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Abstract  
 
Background and Aim:   Trimethoprim-sulfamethoxazole (TMP-SMX) is an important cause of 

idiosyncratic drug induced liver injury (DILI), but its genetic risk factors are not well understood. 

We investigated the relationship between variants in the HLA Class I and II genes and well 

characterized cases of TMP-SMX DILI.  

Methods: European American and African American persons with TMP-SMX DILI were 

compared to respective population controls. HLA sequencing was performed by Illumina MiSeq 

for cases. HLA genotype imputation with attribute bagging (HIBAG) program was used to 

impute HLA alleles for controls. Allele frequency difference between cases and controls was 

tested by Fisher exact tests per ethnic group. For European Americans, multivariable logistic 

regression with Firth penalization was used to test HLA allelic effect after adjusting for age and 

the top two principal components. Molecular docking was performed to assess the HLA binding 

with TMP and SMX.   

Results:  The European American subset had 51 cases and 12,156 controls, while the African 

American subset had 10 cases and 5,439 controls.  Four HLA alleles were significantly 

associated in the European American subset, with HLA-B*14:01 ranking at the top (OR: 9.20, 

95% CI: 3.16-22.35, p=0.0003) after covariate adjustment. All HLA-B*14:01 carriers with TMP-

SMX DILI possessed HLA-C*08:02, another significant allele (p=0.0026). This pattern was 

supported by HLA-B*14:01-HLA-C*08:02 haplotype association (p=1.33x10
-5

). For the African 

Americans, HLA-B*35:01 had 2.8-fold higher frequency in cases than in controls, with five of 10 

patients carrying this allele. Molecular docking showed Cys
67

 in HLA-B*14:01 and Phe
67

 in HLA-

B*35:01 to be the predictive binding sites to SMX metabolites.  

Conclusion: HLA-B*14:01 is associated with TMP-SMX DILI in European Americans, and HLA-

B*35:01 may be a potential genetic risk factor for African Americans.  
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Introduction 

 

Trimethoprim-sulfamethoxazole (TMP-SMX) is a fixed combination synthetic antimicrobial that is 

commonly used to treat various bacterial infections and as a prophylaxis against opportunistic 

infections
(1)

. TMP-SMX use has been associated with life-threatening and presumed immune-

mediated idiosyncratic adverse drug reactions such as Stevens-Johnson syndrome (SJS), toxic 

epidermal necrolysis (TEN), drug-reaction with eosinophilia and systemic symptoms (DRESS) , 

severe drug induced liver injury (DILI), and blood dyscrasias
(2)

. TMP-SMX is among the top 5 

leading causes of DILI in the United States
(3)

. The risk factors for liver injury associated with 

TMP-SMX are largely unknown, other than that they are more common among African-

Americans and those infected with human immunodeficiency virus
(1, 4)

. The pattern of liver injury 

associated with TMP-SMX is typically cholestatic or mixed, although severe hepatocellular injury 

and acute liver failure have been reported as well
(5)

 

Immunogenetic factors have been increasingly shown to play an important role in the 

pathogenesis of severe immune mediated adverse drug reactions including DILI
(6)

. Previous 

studies have identified several genetic variants, especially in the HLA region associated with 

any-cause DILI or liver injury due to specific drugs
(7-10)

. Variants in the HLA region have also 

been linked to a few TMP-SMX induced adverse reactions. A Turkish study found a significantly 

higher frequency of the HLA-A*30, HLA-A*30-HLA-B*13-Cw6 haplotype, and HLA-B*55 among 

42 patients with TMP-SMX induced fixed drug eruption as compared to 2,378 healthy blood 

donors
(11)

. In another study consisting of 43 Thai patients with TMP-SMX induced SJS and TEN 

and 91 TMP-SMX tolerant controls, HLA-B*15:02, HLA-C*06:02, and HLA-C*08:01 were found 

to be significantly associated with severe cutaneous adverse reactions
(12)

. To our knowledge, 

there have been no studies to date which attempted to elucidate the genetic basis underlying 

liver injury caused by TMP-SMX using GWAS or targeted HLA allelic association analysis.  

The main objectives of this study were to investigate the HLA allele association with TMP-SMX 

induced liver injury in a well-defined cohort of European Americans and African Americans 

enrolled into the Drug Induced Liver Injury Network (DILIN) Prospective and Retrospective 

studies.   

