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Abstract

Modelling of the progressive damage behaviour of large-scale composite structures presents a significant

challenge in terms of computational cost. This is due to the detailed description in finite element (FE)

models for the materials, i.e., with each unidirectional layer defined as required by the applicability of

laminate failure criteria, and numerous iterations required to capture the highly nonlinear behaviour after

damage initiation. In this work, we propose a method to accelerate the nonlinear FE analysis by using a pre-

computed surrogate model which acts as a general material database representing the nonlinear effective

stress-strain relationship and the possible failure information. Developed using artificial neural network

algorithms, the framework is separated into an offline training phase and an online application phase. The

surrogate model is first trained with a vast number of sampling data obtained from mesoscale unit cell

models offline, and then used for online predictions on a macroscale FE model. The prediction accuracy

of the surrogate model was examined by comparing the results with conventional FE modelling and good

agreement was observed. The presented method enables progressive damage analysis of composite structures

with significant savings of the online computational cost. Lastly, the surrogate model is only based on

material designs and is reusable for other structures with the same material.
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1. Introduction

Composite materials have been increasingly used to meet the growing need for lightweight structures,

due to their high specific stiffness and strength along with high energy absorption. Owing to their typically

anisotropic designs, the failure mechanisms of these materials are especially complex when compared with

homogeneous materials. Various failure modes can be observed in composite materials under different5

loading conditions and they often appear to be in a progressive damage manner, which makes the modelling

of the failure behaviour of such materials more difficult.

Progressive damage modelling (PDM) methods, which in general employ failure criteria for predicting

damage initiation, and evolution laws for damage propagation, have been developed and widely used by the

research community to predict failure in composite materials [1, 2, 3]. However, due to the conventional PDM10

method’s requirement for a mesoscopic representation of the material in the FE model, e.g., incorporating

all the laminae for laminated composites or the whole fibre tow architectures for textile composites, and a

large number of iterations required to capture the nonlinear behaviour after damage initiation, the resulting

high computational cost prevents their application to large scale composite structures. As the need for

building large-scale composite structures grows, much effort regarding more efficient modelling methods has15

been made to address this challenge. Recent attempts involve the use of a global-local coupling method

[4, 5, 6], in which the large scale structure modelled by a homogenised material (at the macroscale) works

as the global model, whilst the mesoscopic representations of selected sub-regions requiring detailed damage

analysis are the local models. In order to account for the progressive damage behaviour, degraded materials

properties obtained from the local analysis are fed into the global model. Although the computational cost20

can be reduced by using the global-local PDM method, there is a lack of rigorous criteria to be applied

to the homogenised materials at the global level to determine the locations where local analysis should be

performed.

On the other hand, material suppliers, end-users and regulatory agencies have been dedicated to creating

a shared material property database for composites over the last few decades. This database, aiming25

to reduce repetitive testing efforts among multiple companies using the same materials, usually covers

elastic properties and ultimate strengths for basic lamina and laminate materials under the standardised

manufacturing processing. Meanwhile, it is well understood that the material properties of composite

materials might be degraded after damage initiation because of their progressive damage behaviour, but

these degraded properties have rarely been incorporated into the database. In this work, the idea of a more30

general material property database is proposed, referred to as a surrogate model, which can be used for

fast progressive damage analyses of composite structures. Further to the previously discussed database of

elastic properties and ultimate strengths, the surrogate model represents the nonlinear effective stress-strain

relationship up to the ultimate failure of a specific material under any loading condition, as well as the
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possible failure mode information. Surrogate models are normally built using a data-driven, bottom-up35

method. Therefore the construction of such a surrogate model requires a large amount of existing material

behaviour data, which can be obtained from mesoscale unit cell modelling or even from experimental testing,

although the latter is not practical at present due to the extensive work required.

