 

presence of these symptoms complicates UTI diagnosis. Clinicians often rely on Standard Urine 

Culture, which requires growth of at least one uropathogen above a certain threshold (378). 

However, our group has found that this method misses most non-E. coli uropathogens (114). 

This and other emerging knowledge about urinary microbiota may provide information about the 

absence of good bacteria, as well as the presence (or overabundance) of bad bacteria. In a 
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companion to this study (114), we reported that urine samples from women who did not self-

report UTI were likely to be predominated by Lactobacillus, Streptococcus, and Gardnerella, an 

observation that is consistent with previous reports (98, 103, 373). In contrast, the urine of 

women with UTI were more likely to contain traditional uropathogens at the expense of 

Gardnerella, Streptococcus and Lactobacillus (114) which may be a clue to the composition of 

healthy microbiota, consistent in part with previous observations (98, 103). Given its beneficial 

role in the genito-urinary tract (384-387). Lactobacillus in the bladder may prevent UTI or 

facilitate microbial restoration following UTI treatment. Thus, clinicians must balance 

appropriate, selective UTI testing with the risk of antibiotic overuse. Given the beneficial 

protective role of certain bacteria in the bladder (259, 373), improved UTI testing and treatment 

algorithms in urogyneoclogic patients may improve patient care. 

 The colony count threshold has been debated extensively. In this study, we tested a 

traditional threshold with the standard method, as well as a lower threshold with an enhanced 

culture protocol. The former was chosen because it is the most widely used threshold and method 

for UTI diagnosis in this patient population. We chose the latter to detect as many potential 

pathogens as possible. 

 Strengths of our study include various definitions of UTI, including simple self-report, 

two different thresholds for culture methods and the Enhanced Quantitative Urine Culture 

technique. Our study also benefits from an enhanced means of describing patient symptoms 

through the validated UTI Symptom Assessment questionnaire. Finally, we reduced vulvo-

vaginal contamination through standardized urethral catheterization collection techniques. 
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 Limitations of this study include a lack of ethnic diversity of the study population. We 

recommend caution in generalizing our findings beyond this subspecialty population. In addition, 

we did not complete an a priori power calculation due to a lack of effect size estimates in the 

literature. We hope our findings will inform these aspects of future studies. 

 Clinicians may wish to include microbial assessment using the streamlined version of the 

Enhanced Quantitative Urine Culture, which we recently recommended for patients with 

negative Standard Urine Culture results and persistent or refractory urinary symptoms45. Good 

antibiotic stewardship in this population may need to incorporate a more personalized approach 

to antibiotics use that aligns more closely with specific symptoms. Such techniques will help 

clinicians and patients move away from the simplistic approach of kill the uropathogen and 

better understand the role of good and bad bacteria that inhabit the female bladder. Also, certain 

women may benefit from an approach that ensures restoration of a healthy urinary microbiota 

following UTI treatment. Further research into these compelling areas of women’s urinary health 

may reduce the morbidity and costs associated with poorly controlled bladder symptoms and 

improve diagnostic precision and treatment. 
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APPENDIX H 

URINE TROUBLE: SHOULD WE THINK DIFFERENTLY ABOUT UTI? 

 

 
Price T.K., Hilt E.E., Dune J., Mueller E.R., Wolfe A.J., Brubaker L. Urine Trouble: Should we 
think Differently about UTI? Int. Urogynecol. J. 2018 Feb;29(2):205-210. doi: 10.1007/s00192-

017-3528-8. Epub 2017 Dec 26. 
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Overview of Appendix H 

 This review is a summary of the previous two papers published (Appendix F and G) 

with some additional insight into the current diagnostic standards for UTI. This review includes 

data not published in the previous papers. One piece of data was the conversation surrounding 

the diagnostic threshold of uropathogen detection. Our data suggest that the diagnostic threshold 

should be set for the uropathogen instead of a threshold for all uropathogens.   

 Collectively, Appendix F-H highlighted the need to address the current diagnostic 

standards used for UTI. Our group decided to create a clinical trial where we compare the results 

of the standard urine culture (SUC) and our recommended version of the expanded quantitative 

urine culture (EQUC) (Appendix F) to patient outcomes. This clinical trial is ongoing and the 

proposal for this trial is in Appendix I. 

Abstract 

 Our study outlined in Appendix F and G, highlighted that current standards for UTI 

diagnosis have limitations that may reduce the opportunity to improve patient care. We wrote 

this review to highlight these limitations of current UTI diagnosis. We identified four areas of 

limitations: the language of UTI, UTI diagnostic testing, the Escherichia coli-centric view of 

UTI, and the colony-forming units (CFU) threshold-based diagnosis. Current methods and 

technology combined with continued rigorous clinical research can be used to correct these 

limitations. 

Introduction 

 Urinary tract infection (UTI) is the most common bacterial infection in adult women, 

with 50% of women experiencing at least one UTI in their lifetime and as many as 10% having 
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at least one UTI annually. UTI is among the most common reasons for antibiotic treatment (4, 

388). The nomenclature and concepts of UTI, based on the now disproven dogma that the lower 

urinary tract is a sterile environment, have remained stagnant over many decades. This older 

dogma has been informed with scientific evidence that some bacteria are present in the absence 

of urinary symptoms or a positive result of traditional UTI tests (urinalysis or standard urine 

culture). Although discovery of the urinary microbiota should clearly affect the care of women 

with UTI, specific clinical changes occur slowly. It is already clear that the widely used standard 

urine culture methods for detecting urinary bacteria have significant limitations compared with 

16S rRNA gene sequencing (95, 98, 103, 260) and more sensitive enhanced culture techniques 

(79, 96, 98, 103). These more sensitive assays have demonstrated that the female urinary bladder 

contains its own community of microbes, or microbiota. It is increasingly evident that alterations 

to the microbiota throughout the human body can have an impact on health.  

 We believe that it is time to advance UTI diagnosis and treatment. The first step in this 

process is a clear discussion of the limitations of the current standards in the context of the new 

knowledge about the female urinary microbiota. Although empiric treatment is currently 

pragmatic and highly effective for symptom resolution in uncomplicated, infrequent UTI, we 

anticipate that increasing recognition of the collateral effects of this regimen may cause a change 

in this practice. Our therapeutic goal should be to provide an optimal treatment, with high 

efficacy and few, if any, undesired effects. We highlight four major limitations in current UTI 

thinking: the language of UTI, UTI diagnostic testing, the Escherichia coli-centric view of UTI, 

and the colony-forming units (CFU) threshold-based diagnosis. Future research to overcome 

these limitations using rigorous clinical testing is paramount. 
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The Limitations of the Language of UTI 

 The widely used UTI nomenclature is based on a dichotomous clinical scenario—

infected or not (with the odd exception of asymptomatic bacteriuria). The traditional view of UTI 

envisions uropathogens invading a previously sterile environment (the bladder) to cause 

infection. Antibiotics come to the rescue to rid the person of the invading microbes and the 

bladder returns to the previously uninfected state. This language is grossly inconsistent with our 

current scientific knowledge about UTI. More importantly, this language does not recognize 

changes in the community of microbes that reside in the bladder. This microbial community can 

have beneficial functions in warding off infection. Furthermore, disruption to the resident 

microbial community (i.e., dysbiosis) could plausibly result in UTI symptoms, as is the case with 

several other disorders (see below). In adult women, such dysbioses could result from an 

invading microbe in the urinary system, an antimicrobial treatment, or some change to the host’s 

metabolism or immune system. Nonetheless, our current language does not place the “UTI-

causative microbe invades” concept in the context of non-causative microbes. The goal of UTI 

treatment should not be to eradicate every microbe in the bladder, especially given the evidence 

that some members of the urinary microbiota are beneficial and/or protective (103). 

The Limitations of UTI Testing 

 The Standard Urine Culture (SUC) is currently the diagnostic gold standard for 

confirming the presence of bacteriuria for UTI diagnosis (224). Unfortunately, SUC has 

significant limitations that have resulted in a profound detection bias. This bias has caused 

fundamental misunderstandings of the bacterial contributions to urinary health and disease. 
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 Typically, SUC is performed in a clinical laboratory by plating 1 μL of urine onto Blood 

and MacConkey agar plates and incubating aerobically at 35 °C for 24 h. Since the original 

description of this technique in the 1950s (74), this protocol has been adopted as the standard 

diagnostic tool for the detection of UTIs, despite numerous limitations reported by many 

different investigators (76, 80, 389). These limitations include: the inability to detect slow-

growing microorganisms, the inability to grow fastidious and non-aerobic microorganisms, the 

inability to detect microorganisms present at less than 103 CFU/mL, and the difficulty of 

detecting underlying Gram-positive bacteria due to a lack of selective media.  

 More sensitive culture techniques, such as Expanded Quantitative Urine Culture (EQUC), 

have repeatedly shown that SUC possesses a 90% false-negative rate (96, 98, 103). Relative to 

SUC, this enhanced urine culture protocol uses 100x more urine plated onto several different 

media and environmental conditions with twice the incubation time (96). EQUC has provided 

compelling evidence that almost every adult female studied to date is bacteriuric (388). 

In 2016, we demonstrated that SUC even fails to detect “clinically relevant 

microorganisms” in symptomatic patients (114). We prospectively enrolled 150 urogynecology 

patients and dichotomized the group based on their UTI perception by asking,  

“Do you feel you have a UTI?” (Figure H.1) Transurethral catheterized urine specimens were 

collected and urinary symptoms were documented using the validated UTI Symptoms 

Assessment (UTISA) questionnaire (380). 

We assessed the microbiota using both SUC and EQUC. In the catheterized urine sample 

of most women in the UTI cohort (69 out of 75), EQUC detected one or more bacteria that the 

literature classifies as uropathogens. In these 69 urine samples, EQUC identified a total of 110 
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uropathogens. In contrast, SUC only detected 50% (55 out of 110) of these uropathogens. 

Seventy-nine percent (59 out of 75) of the participants in the UTI cohort completed the follow-

up UTISA questionnaire. Following clinically selected treatment based on SUC, 59% (35 out of 

59) of participants reported symptom improvement, while 41% (24 out of 59) reported no 

improvement. Half (12 out of 24) of the 24 participants who did not improve had at least one 

uropathogen detected by EQUC, but not SUC. Collectively, these data show that SUC fails to 

detect microorganisms that may be contributing to UTI symptoms. Thus, sole reliance on SUC in 

these patients could lead to a suboptimal clinical outcome. It is reasonable to test whether the use 

of EQUC would have led to improved symptom resolution.  

 Other commonly used diagnostic tests are also severely limited. Dipstick and urinalysis 

tests are commonly used in the replacement of or in conjunction with SUC, but the efficacy of 

these rapid tests has been questioned, especially for Gram-positive infections (390, 391). Current 

Figure H.1. Patient Schematic of Price et al, 2016. (Price et al, 2016).    
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studies continue to highlight the limitations of these tests; our own unpublished data reveal a lack 

of utility for these tests. For example, we collected transurethral catheterized urine samples from 

a population of urogynecologically treated women (N = 199) with and without lower urinary 

tract symptoms (LUTS). In this population, 17 out of 199 (8.5%) had a positive dipstick result 

(i.e., the presence of white blood cells, nitrates, and/or red blood cells). Of these, one (5.9%) had 

bacteria detected by SUC whereas 13 (76.5%) had bacteria detected by EQUC. In the 182 

(91.5%) with a negative dipstick, SUC detected bacteria in 17 samples (9.3%), whereas EQUC 

detected bacteria in 122 (67.0%). The percentage of bacteriuric samples diagnosed by SUC (p = 

0.23) or EQUC (p = 0.63) were not statistically different in the dipstick-positive or dipstick-

negative groups, showing that a positive urine dipstick test has no association with the presence 

of microorganisms, in this patient population (Price, unpublished data). 

The Limitations of an Escherichia coli-centric View of UTI 

 Standard Urine Culture was used to establish that E. coli is the most common cause of 

uncomplicated UTI (4, 7). Yet, other Gram-negative bacteria such as Pseudomonas aeruginosa 

and several species within the Enterobacteriaceae family (e.g., species of the genera Proteus and 

Klebsiella) also can cause UTIs (7, 14). In addition, a few Gram-positive bacteria, like 

Staphylococcus saprophyticus and Enterococcus faecalis, as well as some fungi, such as 

Candida sp., have been linked to UTIs (7, 14). In some patients with complicating factors, the 

commonality of these organisms depends on other comorbidities and demographics (14). The list 

of uropathogens has grown longer with the availability of more sophisticated identification tools. 

Several additional microorganisms have now been classified as “emerging uropathogens” (117, 
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118). These microorganisms have been found in high colony counts in patients with UTI 

symptoms and/or acute cystitis, but knowledge regarding their pathophysiology is unavailable.  

 Given that SUC was designed to detect E. coli, its results affect broad epidemiological 

statements concerning UTI. For example, it is commonly stated that E. coli accounts for 80– 

95% of all uncomplicated UTIs (4, 7). Indeed, in the Price et al. study (Figure H.1), we showed 

that most (71%) of the SUC identified pathogens were E. coli (39 out of 55). However, the biases 

of SUC showed through; it identified only 24% (16 out of 67) of the non-E. coli uropathogens in 

this group of women (114). Furthermore, although EQUC detected E coli in 57% (43 out of 75) 

of women in the UTI cohort, rarely (8 out of 43) was E. coli the only microorganism detected in 

these samples (114). Most patients with E. coli also had other species (35 out of 43), and 

frequently these additional species were uropathogens (24 out of 35). Similarly, Wolfe et al. 

detailed a case study of a woman with a positive SUC of >105 CFU/ mL of E. coli. However, 

16S rRNA sequencing showed that sequence reads of Actinobaculum and Aerococcus far 

exceeded those of E. coli (95). Traditionally, bacteriuria caused by multiple species (i.e., a 

polymicrobial UTI) has been identified at a higher incidence in the elderly and children under the 

age of 10 years (392). These tend to co-occur with multispecies bacteremia (392). The new data 

described above suggest that polymicrobial UTI might be both common and frequently 

overlooked.  

 The presence of polymicrobial UTIs has been greatly underestimated because the 

presence of multiple colony morphologies on an SUC typically prompts clinical laboratories to 

dismiss these as “contamination” (117). This common practice, combined with the clear 

screening inadequacies of SUC, has resulted in a flawed, one-species perspective of UTIs. 
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Although it is unlikely that all bacteria associated with a polymicrobial UTI are causative agents 

of the patient’s symptoms, this has not been explicitly tested. It is possible that a bacterial 

dysbiosis is present. Bacterial dysbioses have been associated with several other health 

disparities such as bacterial vaginosis (BV) in the vagina (393), and inflammatory bowel disease 

(IBD) in the gut. Whether urinary dysbiosis can cause UTI symptoms or results in colonization 

of the UTI causative organism(s) requires further study. 

The Limitations of a CFU Threshold-Based Diagnosis 

 Current research calls into question the utility of thresholds in UTI diagnosis and 

treatment. With the incorporation of SUC in the 1950s, physicians have relied on a threshold of 

≥105 CFU/mL of urine to distinguish between significant bacteriuria and bacterial contamination. 

This threshold was set to identify women with pyelonephritis (74). That diagnostic threshold was 

subsequently applied to women with acute cystitis. Yet, multiple investigators have 

demonstrated that 30– 50% of women do not meet this threshold, despite symptoms of dysuria 

and urgency and frequency of urination (394). Numerous recommendations have since been 

made to alter this threshold (114, 380, 395). Stamm demonstrated that for women with acute 

cystitis, use of ≥105 CFU/mL resulted in high specificity, but low sensitivity in detecting 

bacteriuria, whereas a lower threshold, such as ≥102 CFU/mL, had a much higher sensitivity 

(76). UTI symptoms and pyuriaoften persist when bacteriuria at <105 CFU/mL is left untreated 

(394) and, in catheterized patients, the presence of bacteria between 102 and 104 CFU/mL is 

reported to increase to ≥105 CFU/mL if left untreated (389). All this work, however, predated the 

newly discovered urinary microbiota.  
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In a population of women seeking urogynecological care (Figure H.1), we found that a 

single overall threshold did not distinguish between women who self-reported UTI and those 

who did not. EQUC demonstrated that significant differences in CFU/mL exist between 

uropathogens identified in women and that the mean CFU/mL for E. coli was near 105 CFU/mL 

for both patient cohorts (Figure H.2) (114). Collectively, these data suggest that not only is the 

≥105 CFU/mL threshold insufficient to detect most uropathogens but lowering this threshold 

does not solve the problem either and may lead to unnecessary treatment. Importantly, the 

presence of uropathogens at levels that exceed the threshold, as with E. coli, does not necessarily 

result in symptoms. 

Figure H.3 shows a schematic of the uropathogen composition and patient symptom 

resolution of the women in the self-report UTI cohort, grouped by CFU threshold. Ninety-two 

percent of women (69 out of 75) had a common or emerging uropathogen present. Forty-two 

percent of these women had a polymicrobial infection (defined here as at least one Gram-positive 

Figure H.2. Average CFU/mL of Common and Emerging Uropathogens. (Price et al, 
2016).  
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and one Gram-negative bacterium), whereas 38% had a single Gram-negative bacterium present. 

Uropathogens were present at ≥105 CFU/mL in only 61% of women (46 out of 75). Of the  

 

women with at least one uropathogen present at ≥105 CFU/mL, 83% had a single Gram-negative 

bacterium present. Thirty-seven out of 46 of these women were treated with antibiotics and 1 

week later, 62% reported feeling “better”. 23 women had uropathogens present at <105 CFU/mL. 

Fifteen of these 23 women were not given antibiotics, and 1 week later, only 33% reported 

Figure H.3. Schematic of the uropathogen composition and patient symptom resolution 
of the women in the self-report UTI cohort. Abx. antibiotics. (Price et al, 2016).  
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feeling “better”. This finding is certainly possible and entirely consistent with our thoughts about 

urinary dysbioses. Like other human microbial niches, we expect an individual to be able to 

restore a dysbiotic niche—i.e., some women may be able to resolve “UTI” without antibiotic 

treatment. Yet, these data demonstrate that use of the ≥105 CFU/mL threshold for UTI diagnosis 

and treatment is not appropriate for all women; specifically, those with polymicrobial or Gram-

positive bacterial infections. Importantly, by not treating these patients, their clinical outcome is 

suboptimal (i.e., fewer reports feeling “better”). 

Next Steps 

 Research efforts to improve diagnosis are expanding as the limitations of SUC become 

more apparent. Clinical laboratories can immediately incorporate the EQUC technique; however, 

clinicians may be challenged to interpret EQUC findings. Clinical trials to develop treatment 

algorithms based on EQUC findings are needed to promote good antibiotic stewardship to 

safeguard the overall health and well-being of patients being treated for UTI. 

 In recent years, other nonculture-based screening assays have been and are being 

developed. Immunology-based diagnostics, such as the RapidBac, rely on antibody-based 

detection of common uropathogens at ≥103 CFU/mL with high specificity and sensitivity (395). 

PCR assays, such as SeptiFast, have been assessed for use on urine samples with mild success 

(395). And, several kits using fluorescence in situ hybridization (FISH) previously developed for 

blood and other specimens are being considered for use on urine for identification of pathogens 

(395).  

 Ongoing research will help to evaluate new treatment algorithms that incorporate the 

presence of previously undetected bacteria in UTI patients. Meanwhile, the role of the SUC must 
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move away from the “gold standard” status. We believe that we will transition away from SUC 

to more sensitive testing that balances detection of organisms with appropriate therapies, 

designed to restore and maintain healthy microbial communities. 

Conclusion 

 Should we think differently about UTI? Absolutely. We are entering a new age in UTI 

diagnosis and treatment. No longer can we define a UTI microbiologically as uropathogens 

invading a sterile environment. We must now acknowledge that previously ignored populations 

of bacteria are contributing to urinary health, both positively and negatively. How these findings 

ultimately change our precise definition of UTI remains to be seen but will certainly be 

profound. The status quo clearly needs to change so that patients benefit from this updated 

understanding of UTI. Improved treatment algorithms should be able to offer a spectrum of 

treatment with clear goals that reduce bothersome symptoms, the risk of serious infections and 

systemic illness, and unwanted collateral effects of UTI therapy. With appropriate adoption of 

evidence-based research, patients should benefit from more precise diagnosis and targeted 

treatment with limited deleterious collateral effects. Future research should advance our 

understanding of the role of the urinary microbiota in the context of both health and disease, and 

among women of differing demographics. 

 As with every major transition in clinical care, old habits are slow to fade away and 

adjustments will be needed as we enter this new era of UTI care. Clinicians need to learn new 

methods of interpretation of UTI testing, such as EQUC. No single study will provide guidance 

for all clinical situations and clinical judgment will remain a valued tool in patient care. 
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Although stepping away from long-held clinical patterns of care takes time, our patients deserve 

better and it is time to improve care for these patients. 
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APPENDIX I  

PROPOSAL OF ONGOING CLINICAL TRAIL:  
THE USE OF EXPANDED QUANTITATIVE URINARY CULTURE (EQUC) VERSUS 

STANDARD CULTURE (SUC) TECHNIQUES IN THE CLINICAL CARE OF WOMEN 
WITH SYMPTOMS OF URINARY TRACT INFECTIONS. 
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Overview of Appendix I 

The previous appendices (Appendix F-H) have laid the groundwork for a clinical trial 

that will randomize each patient into either an Expanded Quantitiative Urine Culture (EQUC) or 

Standard Urine Culture (SUC) protocol. The goal is to determine if the EQUC protocol provides 

improved patient outcomes. This clinical trial can be found at 

https://clinicaltrials.gov/ct2/show/NCT03190421.  This appendix is an edited version of the 

protocol submitted to the Institutional Review Board for approval and gives an outline of the 

ongoing clinical trial that I have had a major role in on the basic science team. 