Materials and Methods  

Study Participants:  Individuals aged ≥ 2 years of age with suspected DILI and meeting 

predefined eligibility criteria were enrolled into the DILIN Prospective (NCT00345930) and 
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Retrospective (NCT00360646) studies.  The designs of these two studies have been previously 

published 
(13, 14)

. In brief, written informed consent were obtained from individuals with acute liver 

injury suspected due to prescription, over-the-counter, or herbal and dietary supplements prior 

to enroll at multiple centers throughout the United States. Our study followed the ethical 

guidelines of the 1975 Declaration of Helsinki and was approved by the Institutional Review 

Board of each study site. Upon recruitment, participants underwent systematic evaluation for 

competing etiologies and all cases were adjudicated for causality by structured expert 

consensus. The causal relationship between suspected medication(s) and the liver injury 

episode was categorized into definite (>95% likelihood), highly likely (76-95% likelihood), 

probable (51-75% likelihood), possible (26-50% likelihood), and unlikely (≤25% likelihood) (14).  

Cases included in this study were adjudicated to have definite, highly likely or probable DILI due 

to TMP-SMX, referred to as high confidence DILI cases. For this study’s purposes, instead of 

self-reported race and ethnicity, we utilized the genetic ancestry inferred by genome-wide single 

nucleotide polymorphism (SNP) data from DILIN and 1000 genomes project
(15) 

(Supplementary 
Materials). Of 1,916 DILI patients, 86 (4.5%) were suspected to have DILI due to TMP-SMX 

with 72 patients classified as high confidence cases. Based on genetic inferred ethnicity, these 

patients were then grouped to 51 European Americans, 10 African Americans, 6 Hispanics, 4 

Asians, and 1 other (Supplementary materials Section I, Table S2). In this study, the 51 

European American and 10 African American DILI cases were analyzed. Participants in this 

paper have been included in other publications from the DILIN 
(16)

. 

Study design and HLA data: We utilized a case-control study design to identify HLA alleles 

that may play a role in the risk of developing TMP-SMX DILI in European Americans and African 

Americans, respectively. Due to the lack of control data in DILIN, considering the low incidence 

rate of DILI in the population, we used large population cohorts as controls to overcome the 

potential bias of including potential subjects with DILI events. With the approval from NCBI 

dbGaP, we obtained the GWAS data from eMERGE-I: Genome Wide Association Studies of 

Network Phenotypes (phs000360.v3.p1) and PAGE: The Charles Bronfman Institute for 

Personalized Medicine BioMe BioBank (phs000925.v1.p1). The eMERGE-1 GWAS dataset 

consisted of 17,045 subjects who were predominantly Americans with European ancestry, while 

the PAGE GWAS dataset consisted of 12,932 subjects with diverse racial backgrounds. 

Genotyping platforms were Illumina Human 660W Quad for eMERGE-1 and MEGA for PAGE. 

Similarly, we used genome-wide SNP data to infer ethnicity for each dataset. This led to 12,156 
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European Americans from eMERGE-I and 5,439 African Americans from PAGE to serve as 

controls.  

For TMP-SMX DILI cases, HLA alleles were determined from the deep sequencing of HLA 

Class I and II genes using Illumina MiSeq (details in Supplementary Materials). For population 

controls, we utilized the GWAS SNPs to impute HLA alleles in HLA Class I and II genes for 

European Americans and African Americans, respectively. Specifically, four-digit HLA alleles 

were imputed based on the SNPs in the MHC region in chromosome 6 using the HLA genotype 

imputation with attribute bagging (HIBAG) program
(17)

. All analyses were conducted for 

European Americans (51 cases vs. 12,156 controls) and African Americans (10 cases vs. 5,439 

controls), respectively.  