A number of techniques for creating surrogate models have been employed in engineering such as Chaos

polynomial expansion, response surface methodology, kriging (a.k.a. Gaussian process regression) and Ar-40

tificial neural network (ANN) [7]. Artificial neural network, the basis of deep learning algorithms, creates

a surrogate model for the relationship between input and output data from a given dataset [8]. Tye use

of ANN assisted methods to model the mechanical behaviour of composites has attracted broad research

interest, as reviewed in [9, 10]. More recently, Balokas et al. [11] employed ANN to generate a surrogate

model for the elastic properties of 3D braided composites with uncertainty, with which they could reduce45

the computational cost in the sensitivity analysis to identify the most crucial uncertain parameters. Based

on the properties of bulk matrix, and fibre and the fibre volume fraction, Oliveira and co-workers [12] used

ANN to model the shear modulus (G12) and longitudinal ultimate tensile strength (Xt) of unidirectional

(UD) composites. Rong et al. [13] used cross-section images as the input of 2D convolutional neural network

models (CNN) to predict the effective thermal conductivity of 3D particle filled composites, which was found50

to be two orders of magnitude faster than 3D CNNs due to the reduced number of parameters. A vibration

based non-destructive testing method using an ANN model was developed by Farhana et al. [14] to predict

glass fibre/matrix volume fractions in composites. The accuracy of the predictions was shown to be within

the range of 90–98%, and they were in good agreement with those obtained through destructive tests. The

authors also noted that the method is currently implemented only for glass fibre reinforced polyester and55

therefore the volume fraction prediction only works for glass fibre reinforced polyester of the same fibre

fabric and orientation.

Apart from using neural networks for regression problems, a convolutional neural network based ap-

proach was adopted by Khan and colleagues [15] for the classification and prediction of delamination in

smart composite laminates from the vibration-based spectrograms. A classification accuracy of 90.1% on60

one healthy and 12 delaminated cases was observed from their study. Ang et al. [16] developed an ANN

model for predicting the damage initiation of glass/epoxy composite pipes under multi-axial loading. The

model was trained based on a large amount of experimental data from the literature, covering a range of

different material properties, geometry parameters, and applied experimental loads. In their validation, the

classification accuracy was ranged from 85% to 95%, which showed that the ANN model can be used as an65

early procedure to predict the damage onset of glass/epoxy composite pipes before the standard qualification

process. Poor accuracy was observed for pure hoop loading, as there were less available data covering this

load case in their collected training sample. In other words, the trained model only worked well for pipes of

specific configurations considered in the training data. This also highlights that neural networks are more
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suitable for interpolation-oriented problems than extrapolation-oriented problems, as well as the importance70

of the selection of sampling data.

In this work, we introduce a surrogate modelling method based on artificial neural networks to accelerate

the progressive damage analysis of composite materials. The surrogate model, defined at the macroscale,

represents the nonlinear effective constitutive relationship of a homogenised composite material and also

the possible damage information regarding a load condition. During the offline phase, mesoscale unit cell75

modelling is first performed under designed load cases to obtain the sampling material property data (Section

2). The detailed structure and generating method based on artificial neural networks of the surrogate model

are described in Section 3. Section 4 illustrates the workflow of generating and using such a surrogate model

for nonlinear FE analysis of composites. A demonstration on modelling of a open-hole composite plate under

tension is performed and results are compared with the conventional FE modelling to examine the accuracy80

and computational acceleration of the proposed method.

2. Acquisition of material property data

The generation of the surrogate model requires a large amount of known material property data covering

different load cases. Experimental testing under well-established standards is the most reliable method

to obtain material property data, but it is not practical at present due to the extensive testing required85

for different load cases. In this study, numerical characterisation through mesoscale unit cell modelling is

employed to obtain these data.

2.1. Unit cells

Unit cells (UCs) have been widely employed in modelling and characterisation of composite materials,

due to the multiscale characteristic of these materials. Applications of unit cells for composites include the90

derivation of effective material properties, such as elastic, and thermal properties [17], from the properties

of its constituents at the mesoscale, as well as progressive damage analysis of composites [18, 19].

In the presence of translational symmetry, or periodicity, the boundary conditions on the unit cell can

be expressed in the following way [17]:
u′

v′

w′

−

u

v

w

 =


ε0x γ0xy γ0xz

0 ε0y γ0yz

0 0 ε0z

 .


∆x

∆y

∆z

 (1)

where u, v, w and u′, v′, w′ are the displacements at corresponding points on the unit cell; ε0,γ0 are95

macroscopic engineering (effective) strains of the unit cell with subscripts denoting directions. [∆x,∆y,∆z]T

is the relevant translation corresponding to each translational symmetry. After applying the above boundary

conditions, the effective stress and strain components can be easily obtained through the key degrees of

freedom as detailed in [17].
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2.2. Damage model100