Background and Significance  

Current standard urine culture (SUC) techniques were developed in the 1950’s and 

consist of laboratory methods that nurture common uropathogens using a threshold of greater 

than 105 colony-forming units per milliliter (CFU/ml) to diagnose UTI (74).  However, even in 

the 1970’s, researchers demonstrated the limitations of SUC, which were developed for fast 

growing aerobic uropathogens (396). Using bacterial DNA and 16S rRNA amplicon sequencing, 

we have demonstrated that bacterial DNA can be found in urine that is SUC negative (95, 103, 

306). Expanded culture techniques were critical to confirming the presence of live bacteria in the 

urinary bladder that were detected by sequencing techniques. The expanded quantitative culture 

(EQUC) require a larger sample of urine on each culture plate, the use of various culture 

mediums and changes in the incubation environment and duration (96).  

As designed, the use of EQUC has found bacteria that were not seen by SUC (96). Not all 

of these bacteria are pathogens and many have not been described in the bladder. We have 

reported on women with symptoms of urgency urinary incontinence (UUI) whose catheterized 

https://clinicaltrials.gov/ct2/show/NCT03190421
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urine samples were cultured using EQUC and SUC. Almost 80% of the urinary samples grew a 

bacterial species. Interestingly, 90% of the samples that grew bacteria by EQUC were deemed 

culture negative or no growth by SUC techniques.  As a result, the false negative rate of SUC is 

calculated to be 90% in women with UUI (103). We have also reported a similar false negative 

rate for women with the symptoms of urinary tract infection (UTI) and controls (those without 

UUI and UTI symptoms).  

The use of EQUC identifies more organisms that are pathogenic and cause UTI 

symptoms. In addition, EQUC techniques are labor intensive, require longer incubation times 

and different incubation environments. Prior to adapting these techniques in hospital 

laboratories, it is important that we test the hypothesis that EQUC culture results improve the 

clinical care of women over standard techniques. 

This novel clinical study will test the hypothesis that EQUC cultures algorithm will 

alleviate the symptoms of UTI at a higher rate than our standard treatment algorithm in women 

who present to a tertiary care center urogynecology clinic.  

Hypothesis and Aims 

Hypothesis: Our hypothesis is that an EQUC treatment algorithm (based on organisms that are 

known or speculated to be urinary pathogens found on expanded cultures) will alleviate the 

symptoms of UTI at a higher rate than a SUC treatment algorithm (based on organisms that are 

known uropathogens found on standard culture techniques).   

Aim 1. Compare UTI symptom resolution rates in women with symptoms of UTI who are 

treated based on EQUC versus SUC results. Using the Female Pelvic Medicine and 

Reconstructive Surgery (FPMRS) treatment algorithms (see Fig I.1 & Fig I.2 Standard Urine  
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Figure I.1-Standard Urine Culture Treatment Protocol. 

 
 

Figure I.2-Expanded Quantitative Urine Culture Treatment Protocol 
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Culture Treatment and Expanded Urine Culture Treatment Algorithms), attending physicians 

will treat participants based on their randomization to EQUC versus SUC. Following a 3-5 day 

standard course of treatment (which may include no antibiotics if the culture is negative), 

participants will be queried 7-10 days “do you continue to have UTI symptoms”. Women who 

report “no” will be categorized as successful treatment, women who respond “yes” will be 

categorized as treatment failures.  ALL women who respond “yes” to “do you continue to have 

UTI symptoms” will be asked to return to the clinic for a repeat urine culture which is our 

current practice after treatment. 

Aim 2. Revise the EQUEC treatment algorithm. The EQUC treatment algorithm was based on 

known uropathogens that we had previously identified as most likely to be symptomatic. During 

the course of this work we may identify other pathogens that are present and causing symptoms. 

These organisms will be identified and added to the treatment algorithm. This interim analysis is 

planned and was part of the statistical calculations to determine sample size. 

 Aim 3. Identify the symptom profile associated with specific organisms. Using the UTISA 

questionnaire, we will perform a symptoms association study with specific bacteria.  

Experimental Design and Methods 

We request permission to recruit 225 women who respond “yes” to the question “do you 

feel you have a urinary tract infection”. All participants will provide baseline urine specimens 

obtained by transurethral catheter (to avoid vulvo-vaginal contamination) and will complete a 

UTISA questionnaire to assess their current urinary tract symptoms. Participants will be 

randomized to the SUC treatment algorithm or the EQUC treatment algorithm. Treating 

physicians will receive either the SUC results or the EQUC results from the clinical laboratory 
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and the results will be part of their clinical record. Treating physicians will follow the Loyola 

FPMRS treatment algorithm.  Women in the study will also give consent for us to contact them 

using email, text messaging or phone call within 7-10 days after “treatment plan” has been 

implemented.  The treatment plan options will include no treatment if the culture results show no 

pathogenic bacteria. All participants will be queried 7-10 days after their treatment plan (by 

email or text) “do you feel you continue to have a urinary tract infection”. Women who respond 

“yes’ will be asked to return for a second urine specimen which is our standard protocol. The 

second urine specimen will be analyzed using EQUC culture techniques only. Again, a treatment 

plan will be developed by the attending physician and the patient participant will be queried 7-10 

days after the plan is implemented. 

Recruitment Process: Following Loyola institutional review board (IRB) approval, adult 

women >age 18, who respond “yes” to the screening question “do you feel you have a urinary 

tract infection” at Loyola’s Divisions of FPMRS will be given an opportunity to participate in 

this research effort. A human-subject certified research team member will explain the study 

purpose and procedures. Subjects who meet eligibility criteria and agree to research participation 

will indicate their consent by signing the research consent form. Consistent with prevalent 

research regulations and policies, a signed copy of the research consent document will be given 

to the subject and the investigator will keep the original research consent document.  

Inclusion criteria: Women who present to our tertiary care urogynecology clinic will be queried 

“do you feel you have a urinary tract infection”.  Women who respond “yes” will be invited to 

participate in this study.  

1. A “yes” answer to the screening question “do you feel you have a UTI”?  
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2. Non-pregnant women ages 18 years or older 

3. Agreement to respond to a text or email question 7-10 days after treatment plan 

for their UTI (note: the treatment plan may include “no treatment”). 

Exclusion criteria: We will exclude the following patients  

1. Women currently on antibiotics   

2. Patients who cannot communicate or read in English  

3. Patients under the age of 18 

4. Pregnant patients  

5. Women with an indwelling catheter and intermittent self-catheterization  

6. Men  

7. Urine obtained via the “clean catch method” (i.e. voided urine) 

8. Women who refuse to be catheterized 

9. Women who cannot or will not agree to respond to an email or text message 7-10 

days after treatment plan is initiated. 

General demographic & health information Study participants will complete demographic 

and health information by standard questionnaires used in our clinic. In addition, they will 

complete the UTISA questionnaire which is a validate questionnaire that asks about the 

symptoms typically associated with a urinary tract infection. 

Sample collection & preparation: Beyond standard of care assessments, participants will 

contribute study samples for research purposes.  

Urine: Each urine sample will be collected by transurethral catheter (our standard clinical 

practice for these patients) for isolation of urinary bacteria. 1 mL of this urine sample will be sent 
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to Loyola’s clinical microbiology laboratory (directed by Amanda Harrington PhD) for standard 

urine culture and for EQUC (see below for culture details). The remaining urine will be sent to 

Loyola’s Genomics Facility (directed by Dr. Wolfe) where it will be inventoried and maintained 

in 10% DNA preservative (e.g., AssayAssure) at -80°C until bacterial DNA isolation and 

sequence analysis.  

Standard and Expanded Urinary Quantitative Culture (EQUC): Each catheterized urine 

sample will be processed with standard and EQUC procedures.  

The standard urine culture involves inoculation of 0.001 mL of urine onto 5% sheep 

blood agar plate (BAP) and MacConkey agar plate with the plates being incubated aerobically at 

35°C for 24 h. Thus, the level of detection for standard culture is 103 CFU/mL, represented by 1 

colony of growth on either plate. Standard culture is designed specifically to grow Gram-

negative rods, especially UPEC. 

The EQUC procedure involves the inoculation of 100X (0.1mL) more urine onto diverse 

types of media (BAP, chocolate agar, colistin and nalidixic acid (CNA) agar, CDC anaerobe 5% 

BAP) with incubation in more environments and temperatures (5% CO2 at 35°C for 48 h, 

aerobic conditions at 35°C and 30°C for 48 h, Campy gas mixture (5% O2, 10% CO2, 85% N) or 

anaerobic conditions at 35°C for 48 h). The level of detection for EQUC is 10 CFU/mL, 

represented by 1 colony of growth on any of the plates.  

Identification of bacterial isolates: Each morphologically distinct colony type in both 

standard and EQUC procedures will be counted and isolated on a different plate of the same 

media to prepare a pure culture that will be used for identification with Matrix-Assisted Laser 

Desorption/Ionization Time-of Flight (MALDI-TOF) mass spectroscopy. This is the protocol 
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that we used for our recent publications(96, 197). All isolates will be cryo-preserved at -80°C in 

10% glycerol for future analyses, specifically genomic characterization of the uropathogen and 

components of the FUM. The bacterial repository resides in Loyola’s clinical microbiology 

laboratory (directed by Dr. Harrington).  

Adverse Events: As with all clinical protocols, a variety of adverse events could occur.  The risk 

of serious adverse event from study participation in this protocol is extremely low as only 

clinically indicated treatments are being used for necessary clinical care. There is also an 

unlikely risk of privacy violation despite diligent adherence to protection of all identified human 

data, using the Loyola secure server and in compliance with our institutional policies. 

Sample Size Calculation: The power calculations are based on statistical input from statistician 

team in the Clinical Research office and based on our previous clinical trials of urinary tract 

infection symptom resolution by women treated using standard cultures. To detect a 10% 

improvement in urinary tract symptom resolution, we determined that a 2:1 treatment allocation 

and 5% attrition (calculated by fixing the overall Type 1 error rate at 0.05 after 2 looks at data- 

one interim analysis will be performed to assess the EQUC treatment protocol) requires 75 

participants be assigned to the EQUC treatment protocol and 150 participants assigned to the 

SUC treatment protocol.   

Expected Outcomes: We expect that expanded culture techniques will identify more urinary 

pathogens and that by treating these pathogens women will have resolution of their UTI 

symptoms sooner than women treated based on standard cultures. These results will be 

disseminated to the clinicians and laboratory specialists through national and international 

meetings and publications. 
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APPENDIX J 

MICROORGANISMS IDENTIFIED IN THE MATERNAL BLADDER: DISCOVERY 

OF THE MATERNAL BLADDER MICROBIOTA  

 

Jacobs, K.M., Thomas-White, K.J., Hilt, E.E., Wolfe, A.J., and Waters, T.P. Microorganisms 
Identified in Materal Bladder: Discovery of the Maternal Bladder Microbiota. AJP Rep. 2017 

Jul;7(3):e188-e196. doi: 10.1055/s-0037-1606860. Epub 2017 Sep 29. PMID: 28970961 
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Overview of Appendix J 

This paper was the first characterization of the bladder microbiome during pregnancy, or 

the maternal urinary microbiome (MUM). The patient population in all our work thus far has 

been in the urogynecologic patient population, which is comprised of older women (peri- or 

post-menopausal). This characterizing of women during pregnancy was our first opportunity to 

look at the bladder in younger and primarily healthy women. We show that standard culture was 

insufficient to detect uropathogens in these women. 

Abstract 

Ojective. The objective of this study was to characterize the bladder microbiota in pregnancy. 

Methods. A prospective of observational study of 51 pregnant womrn, admitted to a tertiary care 

hospital, who underwent straight catheterization urine collection or transurethral Foley catheter 

placement. 16S rRNA gene sequencing and enhanced quantitative urine culture assessed the 

maternal bladder microbiota and comparisons made to standard urine culture results. 

Results. Enhanced quantitative urine culture and 16S rRNA gene sequencing detected bacteria in 

the majority of participants. Lactobacillus and Gardnerella were the most commonly detected 

microbes. In contract, standard urine culture had a 100% false-negative rate and failed to detect 

several known or emerging urinary pathogens. 

Conclusion.  There are live bacteria in the bladders of most pregnant women. This challenges 

the definition of asymptomatic bacteruria. 

Introduction 

 Asymptomatic bacteriuria (ASB) is defined as the presence of a uropathogen in the 

absence of physical symptoms (397). ASB strains have long been thought to be nonpathogenic 
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variants of pathogenic species, especially Escherichia coli or Streptococcus agalactiae (also 

known as group B streptococcus [GBS]), However, in certain populations, such as the general 

obstetric population, untreated ASB is associated with subsequent urinary tract infection (UTI). 

This includes pyelonephritis (398), which is associated with adverse pregnancy ourcomes, 

maternal sepsis, and preterm labor (398, 399). Thus, routine screening and treatment of ASB are 

recommended during pregnancy (400, 401). 

 However, the current approach to ASB screening is limited by the assumption that the 

female bladder naturally exists in a sterile state (402, 403); thus, the presence of bacteria in urine 

is currently considered abnormal. Yet, several recent studies have revealed the existence of 

bacterial communities in the bladders of nonpregnant perimenopausal women (98, 305, 306, 331, 

404). One of the earliest studies compared multiple urine collection methods (95), including 

suprapubic aspiration (SPA), which bypasses vulvovaginal contamination. This study noted that 

the bacterial DNA (microbiome) detected in urine obtained by transurethral catheter closely 

resembled those obtained by SPA, and diverged substantially from the microbiomes in vaginal 

swabs and mid-stream voided urine. Thus, transurethral catheterized urine specimens accurately 

samples the bladder and thus the appropriate urine collection method for investigation of the 

bacteria present in the urinary bladders of women (the female bladder microbiota) (95).  

To determine whether bacterial DNA detected by 16S rRNA gene sequencing originated 

from live bacteria within the bladder, our group developed an enhanced quantitative urine culture 

protocol that detects bacteria in the vast majority of catheterized urine samples deemed “no 

growth” by standard clinical microbiology urine culture methods (96, 103). Thus, standard urine 

culture does not detect the presence of a large number of bacterial species, including most 
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uropathogens (114). 

Given compelling enhanced culture and DNA sequence evidence that the female urinary 

bladder of perimenopausal women is not sterile, we questioned the sterility of urine obtained 

from the bladders of younger pregnant women. Specifically, we used the complementary 

approaches of enhanced quantitative urine culture and 16S rRNA gene sequencing to determine 

if urine obtained by transurethral catheterization contains microbiota and then compared those 

results to a standard clinical microbiology urine culture protocol. 

Materials and Methods 

Participant Recruitment 

Following Loyola Institutional Review Board approval, we prospectively invited 

pregnant patients presenting to labor and delivery to participate in the study if they were ≥18 

years of age, proficient in English and undergoing straight catheterization urine collection or 

placement of a transurethral Foley catheter as part of their clinical care (e.g., for preterm labor 

[PTL], labor w/epidural, or preeclampsia). We excluded patients who had used antibiotics within 

the past 4 weeks for any reason. History of ASB was not part of the exclusion criteria and 

knowledge of previous urine dip was not required for participation nor collected for purposes of 

this study. Participants gave written informed research consent. At enrollment, participants 

provided demographic information, UTI history, medication (including antibiotic) use, obstetric 

history, tobacco use, and other comorbidities. As part of standard obstetric care, this cohort had 

undergone screening for ASB. For all patients, we recorded gestational age at the time of sample 

collection. 
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Sample Collection and Urine Culture 

Urine was collected aseptically via the transurethral catheter into a sterile collection cup. 

As per clinical protocol, a portion of the urine samplewas placed into a BD Vacutainer Plus C&S 

preservative tube and sent to the research laboratory for standard urine culture and enhanced 

quantitative urine culture assessment. Due to the lack of appropriate refrigeration facilities in the 

clinic, the remainder of the urine was stored at room temperature for 1 to 8 hours before being 

processed and stored down at -80°C with 10% AssayAssure (Sierra Molecular; Incline Village, 

NV) for subsequent sequencing. 

Within 24 hours of urine collection, both standard and enhanced urine cultures were set 

up. Both protocols are provided in Table J.1 and have been described previously (96). The 

detection limit for the standard protocol was 1,000 CFU/mL. For enhanced quantitative urine 

culture, it was 10 CFU/mL. If enhanced quantitative urine culture was unable to detect bacteria, 

the sample was considered to be below the detection threshold. For samples with bacteria 

detected, α diversities were measured, the Bray–Curtis dissimilarity was calculated (287), and 

the complete method was used for hierarchical clustering using RStudio (405). Bray–Curtis 

dissimilarity is a measurement used to quantify the compositional differences between two 

diverse communities; it therefore clusters samples with similar community structures. The 

resulting dendrogram was divided into 14 clusters (termed urotypes) that were named on the 

basis of the predominant organism. When a cluster had no predominant organism, it was called a 

“diverse” urotype. 

16S rRNA Gene Sequencing 

DNA isolation protocols and 16S rRNA gene sequence analysis on the Illumina MiSeq 
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(Illumina, San Diego, CA) have been described previously (103). Briefly, total DNAwas 

extracted from 1 mL of catheterized urine under a laminar flow hood, using the Qiagen DNeasy 

Blood and Tissue Kit (Qiagen, Valencia, CA). The fourth variable region was amplified using 

Illumina adapted universal primers (515F and 806R). Extraction negative controls (no urine) and 

polymerase chain reaction (PCR) negative controls (no template) were included to assess 

contribution of extraneous DNA from reagents. Final PCR products were purified from 

unincorporated nucleotides and primers using Agencourt AMPure XP-PCR magnetic beads  

Table J.1. Culture protocols 

Protocol Volume Media Atmospheri
c Conditions 

Time 

Standard Urine 
Culturea 

1 uL Blood Agar 
MacConkey 
Agar 

Aerobic 24 hrs 
35° 

Enhanced 
Quantitative Urine 
Culture (EQUC)b 

100 uL Blood Agar 
Chocolate Agar 
CNA Agar 
Anaerobic Blood Agar 

Aerobi
c CO2 
Anaerobic 

48 hrs 
35° 

Abbreviation: CNA, colistin-naladixic acid 
aFor standard urine culture, we struck 0.001 ml of urine onto 5% sheep blood (BAP) and 
MacConkey agars (BD BBL prepared plated media), which were incubated aerobically at 
35°C for 24 hours. Each separate morphological colony type was counted and identified in 
any amount. The detection level was 1,000 colony-forming units per milliliter (CFU/ml), 
represented by 1 colony of growth on either plate. If no growth was observed, the culture 
was reported as “no growth,” indicating no growth of bacteria at the lowest dilution, i.e., 
1:1,000. 
bFor EQUC, we struck 0.1 ml of urine onto BAP, chocolate and colistin, naladixic acid 
(CNA) agars (BD BBL prepared plated media), which were incubated in 5% CO2 at 35°C 
for 48 hours. A second BAP plate and CDC anaerobe 5% sheep blood agar plate (BD BBL 
prepared plated media) were also inoculated with 0.1 ml of urine and incubated under 
anaerobic conditions at 35°C for 48 hours. The detection level was 10 CFU/ml, represented 
by 1 colony of growth on any of the plates. Each morphologically distinct colony type was 
isolated on a different plate of the same medium to prepare a pure culture for 
identification. 
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(Beckman Coulter). Purified samples were normalized to equal DNA concentration, as 

determined by the Bioanalyzer (Agilent, Santa Clara, CA). The sample library and PhiX 

sequencing control library (Illumina) were denatured and added to the MiSeq 2 _ 250 bp 

sequencing reagent cartridge, according to manufacturer’s instructions (Illumina). 

Sequence Processing 

Each specimen was sequenced in duplicate. MiSeq sequence reads were processed 

following mothur’s MiSeq SOP at http://www.mothur.org/wiki/MiSeq_SOP (283), with minor 

modifications. Mothur software (version 1.34.4) (282) was used to process raw reads and, using 

default mothur parameters, to remove low quality and chimeric sequences. Taxonomic 

classification from phylum to genus level of sequence reads was performed by the RDP 

Classifier (version 2.5) (285), using the default 0.8 confidence threshold. To determine if each 

sample is accurate and reliable, all samples must have more than 2,000 reads, be distinct from 

the corresponding extraction control, and be comparable to its replicate. 

Using genus-level classification, from a single replica, α diversities were measured, the 

Bray–Curtis distance calculated (287), and the complete method was used for hierarchical 

clustering using RStudio (405). The resulting dendrogram was divided into six clusters, termed 

urotypes, named on the basis of the predominant organism. When a cluster had no predominant 

organism, it was termed the “diverse” urotype. 

Statistical Analysis 

For cultured organisms, abundance was measured using total CFU/mL. Continuous 

variables are reported as means and standard deviations ormedians and interquartile ranges. 

Post hoc pairwise comparisons were made using Wilcoxon’s rank-sum tests for continuous 

http://www.mothur.org/wiki/MiSeq_SOP
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variables with significant overall p-values using statistical software, SAS software v9.4 (SAS 

Institute, Cary, NC). 

Results 

All 51 recruited participants were included in the study analysis. Table J.2 displays the cohort’s 

demographic characteristics. The average age was 30 years, and most (68%) participants were 

obese. The average gestational age at sample collection was 36 weeks, majority (74%) were 

enrolled within 2 days of delivery, and 17 (33%) subjects delivered prior to 37 weeks.  

Sequencing Results 

A bladder microbiome was detected in 68.6% (35/51) of participants by 16S rRNA 

sequencing, which resulted in a total of 3,605,762 reads from 7 phyla, 14 classes, 18 orders, 28 

families, and 31 genera. Fig. J.1 displays the maternal bladder microbiome profile for each 

participant grouped by predominant organism. Themajority of sequenced individualswere of the 

Lactobacillus-predominant urotype (60%, 21/35), followed by Gardnerella (25.7%, 9/35) (Table 

J.3). A small number of individuals were dominated by the genus Staphylococcus (N=1), the 

order Bacillales (which includes the genus Enterococcus, N=2), or the family Enterobacteriaceae 

(which contains the species E. coli, N=1). Only one patient had no predominant organism, 

thereby that individual’s urotype was considered to be “diverse.”  