Statistical Analysis: Descriptive statistics for demographic and patient characteristics were 

computed for 51 European American and 10 African American TMP-SMX DILI cases, 

respectively. We presented frequency (percentage) for categorical variables and median 

(interquartile range) for continuous variables. Allele frequencies (AF) and carriage frequencies 

(CF, proportion of patients carrying the allele) of all four-digit HLA alleles were computed for 

cases and controls, respectively, for each ethnic group. To evaluate the accuracy of imputed 

HLA alleles in controls, we compared the AF of imputed HLA alleles to population AF available 

from BeTheMatch
(18)

 and AFND
(19)

 for European Americans and African Americans, 

respectively. We set an arbitrary threshold to exclude imputed HLA alleles that have an absolute 

AF difference from population AF greater than 0.05. Since HLA alleles were determined by all 

variants in the coding sequence of the gene, this reduced variants to one marker with multiple 

alleles for each HLA gene (e.g., HLA-A*, HLA-B*, etc). Therefore, association tests were 

performed for a single allele at a time. Considering rare alleles will have low statistical power in 

single-allele association test, we excluded ultra-rare HLA alleles that have either allele count < 2 

in TMP-SMX DILI cases or < 10 in controls.  

For allelic association tests, each four-digit HLA allele was coded as 0, 1, or 2 based on the 

number of the allele an individual carried. The Fisher’s exact test was used to test AF 

differences between cases and controls for each HLA allele. For the European American 

subset, multivariable logistic regression with Firth penalization for rare events (Firth logistic 

regression) was used to test the association between each HLA allele and DILI with covariate 

adjustment. For covariate selection, univariate Firth logistic regression was performed for age, 

sex, and PC1 to PC10 individually first. We selected the top three variables meeting p<0.05 as 
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covariates. Furthermore, since eMERGE-1 released age data in decades, we categorized age 

to three levels (1: < 40 years; 2: 40-69 years; 3: >69 years). False discovery rate (FDR) by 

Benjamini-Hochberg 
(20)

 was computed to correct multiple testing. Significant HLA alleles were 

determined based on FDR < 0.15 from the multivariable Firth logistic regression analysis. To 

delineate the relationship among the significant HLA alleles, we conducted conditional analyses 

by adjusting the most significant HLA allele along with other covariates. For the African 

American dataset, due to 10 cases only, we did not pursue multivariable regression analysis. 

Instead, we conducted Fisher exact test only and highlighted alleles meeting p<0.05.  

Several secondary analyses were performed to understand the top HLA alleles further. First, 

haplotype association was tested for two and three gene combinations using the score statistics 

in the haplo.stats program 
(21)

. Second, using the NetMHCpan-2.8 algorithm in MHCcluster (22), 

HLA alleles in the gene of interest were clustered based on their predicted peptide-binding 

specificity. We then tested the association between each allelic cluster and TMP-SMX DILI. 

That is, HLA alleles in the same cluster were coded as the same marker and then the same 

association analysis as described above were followed. Third, we checked if the HLA allele of 

interest is present in persons with high confidence DILI due to non-antibacterial sulfonamides 

enrolled into the DILIN studies.  Fourth, to evaluate if the HLA allele of interest is specific to 

TMP-SMX subset, we compared CF of the HLA allele of interest among DILIN drug groups that 

had at least 10 high confidence DILI cases. Finally, we tested if the HLA allele of interest is 

associated with the any-cause DILI for the corresponding ethnicity.  

Replication of top HLA alleles: We were able to identify five European Americans with TMP-

SMX and three patients with TMP induced liver injury enrolled in the iDILIC consortium to 

evaluate our findings in DILIN. Causality assessment was performed as previously reported 
(23)

. 

The cases were previously analyzed as a part of the broad GWAS on susceptibility to DILI 
(24)

. 

Amino Acid association analysis: We first obtained the AA sequence alignment of all 

available HLA alleles in the same HLA gene from the Immuno Polymorphism Database
(25)

. We 

then identified a set of polymorphic AA positions within the binding site. Using the HLA allele of 

interest as the reference allele, we converted the genotypes of the HLA allele to AA residue 

pairs of all polymorphic AA positions based on if the reference AA residue is present. In other 

words, assuming K polymorphic AA positions identified for a HLA gene, HLA genotype data of 

each subject is recoded as a vector of K markers with 0, 1, or 2 based on the number of 

reference AA residues present at the AA position. The same association tests, as described 
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above for HLA alleles, were performed for each polymorphic AA position for European 

Americans and African Americans, respectively.  