Composite materials are often shown to be nonlinear due to the complex failure process involving both

damage initiation and progression. The properties of these materials are degraded after damage initiation

but they still remain capable of bearing further loads. Therefore, damage initiation and evolution are

both considered in the unit cell model. Although some of the widely used failure criteria for unidirectional

composites were proposed several decades ago, modelling their complex failure mechanisms is still the subject105

of significant researches [20, 21], as none of the 12 leading failure criteria have been demonstrated to be

able to predict failure accurately within all the test cases examined by the so-called World-Wide Failure

Exercise [22]. In this study, a damage model by Linde et al. [23] for fibre reinforced composites was used for

demonstrating the proposed method, other than focusing on the accuracy and applicability of the damage

model itself. In Linde’s model, damage in the fibre and the matrix are considered via damage variables df and110

dm, respectively. The interlaminar damage is not currently taken into account. The material behaviour of

each lamina is assumed to be orthotropic, with stiffness much higher along the fibre direction and relatively

lower in the transverse directions. The undamaged elastic matrix at a material point is denoted by C with

its components Cij , using conventional Voigt notation, i, j = 1, 2, . . . , 6. For the damaged material, the

elastic matrix becomes115

Cd =



(1− df)C11 (1− df)(1− dm)C12 (1− df)C13 0 0 0

(1− dm)C22 (1− dm)C23 0 0 0

C33 0 0 0

(1− df)(1− dm)C44 0 0

sym C55 0

C66


. (2)

For orthogonal materials such as fibre reinforced polymer, the transverse properties are isotropic, and the

stiffness matrix components read

C11 = EL(1− ν2TT)/α, C22 = C33 = ET(1− νLTνTL)/α,

C23 = ET(νTT − νLTνTL)/α, C12 = C13 = ETνLT(1− νTT)/α,

C33 = GTT, C44 = C55 = GLT,

α = 1− 2νLTνTL − ν2TT − 2νLTνTLνTT,

(3)

where the Young’s module and Poisson’s ratios are denoted by E and ν with subscripts L and T representing

longitudinal and transverse directions respectively, and G denotes the shear modulus.

The in-plane strength of one lamina ply can be characterised by ε̃t, ε̃c and ε̃s, which are the failure strain

under tension, compression and shear, respectively. Conventionally the primary direction coincides with

the fibre direction, and is designated with 1-direction, while its in-plane orthogonal is 2-direction. Taking
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advantage of this notation, the damage initiation criteria for the fibre and the matrix read:

ff(ε11) =

√
ε̃t11
ε̃c11

ε211 +

[
ε̃t11 −

(ε̃t11)2

ε̃c11

]
ε11 − ε̃t11 > 0, (4)

fm(ε22, ε12) =

√
ε̃t22
ε̃c22

ε222 +

[
ε̃t22 −

(ε̃t22)2

ε̃c22

]
ε22 +

(
ε̃t22
ε̃s12

)2

ε212 − ε̃t22 > 0. (5)

When any of the initiation criteria is satisfied, the damage variables follows the evolution equation

df = 1− ε̃t11
ff + ε̃t11

exp

(
−C11ε̃

t
11ff

Lc

Gf

)
, (6)

dm = 1− ε̃t22
fm + ε̃t22

exp

(
−C22ε̃

t
22fm

Lc

Gm

)
, (7)

where Lc is the characteristic length, Gf and Gm are the fracture energies of the fibre and the matrix,120

respectively.

At a material integration point, the stress is updated with the constitutive equation

σ = Cdε. (8)

For FE solvers which are using the incremental formulation, such as Abaqus, it is necessary to compute the

Jacobian matrix at each increment in order to update the stiffness matrix. This is achieved by differentiating

(8) using the chain rule,125

∂σ

∂ε
= Cd +

∂Cd

∂ε
ε

= Cd +

(
∂Cd

∂df
ε

)
⊗
(
∂df
∂ff

∂ff
∂ε

)
+

(
∂Cd

∂dm
ε

)
⊗
(
∂dm
∂fm

∂fm
∂ε

)
.