The microbiome of participants with a Lactobacillus urotype wassignificantly less diverse 

than Gardnerella urotype subjects as determined by the Shannon diversity index and inverse 

Simpson index, which measure both richness and evenness (Table J.4). Themicrobiomes of 

participants with a Gardnerella urotype were more even, as measured by the Pielou’s index. This 

is visible in the Gardnerella urotype profiles, which show a greater presence of other genera,  
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Table J.2 Demographics 
 
 N=51 
Mean maternal age (y) 30 (19-41) 
Nulliparity (%) 49.0% 
Race/Ethnicity N (%) 
     Caucasian 16 (31.3%) 
     African American 17 (33.3%) 
     Hispanic 14 (27.5%) 
     Asian 4 (7.8%) 
BMI (kg/m2) 
     Normal (18.5-24.9) 5 (9.8%) 
     Overweight (25-29.9) 11 (21.6%) 
     Obese (30-34.5) 19 (37.3%) 
     Morbidly obese (>35) 16 (31.3%) 
     Mean BMI (range) 34.3 (22.0-58.4) 
Education 
    High school 11 (21.6%) 
     Some college 19 (37.3%) 
     College 11 (21.6%) 
     Graduate 10 (19.6%) 
Gestational age at delivery (wk and d) Mdn (IQR) 382/7 (25/7) 
Gestational age at collection (wk and d) Mdn (IQR) 376/7 (35/7) 
GU infection /colonization 
     GBS positive 6 (11.8%) 
     UTI during pregnancy 4 (7.8%) 
     History of any UTI 12 (23.5%) 
Medical comorbidities 
     Gestational diabetes mellitus 3 (5.9%) 
     Diabetes mellitus 2 (3.9%) 
     Gestational hypertension 2 (3.9%) 
     Chronic hypertension 6 (11.8%) 
     Renal disease 2 (3.9%) 
Abbreviations: GBS, group B streptococcus; GU, genitourinary; IQR, interquartile range; Mdn, 
median; UTI, urinary tract infection 
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Figure J.1. Sequencing and Culture profiles of the Maternal Urinary Microbiome. The 
sequencing profiles (A) and culture profiles (B) are shown. Each bar represents a urine sample 
from one patient. On the y-axis is the relative abundance, or percent of classified sequencing 
reads (A) or colony forming units per ml (B) per individual. Each bar or taxon is color coded 
by family or genus (A) or species (B). All samples were phylogenetically compared to each 
other using Bray-Curtis similarity, resulting in a phylogenetic tree or dendrograms. The length 
of each branch of the dendrograms represents the similarity between samples. We divided the 
samples into clades by identifying a profile threshold. The clades group together by dominant 
organism; these groups are termed “sequence profiles” (A) or “culture profiles” (B), which are 
listed underneath. The sequencing dataset (A) divided into 6 profiles, Lactobacillus, 
Enterobacteriaceae, Bacilli, Gardnerella, Staphylococcus, and a mixed profile termed 
‘Diverse’. The culture profile (B) divided into 13 profiles, S. epidermidis, L. gasseri, S. 
anginosus, L. jensenii, C. glabrata, E. faecalis, L. iners, L. johnsonii, C. coyleae, A. schaalii, G. 
vaginalis, and a mixed profile termed ‘Diverse’. 
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including Lactobacillus, Ureaplasma, Aerococcus, Atopobium, and/or Lachnospiraceae (Fig. 

J.1A). 

Enhanced Culture Results 

Enhanced quantitative urine culture detected live microbes in the majority of participants  

(66.7%, 34/51), similar to that proportion of samples that were positive by sequencing (Table 

J.3, Fig. J.1B). At the genus level, the most common culture profilewas predominated by 

Lactobacillus (50%, 17/34), similar to that observed by sequencing. This genus level 

Lactobacillus profile was composed of the following species: L. gasseri, L. jensenii, L. iners, L. 

johnsonii, and L. crispatus. Thus, with respect to the major dominant profiles, sequencing and  

enhanced quantitative urine culture obtained similar results. 

The combination of 16S sequencing and enhanced quantitative urine culture detected 

bacteria in 80% (41/51) of participants and reached the same conclusion regarding urotype in  

64% (33/51) of all the participants. Considering only participants with positive results for both 

methods, these two methods reached the same conclusion in 82% (23/28) of participants (Fig. 

J.2). 

Standard Urine Culture Results versus Enhanced Quantitative Urine Culture 

Standard urine culture results were available for all participants. The standard urine 

culture was negative for all samples. In contrast, enhanced quantitative urine culture detected 

bacteria in 34/51 subjects. Thus, the standard urine culture had a 100% false-negative rate. In 15 

participants, the standard protocol also did not detect several known or emerging urinary 

pathogens, including Actinobaculum schaalii (N=1), Alloscardovia omnicolens (N=1), Candida 

albicans (N=1), Candida parapsilosis (N=1), Corynebacterium urealyticum (N=1), 
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Enterococcus faecalis (N=7), E. coli (N=1), Staphylococcus aureus (N=1), S. agalactiae (also 

known as GBS, N=1), and Streptococcus anginosus (N=5) (Table J.5). Five patients grew two 

or more of these uropathogens. Some of these organisms (A. schaalii, A. omnicolens, and C. 

urealyticum) would not normally grow under standard urine culture conditions. Many of these 

patients contained organisms at thresholds belowthe detectable level of standard urine culture 

(10–100 CFU/mL). However, four individuals contained one of these organisms at more than 

1,000 CFU/mL; thus, in theory, these bacteria could have been detected by standard culture, but 

they were not. 

Table J.3. Frequency of profiles using either sequence or enhanced quantitative urine 
culture data 
 

Frequency of Sequencing Profiles Frequency of Culture Profiles 
BDT 16/51 (31.4%) BDT a 17/51 (33.3%) 
Sequenced 35/51 (68.6%) Cultured 34/51 (66.7%) 
Lactobacillus 21/35 (60%) G. vaginalis 7/34 (22.6%) 
Gardnerella 9/35 (25.7%) L. iners 5/34 (14.3%) 
Bacilli/Enterococcus 2/35 (5.7%) L. crispatus 5/34 (14.3%) 
Enterobacteriaceae 1/35 (2.9%) E. faecalis 3/34 (8.8%) 
Staphylococcus 1/35 (2.9%) L. gasseri 3/34 (8.8%) 

  L. jensenii 3/34 (2.9%) 
Diversea 1/35 (2.9%) S. epidermidis 2/34 (5.9%) 

 A. schaalii 1/34 (2.9%) 
C. coyleae 1/34 (2.9%) 
C. glabrata 1/34 (2.9%) 
Diverse 1/34 (2.9%) 
L. johnsonii 1/34 (2.9%) 
S. anginosus 1/34 (2.9%) 

Abbreviation: BDT, below detection threshold 
aA diverse profile indicates a diverse community lacking a single predominant organism 
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History of UTIs during the Current Pregnancy 

Uropathogens have been known to recur and it is possible that some of these patients had 

a prior infection. To determine if the patients with detectable uropathogens had previously been 

treated for UTIs, we looked at the medical records for prior UTI treatment during the current  

pregnancy. Four patients reported UTI-like symptoms during their current pregnancy. One 

PTL/preterm premature rupture of themembrane patient had an Enterococcus UTI in the first 

trimester and was treated with cephalexin. An indicated preterm patient was treated in the second 

trimester with cephalexin for a UTI caused by an unknown organism. Two full-term patients 

documented a single UTI during this pregnancy: one was treated early in their pregnancy but 

their records are unavailable; the second patient was treated with ceftriaxone for gonorrhea in the 

first trimester and nitrofurantoin in the second trimester for symptoms with a negative urine 

culture. At the time of sample collection, none of these four patients had detectable uropathogens 

by either enhanced or standard culture. 

 
Table J.4. Differences in alpha diversity measurements between the Lactobacillus and 
Gardnerella sequencing  
 
 Gardnerella 

urotype (N=9) 
Lactobacillus 

urotype (N=21) 
P-value 

Shannon Diversity Index, Mdn (IQR) 1.28 (1.13-1.53) 0.54 (0.35-0.91) 0.0003 
Inverse Simpson Index, Mdn (IQR) 2.5 (2.02-3.10) 1.8 (1.10-1.53) 0.0005 
Total number of Species, Mdn (IQR) 83 (63-94) 77 (74-87) 0.8562 
Pielou Index, Mdn (IQR) 0.3 (0.28-0.34) 0.13 (0.08-0.20) 0.0003 
Abbreviation: IQR, interquartile range 
Four different alpha diversity measurements were calculated from the sequencing data: Shannon 
diversity (a measurement of richness and evenness), Inverse Simpson (richness and evenness), 
total number of species (richness only) and Pielou (evenness only). P-values were generated 
using a Wilcoxon rank sum test. 
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Figure J.2. Comparison of culture and sequencing for all 51 individuals. To compare each 
individual’s sequencing results and culture results we lined up the relative abundance graphs for 
each. The relative abundance (or total classified CFU/ml per individual) culture profiles (A) are 
compared to the relative abundance (or total classified reads per individual) of the sequencing 
profiles (B). The culture classification is given at the genus level to better compare to 
sequencing results. Each genus is represented as a color-coded bar for each individual, where 
each color represents a family or genus. 
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Table J.5. Uropathogens detected by enhanced quantitative urine culture in the urine 
samples of 15 patients 
 

 
Abbreviation: pPROM, preterm premature rupture of the membrane. 
 

 

Discussion 

In this prospective observational pilot study of pregnant women admitted to labor and 

delivery and undergoing a clinically indicated bladder catheterization, a large majority of 

pregnant women had evidence of bladdermicrobes by 16S RNA sequencing or enhanced 

quantitative urine culture or both. Most importantly, enhanced quantitative urine culture 
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demonstrates the existence of live microbes in catheterized urine samples obtained from women 

late in gestation. This high rate of microbe detection stands in stark contrast to the low rate of 

detection by the standard urine culture method, which had a 100% false-negative rate for 

identification of bladder microbes compared with enhanced quantitative urine culture. Critically, 

standard urine culture did not identify several known or emerging uropathogens. 

The evidence of live microbes in the bladders of most pregnant women questions the 

notion that the urine of pregnant women is sterile. In addition, these findings challenge the utility 

of the term ASB; if the bladders of most pregnant women contain bacteria, then what does the 

term ASB mean? We believe these data support the findings of studies from nonpregnant 

women, namely, that the majority of women have an identifiable urinary microbiome. As with 

microbiota of other human microbial niches, the maternal bladder microbiota likely vary in 

response to nearby microbial niches and/or system influences, such as antibiotic use, systemic 

disease, or perturbations in the immune system. As current standard of care suggests screening 

and treating ASB during pregnancy, an expanded understanding of the maternal urinary 

microbiome is needed using new approaches that refine our working definition of what are 

problematic urinary microbes during pregnancy. Further research is needed to understand how 

the microbiota might also play preventative or protective roles and to determine the dysbiotic 

effects of antibiotics. 

The strengths of this investigation are the prospective design, the use of catheterized 

urine specimens, and the use of the robust combination of enhanced quantitative urine culture 

and 16S rRNA sequencing techniques (96, 98, 103). Together, these techniques illustrate the 

limited view provided by the standard urine culture, which was specifically designed to detect 
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fast growing bacteria with limited nutrient requirements and no aversion to oxygen (especially E. 

coli, the most common cause of UTI). In contrast, enhanced quantitative urine culture utilizes 

larger urine volumes, varied media and incubation states, and longer incubation times to also 

detect anaerobes, slow growing bacteria, and those that require special nutrients (96) (Table J.1). 

As enhanced quantitative urine culture can classify bacteria to the species level, the total number 

of culture profileswasmuch greater than the number of profiles detected by sequencing, which 

typically classifies only to the genus level. However, 16S rRNA gene sequencing complements 

enhanced quantitative urine culture by detecting bacteria independent of culture (406, 407). 

We acknowledge that our study has limitations. First, the small sample size reduces our 

ability to statistically compare important subgroups, such as preterm versus term deliveries. In 

addition, we were unable to account for potential confounding factors, such as demographics or 

medical comorbidities. Further studies are also needed to characterize the bladder microbiome 

throughout each trimester of pregnancy. Second, samples were collected over a wide gestational 

age range and from women with both normal and complicated pregnancies. Finally, while all 

samples were obtained as part of routine care, the clinical indication for catheter placement was 

not recorded as part of our study.  

A theoretical concern exists that the detected bacteria may represent urethral or vaginal 

contamination. However, as described previously, a prior investigation comparing the bacterial 

profiles of vaginal swabs and urine obtained by transurethral catheter, suprapubic aspirate, and 

the midstream voided method concluded that bacteria detected in urine obtained by suprapubic 

aspirate or transurethral catheter represent true residents of the bladder. As the samples in this 

study were obtained by transurethral catheterization, we conclude that our findings are not the 
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result of contamination and instead document the presence of live bladder microbiota in pregnant 

women. 

We also recognize that enhanced quantitative urine culture and 16S sequencing did not 

universally agree regarding specimen profile, potentially due to differences in sample storage 

prior to processing. The culture tubes contain a preservative that prevents bacterial growth at 

room temperature, but the sequencing tubes did not. Therefore, bacterial growth in the 

sequencing tubes could account for the majority of the discrepancies between the data (Fig. J.2). 

This is an issue that should be considered in the design of future studies. Even given these 

discrepancies with sequencing data, however, the culture data clearly shows the presence of 

more than 103 CFUs of many different organisms, including known and emerging uropathogens. 

As this study also documents the poor performance of the standard urine culture, these 

findings offer us the opportunity to improve our understanding of the maternal bladder 

microbiota, especially as it relates to clinically relevant definitions of ASB. Of particular concern 

was the finding of bacteria by our enhanced quantitative urine culture technique that had gone 

undetected by the standard urine culture method. Of the bacteria identified by enhanced 

quantitative urine culture, several are known or emerging urinary pathogens, including E. 

faecalis, S. anginosus, and A. schaalii (recently renamed as Actinotignum schaalii (136)). These 

results require confirmation in a larger study. 

Currently, we do not recommend a change in clinical practice because we do not yet 

know the impact of the previously undetected microbes. Some of the newly detected microbes 

are likely beneficial and antibiotic treatment could preclude their ability to protect. Future study 

into the roles of the detected microbes is indicated. 
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While the majority of the pregnant women in this study possessed detectable and 

identifiable bladder microbiota, the microbiota of several women was below the detection 

threshold, similar to previous reports of perimenopausal women (397-399, 408, 409). We use the 

term below the detection threshold instead of “negative” or “sterile” to emphasize that these 

urines likely have a low biomass that cannot be detected using the current methods. Since we are 

unable to prove sterility, we believe this is a more accurate scientific approach. Indeed, a recent 

study showed that the use of larger volumes of urine could result in detection of bacteria by 

DNA sequencing in all samples (104). 

In conclusion, we believe this study documents the presence of live microbiota in the 

bladders of pregnant women, an observation that warrants further study. Future investigations 

should clarify the normal bladder microbiota in pregnancy and identify changes over the course 

of pregnancy. This would allow for a deeper understanding of the normal maternal bladder 

microbiota and how they can become altered in ways that lead to pathologic conditions. For 

example, this new knowledge would clarify the definition and risk factors associated with ASB 

during pregnancy. Other factors should be investigated, especially the relationship between the 

maternal bladder microbiota and those of other pelvic floor niches, especially the vagina. 
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APPENDIX K 

CULTURING OF FEMALE BLADDER BACTERTIA REVEALS AN 

INTERCONNECTED UROGENITAL MICROBIOTA 

 

Thomas-White, K., Forster, S.C., Kumar, N., Van Kuiken, M., Putonti, C., Stares, M.D., Hilt, 
E.E., Price, T.K., Wolfe, A.J., Lawley, T.D. Culturing of Female Bladder Bacteria Reveals an 

Interconnected Urogential Microbiota. Nat Commun. 2018 Apr 19;9(1):1557. doi: 
10.1038/s41467-018-03968-5. PMID: 29674608 



 

 
 

371 
Overview of Appendix K 

This paper highlights the possibility of an interconnected urogenital microbiome, one that 

has specific and highly conserved functions between humans. These data also suggest that a 

bladder-specific genetic signature may be identifiable. About half of the isolates in both the 

bladder and vagina were distinct from each other and did not share a corresponding functional 

profile in the other site. Additionally, even the bacteria whose protein domain profiles were 

100% similar still showed some variation in their overall genomes.  

Abstract 

Metagenomic analyses have indicated that the female bladder harbors an indigenous 

microbiota. However, there are few cultured reference strains with sequenced genomes available 

for functional and experimental analyses. Here we isolate and genome-sequence 149 bacterial 

strains from catheterized urine of 77 women. This culture collection spans 78 species, 

representing approximately two thirds of the bacterial diversity within the sampled bladders, 

including Proteobacteria, Actinobacteria, and Firmicutes. Detailed genomic and functional 

comparison of the bladder microbiota to the gastrointestinal and vaginal microbiotas 

demonstrates similar vaginal and bladder microbiota, with functional capacities that are distinct 

from those observed in the gastrointestinal microbiota. Whole-genome phylogenetic analysis of 

bacterial strains isolated from the vagina and bladder in the same women identifies highly similar 

Escherichia coli, Streptococcus anginosus, Lactobacillus iners, and Lactobacillus crispatus, 

suggesting an interlinked female urogenital microbiota that is not only limited to pathogens but is 

also characteristic of health-associated commensals. 
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Introduction 

Contrary to medical dogma, urine is not sterile, even in asymptomatic individuals (95, 96, 

103, 410) (306). For over 60 years, the standard urine culture protocol has represented the 

primary tool for detecting bacteria in clinical microbiology laboratories. This aerobic protocol 

was designed to detect causative agents of pyelonephritis (75) and is particularly effective at 

detecting abundant Escherichia coli (>105 colony-forming unit (CFU)/ml) but little else (114). 

Culture-independent analysis of urine obtained by suprapubic aspirate, which bypasses the vulva, 

vagina, and urethra, demonstrates the presence of bacteria in the bladders of women (95). The 

microbial profiles observed in aspirated urine are similar to those in urine obtained by 

transurethral catheter (TUC), indicating the avoidance of urethral contamination in catheterized 

samples (95). We note the difference between TUC, which is transient and not associated with 

catheter-associated urinary tract infection (CAUTI), and indwelling catheters that are known to 

harbor biofilms and result in CAUTI. Analyzing urine sampled by TUC, we previously found 

that the majority of asymptomatic women contain bacterial genera typically not detected by 

standard urine culture (95, 96). These genera, including Lactobacillus, Gardnerella, 

Streptococcus, Staphylococcus, and Corynebacterium, tend to be in low abundance (between 10 

and 104 CFU/ml) (96) and require growth conditions and carbon sources not available in 

standard urine culture (103, 373). Therefore, we developed an expanded quantitative urine 

culture (EQUC) protocol that captures a broad range of bacterial taxa (96). 

Previous studies, using EQUC in combination with 16S rRNA sequencing (96, 98, 103), 

suggest the bladder microbiota of asymptomatic women typically contains low bacterial 

diversity, with increases in diversity indicative of urgency urinary incontinence symptoms and a 
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decreased response to anticholinergic medication (98, 103, 411). They also highlight bacterial 

species (e.g., Streptococcus anginosus and Gardnerella vaginalis) that are associated with 

urgency urinary incontinence symptoms and others (e.g., Lactobacillus crispatus) that are 

associated with the lack of lower urinary tract symptoms (103). Evidence also exists that women 

with communities dominated by specific Lactobacillus species are less likely to develop post-

instrumentation and postoperative urinary tract infections (UTIs) (373, 412). However, owing to 

the lack of bladder specific bacterial reference genomes, high-resolution taxonomic 

characterization to the bacterial strain level, functional analysis, and comparison to other 

microbiota communities remain to be performed. 

In the present study, we combined EQUC with large-scale whole-genome sequencing to 

comprehensively characterize the microbiota composition of the female bladder in symptomatic 

and asymptomatic peri-menopausal women. We compared this new culture collection to 

previously collected gut and vaginal collections and identified similarities between the bladder 

and vagina but not the gut. Finally, we identified highly similar species that reside in both the 

bladder and vagina of individual women indicative of interconnected urogenital microbiota. 

Results 

The bladder microbiota culture collection. Overall, we archived and genome-sequenced 149 

isolates representing 3 phyla, 7 classes, 11 orders, 23 families, 36 genera, and 78 species (Fig. 

K.1; Supplementary Data K.1). These organisms were isolated from 38 asymptomatic 

individuals (67 isolates) and 39 symptomatic individuals (82 isolates) (Supplementary Data 

K.1). Uropathogenic species, such as E. coli, Klebsiella pneumoniae, Proteus mirabilis, 

Enterobacter cloaceae, Morganella morganii, and Pseudomonas aeruginosa, represented only 
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7.7% (6/78) of the phylogenetic diversity cultivatable from the bladder. In fact, other than these 

uropathogens, very few Proteobacteria or even Gram-negative organisms were found. Instead, 

the largest number of isolated species was from the Gram-positive phyla Firmicutes (47.4%, 37/ 

78) and Actinobacteria (38.5%, 30/78), particularly the families Streptococcaceae (11.0%, 9/78),  

Lactobacillaceae (11.0%, 9/78), Corynebacteriaceae (10.3%, 8/78), and Actinomycetaceae  

(10.3%, 8/78). To understand the extent of the total bacterial community represented by this 

culture collection, we next undertook wholegenome metagenomic sequencing on 12 samples. 

 
 
Figure K.1. Phylogenetic tree representing diversity of bacteria cultured from the female 
bladder. A representation of the full bacterial diversity (N=149 isolates) that can be isolated 
using the expanded quantitative urine culture (EQUC) method from catheterized urine samples 
(N=77 patients) 
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This analysis suggests that EQUC captures approximately 66.4% of bacterial abundance within 

the bladder microbiota representing approximately 72.0% of the genera (Table K.S1). The only 

genera detected by metagenomics without representative strains within our culture collection 

were anaerobes from the phyla Actinobacteria (Propionimicrobium, Varibaculum, and 

Atopobium), Firmicutes (Peptoniphilus, Megasphaera, Finegoldia), and Bacteroidetes 

(Prevotella).  