Molecular Docking: Due to the lack of crystal structure of HLA-B*14:01, an atomic model of 

HLA-B*14:01 was generated based on the crystal structure of HLA-B*14:02, 99.6% identical, 

PDB code 3BVN 
(26)

 using SWISS-MODELLER 
(27)

. The HLA-B*14:01 model and HLA-B*35:01 

crystal structure, PDB 6BJ8
 (28)

, were used for molecular docking. AutoDock Tools was used for 

molecular docking of trimethoprim and sulfamethoxazole with AutoDock Vina
(29)

 (e.g., add H, 

generate charges for each atom to be used in scoring). Scoring grids were 20 × 20 × 20 Å, and 

centered on 3 sites within the antigen binding clefts of HLA-B*14:01 and HLA-B*35:01, including 

sites corresponding to the Cα of the first peptide position (P1), Cα of the fifth peptide position 

(P5, the middle of the antigen binding cleft), and Cα of the terminal peptide position (P9). TMP 

and SMX were docked with exhaustiveness set to 10. The top 8 scoring orientations were 

output and compared. Sulfonamide was manually positioned in the modeled antigen binding 

cleft of HLA-B*14:01 with PyMol, which was used to generate molecular graphics (The PyMOL 

Molecular Graphics System, Version 1.8 Schrödinger, LLC.).  

Results  

From September 2004 through January 2019, the DILIN has enrolled a total of 2,256 

participants with suspected DILI and 1,916 of them had undergone causality adjudication and 

had their HLA genes sequenced (Figure 1). There were 86 participants with suspected DILI in 

whom TMP-SMX was the primary implicated agent. Upon adjudication, 72 were deemed to 

have high-confidence DILI events (causality scores of definite, highly likely, or probable) with 51 

European Americans and 10 African Americans.  Table 1 describes the summary statistics for 

selected clinical characteristics of European Americans and African Americans, respectively. 

The median latency was longer in European Americans (25 days) than in African Americans 

(14.5 days).  While the pattern of liver injury was evenly distributed among hepatocellular, 

cholestatic, and mixed categories in European Americans, it was predominantly hepatocellular 

in African Americans.  Eleven patients (22%) of European Americans had peripheral 

eosinophilia but none appeared in African Americans. While a cutaneous rash was commonly 

reported (European Americans 47%, African Americans 40%), there were no reported instances 

of Stevens-Johnson syndrome in our TMP-SMX DILI patients.  

We first examined the quality of imputed HLA alleles in controls: the eMERGE-1 and PAGE 

data. We identified four class II alleles in European Americans and seven class II alleles in 
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African Americans with AF deviating from population AF more than 0.05 (Supplementary Table 
S3). These alleles were excluded from the association analysis. In addition, 114 ultra-rare HLA 

alleles in European Americans and 130 in African Americans were excluded. This led to 85 

alleles in European Americans and 26 alleles in African Americans remained for interrogation in 

this study. 

HLA allelic association: Table 2 summarizes the top HLA alleles associated with TMP-SMX 

DILI for European Americans and African Americans, respectively. In European Americans, four 

Class I HLA alleles were considered significant with HLA-B*14:01 ranking at the top after adjusting 

for covariates and multiple testing. The AF of HLA-B*14:01 in cases was about 5.5-fold higher 

than in controls (AF=0.049 vs. 0.009, Fisher p=0.002). The effect size of HLA-B*14:01 on TMP-

SMX DILI was estimated with an odds ratio (OR) of 9.20 (95% confidence interval (CI): 3.16-

22.35, adjusted p=0.0003, FDR=0.024 based on 85 alleles tested). The other three top HLA 

alleles were HLA-A*34:02, HLA-C*08:02, and HLA-B*27:02. The OR estimates were unstable 

with large confidence intervals for both HLA-A*34:02 (95% CI = 5.17-320.43) and HLA-B*27:02 

(95% CI= 2.50-48.04), which is likely due to low AF in both cases and controls. On the other hand, 

HLA-C*08:02, a relatively common allele (AF=0.03 in controls), had the most stable effect size 

estimate (narrower CI) among the four top alleles (OR (95% CI) = 3.78 (1.66-7.62), adjusted 

p=0.0026). However, once we adjusted for the effect of HLA-B*14:01, HLA-C*08:02 was no longer 

significant (p=0.230). This was due to the fact that all five patients carrying HLA-B*14:01 also 

carry HLA-C*08:02 (Supplementary Table S4).  