(9)

Thus, the Cauchy stress at every integration point is updated in each increment by

σ ← σ +
∂σ

∂ε
∆ε. (10)

A typical implementation of the calculation of (9) resorts to a carefully written user material subroutine

(UMAT) using the API provided by Abaqus. The requirement of recalculating the elastic tensor Cd at

each increment makes it expensive for the whole analysis cost. It is also known that when the damage

initiation happens, the nonlinearity causes the solution to become significantly slower than before, and it130

is tedious to search for the optimal tuning for the solver parameters due to their problem-dependency. In

this study, a trained ANN is used as a surrogate model to approximate the true update of Cauchy stress

at the macroscale, so as to achieve significant accelerations during this process. This surrogate model is

implemented in another UMAT subroutine, in which the Cauchy stress is computed via the ANN and keeping

the initial Jacobian simply unmodified to save the computational cost. The initial Jacobian is computed as135

(9) using homogenised material properties calculated following [17], but without any damages. Note such

a simplification will turn the Newton-Raphson iteration into a quasi-Newton one in the nonlinear solution

process. Other quasi-Newton schemes could also be implemented achieve even faster convergence.
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2.3. Design of load cases for training data generation

As the ANN requires a large amount of sampling data to train, it is necessary to generate the dataset140

a priori with the established UC model. As the surrogate model represents the constitutive relationship

and possible material damage states, the dataset contains the effective strain/stress with all components

and corresponding damage state variables. In practice, the strategy is to collect the data from a batch run

of the UC model under various prescribed load cases. The designed load cases applied to the UC are a

series of strain states to which the loads are applied proportionally. The chosen strain states at the end of145

each analysis form an envelope of all possible combinations of the components, as illustrated in Figure 1 for

plane stress problems, whilst the ranges for each strain components are εx, εy ∈ [−0.02, 0.02]; γxy ∈ [0, 0.02].

Regarding the surrogate model generated based on the load cases, it should be noted that the input strain

should be enclosed in this envelope, otherwise the output stress will be unpredictable and losing physical

meanings. To ensure this, a possible implementation in the code is to force the stress to be zero once an150

out-of-envelope strain is input to the surrogate model.

x

1e 2
2 1 0 1 2

y
1e

2

2
1

0
1

2

xy
1e

2

0.0

0.5

1.0

1.5

2.0

Prescribed strain envelope

Figure 1: Scatter plot of sampling strain states at the end of each analysis. The states with maximum shear strain are coloured

differently for clarity reasons.

3. Surrogate model

3.1. Methodology

A typical multiscale modelling method for composite materials involves at least two length scales, an

upper one and a lower one. The objective of material characterisation using multiscale modelling is usually155

to evaluate the effective material properties in the upper scale based on the analyses conducted with the

models at the lower scale. Not being constrained to only elastic properties, in this study, the scope of

material characterisation is enriched to form a surrogate model representing a general material property
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database. It covers nonlinear effective stress/strain relations (macroscale) accounting for damage initiation

and propagation with regard to any loading condition, along with material damage states. In addition, the160

damage information also covers possible failure modes for composites.

To construct such a surrogate model, discrete effective stress/strain responses and damage parameters

data are first obtained through mesoscale UC damage modelling under a vast number of designed load cases.

Artificial neural networks are then employed to form the surrogate model, which is trained based on the

discrete data and used for predicting the behaviour under any loading condition including those not in the165

training data. The trained ANN is a general material property database for a specific material, and is

designated to provide immediate information for future analysis of structures made of the same material

and layup.

In order to be used in FE analysis, the surrogate model is written into a material subroutine through

deploying the trained neural networks. Based on the application of Abaqus finite element software, the170

structure and input/output of the material system is accordingly defined as shown in Figure 2. The inputs

of material system are the effective strain components, as required by the Abaqus user defined material

subroutine (UMAT), and the outputs are the corresponding effective stress components along with damage

information. Depending on the specific application, the inputs can be three dimensional for plane and shell

element usage or six dimensional for solid element usage. The workflow for using the proposed method is175

summarised in Figure 3.

Strain
Components

Damage
information

Stress
Components

Surrogate 
model

Figure 2: Input and output of the macroscale surrogate model.

3.2. Artificial neural networks

Artificial neural networks are inspired by the biological nervous systems, and is further evolved into many

varieties and being used in deep learning algorithms. Back to the basics, an ANN is built on a collection

of connected units (nodes) called artificial neurons, and the connections between neurons for transmitting180

signals that are called synapses. A neuron first receives a signal then processes it, and finally signal neurons

connected to it. ANNs enable a computer to learn from observational data within the so-called training

process and then predict unknown results. ANNs have been applied to provide solutions to a variety of
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Devised load cases

Unit Cell model

Strain/Stress data

Surrogate modelMacroscale structure
model

Damage model
(UMAT subroutine)

Damage data

ANN

Mesoscale modelling

Sampling dataset

Deployment via UMAT
subroutine

Figure 3: Proposed workflow for multiscale surrogate modelling of structure failure.

problems, including image recognition, speech recognition and machine translation. For applications in

composite materials, ANNs have been used to create surrogate models for the given input and output data,185

which are usually related to material properties. After proper training, the predictions of new entries are far

more fast than running the simulation or experiment, due to the efficient information processing mechanism

of the ANNs. Consequently, using ANNs is a method to reduce the high computational costs of numerical

simulations, particularly for some large scale problems.