Comparison of bladder, gut, and vaginal isolates. To place the bladder microbiota in the 

context of other well-studied body sites, we compared our bladder genome collection with strains 

from 67 publicly available vaginal (Table K.S2) and 120 gastrointestinal (Table K.S3) species 

cultivated from unrelated healthy women. Based on whole-genome pairwise average nucleotide 

identity (ANI) (413-415), only one species, Bifidobacterium bifidum, was detected in all three 

body sites (pairwise ANI > 95%, indicating same species). In contrast, 23 species were found in 

both the bladder and vaginal microbiota (ANI > 95%). We also identified seven species typically 

associated with UTIs (E. cloacae, E. coli, P. aeruginosa, Bacillus infantis, K. pneumoniae, 

Gardnerella terrae, and Bacillus idriensis), with three species isolated only from the bladder of 

symptomatic women (P. aeruginosa, K. pneumoniae, and E. cloacae) (Table K.S4). 

Remarkably, from unrelated women, four species were identified (Actinomyces neuii, 

Lactobacillus crispatus, L. gasseri, and L. jensenii) that were highly similar between the bladder 

and vagina (Table K.S5). 

Protein-coding functions of bladder isolates from asymptomatic individuals. To determine 

the protein functions encoded by the genomes of members of the healthy bladder microbiota and 

its relationship to the functions encoded by the genomes of microbiota from other body sites, we 
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analyzed the genomes of bladder strains isolated from asymptomatic women, with 

gastrointestinal and vaginal strains isolated from other asymptomatic individuals. Applying 

conserved domain database (CDD) (416) and discriminant analysis of principle components 

(DAPC) (417), we compared the protein domains of the 67 bladder strains from healthy women 

with protein domains of existing 92 publicly available vaginal and 152 gastrointestinal strains 

cultivated from unrelated healthy individuals (418, 419). Consistent with the species analysis, 

this comparison demonstrates clear overlapping protein functions within the bladder and vaginal 

strains that were largely separated from protein functions found in the gastrointestinal strains 

(Fig. K.2). Taken together, these results indicate the presence of shared functions across the 

bladder and vaginal microbiota that are clearly distinct from those of gastrointestinal species. 

To understand the characteristics that differentiate vaginal and bladder bacteria from 

gastrointestinal tract bacteria, we next performed functional genomic comparisons. Applying 

Clusters of Orthologous Groups of proteins (COG) analysis, we identified significant enrichment 

of functional domains in the urogenital-associated bacteria associated with almost the entire 

mevalonate-dependent pathway for isoprenoid biosynthesis (Table K.S6): 3-hydroxy-3-

methylglutaryl CoA synthase (q < 1.33 Å~ 10−18), 3-hydroxy-3-methylglutaryl CoA reductase 

(q < 5.17 Å~ 10−11), mevalonate kinase (q < 5.84 Å~ 10−14), and mevalonate pyrophosphate 

decarboxylase (q < 8.15 Å~ 10−15). Also enriched was pantothenate kinase, a protein involved 

the biosynthesis of the coenzyme A required for isoprenoid biosnthesis (q < 1.1 Å~ 10−10). 

Other enriched functional domains included several transport systems [the permease component 

of a predicted ABC-type exoprotein transport system (q < 5.71 Å~ 10−15) and L-asparagine 

transporter and permeases (q < 1.40 Å~ 10−13)] and a component of the Co/Zn/Cd efflux system 
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(q < 2.53 Å~ 10−13) involved in metal resistance. Also enriched were protoheme ferro-lyase (q 

< 4.40 Å~ 10−14), the luciferase family of flavin-dependent oxidoreductases (q < 2.74 

Å~10−13), NAD(P)H-dependent FMN reductase (q < 6.52 Å~ 10−16), a protein involved in 

ribonuclease reduction (q < 5.76 Å~ 10−16), and the epsilon subunit of RNA polymerase, 

recently discovered in A/T-rich Gram-positive bacteria and thought to protect against phage 

infection (q < 5.71 Å~ 10−15). In contrast, COG analysis identified significant enrichment of 5 

functional domains associated with spore formation [YlmC (q < 1.67 Å~ 10−21), SpoIIIAA (q <  

 
 
Figure K.2. Functional divsersity between genomes of bacterial strains isolated from the 
bladder, vagina, and intestine. Discriminant analysis of principal components using conserved 
protein domains (CDD). Each color dot represents a strain from 3 different niches: blue (vagina; 
N=92), red (bladder; N=67), and green (gut; N=152) 
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2.61 Å~ 10−21), CwlJ (q < 7.18 Å~ 10−20), CotJC (q < 7.27 Å~ 10−19), and SpmB (q < 5.31 

Å~ 10−16)], as well as irondependent oxidoreductases (q < 2.67 Å~ 10−17) and aldo/keto 

oxidoreductases (q < 7.85 Å~ 10−21) in the gastrointestinal tract (Table K.S7). These results 

suggest spore formation and oxygen survival, while critical for transmission of gastrointestinal 

microbiota (419), are significantly underrepresented in bacteria of the urogenital tract. 

Functional enrichment of key metabolic pathways suggests specific nutritional selection 

on bacteria of the urogenital environment absent in bacteria of the gastrointestinal tract. 

Isoprenoids are essential to life, playing indispensable roles in membrane and peptidoglycan 

biosynthesis and electron transport. The vast majority of bacteria use the methylerythritol 

phosphate (MEP) pathway for isoprenoid biosynthesis. Intriguingly, this pathway concludes with 

two Fe-S cluster enzymes (420). In contrast, the less common mevalonic acid (MVA) pathway, 

which is enriched in urogenital bacteria Actinomyces neuii, Lactobacillus crispatus, L. gasseri, 

and L. jensenii, contains no Fe-S clusters. Thus the enrichment of the MVA pathway over the 

more common MEP pathway may relate to iron availability within the vagina and bladder. 

Comparison of vaginal and bladder strains within individual women. Given the significant 

taxonomic and functional overlap of vaginal and bladder strains in asymptomatic women, we 

hypothesized the existence of interconnected urogenital microbiota, which we then sought to 

assess by culturing bacterial strains from the vaginal and bladder microbiota within an 

independent cohort of women with urgency urinary incontinence symptoms but no clinically 

detectable urinary infections. Four women contained a species in both anatomical sites (Table 

K.S8), including S. anginsosus, which is associated with urgency urinary incontinence (103), a 

putative non-pathogenic E. coli, and L. iners and L. crispatus. Both of these Lactobacillus 
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species are associated with health in the vagina (421), with the latter also associated with the 

bladder of asymptomatic women (103). 

To determine whether these shared species belong to the same or distantly related 

bacterial lineages, we next sequenced and compared their genomes to each other and to the 

genomes of publicly available reference strains (Table K.S9), using the 40- marker gene analysis 

(202, 203) and ANI analysis. In all the four strain sets tested, the vaginal strain was highly 

similar to the bladder strain (Fig. K.3, blue and red dots). One individual contained E. coli 

strains that were 99.72% similar by ANI at both sites. These strains, which occurred in the 

absence of a clinically diagnosed urinary infection, were most closely related to known 

commensal strains and lacked both a Type III secretion system and other previously 

characterized pathogen-associated genes (422) (Fig. K.3, Table K.S10). The emerging 

uropathogen S. anginosus showed 99.77% similarity between strains from each site (Fig. K.3b, 

Table K.S11). Finally, the commensal L. iners and health-associated L. crispatus strains shared 

99.99% (Fig. K.3c, K.S12) and 99.80% (Fig. K.3d, Table K.S13) similarity between the vagina 

and bladder. The existence of these closely related isolates provides strong evidence that 

bacterial movement between the vaginal and bladder microbiota is not only limited to ascending 

uropathogenic species, such as E. coli, as described previously (423), but also includes health-

associated commensal bacteria. 
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Figure K.3. Phylogenetic comparison of bladder and vaginal strains isolated form 
individual women using the 40 universal core genes. A. Maximum likelihood tree constructed 
from E. coli strains isolated from the bladder (red) and vagina (blue) of individual patient (P1) 
and four reference strains. B. Maximum likelihood tree constructed from S. anginosus strains 
isolated from the bladder (red) and vagina (blue) of individual patient (P2) and five reference 
strains. C. Maximum likelihood tree constructed from L. iners strains isolated from the bladder 
(red) and vagina (blue) of individual patient (P3) and four reference strains. D. Maximum 
likelihood tree constructed from L. crispatus strains isolated from the bladder (red) and vagina 
(blue) of individual patient (P4) and seven reference strains. 
 
 

Discussion 

A growing body of work using catheterized urine in women has found associations 

between bladder microbiota composition and urgency urinary symptoms, response to 

anticholinergic medication (98), risk of postoperative (112, 412) and post-instrumentation UTIs 
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(373), and kidney stones (108). Here we provide an extensive, genomesequenced culture 

collection representing approximately two thirds of bacterial strains detected in the sampled 

female bladders during both health and disease. Direct cultivation paired with whole-genome 

sequencing provides the ability to move beyond broad phylogenetic relatedness to perform 

strain-level tracking and functional analysis of these microbes and communities. The creation of 

this comprehensive reference collection, capturing the complete phylogenetic diversity currently 

cultivated from the bladder, represents a valuable resource to explore the function of both 

pathogenic and commensal bladder bacteria. 

We have demonstrated for the first time that, like some pathogens, highly similar strains 

of health-associated commensal bacteria are found in both the bladder and vagina of the same 

individual. Previously, it was thought that a healthy vaginal microbiota was the major factor in 

preventing ascending infections from migrating into a sterile bladder. The data presented herein 

suggests that microbial sharing between the vaginal and bladder microbiota is not limited to 

known and emerging uropathogens, such as E. coli and S. anginosus, but also includes health-

associated commensal bacteria, such as L. iners and L. crispatus. Now, we propose that some 

bacteria that can reside in both the bladder and vagina could provide protection against urinary 

infection, suggesting that the microbes of these adjacent pelvic floor niches could be considered 

to be a single urogenital microbiota. This insight, combined with this unique genome sequenced 

culture collection, should alter the way we view the bacteria of the female pelvic floor both by 

enabling further research and by providing new diagnostic and treatment options for UTIs, 

urgency urinary incontinence, and other associated urinary tract disorders. 
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Materials and Methods 

Patient recruitment. Following Loyola University Medical Center (LUMC) Institutional 

Review Board approval, participants gave verbal and written consent for chart abstraction and 

urine collection with analysis for research purposes. Recruitment and urine collection was 

performed by members of the Loyola Urinary Education and Research Collaborative who are 

part of the clinical practice of the Female Pelvic Medicine and Reconstructive Surgery Center at 

LUMC. Exclusion criteria for both cohorts included current UTI (based on urine dipstick) or 

history of recurrent UTI, antibiotic exposure in the past 4 weeks for any reason, immunologic 

deficiency, neurological disease known to affect the lower urinary tract, pelvic malignancy or 

radiation, untreated symptomatic pelvic organ prolapse (POP) greater than POP-Q stage II 

(vaginal protrusion >1 cm outside of the vaginal hymen), or pregnancy. 

Patients were recruited as part of separate studies (98, 103, 108, 115, 198). In the current 

study, representative isolates were selected for whole-genome sequencing in order to build as 

phylogenetically complete a dataset as possible. For this reason, only a few isolates from some 

patients have been included. For complete understanding of each patient’s microbiome or for 

additional metadata, please refer to the primary publications listed in Supplementary Data K.1. 

Urine collection and EQUC bacterial culturing. Urine was collected aseptically via TUC and 

was placed in a BD Vacutainer Plus C&S preservative tube for culturing. Previous work has 

shown that the microbiota detected in suprapubic aspirates are indistinguishable from the 

microbiota detected in urine obtain by TUC but distinct from the microbiota in voided urine and 

vaginal swabs1. Thus aspiration and catheterization sample the same niche. Since aspiration 

bypasses the vulva, vagina, and urethra, this niche must be the bladder. Since it is less invasive 
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than aspiration, TUC is the urine sampling method of choice. We note that because TUC is a 

transient procedure lasting no more than a few seconds, it is not associated with CAUTI. This 

study does not use nor address indwelling catheters that, due to biofilm formation, are associated 

with CAUTIs.  

Four patients were chosen to sample both the bladder and vaginal environments (Fig. 

K.3). For these women, the vaginal swab was collected from the posterior fornix prior to the 

catheterized urine collection. 

All samples underwent standard urine culture (SUC) as well as EQUC. For SUC, 1 μl of 

urine was inoculated onto 5% sheep blood agar plate (BAP) and MacConkey agar plate (BD 

BBL prepared plated media), incubated aerobically at 35 °C for 24 h. The detection level was 

1000 CFU/ml, represented by 1 colony of growth on either plate. If no growth was observed, the 

culture was reported as “no growth”, indicating no growth of bacteria at the lowest dilution, i.e., 

1:1000. SUC results are listed in Supplementary Data K.1. 

EQUC was performed as described previously (96). Briefly, 100 μl of urine was grown 

under five conditions with BD BBL prepared plated media: (1) BAP in CO2 for 48 h, (2) 

chocolate agar (CHOC) in CO2 for 48 h, (3) colistin and nalidixic acid (CNA) agar in CO2 for 

48 h, (4) CDC anaerobe BAP in an anaerobic jar for 48 h, and (5) BAP in aerobic conditions 

(BD GasPak Anaerobe Sachets) for 48 h. The detection level was 10 CFU/ml, represented by 1 

colony of growth on any of the plates. EQUC results are listed in Supplementary Data K.1. 

Vaginal swabs were collected using BD Liquid Amies Elution Swab (ESwab) collection 

system. To compare vagina and bladder culture data (Fig. K.3, Table K.S9), vaginal samples 

were cultured using a modified EQUC protocol, with 10 μl of urine plated onto BAP and CNA 
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grown for 48 h in 5% CO2, and anaerobic BAP grown for 48 h under anaerobic conditions (BD 

BBL prepared plated media and BD GasPak Anaerobe Sachets). 

Each morphologically distinct colony type was isolated on a different plate of the same 

medium to prepare a pure culture that was used for identification. Matrix assisted laser 

desorption ionization–time of flight mass spectrophotometry with the MALDI Biotyper 3.0 

software program (Bruker Daltonics, Billerica, MA) was used to identify the bacterial strains, as 

described elsewhere (96). 

The 149 bacterial strains are available upon request. 

Genome sequencing and annotation. The isolates were grown in their preferred medium and 

pelleted. Genomic DNA was extracted from pelleted cells using a phenol–chloroform method 

(424). DNA was prepared and sequenced using the Illumina Hi-Seq platform with library 

fragment sizes of 200–300 bp and a read length of 100 bp at the Wellcome Sanger Institute, as 

previously described (425). Annotated assemblies were produced using the pipeline described 

previously (426). For each sample, sequence reads were used to create multiple assemblies using 

Velvet v1.2 (359) and VelvetOptimiser v2.2.5 (https://github.com/tseemann/VelvetOptimiser). 

An assembly improvement step was applied to the assembly with the best N50 and contigs were 

scaffolded using SSPACE (360) and sequence gaps filled using GapFiller (427). Automated 

annotation was performed using PROKKA v1.11 (428). 

Whole-genome metagenomic analysis. Whole-genome metagenomic sequencing was 

performed on the Illumina HiSeq 2500 as described previously (419) with human contaminating 

reads filtered by mapping to the Human reference genome (hg19) with bowtie2 (429). Filtered 

sequences were compared at the genus and species levels using lowest common ancestor analysis 
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previously described (430) and by relative abundance at the sequence level by alignment using 

the bowtie2 algorithm to the complete bladder culture collection genome catalog. 

Phylogenetic analysis and average nucleotide identity analysis. The phylogenetic analysis 

was conducted by extracting amino acid sequence of 40 universal single copy marker genes 

(202, 203) from bacterial collection using SpecI (204). The protein sequences were concatenated 

and aligned with MAFFT v. 7.20 (205), and maximumlikelihood trees were constructed using 

FastTree (206) with default settings. All phylogenetic trees were visualized in iTOL (207). ANI 

was calculated by performing pairwise comparison of genome assemblies using MUMmer 

delcher (431). 

Functional genomic analysis. To identify protein domains in a genome, we performed RPS-

BLAST using CDD (432). All protein domains were classified in different functional categories 

using COG database (433) and were used to perform DAPC (417) implemented in the R package 

Adegenet v2.0.1 (434). Domain enrichment was calculated using one-sided Fisher’s exact test 

with p-value adjusted by Hochberg method in R v3.2.2. 

Data availability. Genome and metagenome sequences have been deposited in the European 

Nucleotide Archive. Accession codes for genome sequences are listed in Supplementary Data 

K.1 and all supplementary tables. Metagenomic sequences are listed in Table K.S1. Other 

relevant data supporting the findings of the study are available in this article and its 

Supplementary Information files or from the corresponding authors upon request. 
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Supplementary Material 

The following Supplemental Data will not be included in this document due to the large size of 

the Table and can be found here at DOI: 10.1038/s41467-018-03968-5: 

Table K.S2. List of publically available genomes of vaginal strains analysed in this study 

Table K.S3. List of genomes from gastrointestinal strains analysed. These strains were 

original collected in a previous study (103) 

Table K.S8. Metadata for strains collected from the bladder and vagina of individual 

women. Corresponding isolates in Figure K.3. 

Table K.S9. A list of the publicaly available reference genomes used for comparison, 

downloaded from NCBI 

Supplementary Data K.1. List of bladder strains and metadata included in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://dx.doi.org/10.1038%2Fs41467-018-03968-5
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Table K.S1. List of metagenomic samples and the relative coverage of the bladder culture 
collection 
 

 

Table K.S4. List of strains found in female bladder andnot in the vagina – from the 
comparison of bladder and vaginal strain collections. For further metadata these strains refer 
to Supplementary Data K.1 
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Table K.S5: List of strains that are highly similar between femlare bladder and vagina 
whole genome datasets. For further metadata on these strains, refer to Supplementary Data K.1. 
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Table K.S6: Top 20 statistically enriched functional domains in the urogenital microbiota 
compared to the gastrointestinal microbiota 
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Table K.S7: Statistically enriched functional domains in the gastrointestinal microbiota 
compared to the urogential microbiota 
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Table K.S10: Table of Average Nucleotide Identity (ANI) vlues for E. coli isolates and 
reference strains 
 

 
 
Table K.S11: Table of Average Nucleotide Identity (ANI) vlues for S. anginosus isolates 
and reference strains 
 

 
 
Table K.S12: Table of Average Nucleotide Identity (ANI) vlues for L. iners isolates and 
reference strains 
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Table K.S13: Table of Average Nucleotide Identity (ANI) vlues for L. crispatus isolates and 
reference strains 
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Overview of Appendix L 

The following papers present data collected from whole genome sequencying (WGS) of 

several urinary bacterial isolates that were isolated from the female urinary microbiota. The first 

paper compares the genomic content of two E. coli isolates, one from a patient with UTI 

symptoms (E78) and one from a patient without (E75). E78 most closely resembled UTI-

associated strains of E. coli, while E75 was related to an avian strain.  

The second and third papers are genome announcements of Nosocomiicoccus ampullae 

and Lactobacillus crispatus, both isolated from transurethreal catheter (TUC) specimens using 

our enhanced quantitative urine culture (EQUC) protocol.  

N. ampullae could not be identified by MALDI-TOF MS, and prior attempts to 

characterize it genomically showed the possibility of a novel species. However, WGS analysis 

revealed that the isolate was N. ampullae. Classifying this organism as N.ampullae made it the 

first N. ampullae isolated from the bladder.  

L. crispatus was isolated from an asymptomatic healthy control patient. Our prior work 

shows that L. crispatus is more abundant and statistically associated in healthy women compared 

to women with UUI(103). Therefore, this strain has been used in several in vitro laboratory 

experiments aimed at understanding its beneficial properties. 
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Appendix L1: Genome Sequences and Annotation of Two Urinary Isolates of E. coli. 

Abstract 

 The genus Escherichia includes pathogens and commensals. Bladder infections (cystitis) 

result most often from colonization of the bladder by uropathogenic E. coli strains. In contrast, a 

poorly defined condition called asymptomatic bacteriuria results from colonization of the bladder 

with E. coli strains without symptoms. As part of an on-going attempt to identify and 

characterize the newly discovered female urinary microbiota, we report the genome sequences 

and annotation of two urinary isolates of E. coli: one (E78) was isolated from a female patient 

who self-reported cystitis; the other (E75) was isolated from a female patient who reported that 

she did not have symptoms of cystitis. Whereas strain E75 is most closely related to an avian 

extraintestinal pathogen, strain E78 is a member of a clade that includes extraintestinal strains 

often found in the human bladder. Both genomes are uncommonly rich in prophages. 

Introduction 

 Clinicians typically equate the presence of bacteria in urine with infection, or, less 

commonly, an ill-defined phenomenon termed “asymptomatic bacteriuria.” These and other 

existing concepts are based on the long-held “sterile urine” paradigm. Recently, however, 

bacterial communities (microbiota) have been discovered in the female bladder (79, 95, 96, 259, 

260, 332, 333, 373, 379). Thus, the “sterile urine” paradigm is no longer valid.  

 In an effort to provide a comprehensive view of the newly discovered female urinary 

microbiota, we have established an Enhanced Quantitative Urine Culture protocol. This 

enhanced culture protocol isolates bacteria from 75 to 90 % of urine samples deemed ‘no 
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growth’ by the standard clinical microbiology urine culture method (96, 103, 114). We have 

begun to the sequence and annotate the genomes of these isolated bacteria.  

 Here, we report the full genome sequences and annotations of two of those bacteria, 

Escherichia coli strains E75 and E78 isolated from female patients pursuing urogynecologic 

clinical care. Strain E75 was isolated from a patient who thought that she did not have a urinary 

tract infection, while E78 was isolated from a patient who thought that she did. The strains were 

sub-cultured to purity and then identified as E. coli by Matrix-Assisted Laser 

Desorption/Ionization-Time-of-Flight Mass Spectrometry (114). Strain E75 is most closely 

related to APEC O1, an avian extraintestinal pathogen. In contrast, strain E78 is a member of a 

clade that includes extraintestinal strains often associated with the human bladder, including 

uropathogenic strains UTI89 and J89 and asymptomatic bacteriuric strain ABU83972. Both 

genomes are uncommonly rich in prophages. 

Organism Information 

Classification and Features 

Escherichia coli is a non-sporulating, Gram-negative, rod shaped bacterium. It is a facultative 

anaerobe found commonly in the environment and the lower intestines of mammals and other 

endotherms. Extra-intestinal strains can colonize other organs, including the urinary bladder. 

Most E. coli strains are harmless constituents of the normal microbiota, but others cause disease. 

For example, uropathogenic E. coli is the major case of urinary tract infections in humans; other 

E. coli strains colonize the bladder without causing symptoms, a condition called asymptomatic 

bacteriuria. 
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 Transmission electron microscopy images were generated for both E75 and E78 (Figure 

L1.1). Cell pellets were fixed with 0.1 % Ruthenium Red en bloc with sequential glutaraldehyde 

and osmium tetroxide fixation steps. These fixed samples were dehydrated with Ethanol and 

embedded in Resin. Ultrathin sections of 80 nm were mounted on copper grids, post-stained with 

uranyl acetate and lead citrate and observed in a Hitachi H-600 transmission electron microscope 

at 75 kV. Films were taken, negatives developed and scanned via a Microtek i800 film scanner. 

PhotoShop was used to convert negatives to positive images and adjust for brightness and 

contrast. The transmission electron micrographs revealed the typical E. coli rod-shape 

morphology. Strain E75 tended to possess electron poor intracellular inclusions (Figure L1.1b, 

black arrow). The general features of E. coli strains E75 and E78 are presented in Table L1.1.  

Figure L1.1. Transmission Electron Microscopy Images of E78 (A) and E75 (B). E75 
tended to have electron poor intracellular inclusions (black arrow). 
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E. coli strains E75 and E78 were isolated from patients who sought clinical care at 

Loyola University Medical Center’s Female Pelvic Medicine and Reconstructive Surgery center 

in September 2014. Patients were asked the question: Do you feel that you have a urinary tract 

infection? E75 was isolated from a patient who answered ‘no,’ whereas E78 was isolated from a 

patient who answered ‘yes.’ Both patients were white, post-menopausal women seeking care for 

Pelvic Organ Prolapse. Neither patient was taking antibiotics; both were using daily vaginal  

estrogen supplement. The UTI Symptoms Assessment Questionnaire was used to characterize 

the degree of severity and bother of the patients’ symptoms (380). Both E. coli strains were 

identified at >100,000 colony forming units per milliliter, using an Expanded Spectrum version 

Table L1.1. Classification and general features of E. coli strains E75 and E78. 
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of the Enhanced Quantitative Urine Culture protocol (114). After they were sub-cultured to 

purity, Matrix-Assisted Laser Desorption/Ionization-Time-of- Flight Mass Spectrometry was 

used to confidently identify them as E. coli. For E75, the identification score was 2.530; for E78, 

the score was 2.265. No other microbes were detected in the urine sample containing strain E75. 

In the urine sample containing strain E78, Alloscardovia omnicolens (10 colony forming units 

per milliliter) and Lactobacillus rhamnosus (10 colony forming units per milliliter) were also  

detected. Figure L1.2 shows a phylogenetic tree of the 16S rRNA sequences. 16S rRNA gene 

sequences include Yersinia enterocolitica (NR_104903), E. coli IAI39 (NC_011750), E. coli 

Figure L1.2. Phylogenetic tree based on 16S rRNA sequences. The alignment length was 
1189 bp. Sequences were retrieved from NCBI and aligned using Muscle. The tree was 
generated by FastTree using the GTR model. Support values are shown for branches leading 
to the placement of the two bladder isolates presented here. 
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O157:H7 str. Sakai (NR_074891), E. coli K-12 substr. MG1655 (NR_102804), E. coli O157:H7 

str. EDL933 (AE005174), E. coli CFT073 (AE014075), E. coli VR50 (CP011134), E. coli 

UMN026 (NC_011751), E. coli RRL-36 (JQ398845), E. coli NBRC 102203 (NR_114042), E. 

coli U 5/41 (NR_024570), E. coli B str. REL606 (CP000819), E. coli O104:H4 str. 2011C-3493 

(NC_018658), E. coli XA04 (KR080744), E. coli APEC O1 (CP000468), E. coli E75, E. coli 

E78, E. coli J96 (ALIN02000018), E. coli TOP379 149 (AOQB01000139), E. coli UMEA 3314-

1 (AWDE010000004), E. coli UTI89 (CP000243), E. coli ABU 83972 (CP001671), and E. coli 

UM146 (CP002167). E. coli genome sequences typically include seven copies (435). 

Genome Sequencing Information 

Genome Project History 

 The sequencing and quality assurance was performed at the Loyola Genome Facility at 

Loyola University Chicago, Maywood, IL, USA. The assemblies and finishing were done at the 

Lakeshore Campus of Loyola University Chicago, Chicago, IL, USA. Functional annotation was 

produced by the RAST service (208) and in-house scripts for COG classification (436). Table 

L1.2 presents the project information and its association with MIGSversion2.0- compliance 

(437).  

Growth Conditions and Genomic DNA Preparation 

 E. coli strains E75 and E78 were isolated from transurethral catheterized urine specimens 

of adult women with urinary symptoms45 using an Expanded Spectrum version of the previously 

described Enhanced Quantitative Urine Culture protocol  (96). Three urine volumes (1 μL, 10 

μL, and 100 μL) of each urine sample was spread quantitatively (i.e., pinwheel streak) onto 5% 

sheep blood (BD BBL™ Prepared Plated Media, Cockeysville, MD), Chocolate, and Colistin 
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Naladixic Acid agars (BD BBL™ Prepared Plated Media) and incubated in 5 % CO2 at 35 °C 

for 48 h; 5 % sheep blood and MacConkey (BD BBL™ Prepared Plated Media) agars incubated 

aerobically at 35 °C for 48 h; two CDC Anaerobic 5 % sheep blood agars (BD BBL™ Prepared 

Plated Media) incubated in either Microaerophilic Campy gas mixture (5 % O2, 10 % CO2, 85% 

N), or anaerobically at 35 °C for 48 h. All agars were documented for growth (i.e., for 

morphologies and colony forming units per milliliter) at 24 and 48 h. Each distinct morphology 

was sub-cultured at 48 h to obtain pure culture for microbial identification.  

 Microbial identification was determined using a Matrix-Assisted Laser 

Desorption/Ionization-Time-of-Flight Mass Spectrometer (Bruker Daltonics, Billerica, MA) as 

described (96). Pure cultures were stored at -80 °C in a 2 ml CryoSaver Brucella Broth with 10 

% Glycerol, no beads, Cryovial, for preservation (Hardy Diagnostics). For genome extraction 

and sequencing, the preserved pure culture isolates were grown on 5 % sheep blood agar under 

aerobic conditions at 35 °C for 24 h.   

Table L1.2. Project information. 
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Genomic DNA extraction was performed using a phenol-chloroform extraction protocol. 

Briefly, cells were resuspended in 0.5 mL DNA Extraction Buffer (20 mMTris-Cl, 2 mM EDTA, 

1.2 % Triton X-100 [pH 8]) followed by addition of 50uL Lysozyme (20 mg/mL), 30uL 

Mutanolysin, and 5uL RNase (10 mg/mL). After a 1 h incubation at 37 °C, 80uL 10 % SDS, and 

20µL Proteinase K were added followed by a 2 h incubation at 55 °C. 210µL of 6 M NaCl and 

700µL phenol-chloroform were then added. After a 30-min incubation with rotation, the 

solutions were centrifuged at 13,500 RPM for 10 min, and the aqueous phase was extracted. An 

equivalent volume of Isopropanol was then added, and solution was centrifuged at 13,500 RPM 

for 10 min after a 10-min incubation. The supernatant was decanted, and the DNA pellet was 

precipitated using 600µL 70 % Ethanol. Following ethanol evaporation, the DNA pellet was 

resuspended in Tris-EDTA and stored at -20 °C.  

Genome Sequencing and Assembly 

 DNA samples were diluted in water to a concentration of 0.2 ng/µl as measured by a 

fluorometric-based method (Life Technologies, Carlsbad, CA) and 5 ul was used to obtain a total 

of 1 ng of input DNA. Library preparation was performed using the Nextera XT DNA Library 

Preparation Kit (Illumina, San Diego, CA) according to manufacturer’s instructions. The isolates 

were barcoded, pooled and each isolate was sequenced twice, on two separate runs, using the 

Illumina MiSeq platform and the MiSeq Reagent Kit v2 (300-cycles) to produce 150 bp paired-

end reads. Sequencing reads were parsed into individual folders according to the respective 

barcodes. 

Sequence assembly was conducted using Velvet (438) (Table L1.2). The tool 

VelvetOptimiser was used to determine the best hash length; 99 was used in the two assemblies 
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performed here. The scaffolding software SSPACE (360) was utilized for scaffold finishing. The 

genome of strain E75 was assembled into 463 contigs. The genome of strain E78 was assembled 

into 62 contigs. To confirm that the contigs were Enterobacteriaceae (i.e. not the result of 

contamination), each contig was BLASTed locally against all publicly available bacterial 

genomes (obtained from NCBI). Coverage across all contigs was on average 50.95-431.17X (for 

E75) and 52.59-30,723.61X (for E78). The high coverage observed within the E78 sequencing is  

the result of two contigs, one 4083 bp in length (coverage 72,734X) and the other 2113 bp in 

length (99,530X). Assembly was repeated using the SPAdes assembler (200), given its recent 

success in producing full plasmid sequences (439). Two plasmids were identified by the SPAdes 

assembler with high coverage. Querying these two contigs against the Gen-Bank nr/nt database 

revealed sequence homology to the annotated E. coli plasmids p2PCN033 (GenBank: 

CP006634) and pVR50G (GenBank: CP011141) (among other E. coli plasmids), respectively. 

These two plasmids are listed in Table L1.3 as Plasmid pE78.1 and Plasmid pE78.2, 

respectively. All 62 E78 contigs were also assessed for putative plasmid sequences using 

Plasmid-Finder (440). While PlasmidFinder recognized pE78.2, it did not detect pE78.1. The 

Table L1.3. Summary of genomes: two chromosomes and two plasmids. 
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complete genome of the E78 chromosome is thus represented within 60 contigs (mean coverage 

272X). 

Genome Annotation 

 Genes were identified using GLIMMER using the g3-from-scratch.csh script included in 

the package (441). The predicted CDSs were translated using the transeq script within the 

EMBOSS suite (442). rRNA genes were identified by RNAmmer (443) using the parameter set 

to identify bacterial rRNA sequences. The program tRNA-Scan (444) identified tRNA 

sequences, using the parameter for bacterial tRNAs. Trans-membrane proteins were identified 

using TMHMM with standard parameters (445). SignalP (446) predicted signal peptides. All 

CDSs were queried (blastp) locally against the COG sequence dataset [(436)] and assigned based 

upon their sequence homologies. CRISPR elements were detected through CRISPR-db (361). 

Genes with Pfam domains were ascertained via searches of the Pfam database (E-value threshold 

1.0) (447). 

Genome Properties 

 Tables L1.4 and Table L1.5 include the summaries of the properties and statistics of 

each genome. Sequencing of the E78 isolate identified two plasmids (Table L1.3); the E75 

isolate did not contain any identifiable plasmid sequences. The E75 and E78 chromosomes are 

similar in length and GC content: E75 is 5,032,328 bp (GC content 50.4 %), while E78 is 

5,021,201 bp (GC content 50.3 %). The genomes for E75 and E78 are predicted to include 4587 

and 4743 protein coding genes, respectively. A similar coding density is observed within the two 

genomes. The 85 RNA genes identified within the E75 genome include 78 tRNAs and 7 rRNAs. 

The E78 genome encodes for more RNA genes: 83 tRNAs and 13 rRNAs. The scaffolds of E75 
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and E78 are only annotated as having a single 16S rRNA gene, an underestimation due to 

recognized challenges of assembling sequences containing genes with multiple copies such as 

the rRNA genes (448). Thus, we fully expect that the E75 and E78 genomes harbor rRNA gene 

numbers on par with the genus. 

Insights from the Genome Sequence 

Although E75 was isolated from a woman who reported that she did not have symptoms 

of cystitis, its genome encodes proteins associated with E. coli pathogenesis, including the P 

pilus, RTX toxin, and α-fimbriae. These genes were not found in E78. While the E75 strain did 

not include plasmid sequences, genome sequencing of the E78 isolate contained two. Plasmid 

pE78.2 was nearly identical (one mismatch) to the E. coli plasmid pVR50G, collected from urine 

obtained from an individual with asymptomatic bacteriuria (449). 

Table L1.4. Genome statistics. 
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Both genomes included a number of prophages. Each prophage sequence within the genomes 

was BLASTed (blastx) to the nr/nt database revealing numerous hits to phage sequences 

annotated as infecting Escherichia spp. Annotations within the genomes of the temperate phages 

Lambda and P4 were identified most frequently within the E75 and E78 genomes, respectively. 

Table L1.6 lists the statistics of this search. The vast majority of the hits were to phages 

annotated as infectious for Escherichia, Salmonella, and/or Shigella spp. Nevertheless, prophage 

sequences for both temperate as well as lytic phages were identified. The abundance of prophage 

sequences within these two genomes exceeds that previously identified in E. coli genomes.  

Table L1.5. Number of genes associated with general COG functional categories. 
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Conclusions 

 The genome of E75, isolated from a woman who reported no symptoms of cystitis, is 

more closely related to the avian extraintestinal pathogen APEC 01. The genome of E75, isolated 

from a woman who reported cystitis symptoms, resides in a clade populated by human extra-

intestinal strains that are either uropathogenic or asymptomatic bacteriuric. Both genomes 

contain an unusually large number of prophage sequences. 

 

 

 

 

 

 

 

 

 

 

Table L1.6. Predicted sequences of phage origin and putative origin. 
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Appendix L2: Draft Genome Sequence for a Urinary Isolate of Nosocomiicoccus ampullae 

Abstract 

 A draft genome sequence for a urinary isolate of Nosocomiicoccus ampullae (UMB0853) 

was investigated. The size of the genome was 1,578,043 bp, with an observed G+C content of 

36.1%. Annotation revealed 10 rRNA sequences, 40 tRNA genes, and 1,532 protein-coding 

sequences. Genome coverage was 727X and consisted of 32 contigs, with an N50 of 109,831 bp. 

Manuscript 

 As part of an attempt to characterize the newly discovered female urinary microbiota (79, 

95, 96, 103, 259, 260, 332, 333, 379), we report here the genome sequence and annotation of a 

strain of Nosocomiicoccus ampullae isolated from a female pursuing urogynecologic clinical 

care. This is the first report of a human isolate of N. ampullae, a species that has not been 

associated with pathogenesis.  

 N. ampullae strain UMB0853 was isolated from urine obtained by transurethral 

catheterization of an adult woman with urinary symptoms, using the described enhanced 

quantitative urine culture protocol (96). Strain UMB0853 was sub-cultured to purity and 

analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry (114), 

which could not provide an assignment. In contrast, 16S rRNA gene sequence analysis identified 

the isolate as N. ampullae. A pure culture was stored at -80°C in a 2-ml CryoSaver brucella broth 

with 10% glycerol, and no beads (Hardy Diagnostics). For genome extraction and sequencing, 

the preserved pure culture isolate was grown on 5% sheep blood agar (BD BBL prepared plated 

medium) under 5% CO2 at 35°C for 48 h.  
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 To extract genomic DNA, cells were resuspended in 0.5 ml of DNA extraction buffer (20 

mM Tris HCl, 2 mM EDTA, 1.2% Triton X-100 [pH 8]), followed by the addition of 50 µl of 

lysozyme (20 mg/ml), 30 µl of mutanolysin, and 5 µl of RNase (10 mg/ml). After a 1-h 

incubation at 37°C, 80 µl of 10% SDS and 20 µl proteinase K were added, followed by a 2-h 

incubation at 55°C. Two hundred ten microliters of 6 M NaCl and 700 µl of phenol-chloroform 

were added. After a 30-min incubation with rotation, the solutions were centrifuged at 13,500 

rpm for 10 min, and the aqueous phase was extracted. An equivalent volume of isopropanol was 

added, and the solution was centrifuged at 13,500 rpm for 10 min after a 10-min incubation. The 

supernatant was decanted, and the DNA pellet precipitated using 600µl of 70% ethanol. 

Following ethanol evaporation, the DNA pellet was resuspended in Tris-EDTA (TE) and stored 

at -20°C.  

 Genomic DNA was diluted in water to a concentration of 0.2 ng/µl, as measured by a 

fluorometric-based method (Life Technologies); 5 µl was used to obtain a total of 1 ng of input 

DNA. Library preparation of the isolated DNA was performed using the Nextera XT DNA 

library preparation kit. Two libraries were prepared and sequenced during separate runs on the 

MiSeq sequencer (Illumina) using the MiSeq reagent kit version 2 (300 cycles). The two runs 

produced 11,221,884 reads in total. Assembly was performed using Velvet (438) (k = 99), 

followed by SSPACE (360) for scaffolding, producing 32 contigs, which varied from 2,642 bp to 

337,531 bp (N50, 109,831 bp), with an average coverage of 727X. The NCBI Prokaryotic 

Genome Annotation Pipeline (208) detected 10 rRNA genes, 40 tRNA genes, 1,532 protein-

coding sequences, and 35 pseudogenes. Six clustered regularly interspaced short palindromic 
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repeat sequences (CRISPRs) were found (361). The genome size was 1,578,043 bp, with an 

observed G+C content of 36.1%. 

Accession Number(s) 

 The draft whole-genome project for N. ampullae strain UMB0853 has been deposited at 

DDBJ/EMBL/ GenBank under accession number MBFG00000000. Raw sequence reads are 

deposited at DDBJ/EMBL/GenBank under accession number SRR3828836. 
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Appendix L3: Draft Genome Sequence of a Urinary Isolate of Lactobacillus crispatus 

Abstract 

 While Lactobacillus crispatus contributes to the stability of normal vaginal microbiota, 

its role in urinary health remains unclear. As part of an on-going attempt to characterize the 

female urinary microbiota, we report the genome sequence of an L. crispatus strain isolated from 

a woman displaying no lower urinary tract symptoms. 

Manuscript 

 As part of an attempt to characterize the newly discovered female urinary microbiota (79, 

95, 96, 103, 260, 332, 333, 379) we report the genome sequence and annotation of a strain of 

Lactobacillus crispatus isolated from the bladder of an adult female. This is the first genome 

report of a urinary isolate of L. crispatus, a species associated with bladder health (103).  

 Using the expanded spectrum version (114) of the enhanced quantitative urine culture 

protocol (96), L. crispatus strain C037 was isolated from a healthy female not displaying any 

urinary symptoms. The strain was sub-cultured to purity, analyzed by matrix-assisted laser 

desorption/ionization-time-of-flight mass spectrometry, and pure cultures were stored at -80°C in 

2 mL CryoSaver Brucella broth with 10% glycerol, no beads, cryovials (Hardy Diagnostics). For 

genome extraction, the preserved pure culture isolate was grown on 5% sheep blood agar 

(BDBBL™ prepared plated media) under 5% CO2 at 35°C for 24 h.  

 To extract genomic DNA, cells were resuspended in 0.5 mL DNA extraction buffer 

(20mMtris-Cl, 2mMEDTA, 1.2% Triton X-100 [pH8]) followed by addition of 50µL lysozyme 

(20 mg/mL), 30 µL mutanolysin, and 5 µL RNase (10 mg/mL). After a 1-h incubation at 37°C, 

80 µL 10% SDS and 20 µL proteinase K were added followed by a 2-h incubation at 55°C. 
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Then, 210 µL of 6M NaCl and 700 µL phenol-chloroform were added. After a 30-min 

incubation with rotation, the solution was centrifuged at 13,500 rpm for 10 min, and the aqueous 

phase extracted. An equivalent volume of isopropanol was added; after a 10-min incubation, the 

solution was centrifuged at 13,500 rpm for 10 min. The supernatant was decanted, and the DNA 

pellet precipitated using 600 µL 70% ethanol. Following ethanol evaporation, the DNA pellet 

was resuspended in tris-EDTA and stored at -20°C.  

 Genomic DNA was diluted in water to a concentration of 0.2 ng/µl. Library preparation 

was performed using the Nextera XTDNA library preparation kit (Illumina) according to 

manufacturer’s instructions with 1 ng of input DNA. The isolate was sequenced twice, on two 

separate runs, using the Illumina MiSeq platform and the MiSeq reagent kit v2 (300-cycles). 

Sequence assembly was performed using Velvet (359) (k = 99) followed by SSPACE (360) for 

scaffolding. L. crispatus C037 was assembled into 96 scaffolds with a genome coverage of 

113X. The scaffolds include 2.147 Mbp of sequence with a G+C content of 36.6%. Gene 

annotations were performed using GLIMMER (441) and tRNAScan (444) identifying 2,096 

protein coding genes, 65 RNA (tRNA and rRNA) genes, and four clustered regularly interspaced 

short palindromic repeats (CRISPR) (361). The 16S rRNA gene sequence of the urinary isolate 

C037 was identical to that of the species’ type strain L. crispatus ST1 (NR_074986), an avian 

enteric strain. One scaffold (10,704 bp in length) produced a hit to the 16,663 bp L. crispatus 

plasmid pLc17 (KR052811); while a significant proportion of the plasmid sequence was 

detected, a complete, circularized assembly was not possible. 
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Accession Number(s) 

 The draft whole-genome project for L. crispatus C037 has been deposited at 

DDBJ/EMBL/GenBank under accession number MAKH00000000. 
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FEMALE LOWER URINARY TRACT MICROBIOTA DO NOT ASSOCIATE WITH 

IC/PBS SYMPTOMS: A CASE-CONTROLLED STUDY 

 

Bressler L., Price T.K., Hilt E.E., Joyce, C., Fitzgerald, C.M., and Wolfe A.J. Female Lower 
Urinary Tract Microbiota do not associate with IC/PBS symptoms: A Case-Controlled Study. 
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Overview of Appendix M 

This was our group’s first characterization of the bladder microbiome during in patients 

with IC/PBS.  This was a case-control study and even with a lower sample size we concluded 

that IC/PBS symptoms may not be related to differences in the FUM. 

Abstract 

Objective: Current etiology of interstitial cystitis/painful bladder syndrome (IC/PBS) is poorly 

understood and multifactorial. Recent studies suggest the female urinary microbiota (FUM) 

contribute to IC/PBS symptoms. This study was designed to determine if the FUM, analyzed 

using mid-stream voided urine samples, differs between IC/PBS patients and controls. 