There are several types of artificial neural networks such as feed-forward, radial basis function and190

recurrent neural networks. For regression analysis and classification problems in engineering, the most

commonly used one is the feed-forward neural network. This network contains one input layer, one output

layer and one or more hidden layers (Figure 4). The information propagates in one direction from the input

layer directly via any hidden layers to the output layer without loops.

Hidden layersInput Output

Figure 4: Illustration of a typical ANN with two hidden layers.
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On each layer there are a number of neurons processing the information flow. The internal structure of195

a neuron is described in Figure 5. Let wl be the weight matrix from the (l − 1)-th layer to the l-th layer,

bl be the bias vector for inputs on the l-th layer. The I/O relationship of a neuron is expressed in a matrix

form as

al = σ
(
wlal−1 + bl

)
. (11)

where σ is the activation function. Commonly used activation functions are Tanh, ReLU, Sigmoid, Softplus

and Linear etc., as illustrated in Figure 6. The definition of those functions are:

Tanh: σ(x) = tanhx

ReLU : σ(x) = max(0, x)

Sigmoid: σ(x) =
1

1 + exp(−x)
=

expx

expx+ 1

Softplus: σ(x) = ln(1 + expx)

Softmax: σ(x)i =
expxi∑
j expxj

.

For the case where the l-th layer has n neurons while the (l − 1)-th layer has m neurons, it can be seen

the weight matrix wl ∈ Rn×m, and the bias vector bl ∈ Rn. Therefore (11) can be written in component200

form as

ali = σ

 m∑
j=1

wl
ija

l−1
j + bli

 , (12)

where the indices i = 1, 2, . . . , n, and j = 1, 2, . . . ,m.

Figure 5: Illustration of a typical neuron.

After the network is established, it has to be trained to adapt to the given problem using a large dataset

which was generated a priori. The training or learning process involves adjusting the weights and bias of

the network to approximate closely the outputs of the training dataset through minimising the defined cost205
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Figure 6: Plots of frequently used activation functions for a perceptron.

function (or loss function), e.g., the mean squared error (MSE) between the target output and the predicted

output for regression problems, and the categorical cross-entropy for classification problems. In general,

the training process can be considered as a typical application of a gradient-based optimisation algorithm

and statistical estimation in a back-propagation manner. Further theoretical details about the training of

ANN, the readers are referred to the literature such as [24]. Here we used Adamax [25], an algorithm210

for first-order gradient-based optimisation of stochastic objective functions, based on adaptive estimates of

lower-order moments for the classification problems, and RMSprop [26], a gradient-based optimisation with

adaptive learning rate adaption for the regression problem . In this optimisation process, the weights and

bias of all the network are updated iteratively until the desired error tolerance is met or the maximum

number of iterations (epoch) is exceeded. In this study, all problems are categorised as the supervised215

learning since the input and output data are paired.

4. Numerical example

In this Section, we demonstrate the steps to construct the proposed surrogate model and the application

of the surrogate modelling method to predict the progressive damage behaviour of composites. A multi-

directional laminate [0, 90, 45,−45]s under plane stress was used as a typical example to demonstrate the220

workflow for the proposed approach. The material used is aerospace-grade IM7/8551-7 carbon/epoxy [27],

and the thickness for each ply is 0.125 mm.

11



4.1. Material property data acquisition

Mesoscale unit cell modelling was first conducted to acquire the material property data. An 8-layer

mesoscale solid model was created as a unit cell for the example laminate [0, 90, 45,−45]s. Each layer is225

assumed to be a homogenised UD lamina with transversely isotropic properties given in Table 1. The the

size of the unit cell is 1 mm× 1 mm× 1 mm. Boundary conditions introduced in Section 2.1 were applied to

the unit cell. Linde’s damage model described in Section 2.2 was adopted here to demonstrate the proposed

method through an Abaqus material subroutine (UMAT). The unit cell was loaded through applied strains

for convenience as they would be required by the material subroutine as inputs for the surrogate model. The230

ranges for each strain components are εx, εy ∈ [−0.02, 0.02]; γxy ∈ [0, 0.02]. Each of the 8 layers might have

different damage parameters and for convenience, for each load case only one maximum fibre damage and

one maximum matrix damage parameters used selected to represent the whole laminate. A Python script

was used to automate the collection of the material property data through a batch run of unit cell model

under the designed load cases with Abaqus/Standard 2016. In this example, 12 754 sets of data including235

strains, stresses and damage parameters respectively have been collected for the subsequent training of the

ANNs.