Materials and Methods: This prospective case-controlled study compared the voided FUM of 

women with symptoms of urinary frequency, urgency, and bladder pain for greater than 6 

months to the voided FUM of healthy female controls without pain.  Bacterial identification was 

performed using 16S rRNA gene sequencing and EQUC, a validated enhanced urine culture 

approach. Urotype was defined by a genus present at >50% relative abundance. If no genus was 

present above this threshold, the urotype was classified as ‘mixed’. Group comparisons were 

performed for urotype and diversity measures.  

Results: A mid-stream voided specimen was collected from 21 IC/PBS patients and 20 

asymptomatic controls. The two groups had similar demographics. Urotypes did not differ 

between cohorts as assessed by either EQUC or 16S rRNA gene sequencing. We detected no 

significant differences between cohorts by alpha-diversity. Cohorts also were not distinct using 

Principle Component Analysis or hierarchical clustering. Detection by EQUC of bacterial 
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species considered uropathogenic was high in both cohorts, but detection of these uropathogenic 

species did not differ between groups (p=0.10).  

Conclusions Enhanced culture and DNA sequencing methods provide evidence that IC/PBS 

symptoms may not be related to differences in the FUM, at least not its bacterial components. 

Future larger studies are needed to confirm this preliminary finding. 

Introduction 

 Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS) affects nearly 7.9 million US 

adult women (105). The AUA and SUFU define IC/PBS as “an unpleasant sensation (pain, 

pressure, discomfort) perceived to be related to the urinary bladder, associated with lower 

urinary tract symptoms of more than six weeks duration, in the absence of infection or other 

identifiable causes” (450).  

 The etiology of IC/PBS is multifactorial, poorly understood, and assumes that the female 

urinary tract is sterile in the absence of clinical infection. However, our research team and others 

have shown that the female urinary tract is not sterile; it possesses communities of microbes 

called the female urinary microbiota (FUM) (79, 95, 96, 260). Furthermore, the FUM is 

associated with various lower urinary tract symptoms (98, 100, 103, 412)(104, 113). These 

findings present a new avenue for studying the etiologies of IC/PBS. 

 Few groups have reported on the FUM of IC/PBS patients. The few existing studies used 

various urine collection methods and bacterial detection methods and, in general, had small 

sample sizes and, therefore, the data conflict (107, 451)(106). Our prospective case-controlled 

study sought to determine if the FUM of women with and without IC/PBS differs, using mid-
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stream voided urine specimens to avoid pain provocation and using an enhanced culture method 

to analyze them. Secondarily, we sought to describe the vaginal microbiota of the IC/PBS cohort. 

Materials and Methods 

Study Design and Participant Population 

 Following Institutional Review Board (IRB) approval, we enrolled 41 female patients; 21 

with IC/PBS (i.e., IC Cohort) and 20 without (i.e., Control Cohort). Women in the IC Cohort 

experienced symptoms of urinary frequency, urgency, and bladder pain for greater than 6 

months, meeting the AUA IC/PBS definition. A screening questionnaire was provided to 

candidate control participants from the community: inclusion criteria included English speaking 

women between the ages for 21 to 65 with no history of or current bladder or pelvic pain and in 

generally stable health. Control participants were excluded if they had a pacemaker or other 

neurostimulator (gastric/spinal), history of or current urethral stricture, cystitis caused by 

tuberculosis, radiation therapy or Cytoxan/cyclophosphamide therapy, prior augmentation 

cystoplasty or cystectomy, systemic autoimmune disorder (such as Crohn’s disease, ulcerative 

colitis, lupus, rheumatoid arthritis or multiple sclerosis), systemic neuromuscular disease known 

to affect the lower urinary tract, history of urogenital cancer, current or imminent planned 

pregnancy/recent delivery <6 months, current pelvic floor physical therapy, current use of opioid 

medications, abdominal or pelvic surgery within the last 6 months and symptoms or diagnosis of 

UTI within the past 3 months. For both cohorts, basic demographics were collected. The 

members of the IC cohort completed validated questionnaires including the Beck Anxiety 

Inventory, Beck Depression Inventory, the Pain Disability Index, the Female Genitourinary Pain 
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Index, the Pain Catastrophizing Scale, the IC Symptom Index Score and the IC Problem Index 

Score. 

Sample Collection 

Midstream voided urine specimens were collected from both cohorts. A vaginal swab 

specimen was collected from the IC Cohort. A portion of each urine sample was placed in a BD 

Vacutainer® Plus C&S Preservative Tube for culturing. A separate portion for 16S rRNA gene 

sequencing was placed at 4°C for less than 4 hours following collection; 10% AssayAssure 

(Sierra Molecular, Incline Village, NV) was added before storage at -80°C. Puritan Opti-Tranz® 

Liquid Stuart Swabs were used to collect two aerobic vaginal swab specimens. Each swab was 

vortexed and diluted in 1ml phosphate buffered saline (PBS). One aliquot was used for culture 

and one was stored for 16S rRNA gene sequencing, as described above. 

Urine Culture Protocols 

A variation of the Expanded Quantitative Urine Culture (EQUC) protocol (96) was used 

to culture the biological specimens. Because it uses larger urine volumes, multiple growth media 

and atmospheric conditions, and longer incubation times, EQUC is superior to the standard urine 

culture method used by most clinical microbiology laboratories (96). Briefly, 10µL of urine 

sample or vaginal swab aliquot was spread quantitatively onto BAP, Chocolate, and Colistin 

Naladixic Acid (CNA) agars (BD BBL™ Prepared Plated Media) and incubated in 5% CO2 at 

35°C for 48 hours; onto BAP incubated aerobically at 35°C for 48 hours; and onto CDC 

Anaerobic 5% sheep blood (Anaerobic BAP) agar (BD BBL™ Prepared Plated Media) 

incubated anaerobically at 35°C for 48 hours. The vaginal swab aliquots were also plated on 

Thayer-Martin media and incubated in 5% CO2 at 35°C for 48 hours. Each distinct colony 
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morphology was sub-cultured at 48 hours to obtain pure culture for microbial identification. 

Microbial identification was determined using a Matrix-Assisted Laser Desorption/Ionization-

Time-of-Flight Mass Spectrometer (MALDI-TOF MS, Bruker Daltonics, Billerica, MA).  

DNA isolation and 16S Sequencing 

DNA isolation, polymerase chain reaction (PCR) amplification, and 16S rRNA gene 

sequencing of urine cultures have been described previously (197). Genomic DNA was extracted 

from 1 ml of urine or 500ul of the vaginal swab aliquot, using previously validated protocols 

developed for the Human Microbiome Project (96, 103, 281). To isolate genomic DNA from 

these samples, this protocol includes the addition of mutanolysin and lysozyme to ensure robust 

lysis of Gram-positive and Gram-negative species (281). 

The hyper-variable region 4 (V4) of the bacterial 16S rRNA gene was amplified via a 

two-step PCR protocol, as described previously (96, 103). Extraction negative controls (no urine 

or swab suspension) and PCR-negative controls (no template) were included to assess the 

contribution of extraneous DNA from reagents. Ten-microliter aliquots of each reaction mixture 

were run on a 1% agarose gel. Samples containing a band of approximately 360 bp were 

considered PCR-positive and subjected to further library preparation. Samples with no visible 

amplified product were considered PCR-negative and not processed further. The PCR-positive 

reaction mixtures were diluted 1:50 and amplified for an additional 10 cycles, using primers 

encoding the required adapter sequences for Illumina MiSeq sequencing and an 8-nucleotide 

sample index. The PCR reaction was purified and size selected using Agencourt AMPure XP-

PCR magnetic beads (Beckman Coulter, Pasadena, CA). Each sample was quantified using the 

Qubit fluorometeric system (Thermo-Fisher, Waltham, MA). The samples were pooled, 
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quantified to a standard volume, and placed in the 2 X 250 bp sequencing reagent cartridge, 

according to the manufacturer’s instructions (Illumina, San Diego, CA).  

Sample barcodes and sequencing primers were removed using the Illumina proprietary 

MiSeq post-sequencing software. The mothur program (v1.37.4) was used to process the raw 

sequences by following the recommended MiSeq standard operating procedure (282). Briefly, 

mothur produced 16S contigs by combining the paired end reads based on overlapping 

nucleotides in the sequence reads; contigs of incorrect length for the V4 region (<290 bp, >300 

bp) and/or contigs containing ambiguous bases were removed. Chimeric sequences were 

removed using UCHIME within the mothur package (284). Subsampling at a depth of 5000 

sequences was performed to correct for different sequencing depth of each sample. The 

sequences were clustered into species-level operational taxonomic units (OTUs) with identity 

cutoff at 97% (285). The OTUs were classified using RDP classifier (v2.11) at the genus level 

(285). Specimens designated as “undetectable” had <1000 total sequence reads. 

Statistical Analyses 

Continuous variables were reported as means with standard deviations (SD); categorical 

variables were reported as frequencies and percentages. Pearson Chi-square tests or Fisher’s 

Exact Tests and 2-sample t-tests or Wilcoxon Rank Sum tests were used to compare categorical 

and continuous demographics and culture results, respectively. Data were plotted using R 

(version 3.4.3). Cluster analysis was performed using hierarchical clustering. Statistical analyses 

were conducted using SAS software v9.4 (SAS Institute, Cary, NC) or SYSTAT software 

version 13.1 (SYSTAT Software Inc., Chicago, IL). 
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Results 

Demographics 

 Table M.1 displays the demographic characteristics of the two cohorts (IC and Control). 

The entire population had a mean age of 49 ± 13 years and was predominately White/Caucasian 

(70%) consistent with our clinical patient’s population. The two groups had similar 

demographics and percentage of EQUC and 16S sequence-positive specimens (p>0.05 for all 

comparisons except vaginal parity).  

Description of the Lower Urinary Tract and Vaginal Microbiomes in IC Patients 

 16S rRNA gene sequencing was performed on all (21) IC voided urine and vaginal swab 

specimens. The majority of voided urine specimens of IC patients had a Lactobacillus (11/21; 

53%) or Mixed (6/21; 29%) urotype, a measure of bacterial community structure as determined 

by 16S rRNA gene sequencing (Figure M.S1). For most IC patients, the urotype matched the 

dominant taxa present in the paired vaginal swab specimen (19/21; 90%) (Figure M.S1). The 

specimen types (IC vaginal swab, IC urine, control urine) did not significantly differ by several 

mean alpha diversity measures that report on the richness, evenness and abundance of 

community members (Figure M.S2).  

Table M.2 displays the demographics and validated questionnaire results of the IC cohort 

stratified by Lactobacillus versus non-Lactobacillus urotype. IC Patients with a Lactobacillus 

urotype were younger (p=0.01) and more likely to be pre-menopausal (p=0.03) than IC patients 

with a non-Lactobacillus urotype, which were more likely to be post-menopausal (p=0.009);  
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Table M.1. Demographic and Clinical Variables for the IC and Control Cohorts

 
Chi-Square Test used unless otherwise indicated. SD=Standard Deviation. IQR=Interquartile 
Range 
a- Independent T Test, b- Fisher’s exact test, c-Wilcoxon rank-sum test 
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Table M.2. Demographic, Clinical Variables, and Symptom Questionnaire Results for IC 
Patients with Lactobacillus and non-Lactobacillus Urotypes determined by 16S rRNA Gene 
Sequencing 

Chi-Square Test used unless otherwise indicated. SD=Standard Deviation. IQR=Interquartile 
Range 
a- Independent T Test, b- Fisher’s exact test, c-Wilcoxon rank-sum test 
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Figure M.1. Principle Component Analysis of Mid-Stream Voided Urine Specimens from 
IC and Control Patients. Principle component analysis comparing 16S rRNA gene sequence 
data between IC patients (21), blue, and Control patients (C patients) (19), red. 
 
 

neither the Lactobacillus urotype nor the non-Lactobacillus urotypes had significantly different 

mean scores for any of the validated clinical questionnaires. 

Comparison of Lower Urinary Tract Microbiome of IC and Control Patients. 

16S rRNA gene sequencing was performed on voided urines from 19 of 20 Control specimens. 

Consistent with the IC Cohort, the Control patients had predominately Lactobacillus (9/19; 47%) 

or Mixed (6/19; 32%) urotypes by 16S rRNA gene sequencing. Mean alpha diversity measures 

did not differ between the voided urine specimens of the IC and Control cohorts (Figure M.S2). 

When plotted, principal component analysis did not show visual separation between the cohorts 

(Figure M.1). A hierarchical cluster analysis of specimens classified at the OTU-level from both 
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Figure M.2. Heatmap of Relative Abundance Values for Common Bacterial OTUs among 
Cohorts and Specimen Types. Heatmap of the relative abundance of 16S rRNA gene sequence 
data claddified by OTUs. The y-axis lists common bacteria OUT classifications in alphabetical 
order. The x-axis describes the specimen type and patient cohort of the corresponding sample. 
Specimens listed in red are mid-stream voided urine specimens from IC patients, orange are 
vaingal swab specimens from IC patients, and black are mid-stream voided urine specimens from 
Control (C) patients. Data are grouped by hierarchical clustering using the corresponding 
dendogram. 
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cohorts is shown in Figure M.2, which does not reveal any clear apparent clustering of specimen 

types or cohort-specific specimens. 

Detection of Uropathogenic Bacteria between Cohorts. 

 EQUC was performed on all Control (20) and 18 of the 21 IC urine specimens. Using 

EQUC, we detected 39 and 51 unique species in the IC (N=18) and Control (N=20) cohorts, 

respectively. Frequency of detection of Staphylococcus lugdunensis (0% IC versus 25% control, 

p=0.04) and Streptococcus agalactiae (i.e. Group B Streptococcus) (6% IC versus 35% control, 

p=0.04) differed by group (Table M.3). Detection of Escherichia coli was higher in the IC 

cohort (28% IC versus 5% control, p=0.08). Detection of bacterial species typically considered 

uropathogenic was high in both groups (IC=15/18, 83%; C=20/20, 100%, p=0.10) (Table M.3).  

Table M.3. List of Uropathogenic Bacterial Taxa Identified in Mid-Stream Voided Urine 
Specimans of IC and Control Patients using EQUC 
 

 
Chi-Square Test used unless otherwise indicated. 
a-Fisher’s exact test 
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Discussion 

This study failed to detect significant differences in the voided FUM of women with and 

without IC/PBS. Despite the study limitation of small sample size, our data suggest that 

microbiota of the lower urinary tract may not contribute to the symptoms in women meeting the 

clinical definition of IC/PBS. This contradicts recent work by others, who have argued for a link 

between clinical symptoms of IC/PBS and the FUM (106, 107, 451). Abernathy et al. 

hypothesized a protective role of a more diverse and Lactobacillus-dominant microbiome. 

Catheterized urine of women with IC were found to have fewer OTUs and less likely to contain 

Lactobacillus species, particularly L. acidophilus.  Furthermore, Abernathy et al. found that the 

presence of Lactobacillus was associated with improved scores on two IC-specific symptom 

severity indices, suggesting that the urinary microbiome may influence lower urinary tract 

symptoms. Although our collection techniques differed and our expanded culture technique 

additive, these findings were not reproduced in our study nor were the differences in 

Lactobacillus dominance indicative of symptom burden. Siddiqui et al. found that Lactobacillus 

predominance was associated with IC/PBS patients (i.e., the opposite trend) using clean catch 

voided urine specimens. Finally, Nickel et al. analyzed a larger cohort of IC/PBS participants 

(n=233) using clean catch urine during flare vs non-flare pain states and showed no difference in 

species composition. However, this study did indicate that the IC group had a higher prevalence 

of fungi. Fungi were not directly analyzed in our cohort. However, we did detect Candida 

species in both cohorts using EQUC. 

Strengths of this study were the use of two complementary identification methods: 

sequencing and culture, as well as the use of vaginal swabs as a comparative specimen to voided 



 

 
 

428 
urine in the IC cohort. Voided specimens were chosen intentionally so as not to create an IC pain 

flare by obtaining a catheterized specimen. Furthermore, contemporary urological guidelines do 

not require a catheterized urine specimen as a part of the diagnostic IC work up (AUA guideline) 

and not routinely performed in this patient population due to catheterization discomfort and poor 

patient’s compliance (450). Limitations include small sample size for both cohorts, lack of 

vaginal swabs in the controls, and lack of other clinical data in the control group. While cohorts 

were similar on most characteristics, our sample size precluded subgroup analyses or 

multivariable models to adjust for any group imbalances due to demographic differences or 

heterogeneity within PBS.  Another limitation is the inability of EQUC to detect fungi, viruses 

and some strictly anaerobic and extremely fastidious bacterial species. Although, we did not 

have an a priori sample size estimation, our cohort sizes were similar to those of the Abernethy 

et al. study, which did show differences in the urinary microbiome between groups, so we felt 

our sample size was adequate for this preliminary analysis. We agree with Nickel et al. that the 

voided urine does not represent the bladder microbiome, but rather the genitourinary tract. We 

also recognize that we did not control antibiotic exposure, similar to Abernethy et al. However, 

we excluded women with active UTI or those who had received antibiotics for any medical 

reason within the last month prior to urine collection. We also excluded patients that were treated 

for UTI within the past 3 months.   

This case-control study of the FUM in predominantly middle-aged women with IC/PBS 

compared to controls without pain showed no significant differences in the voided FUM between 

groups. These findings suggest that microbes may not directly contribute to IC/PBS unlike 

previously reported literature. Larger scale studies using demographically matched controls, 
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complementary microbial detection techniques similar to ours and assessing multiple urine 

collection methods (voided and catheterized) would contribute to deeper understanding of the 

FUM as a potential etiology in IC/PBS. 
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Supplementary Material 

 
 
Figure M.S1. Histogram of Paired Voided Urine and Vaginal Swab Specimens from IC 
Patients. Histogram depicts the genus or family-level taxonomic classification of 16S rRNA 
gene sequence reads from voided urine (left bar) and vaginal swab (right bar) specimens 
collected from IC patients (N=21). Data are presented as relative abundance values. Taxa present 
at <10% relative abundance in all specimens were grouped into “other”. Specimens designated as 
“undetectable” had <1000 total 16S rRNA gene sequence reads. 
 

 

 
 

Figure M.S2. Alpha Diversity Values among Patient Cohort and Specimen Types. Boxplots 
depict the distribution of various alpha diversity indices measured from 16S rRNA gene 
sequencing data for the control patients (orange) and the IC patients (blue – voided urine; green – 
vaginal swab). Values for the Shannon Index (A), Simpson’s Index (B), and Pielou’s Evenness 
(C) are shown. Tables below each plot show the P-values comparing data between each group. 
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RESPONSE AND THE FEMALE URINARY MICROBIOME  
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Overview of Appendix N 

This study was performed as a continuation of our collaboration with the drug company 

Astellas. Previously, we found a more diverse bladder microbiota in individuals who did not 

respond to treatment with the oral urge urinary incontinence (UUI) medication solifenacin, 

which is thoroghouly described in Appendix D (98). In the current study, we wanted to 

determine whether urinary microbiome characteristics are related to clinically relevant treatment 

responses to the oral UUI medication, Mirabegron.  

We recruited a total of 44 participants; 15 responded to Mirabegron treatment 

(responders), whereas 29 did not (non-responders). We saw no correlation between urinary 

microbiome characteristics and symptom relief. We also did not identify a bacterial signature at 

baseline to distinguish treatment responders and non-responders. We did, however, identify a 

significant difference between responders and non-responders in terms of symptoms. All 

measures of symptoms were significantly worse in the non-responder cohort than in the 

responder cohort. 

This appendix is the Final Report that we submitted to Astellas at the conclusion of 

recruitment for the study. We plan to turn this into a paper once the current study participants 

have completed their 12-week time course. 

Statement of the Problem  

Overarching Hypothesis: In UUI-affected women treated with mirabegron, changes in urinary 

urgency incontinence are associated with changes to the Female Urinary Microbiome (FUM). 
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Experimental Design: 

Specific Aim 1: In UUI-affected women treated with mirabegron, correlate patterns of 

urinary urgency relief with Female Urinary Microbiome (FUM) characteristics. We 

recruited 84 women with UUI, treated them with mirabegron, and assessed both their symptoms 

and their FUM. From each woman, we obtained demographics and performed a physical exam at 

recruitment prior to treatment (baseline). Urine collection and symptom quantification occurred 

at multiple time points (baseline and then 4, 8 and 12 weeks post-treatment). To assess 

symptoms, we used the Patient Perception of Bladder Control (PPBC) and validated 

questionnaires.  If a participant’s symptoms were adequately controlled with mirabegron 25 mg 

daily (based on a PPBC score of 4 or 5), she continued at that study medication dose for the 

entirety of the study (an additional 8 weeks for a total of 12 weeks) and she was considered to be 

a member of the 25-mg responder cohort. If a participant did not feel that they had adequate 

symptom control at 4 weeks (based on a PPBC score of 1, 2 or 3), she was offered a dosage 

increase to 50 mg. At 12 weeks, if she felt that her symptoms were adequately controlled (based 

on a PPBC score of 4 or 5), then she was considered to be a member of the 50-mg responder 

cohort. If, at 12 weeks, she felt that she did not have adequate symptom control, she was 

considered to be a member of the non-responder cohort. The primary outcome, medication 

response, was obtained at the end of the study (i.e., 12 weeks). At each time point, we obtained 

urines by transurethral catheter. To identify characteristics of the FUM, we used complementary 

expanded quantitative urine culture (EQUC) and 16S rRNA gene sequencing analyses. We then 

determined whether associations exist between any urinary bacteria and relief of urinary 
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urgency. The specific goal of this aim was to determine whether symptom relief was associated 

with certain urinary bacteria or bacterial communities. 

Specific Aim 2: To develop clinically useful predictors for treatment response. Prior to 

prescribing medication, it is advantageous to select individuals who likely will respond to 

treatment. Given our previous work with solifenacin, we predicted that baseline FUM assessment 

could provide insight into future symptom relief following treatment. A bacterial signature that 

distinguishes treatment responders from non-responders prior to treatment would be of great 

clinical benefit. The specific goal was to identify that signature. 

Methods of Analysis 

Study Design and Population: Following Loyola Institutional Review Board (IRB) approval, 

participants gave verbal or written consent for chart abstraction and urine collection with 

analysis for research purposes. Participants were recruited from the clinical practice of Female 

Pelvic Medicine and Reconstructive Surgery at Loyola University Medical Center between 

December 2015 and December 2018. These participants were women undergoing UUI treatment. 

All women were screened for potential study participation using the validated symptom 

questionnaire, The Pelvic Floor Distress Inventory (PFDI) (279, 452). Exclusion criteria for both 

cohorts included current UTI (based on urine dipstick) or history of recurrent culture-proven 

UTI, antibiotic exposure in the past four weeks for any reason, immunologic deficiency, 

neurological disease known to affect the lower urinary tract, pelvic malignancy or radiation, 

untreated symptomatic POP greater than POP-Q Stage II (vaginal protrusion more than one 

centimeter outside of the vaginal hymen), or pregnancy. Clinical and demographic information 

were abstracted from the electronic medical record. Enrolled patients completed the following 
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questionnaires: Urgency Severity and Life Impact Questionnaire (USIQ) (453), Overactive 

Bladder Questionnaire (OAB-q) (280), Urinary Distress Inventory (UDI-6) Pelvic Floor Distress 

Inventory (PFDI) (454), and Patient Global Impression of Severity (PGI-S) (455). Pre-

menopausal women and post-menopausal women taking any form of estrogen replacement were 

considered estrogen positive. 

Sample Collection: Urine was collected aspectically via transurethral catheter. A portion of the 

urine sample was placed in a BD Vacutainer® Plus C&S preservative Tube for culturing. A 

separate portion for sequencing was placed at 4°C immediately following collection; 10% 

AssayAssure (Thermo Scientific; Waltham, MA) was added within 4 hours before storage at -

80°C. 

The human subjects-certified team de-identified all samples, removing all protected 

health information prior to submission of samples to any non-clinical investigators. Only the 

study ID was available to individuals who are not involved in human subject recruitment, 

retention and oversight. 

Urine Culture: EQUC consists of two parts. The first is a standard urine culture used by clinical 

microbiology laboratories. The second is an enhanced protocol (96).  

For the standard urine culture, we streaked 0.001 mL of urine onto 5% sheep blood 

(BAP) and MacConkey agars (BD BBL™ Prepared Plated Media), which was incubated 

aerobically at 35°C for 24 hrs.  

For the enhanced protocol, we streaked 0.1 mL of urine onto BAP, Chocolate and 

Colistin, Naladixic Acid (CNA) agars (BD BBL™ Prepared Plated Media), which was incubated 

in 5% CO2 at 35°C for 48 hrs. A second set of BAPs was inoculated with 0.1 mL of urine and 
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incubate in room atmosphere at 35°C and 30°C for 48 hrs, respectively. We also inoculated 0.1 

mL of urine onto each of two CDC anaerobe 5% sheep blood agar plates (BD BBL™ Prepared 

Plated Media), and incubated in either a Campy gas mixture (5% O2, 10% CO2, 85% N2) or in 

anaerobic conditions at 35°C for 48 hrs. Each morphologically distinct colony type was isolated 

on a different plate of the same media to prepare a pure culture that was used for identification. 

Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrophotometry (MALDI-

TOF MS) with the MALDI Biotyper 3.0 software (Bruker Daltonics, Billerica, MA) was used to 

identify the bacterial isolates, as described (96).  

DNA Isolation from Urine: We used a previously validated DNA extraction protocol developed 

for the human microbiome project. The protocol includes the addition of peptidoglycan-

degrading enzymes mutanolysin and lysozyme, which ensures robust lysis of Gram-positive and 

Gram-negative species, to isolate genomic DNA from urine samples (281). Briefly, 1 mL of 

urine was centrifuged at 13500 rpm for 10 min and the resulting pellet was resuspended in 200 

μL of filter sterilized buffer consisting of 20 mM Tris-Cl pH 8, 2 mM EDTA, 1.2% triton X-100, 

20 μg/mL lysozyme and supplemented with 30 μL of filter sterilized mutanolysin (5,000 U/mL, 

Sigma-Aldrich; St. Louis, MO). The mixture was incubated for 1 hour at 37°C and the lysates 

were processed through the DNeasy Blood and Tissue kit (Qiagen, Valencia, CA), according to 

the manufacturer’s protocol. The DNA was eluted into 50 μL of buffer AE, pH 8.0 and stored at 

-20°C. 

16S rDNA Library Generation and MiSeq Sequencing: Sequencing was performed with a 

MiSeq Desktop Sequencer (Illumina; San Diego, CA). First, we amplified the variable 4 region 

(V4) of the 16S ribosomal RNA gene in a two-step PCR protocol. In the first reaction, the V4 
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region was amplified using universal primers 515F and 806R that were modified to encode the 

Illumina MiSeq sequencing primer sequence at the 5’-end. Reactions were incubated at 94°C for 

2 minutes to denature the DNA template, and amplified for 30 cycles at 94°C for 30 seconds, 

55°C for 30 seconds and 72°C for 90 seconds. To ensure complete amplification, samples were 

incubated at 72°C for an additional 10 minutes. 10 μL aliquots of each reaction were run on a 1% 

agarose gel. Samples containing a band of approximately 360bp were considered PCR positive 

and subjected to further library preparation. Samples with no visible amplified product were 

considered PCR negative and not processed further. The PCR positive reactions were diluted 

1:50 and amplified for an additional 10 cycles, utilizing primers encoding the required adapter 

sequences for Illumina MiSeq sequencing and an 8-nucleotide sample index, using PCR 

conditions described above. Unincorporated nucleotides, and remaining primers, were removed 

via Qiaquick PCR purification kit (Qiagen; Valencia, CA), and the DNA concentration of the 

eluted product was determined by Nanodrop spectroscopy (Themo Scientific; Waltham, MA). 

100ng of each sample amplicon was pooled and run through a 1% agarose gel. The final product, 

which includes the V4 region and adapter sequences (390-450 bp in length depending upon the 

length of the V4 region), was gel-extracted via QIAquick gel extraction kit and further purified 

via Agencourt AMPure XP-PCR magnetic beads (Beckman Coulter; Pasadena, CA). The final 

concentrationof the pooled DNA was determined via Nanodrop spectroscopy and diluted in EBT 

buffer (Illumina; San Diego, CA) to 2nM. An equal volume of 0.2 N NaOH was added and 

incubated at room temperature for 5 minutes and quenched with hybridization buffer (Illumina; 

San Diego, CA) to a final concentration of 8 pM. For a mock community, we used 

ZymoBIOMIC™ Microbial Community Standard (Zymo Research; Irvine, CA) to optimize our 
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approach. This mock community was mixed 1:1 with randomly generated PhiX libraries to help 

improve the quality of the base calls by helping the cameras focus on the sequencing clusters.  

The mixture was added to the sample library at equal volume and placed into the 2x250 

bp sequencing reagent cartridge, according to the manufacture’s instructions (Illumina; San 

Diego, CA). 

Care was taken to avoid bacterial DNA contamination by utilizing DNA-free reagents 

when applicable, filter-sterilizing all solutions through a 0.2 μM filter, and working in a PCR-

clean hood. To control for the introduction of contaminating DNA, negative controls for 

extraction (no urine) and PCR (no template) were included in each experiment. The extraction 

negative control for each experiment was sequenced to identify spurious genera likely introduced 

from contaminated reagents and materials. To ensure reproducibility, each sample will be 

independently extracted and sequenced at least twice. 

Bioinformatics Analysis: As we previously described (197), quality control and de-multiplexing 

of sequence data was achieved with the onboard MiSeq Control software and MiSeq Reporter 

(current version: 2.1.43). The mothur pipeline, specifically formatted for its use with MiSeq-

generated data (283) was then used to combine paired end reads and remove contigs of incorrect 

length (<285 bp, >300 bp), contigs containing ambiguous bases and chimeric sequences. Within 

mothur, the sequences were assigned to OTUs and taxonomically classified using a naïve 

Bayesian classifier and the mothur-customized RDP training set v9. Alpha diversity metrics 

(inverse Simpson index, Shannon index), mean sequence abundance, and dendrograms based on 

Euclidean distance will be generated using mothur, METAGENassist and R.  
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Statistical Analysis: Statistical analyses, comparing participant demographics and symptoms, 

were performed using R software version 2.15.1 (R Development Core Team, 2014). For 

continuous variables, Student’s t-tests were applied. For categorical variables, Pearson chi-

square and Fisher’s exact tests were performed. Results were considered significant when the p-

value was less than 0.05. 

Statistical analyses of microbiome data (i.e., sequence and/or culture) were performed 

using R software version 2.15.1 (R Development Core Team, 2014). The Wilcoxon rank sum 

tests were used to compare the median abundance for the most abundant sequenced taxa, and all 

cultured genera between groups. The frequencies of detected genera were compared between 

groups, using either Pearson chi-square or Fisher’s exact tests, depending on assumption validity 

(197).  

Results 

Recruitment of participants: We recruited a total number of 84 women with bothersome UUI 

symptoms, of which 44 completed the 12-week treatment, supplied urine samples at baseline, 4 

weeks, 8 weeks and 12 weeks, and provided symptomatic response assessment at 4, 8 and 12 

weeks (Table N.1). 

TABLE N.1 Proposed Recruited Completed 
UUI 100 84 44 

 

Of the 84 women, 40 (52%) withdrew from the study. We obtained baseline urines from 

82 women, 4-week urines from 59 women, 8-week urines from 46 women and 12-week urines 

from 43 women. EQUC was performed on all of these samples as described above in Methods of 
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Analysis (Table N.2). Only the urines from all time points from 41 of the 44 completed 

participants were sequenced as described above in Methods of Analysis. 

TABLE N.2 Baseline 4-week 8-week 12-week 
EQUC 82 60 45 44 

Sequence 50 46 39 41 

 

Of the 40 women who withdrew from the study (Table N.3), 13 withdrew voluntarily 

from the study. Investigators withdrew 4 participants for protocol adherence reasons: on 

participant had an allergic reaction to medication, one participant had a stroke, one participant 

received a diagnosis of metastatic cancer and the last participant stopped taking the medication. 

There were 18 participants that were lost to follow-up. Finally, the remaining 5 participants have 

not completed the study at this time.  

TABLE N.3 Withdrawal Investigator  
withdrawal 

Lost to Follow-up Not Completed 
At this Time 

 13 4 18 5 

 

Study design and definition of treatment response to a therapeutic agent for UUI: This was 

a 12-week open label study. Following diagnosis, patients were administered 25 mg mirabegron. 

A participant’s symptoms were assessed at 4-week and 8-week visits. If a participant’s 

symptoms were adequately controlled (response) she continued at the study medication dose for 

the entirety of the study (either an additional 8 weeks or 4 weeks depending on the visit date, 

respectively). If a participant reported insufficient symptom control (no response), she was 

offered a dose increase to 50 mg.  
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To assess symptomatic response, we used the validated Patient Perception of Bladder 

Control (PPBC). A PPBC score of 4 or 5 was arbitrarily set as treatment success (“response”), 

while a PPBC score of 1, 2 or 3 weeks was considered failure (“no response”). The primary 

outcome, obtained at 12 weeks, was medication response, as measured using the validated PPBC 

scale. Again a score or 4 or 5 was considered a “response,” while a score of 1, 2 or 3 was 

considered “no response.”  

 This arbitrary defined distinction between “response” and “no response” formed a 

framework to query the participant population with respect to the composition of their FUM. 

Note that diagnosis of UUI was confirmed through multiple questionnaires and physician 

assessment. 

 The definition stratified UUI patients into 4 groupings (Table N.4). 

• 25-mg responders: initial response to 25 mg mirabegron treatment at 4-week and 

8-week visits with continued response at the 12-week visit 

• 50-mg responders: women who received an increase mirabegron dosage at either 

4 weeks or 8 weeks and responded at 12 weeks. 

• Non-responders: women who did not respond despite an increased mirabegron 

dosage at 4 or 8 weeks. 

• Unsustained response group: women who responded at 4 and 8 week visits, but 

did not report adequate symptom control at the 12-week visit. 

The rate of mirabegron treatment success, as measured by PPBC, was lower in our study 

[25mg responders (1%) and 50mg responders (17%)] than report efficacy in mirabegron clinical 

trails [25mg responders (23-61%) and 50mg responders (19-62%)] (456-459). This could be due 
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to the fact that we have a lower number of participants (N=44 completed recruitment) than the 

other reported mirabegron clinical trails (460). 

TABLE N.4 25-mg 50-mg Non-responders Unsustained 
Response* Withdrawal 

N 1 14 25 4 40 
% 1% 17% 30% 5% 48% 

 

Due to low number of participants in the 25-mg responder and unsustained response 

group (Table N.4), we decided to make two broad categories of Responders (25-mg and 50-mg 

responders) and Non-responders (Non-responders and Unsustained response group).  

Participant demographics and symptoms: Table N.5 shows the demographics and symptoms 

of the 44 participants who completed the study in total and divided into the Responder and Non-

responder groups. The mean age of the total group was 66±12 years. There was no significant 

difference between the Responder and Non-responder groups (p=0.320).  The mean BMI of the 

total group was 33 (±10) kg/m2. There was no significant difference between the Responder and 

Non-responder groups (p=0.641). The vast majority of the participants were Caucasian (82%); 

although there was no significant difference between the Responder and Non-responder groups 

(p=0.448). The vast majority of the participants were estrogen-negative (86%) and there was no 

significant difference between the Responder and Non-responder groups (p=0.351). In contrast, 

symptoms differed significantly between responders and non-responders with the non-responders 

experiencing more severe symptoms and lower quality of life as measured by Symptom Score 

(p=0.004), HRQL (p=0.001), UDI (p=0.005), POPDI (p=0.45) and CRADI (0.012). 

 



 

 
 

443 
Table N.5. Participant demographics and symptoms (only those that completed the study) 
 
 Total  

(N=44) 
Responders  
(N=15) 

Non-Responders  
(N=29) 

p-valuea 

Demographics     
Age (years) 66 (±12) 63 (±12) 67 (±12) 0.320 
Body mass index (kg/m2) 33 (±10) 32 (±9) 33 (±10) 0.641 
Race    0.448 
     Caucasian 36 (82%) 12 (80%) 24 (83%)  
     African-American 5 (11%) 1 (6%) 4 (14%)  
     Asian 1 (2%) 1 (6%) 0 (0%)  
     Other 2 (5%) 1 (6%) 1 (3%)  
Estrogen Status    0.351 
     Estrogen positive 2 (5%) 0 (0%) 2 (7%)  
     Estrogen negative 38 (86%) 12 (80%) 26 (90%)  
     Not Reported 3 (7%) 2 (13%) 1 (3%)  
Hormone Replacement 6 (14%) 1 (6%) 5 (17%) 0.647 
Diabetes 7 (16%) 3 (20%) 4 (14%) 0.675 
Smoker 2 (5%) 0 (0%) 2 (7%) 0.540 
High Blood Pressure 23 (52%) 5 (33%) 18 (62%) 0.136 
Heart Disease 7 (16%) 1 (6%) 6 (21%) 0.393 
COPD 1 (2%) 0 (0%) 1 (3%) 1.000 
Asthma 5 (11%) 1 (6%) 4 (14%) 0.647 
     
Symptoms     
Symptom Score b 70 (±18) 59 (±18) 76 (±15) 0.004 
Health Related Quality of Life (HRQL)b 48 (±27) 66 (±22) 39 (±24) 0.001 
Urinary Distress Inventory (UDI)c 118 (±52) 90 (±38) 132 (±53) 0.005 
Pelvic Organ Prolapse Distress Inventory 
(POPDI)c 

77 (±65) 53 (±48) 90 (±70) 0.045 

Colorectal-Anal Distress Inventory 
(CRADI)c 

94 (±21) 58 (43) 112 (±92) 0.012 

aPearson’s chi square and Fisher’s exact test were used with categorical variables. 
Student’s t-test was used with continuous variables 
bBased on OAB questionnaire 
cBased on Pelvic Floor Disease Inventory 
 

 

 

 

 

 

 



 

 
 

444 
Microbiome analysis as measured by EQUC 

Figure N.1 is a species accumulation curve. These curves reflect the total number of 

unique species detected by EQUC of all the urine samples from each cohort. The trajectory of 

the curve reflects the total number of unique species present in a cohort. The difference in the 

trajectories for each cohort supports the conclusion that non-responders (blue) are more diverse 

(richer) than the responders (red). This is similar to what we observed in the solifenacin study 

(98). The frequency of detection was not different at the level of genus (Figure N.2, Table N.6) 

or species (Figure N.3, Table N.7). The lack of significance might be due to the small sample 

size. For example, the genera Actinomyces, Aerococcus, Gardnerella, and Streptococcus were 

detected 

Figure N.1. Rarefaction Curve of cultured bacterial species by cohort. The plot depicts the 
number of new species cultured by EQUC by the number of urines assayed in either the 
Responder or Non-responder group. 
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Figure N.2. Frequency of Detection of Each Genus in Responder vs Non-Responder 

Table N.6. p-values for the Frequency of Detection in Figure N.2 
 
Genus p-value Genus p-value 
Actinomyces 0.4557 Proteus 0.3256 
Actinotignum 1 Pseudomonas 1 
Aerococcus 0.4557 Staphylococcus 1 
Alloscardovia 0.2433 Streptococcus 0.1865 
Arthrobacter 1 Trueperella 1 
Bifidobacterium 0.5885 Unknown 0.8448^ 
Brevibacterium 1 Weeksella 0.3256 
Candida 0.3256 Neisseria 1 
Corynebacterium 1^ Proteus 0.3256 
Dialister 1 Pseudomonas 1 
Enterococcus 1 Staphylococcus 1 
Escherichia 1 Streptococcus 0.1865 
Gardnerella 0.6455 Trueperella 1 
Globicatella 1 Unknown 0.8448^ 
Haemophilus 0.3333 Weeksella 0.3256 
Klebsiella 1 Neisseria 1 
Lactobacillus 1^ Proteus 0.3256 
Negative 1 Pseudomonas 1 
Neisseria 1   

Fisher exact test was used unless otherwise indicated 
^Chi-square test used 
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Figure N.3. Frequency of Detection for Species between Responder and Non-Responder 
Groups 

 

twice as frequently in the Non-responder (blue) group than the Responder (red) group. In 

contrast, the opposite was true for the genera Alloscardovia and Bifidobacterium. Although the 

frequency of genus or species detection did not differ between the two cohorts, there was a 

substantial difference in relative abundance (Figure N.4). The non-responders were enriched for 

the genera Escherichia (yellow), Klebsiella (orange), and Streptococcus (green), whereas the 

responders were enriched for the genera Lactobacillus, Bifidobacterium (pink), and Aerococcus 

(light purple), as well as isolates that we were unable to identify (unknown, gray).  

In addition to differences in the more dominant genera, we observed differences in the mean 

total abundance, which was substantially but not significantly higher in non-responders [23,932 

CFU/mL (±58,303 CFU/mL)] versus responders [9244 CFU/ml (±15,189 CFU/mL)] (p=0.219). 
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Table N.7. p-values for the Frequency of Detection in Figure N.3 
 
Species p-value Species p-value 
Actinomyces neuii 1 Gardnerella vaginalis 0.6455 
Actinomyces odontolyticus 1 Globicatella sulfidifaciens 1 
Actinomyces radingae 1 Haemophilus parainfluenzae 0.3333 
Actinomyces turicensis 1 Klebsiella oxytoca 0.3256 
Actinomyces urogenitalis 0.3256 Klebsiella pneumoniae 1 
Actinotignum schaalii 1 Lactobacillus crispatus 0.5855 
Aerococcus sanguinicola 1 Lactobacillus delbrueckii 0.5394 
Aerococcus urinae 0.6934 Lactobacillus fermentum 0.3256 
Aerococcus viridans 1 Lactobacillus gasseri 1 
Alloscardovia omnicolens 0.2433 Lactobacillus iners 0.3728 
Arthrobacter cummensii 1 Lactobacillus jensenii 0.6646 
Bifidobacterium breve 0.5885 Lactobacillus vaginalis 1 
Brevibacterium paucivorans 1 Neisseria subflava 1 
Brevibacterium ravenspurgense 1 Proteus mirabilis 0.3256 
Candida glabrata 0.3256 Pseudomonas aeruginosa 1 
Corynebacterium amycolatum 1 Staphylococcus capitis 1 
Corynebacterium aurimucosum 0.5855 Staphylococcus epidermidis 0.6646 
Corynebacterium coyleae 1 Staphylococcus haemolyticus 0.6466 
Corynebacterium imitans 1 Staphylococcus hominis 0.3256 
Corynebacterium jeikeium 1 Staphylococcus lugdunensis 1 
Corynebacterium kroppenstedtii 1 Staphylococcus simulans 1 
Corynebacterium lipophile group F1 1 Streptococcus agalactiae 0.2861 
Corynebacterium minutissimum 1 Streptococcus anginosus 0.4508 
Corynebacterium riegelii 1 Streptococcus gallolyticus 1 
Corynebacterium tuscaniense 1 Streptococcus mitis 0.5394 
Corynebacterium urealyticum 1 Streptococcus parasanguinis 1 
Dialister microaerophilus 1 Streptococcus salivarius 1 
Enterococcus faecalis 1 Streptococcus vestibularis 1 
Escherichia coli 1 Trueperella bernardiae 1 
Gardnerella sp. 1 Weeksella virosa 0.3256 
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Figure N.4. Relative Abundance of Genera in Responder and Non-Responder Groups. 
CFU/ml, colony forming units per milliliter.  

 

 
Figure N.5. Cluster Analysis of 16S rRNA Gene Sequencing Data. (Top) Dendogram 
grouping all participants into 8 distinct bacterial profiles. (Bottom) Relative abundance at the 
genus level for each participant.   
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Figure N.6. PCA plot showing that responder and non-responder communities are not different.  