Table 1: Material properties of IM7/8551-7 lamina [27], fibre volume fraction Vf = 60%.

E11 165 GPa

E22 = E33 8.4 GPa

ν12 = ν13 0.34

ν23 0.5

G12 = G13 5.6 GPa

G23 2.8 GPa

Longitudinal tensile strength Xt 2560 MPa

Longitudinal compressive strength Xc 1590 MPa

Transverse tensile strength Yt 73 MPa

Transverse compressive strength Yc 185 MPa

In-plane/Transverse shear strength S12 = S13 90 MPa

Through-thickness shear strength S23 57 MPa

4.2. Construction of surrogate model

As the proposed surrogate model covers both constitutive relationship and damage state information,

multiple ANNs are used to represent them respectively as they are for different problems. The regression240

analysis is carried out for nonlinear constitutive relationship between the obtained strain and stress data,

and classification is performed for damage identification between the strain and damage state variable data.

In this example, both regression and classification ANN were trained using Keras [28], which is a high-level

open source neural network library written in Python and capable of running on top of TensorFlow (by

Google), CNTK (by Microsoft), or Theano [29].245
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4.2.1. Regression ANN for constitutive relationship

Progressive damage behaviour is considered in the proposed method so that the regression for the con-

stitutive law is nonlinear. A deep neural network with two hidden layers (60 and 50 neurons each) were

employed for the plane stress case. The numbers of layers and neurons are hyperparameters in neural

networks, which are problem-dependent and can not be learned during the training. Manual search is a250

simple way to determine the hyperparameters and also there are some complex hyperparameter optimisation

methods as introduced in [30]. In this case, a manual search has been performed to identity these numbers

through comparing accuracy/loss during validation. The input/output and hyperparameters for this classi-

fication ANN are presented in Table 2. It is noted that for 3D stress application the required hidden layers

or number of neurons per layer could be more in the regression analysis. The MSE was used as the loss255

function and RMSprop was adopted as the optimiser. The training and validation process is illustrated in

terms of the evolution of coefficient of determination R2 (The metric “Accuracy” provided by Keras is the

correctness rate of predictions in classification problems but is not meaningful for regression problems) and

loss function during the epochs, which are shown in Figure 7. To avoid overfitting in the neural networks,

one should monitor if there is any significant increase in the validation loss globally, and can use various260

methods provided by Keras such as adding dropout layers, adding early-stop callbacks in the training.

Table 2: Structure of the ANN for regression of stress-strain constitutive law.

Input layer Hidden layer 1 Hidden layer 2 Output layer Loss function Optimiser

[ε11, ε22, ε12]T 60× tanh 50× tanh [σ11, σ22, σ12]T MSE RMSprop

0 500 1000 1500 2000 2500 3000
Epoch #

2

1

0

1

R
2

Training & Validation R2 across epochs

Training
Validation

0 500 1000 1500 2000 2500 3000
Epoch #

101

102

103

104

105

Lo
ss

Training & Validation loss across epochs
Training
Validation

Figure 7: R2 (left) and loss (right) function evolution during the training for the regression problem.

4.2.2. Classification ANN for damage identification

To perform the identification of damage initiation or material failure, a proper definition of the dam-

age/failure state is required. In most applications, it is also required to provide a credibility measure as the
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confidence of the simulation. An advantage of using the ANN is that the output of a classification problem is265

actually a probability of the categorisation based on pre-defined damage/failure criteria. In this section, we

introduce two classification problem based on a previously introduced dataset for the damage initiation and

failure identification problems of the 8-layer laminate. Note that for the macroscale model, there is only one

layer of plane stress elements, it is more interesting to tell which element is damaged or failed regardless of

the layerwised answer. Therefore, a simplification is made in this example to reduce the number of possible270

damage/failure states.

We define two simple damage states for each element in the plane stress macroscale model: the intact

state in which both fibre and matrix have their damage variable equal to zero for all plies; and the damaged

state in which either damage variable is above zero for any ply. This induces two corresponding probabilities

as the ANN output: Pr(Intact) := Pr(df = 0 and dm = 0) and Pr(Damaged) := Pr(df > 0 or dm > 0). In275

addition, the training dataset is also labelled in this manner during preprocessing before training the ANN.

The hyperparameters for this classification ANN are presented in Table 3. Note that for all classification

problems, the categorical cross-entropy function is typically used as the loss function while the softmax

activation function is used for each neuron in the output layer, so that the output will be the probability for

each category. The training and validation process is illustrated in terms of the evolution of accuracy and280

loss function during the epochs, which are shown in Figure 8.

Table 3: Structure of the ANN for classification of damage identification.

Input layer Hidden layer 1 Hidden layer 2 Output layer Loss function Optimiser

[ε11, ε22, ε12]T 8× ReLU 10× ReLU

 Pr(Intact)

Pr(Damaged)

 Categorical cross-entropy Adamax
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Figure 8: Accuracy (left) and loss (right) function evolution during the training for the classification problem to determine

damage initiation.

As a slightly more complex classification example problem, now we introduce 4 states for the failure
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identification of the same 8-layered laminate regarding the damage variables of fibre and matrix of all

laminae. The failure states are:

• No failure for all plies: Pr(No failure) := Pr(df ≤ 0.9 and dm ≤ 0.9);285

• Only fibre failure for any ply: Pr(Fibre failure) := Pr(df > 0.9 and dm ≤ 0.9);

• Only matrix failure for any ply: Pr(Matrix failure) := Pr(df ≤ 0.9 and dm > 0.9);

• Both fibre and matrix failure for any ply: Pr(Both failure) := Pr(df > 0.9 and dm > 0.9).

Note that the failure threshold of damage variable is taken to be 0.9, so that the results would tend to be

conservative and avoid the sharp increase of damage variable when approaching 1. All the failure states290

are mutually exclusive so that the conservation of probability is guaranteed. The hyperparameters for this

failure identification ANN are listed in Table 4, and the evolution of accuracy and loss function plot are

shown in Figure 9.

Table 4: Structure of the ANN for classification of failure identification.

Input layer Hidden layer 1 Hidden layer 2 Output layer Loss function Optimiser

[ε11, ε22, ε12]T 12× ReLU 20× ReLU


Pr(No failure)

Pr(Fibre failure)

Pr(Matrix failure)

Pr(Both failure)

 Categorical cross-entropy Adamax
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Figure 9: Accuracy (left) and loss (right) function evolution during the training for the classification problem to determine

material failure.

4.3. Validation of the trained ANN

During the training process, the dataset was split into two subsets: the majority was used for training295

the ANN, while a small portion, in this example 200 samples, was used for on-the-fly validation during the
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training process. The orange curves in Figure 7, 8 and 9 show the evolution of accuracy and loss functions

with the validation subset, which provides an indication of the immediate performance of the ANN being

trained.

To perform an offline validation of the trained regression ANN, here we use a manipulated load case by300

controlling the strain with εx ∈ [0, 0.02], while other strain components are constrained to zero. This load

case is out of the training dataset, thus the ANN has never “seen” it during the training. The mesoscale

UC modelling is used to provide a reference, with the same load case applied. Such a load case produces

a uniaxial strain state, with the stress component σx being significantly larger than the other components.

For an illustrative comparison, the σx-εx curves from the UC-based FE model and the ANN prediction are305

plotted in Figure 10 which agree well.
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Figure 10: Comparison of surrogate model predicted and FE simulated nonlinear material stress-strain curve for a manipulated

load case.

4.4. Example of application: plate with a hole under tension

To demonstrate the usage of the proposed surrogate model for structural damage analysis, the analysis

of an open-hole laminated plate under in-plane tension was performed using the surrogate model, and

compared with the results of conventional 3D finite element analysis. For structural analysis application,310

the above trained ANNs were deployed through a UMAT subroutine, in which the stresses are updated by

the prediction from the trained ANNs. By using the surrogate model, the open-hole plate can be modelled

as a single layer 2D model with homogenised material properties defined by the ANN subroutine, whilst

the reference model is a multi-layer 3D solid model running with Linde’s damage model subroutine and

mesoscale lamina property. An illustration of the two finite element models is given in Figure 11, both of315

which were solved using Abaqus/Standard 2016 on the same workstation equipped with Intel Xeon E5-1620

v4 CPU and 32 GB DDR4 RAM running Windows 10. The UMAT subroutine was compiled with Intel

Fortran Compiler 2016.
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Figure 11: Illustration of the FE model of open-hole plate. Top: 3D reference model, layers are zoomed in and shown on the

left. Bottom: 2D single layer model using ANN.