 

Microbiome analysis as measured by 16S rRNA gene sequencing 

We also performed 16S rRNA gene sequencing on the same samples. 50 baseline 

samples were sequenced (Table N.2), but only 32 were positive. Figure N.5 is a combination: 

the bottom is a set of histograms that represent the relative abundance of detected genera in each 

participant (both cohorts), whereas the top is a dendrogram that groups participants with similar 

bacterial profiles. The most common genera across both cohorts were Escherichia (gold) and 

Lactobacillus (blue). Other common genera were Bifidobacterium (pink), Streptococcus (green) 

and Ureaplasma (maroon). Gray represents a compilation of minor genera. At the genus level, 
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there was no significant difference between the cohorts. Figure N.6 is a Principal Coordinates 

Analysis (PCA). It plots the bacterial profiles in multi-dimensional space. If samples plot close 

together, they are similar; if they plot far apart, they are different. At the genus level, there are 3 

distinct clusters, but each cluster contains members of both cohorts. Taken together, these data 

support the conclusion that there is no difference in the bacterial profiles of the two different 

cohorts, at least not with this sample size.  

Concluding Remarks 

The specific goal of aim 1 was to determine whether symptom relief was associated with 

certain urinary bacteria or bacterial communities. However, we detected no association. The 

specific goal of aim 2 was to identify a signature that distinguishes treatment responders from 

non-responders. We detected no such signature.  

We did, however, identify a significant difference between the responders and non-

responders in terms of symptoms. All measures of symptoms (symptom score, HRQL, UDI, 

POPDI and CRADI) were significantly worse in the non-responder cohort than in the responder 

cohort.



 

 
 

451 

 

 

 

 

 

 

 

APPENDIX O 

ATTEMPTS AT INTRODUCTION OF DNA INTO AEROCOCCUS URINAE 
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Overview of Appendix O 

This appendix summarizes the work where I attempted to introduce DNA into 

Aerococcus urinae. Although this work is negative, it lays the groundwork for future students to 

attempt to introduce DNA into A. urinae by describing what has already been attempted.  

Introduction 

Bacteria are capable of sharing genetic information within and between related species. 

By sharing genetic information virulence genes and antibiotic resistance genes can be spread 

from one bacterium to another bacterium. This can render antibiotic therapies useless in the fight 

against infectious bacteria, as well as make certain bacteria more virulent allowing for better 

survival within a host. There are three major ways in which bacteria can share genetic 

information known as Transformation, Transduction and Conjugation.  

Transformation can occur when DNA is released into the environment from the lysis of 

some cells, followed by uptake of that DNA by a recipient cell. The ability to gain DNA though 

the process of transformation is dependent on a cells ability to take up free DNA from the 

environment, a state termed competence. Chromosomal genes can encode for competence factors 

and these genes can be turned on via environment signals or these gene can be constitutively 

active.  

Another process of bacterial gene exchange is that of Transduction. Transduction is 

mediated by bacterial viruses called bacteriophages. A bacteriophage (phage) can infect a 

bacterial cell by first binding the bacterial cell surface and then injecting its genome into the 

interior of the cell. Once the phage genome is inside the cell, it either initiates a lytic response or 

a lysogenic response. During a lytic response, the phage genome replicates, proteins are 
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synthesized and assembled into capsids and then the replicated genomes are packaged into those 

capsids. Once the phage is assembled, the host cell is lysed and the phage progeny are released 

into the environment. During a lysogenic response, the phage genome becomes latent by either 

circularizing as a plasmid or integrating into the bacterial genome. The phage genome can then 

be passed onto bacterial cell descendents. However, a lytic response can be induced at any point.  

Finally, Conjugation is another way bacterial cells are able to exchange genes. The donor 

cell contains a conjugal plasmid, which encodes a sex pilus. The pilus functions to capture a 

recipient cell and retracts to bring the two cells into close contact. A bridge then forms between 

the two cells and DNA transfer occurs across this bridge via transfer replication. Transfer results 

in two cells that contain the same conjugal plasmid, each of which can serve as donor cells.  

 All of these methods of bacterial DNA exchange have been harnessed to use as a way to 

exchange or introduce DNA into bacterial strains in the lab. Transduction and conjugation have 

been used for years to study many Gram-negative organisms. Natural transformation is heavily 

used in Streptococcus species. There is a way to force genetic material into a bacterial host cell 

in a non-natural way known as Electroporation. Electroporation is when an electrical filed is 

applied to bacterial cells to make the cell membrane more permeable to allow DNA to be 

introduced into the bacterial cell. 

In this appendix, I used methods of Conjugation and Electroporation to attempt to 

introduce foreign DNA into A. urinae. 

Materials and Methods 

Growth of Isolates 

Aerococcus urinae, Escherichia coli and Streptococcus anginosus isolates were grown 
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for these experiments as described above in Materials and Methods. The remaining strains used 

in this appendix are outlined in Table O.1. 

Enterococcus Isolates. Enterococcus strains were first struck from the frozen stock 

directly onto a BAP agar plate and placed in 5% CO2 atmospheric conditions at 35°C for 48 

hours. To have substantial growth of Enterococcus to be used in assays, a 1 μL loopful of 

Enterococcus colonies were incoculated into 5.0 mL of TSB and then the culture was grown 

statically in 5% CO2 atmospheric conditions for 48 hours.  

Genetic Experiments 

Conjugation Approach #1. The donor strain was mixed with the recipient strain at a 

ratio of 1:4. The bacterial cells were concentrated by centrifugation. After centrifugation, the 

supernatant was removed and the cell pellet was resuspended in residual liquid. All cells were 

spotted on a rich media plate [Tryptic Soy Agar supplemented with 0.5% Glucose (TSAG)]. This 

rich media plate was placed in 5% CO2 atmospheric conditions for 48 hours. After the 48 hours, 

the bacterial cells in the spot were resuspended in 1.0mL of Tryptic Soy Broth supplemented 

with 0.5% Glucose (TSBG). Then, 100 μL was plated onto TSAG with and without antibiotic 

selection. 

Conjugation Approach #2. The donor strain was mixed with the recipient strain at a 

ratio of 1:9. The bacterial cells were concentrated by filtration with a 0.2 μm filter membrane. 

The filter membrane was placed on a TSAG plate and placed in 5% CO2 atmospheric conditions 

for 48 hours. After the 48 hours, the cells on the filter membrane were resuspended in 5.0 mL of 

TSBG. Then, 100 μL was plated onto TSAG with and without antibiotic selection. 

Electroporation. The electroporation protocol was based on the protocol in LeFrancois 
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et al. (461). In short, bacterial cells were grown in CAT complete medium (462) at 35°C in either 

aerobic or 5% CO2 atmospheric conditions and harvested in midexponential phase. The bacterial 

cells were washed twice with 1X PBS and then concentrated ten-fold in electroporation media 

(0.5M of sucrose; 7 mM of potassium phosphate, pH 7.5; 1 mM of magnesium chloride). A 

volume of 0.8mL of bacterial cell suspension was put into a Bio-Rad cuvette. Various 

concentrations of the plasmid were added to the bacterial cell suspension in the cuvette. Different 

voltage, resistances and capacities were tested and only a single pulse was given. Post-

electroporation treatment, the cells were placed in 5% CO2 atmospheric conditions for 2 hours  

 
Table O.1. List of Strains Used In Appendix O 
 

Strain Plasmid Strain Background Origin of 
Replication 

Antibiotic 
Resistance 

UMB0080 Unknown Clinical Isolate of A. urinae Unknown Cm, Kan, Erm 
UMB0088 Unknown Clinical Isolate of A. urinae Unknown Cm, Kan, Erm 
UMB0722 Unknown Clinical Isolate of A. urinae Unknown Cm, Kan 
UMB3669 Unknown Clinical Isolate of A. urinae Unknown Cm, Kan 
UMB0142 Unknown Clinical Isolate of S. anginosus Unknown Cm, Kan 
UMB1018 Unknown Clinical Isolate of E. faecalis Unknown Tet, Erm, Kan 
UMB1072 Unknown Clinical Isolate of E. faecalis Unknown Tet, Erm, Kan 
UMB1095 Unknown Clinical Isolate of E. faecalis Unknown Tet, Kan 
UMB1098 Unknown Clinical Isolate of E. faecalis Unknown Tet, Erm, Kan 

ATCC BAA-2128 None Enterococcus faecalis from 
ATCC 

Unknown Tet, Erm, Copper 

AJW151+pMV158 pMV158 AJW150 (λDFB19) oriT Tet, TS 
KV7 pSUP102 S17-1 lambda pir (KV59) p15 Cm, Tet 

KV72 pBBR1mcs S17-1 lambda pir (KV59) REP Cm 
KV151 pSUP202 S17-1 lambda pir (KV59) OriV(?) Cm, Tet, Amp 
KV311 pUTmTn5Cm S17-1 lambda pir (KV59) oriR6K Cm, Amp 
KV958 pKV69 S17-1 lambda pir (KV59) p15 Cm, Tet 
KV825 pEVS79 DH5alpha ColE1 Cm 

KV1859 pVSV105 DH5alpha lambda pir 
(KV1368) 

Vibrio Cm 

KV5066 pEVS104 KV4760 (pi3813) Unknown Kan, requires Thy 
KV7764 pMV158  oriT Tet 

Cm= Chloramphenicol; Kan=Kanamycin; Erm=Erythromycin; Tet=Tetracycline; 
Amp=Ampicillin; Thy=Thyamine; TS=Temperature Sensitive  
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incubaction. Finally, the bacterial cells were concentrated by centrifugation and then 

resuspended in 200 μL of BHIB and plated on BHI agar plates with and without antibiotic 

selection. 

Results 

Conjugation Approach 1 

 The first attempt to introduce DNA into A. urinae was using conjugation by 

concentrating the bacteria with centrifugation. We decided to test a range of plasmids with 

varying origins of replication (Table O.2). We were unable to get any colonies in the first run 

and attribute that to the Gram-negative plasmids not being able to replicate in a Gram-positive 

organism. Therefore, we switched to using a plasmid from the Gram-positive organism 

Streptococcus (463, 464). Using both the original E. coli strain (KV7764) and a temperature-

sensitive E. coli as a donor strain (AJW151+pMV158), we were still unable to introduce this 

plasmid into A. urinae (Table O.2). In a final attempt to introduce pMV158 into A. urinae, we 

performed a triparental conjugation with a ‘helper’ strain to aide in the transfer of the plasmid 

into A. urinae. Unfortunately, we were still unsuccessful at introducing DNA into A. urinae 

using this conjugation method (Table O.2). 

Conjugation Approach 2 

In an attempt to genetically manipulate A. urinae, I performed a conjugation with A. 

uriane and Enterococcus faecalis. E. faecalis has been previously shown to contain the 

transposon Tn916. This transposon can to be transferred to both Gram-negative and Gram-

positive bacteria (465). This transposon has been used in transposon mutageneses with Bacillus 

anthracis and Bacillus subtilis using the conjugation approach two (465, 466), which 
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concentrates the bacteria using filtration. In addition, the literature has shown that Aerococcus 

viridans clinical isolates resistant to Tetracycline have the tetM resistance gene from the E. 

faecalis Tn916 (467), suggesting that we could use the method used previously for Bacillus  

 
Table O.2. Summary of Conjugation Approach 1 

 

A. urinae Strain Donor Strain Helper Strain Antibiotic 
Selection Plate (s) 

Number of  
A. urinae Colonies on 

Antibiotic Selection Plate 
UMB0080 KV7  Cm and Amp 0 
UMB0080 KV72  Cm 0 
UMB0080 KV151  Cm, Amp and Tet 0 
UMB0080 KV311  Cm and Tet 0 
UMB0080 KV958  Cm and Tet 0 
UMB0080 KV825  Cm 0 
UMB0080 KV1859  Cm 0 
UMB0080 KV7 KV5066 Cm and Amp 0 
UMB0080 KV72 KV5066 Cm 0 
UMB0080 KV7764  Tet 0 
UMB0080 KV7764 KV5066 Tet 0 
UMB0080 AJW151+pMV158  Tet 0 
UMB0080 AJW151+pMV158 KV5066 Tet 0 
UMB0088 KV7  Cm and Amp 0 
UMB0088 KV72  Cm 0 
UMB0088 KV151  Cm, Amp and Tet 0 
UMB0088 KV311  Cm and Tet 0 
UMB0088 KV958  Cm and Tet 0 
UMB0088 KV825  Cm 0 
UMB0088 KV1859  Cm 0 
UMB0088 KV7 KV5066 Cm and Amp 0 
UMB0088 KV72 KV5066 Cm 0 
UMB0088 KV7764  Tet 0 
UMB0088 KV7764 KV5066 Tet 0 
UMB0088 AJW151+pMV158  Tet 0 
UMB0088 AJW151+pMV158 KV5066 Tet 0 

Cm= Chloramphenicol; Tet=Tetracycline; Amp=Ampicillin  
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transposon mutatgenesis to mutagenize A. urinae. 

We used four different clinical isolates and one ATCC strain of E. faecalis as donor 

strains in an attempt to introduce the Tn916 transposon into A. urinae and select for Tetracycline 

resistance (Table O.3). We were unsuccessful in these attempts.  

In addition to using E. faecalis as a donor strain, we used this second conjugation 

approach with the temperature-sensitive E. coli with the pMV157 plasmid alone and with a 

helper strain and were still unsuccessful (Table O.3). 

Table O.3. Summary of Conjugation Approach 2 
 

A. urinae Strain Donor Strain Helper Strain Antibiotic 
Selection Plate (s) 

Number of  
A. urinae Colonies on 

Antibiotic Selection Plate 
UMB0080 UMB1018  Tet and Erm 0 
UMB0080 UMB1072  Tet and Erm 0 
UMB0080 UMB1095  Tet and Erm 0 
UMB0080 UMB1098  Tet and Erm 0 
UMB0080 ATCC BAA-2128  Tet and Erm 0 
UMB0088 UMB1018  Tet and Erm 0 
UMB0088 UMB1072  Tet and Erm 0 
UMB0088 UMB1095  Tet and Erm 0 
UMB0088 UMB1098  Tet and Erm 0 
UMB0088 ATCC BAA-2128  Tet and Erm 0 
UMB0080 AJW151+pMV158  Tet 0 
UMB0080 AJW151+pMV158 KV5066 Tet 0 

 

Electroporation 

 It has been shown that genetically intractable organisms can be made genetically tractable 

by introducing DNA via electroporation (239). We modified the electroporation protocol used to 

eletroporate Streptococcus species (461) and attempted to introduce a Streptococcus plasmid via 

electroporation into A. urinae (Table O.4). We were unsuccessful utilizing the plasmid pNE1 
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from both E. coli and Streptococcus pneumoniae parent strains. In addition, increasing the 

amount of DNA introduced and the voltage did not warrant any success.  

 
Table O.4. Summary of Electroporation Experiments 

 

Strain 
Growth 
Media Plasmid Parent Strain Plasmid 

Amount of 
Plasmid 

Voltage 
(V) 

Resistance 
(omhs) 

Capacity 
(uF) 

UMB0080 BHI Escherichia coli pNE1 100ng 1800 200 0025 
UMB0080 BHI Escherichia coli pNE1 200ng 1800 200 0025 
UMB0080 BHI S. pneumoniae pNE1 100ng 1800 200 0025 
UMB0080 BHI S. pneumoniae pNE1 100ng 1000 200 0025 
UMB0080 BHI S. pneumoniae pNE1 100ng 1500 200 0025 
UMB0080 BHI S. pneumoniae pNE1 100ng 2000 200 0025 
UMB0080 BHI S. pneumoniae pNE1 100ng 2500 200 0025 
UMB0080 BHI S. pneumoniae pNE1 200ng 1800 200 0025 
UMB0088 BHI Escherichia coli pNE1 100ng 1800 200 0025 
UMB0088 BHI S. pneumoniae pNE1 100ng 1800 200 0025 

 

Conclusions 

Although there was no success made during my time, that does not mean A. urinae is 

forever unmanipulatable. In this appendix, I have only summarized a small amount of work that 

can be greatly expanded on in the future. There are many things to consider in the future 

regarding the introduction of DNA into Aerococcus. The first is the DNA that is being 

introduced into A. urinae. It is very likely that the various forms of DNA I attempted to introduce 

were unable to actually replicate in A. urinae and was just seen as foreign and then destroyed.  

The second is that conditions for conjugation, transformation and even electroporation for 

other Gram-positive organisms such as Streptococcus have been shown to happen under very 

defined and strict conditions. The same could be true of Aerococcus and must be considered for 

future project involving genetics.  
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AUTOINDUCER EXPERIMENT
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Overview and Introduction of Appendix P 

We hypothesize that the ‘pigmentation’ phenotype is due to a quorum sensing system. 

Quorum sensing is a process of cell-to-cell communication by bacteria and involves the 

production, release and subsequent detection of chemical signal molecules known as 

autoinducers (60). One autoinducer shown to be important in many bacterial species is 

autoinducer-2 (AI-2). AI-2 is produced and recognized by many bacterial species including both 

Gram-negative and Gram-positive organisms (468). Not only is AI-2 important for intraspecies 

communication, but also has been implicated in playing a role for interspecies communication 

(469). Additional, eukaryotic cells were shown to produce an AI-2 mimic molecule suggesting 

that this autoinducer and similar molecules may play a role in cross-kingdom communications 

that may be important for host-sympbiotic relationships (470).  

In this section, we asked whether A. urinae was able to produce AI-2 by adding A. urinae 

supernatant to a culture of V. harveyi mutant unable to produce AI-2 and measured 

luminenscence.  

Materials and Methods 

Growth of Isolates 

Aerococcus urinae isolates were grown for these experiments, as described above in 

Materials and Methods. The remaining strains used in this appendix are outlined in Table P.1. 

Vibrio harveyi Isolates. V. harveyi strains were first struck from the frozen stock directly 

onto a cultured in Luria-Bertani salt (LBS) medium agar plates shaking in aerobic conditions for 

24 hours. To have substantial growth of V. harveyi to be used in assays, 1 colony of V. harveyi 

was incoculated into 5.0 mL of LBS and then the culture was grown shaking in aerobic 
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conditions for 24 hours.  

Bioluminescence Assay 

 V. harveyi strains were diluted 1:100 from overnight cultures and grown in conditioned 

media (471) in the absence and presence of filter-steralized supernatant from wild-type V. 

harveyi (KV1380), black pigmented A. urinae (UMB0080) and red pigmented A. urinae 

(UMB3333). At various times after inoculation, 1.0 mL samples were taken for luminescence 

and OD measurements.  

Table P.1. List of Strains Used In Appendix P 
 

Strain Organism Strain Background 
UMB0080 A. urinae Clinical Isolate of A. urinae 
UMB3333 A. urinae Clinical Isolate of A. urinae 
KV1380 V. harveyi BB120:Wild-type 
KV1382 V. harveyi MM30: luxS::Tn5 

 

Results 

 We wanted to determine if A. urinae produced AI-2 and if AI-2 production was related to 

the ‘pigmentation’ phenotype. To answer this question, we added supernatant from a black-

pigmented (UMB0080) and red-pigmented (UMB3333) strain of A. urinae to a culture of V. 

harveyi mutant unable to produce AI-2 (Figure P.1). We saw that both the black-pigmented 

(UMB0080) and red-pigmented (UMB3333) strains of A. urinae induced luminescence in the 

mutant strain of V. harveyi (Figure P.1). It appears that the red-pigmented strain (UMB3333) 

does not induce as high of luminescence as quickly as the black-pigmented strain (UMB0080), 

but we cannot determine significance at this time because only one biological and technical 

replicate have been performed. 
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Figure P.1. Bioluminescence Assay with A. urinae.  

Conclusion 

A. urinae does produce AI-2. This supports the hypothesis that A. urinae has a quorum 

sensing system. Although we cannot make a connection with the ‘pigmentation’ phenotype, it 

would be worth testing more clinical isolates of A. urinae for the production of AI-2 and 

determine if there is a connection with the ‘pigmentation’ phenotype or any of the other 

phenotypes. In addition, it would be worth looking at the A. urinae genome for other genes 

involved in the production and sensing of AI-2.  
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R SCRIPTS 
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1. Plot the Heat Maps. Below is the exact script to plot Figure 19. This script was adapted to 

plot the remaining heat maps in the document. 

##load the gplots package - includes heatmap.2 

library(gplots) 

##create a matrix from the data 

data_matrix1 <- data.matrix(`2017_0807.Isolate.Clustering`) 

##load the RColorBrewer package 

library(RColorBrewer) 

display.brewer.all(n=NULL, type="all", select=NULL, exact.n=TRUE, 

colorblindFriendly=FALSE) 

##load the color palette 

color <- brewer.pal(7, "Reds") 

list(red) 

##plot the matrix 

##Rowv -> cluster and show dendrogram for Rows 

##Colv -> cluster and show dendrogram for Columns 

##col -> color of the heatmap - use the color palette loaded above 

##margins -> control the side margins of the graph 

##main -> title of the graph 

##cexCol -> font size of the column names 

##cexRow -> font size of the row names 

##key -> show legend 
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##trace -> adds a trace line over the data 

##To add side bar:  

#RowSideColors = c(rep("gray",17), rep("black",17)) 

###To add legend for side bar: 

##par(lend = 1) 

##legend("topright", legend = c("Peri-urethral Swab", "Midstream Voided Urine"), col = 

c("gray", "black"), lty = 2, lwd = 10) 

#topright = location 

#lty & lwd = length and width of squares in legend 

VW_heatmap1 <- heatmap.2(data_matrix1, Rowv=TRUE, Colv = TRUE, col = color, 

margins=c(15,12), cexRow= 0.25, main ="Isolate Phenotype Profile", cexCol = 1, 

key=TRUE, trace= "none") 

2. Statistics. Below are the generalized versions of the R Scripts used to calculate the statistics 

used throughout the document. 

##Import Dataset to Analyze 

`Name of Dataset in R` <- read.csv("Path of Imported Dataset”) 

##T-test 

t.test(Name of Dataset in R$First Group Comparison~Name of Dataset in R$Second 

Group Comparison) 

##Fisher’s Exact Test 

fisher.test(Name of Dataset in R$First Group Comparison, Name of Dataset in R$Second 

Group Comparison) 
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##Chi Square Test 

chisq.test(Name of Dataset in R$First Group Comparison, Name of Dataset in R$Second 

Group Comparison) 
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