Figure 12 shows the comparison of load-displacement responses from the surrogate model and reference

model for the open-hole plate under tension. In general, good agreement is observed with the exception of320

minor discrepancy near the ultimate strength. As the surrogate model is defined in terms of the homogenised

materials at the macroscale, it may give sharp response near displacement at material failure because it loses

the details caused by lamina failure as seen in the mesoscale model.
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Figure 12: Load-displacement curves for the example problem simulated using 2D ANN surrogate model and the reference 3D

damage model.

When comparing the damage events and locations, in the reference model the fibre damage initiates

first near the hole (Figure 13) immediately followed by matrix damage (Figure 14) at the same location.325

The cracks then propagated rapidly to the whole cross section, as a result, the whole structure reached

its maximum load carrying capacity. For the surrogate model, only the probability contour for damage
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within both fibre and matrix damage is plotted in Figure 15 as the event for fibre damage only existed

briefly. Besides, a video showing the evolution of the probability contours for all designed failure states with

changes of loading displacement is provided in the Supplementary Data. Cracks (in terms of damage in330

both constituents) initiated at the same location and propagated towards the cross section similar to what

was observed in the reference model. The displacement for crack initiation is around 1.10 mm close to 1.06

mm for the reference model when the fibre and matrix both have first reached a full damage state. It should

also been noted that the surrogate model would loss the detail of ply damage prediction in the conventional

FE models.335
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(a) Displacement = 0.9812 mm

(b) Displacement = 1.1046 mm

Figure 13: Contours for fibre damage variable df . (a): Damage initiated at displacement around 0.9812 mm. (b): Whole cross

section are damaged at displacement around 1.1046 mm.

The computational costs for the two models are presented in Table 5. Using the surrogate model can

offer significant computational benefits as the CPU time has been reduced to approximately 1/12 of the

conventional FE solution. This great saving resulted not only from the decreased number of degrees of

freedom (DOF) in the surrogate model, but also the reduced number of iterations and calculations in the

material subroutine as the variables to be updated can be directly obtained from the trained ANNs.340

Table 5: Comparison of computational costs.

Model DOF CPU time [s] CPU Wallclock time [s] Acceleration

3D Ref. 22002 712.5 4 229 N/A

2D ANN 2116 59.7 1 60 ×11.935
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Figure 14: Contours for matrix damage variable dm. (a): Damage initiated at displacement around 1.0562 mm. (b): Whole

cross section are damaged at displacement around 1.1046 mm.
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(a) Displacement = 1.1038 mm

(b) Displacement = 1.1040 mm

Figure 15: Contours for probability (Pr(Both failure)) of element failure. (a): Crack initiated at displacement around 1.1038

mm. (b): Whole cross section failure at displacement around 1.1040 mm.
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5. Conclusions

A significant challenge for modelling the progressive damage behaviour of composite structures is the

high computational cost. In this paper, an efficient multiscale framework based on surrogate modelling for

composite materials considering progressive damage behaviour was proposed. This approach uses a surrogate

model to represent the nonlinear effective stress-strain relationship and the possible failure information.345

Firstly, mesoscale unit cell modelling under designed load cases was performed to obtain the sampling data

including effective stress/strain and damage parameters for the surrogate model. Artificial neural network

algorithms were employed to construct the surrogate model by conducting regression for the constitutive

law and classification for the damage information. The trained ANNs were deployed via an Abaqus user

subroutine UMAT for use within finite element analysis. To demonstrate the proposed method, the analysis350

of an open-hole laminated plate under in-plane tension was performed using the surrogate model, and

compared with the results of conventional 3D finite element analysis. The proposed model was found

to offer huge computational benefits over conventional FE models, while maintaining sufficient levels of

accuracy. Acting as a general material property database, the presented surrogate model is reusable for

other structures made of the same material. However, the adopted neural network for regression requires a355

bijective function (one-to-one correspondence) between the input and output sampling dataset, and therefore

it is only applicable for monotonic loading scenarios. Further investigation is needed for non-monotonic

problems like cyclic loading.
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