Given the rarity of the HLA-B*14:01 allele in the European American general population 

(population AF=0.008), we did not expect any carrier in the five TMP-SMX DILI cases from iDILI. 

However, instead, we found that one TMP-SMX DILI case carried the HLA-B*14:01 allele, a 

higher AF than expected (AF=0.1). Interestingly, this case with HLA-B*14:01 also carried HLA-

C*08:02. None of the five TMP-SMX iDILI cases carried HLA-A*34:02 or HLA-B*27:02. Further, 

among three TMP cases in iDILI, they did not carry HLA-B*14:01 or HLA-B*14:02. 

For African American subset, three HLA alleles showed nominally significant AF difference 

(Fisher p < 0.05) (Table 2). Among them, HLA-B*35:01 ranked at the top with 2.8 fold higher AF 

in cases than controls (AF: 0.25 vs. 0.087; p=0.026). More specifically, five out of 10 TMP-SMX 

DILI cases carried HLA-B*35:01. Both HLA-A*68:02 and HLA-DPB1*04:01 had four allele 

counts from 10 African American patients.  HLA-A*68:02 was present in three TMP-SMX 
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patients with one patient carrying homozygous HLA-A*68:02, while HLA-DPB1*04:01 was 

present in four patients with heterozygous HLA-DPB1*04:01.  

HLA-B*14:01 haplotype association: Haplotypes of HLA-B*14:01 was assessed for the 

following combinations of HLA Class I genes: A-B, B-C, and A-C-B in the European American 

subset. The combinations of HLA-A*32:01, HLA-C*08:02, and HLA-B*14:01 were the most 

promising HLA-B*14:01 haplotypes shown significant association with DILI (Supplementary 

Figure S3). The HLA-C*08:02-HLA-B*14:01 haplotype (frequency: 0.05, p=2.79x10
-6

) is more 

common than the other two haplotypes (A-C and A-C-B combinations; frequency: 0.02) in TMP-

SMX DILI cases, which can be explained by all five HLA-B*14:01 carriers carrying HLA-C*08:02 

but only two HLA-B*14:01 carriers having HLA-A*32:01 (Supplementary Table S4). 

HLA allelic cluster association: Figures 2A and 2B depict the HLA allelic clusters by peptide 

binding for European Americans and African Americans, respectively. For European Americans, 

the HLA-B*14:01 and HLA-B*14:02 cluster was the only cluster that showed significant 

association with TMP-SMX DILI (adjusted p=0.0028). In African Americans, the cluster of HLA-

B*35:01, HLA-B*53:01, and HLA-B*51:01 had a significant higher cluster frequency in cases 

than controls (frequency: 0.55 vs. 0.23, Fisher p=0.002) (Table 3).  

Amino Acid association: In the European American subset, a total of 45 AA positions in the 

binding sites of HLA-B were aligned, where 28 AA positions were polymorphic. HLA-B*14:01 

and HLA-B*14:02 had identical AA residues in all sites except position 11 which is located at the 

carboxy terminal end of the first β strand on the floor of the antigen binding cleft, forming contact 

with the α1 helix (not oriented towards the peptide). Among all polymorphic AA residues in HLA-

B*14:01, AA residues at positions 67 (Cys
67

: Cysteine), 97 (Trp
97

: Tryptophan), and 163 (Thr
163

: 

Threonine) showed significant association with DILI (Table 4). Trp
97

 was present only in HLA-

B*14:01 and HLA-B*14:02 with estimated effect size of OR of 3.8 (95% CI: 1.7-7.6) (adjusted 

p=0.003). Cys
67

 was present in HLA-B*14:01, HLA-B*14:02 and nine other HLA-B* alleles with 

OR (95% CI) = 2.2 (1.2-3.7) (adjusted p=0.008), while Thr
163

 was present in HLA-B*14:01, HLA-

B*14:02, and 15 other B* alleles with OR (95% CI) =1.9 (1.2-3.1) (adjusted p=0.007). 

In the African American subset, among the same 45 AA residues in the binding sites, there were 

26 polymorphic AA residues in the available HLA-B alleles. The AA residues at positions 63 

(Asn
63

: Asparagine) and 67 (Phe
67

: Phenylalanine) in HLA-B*35:01 reached the nominal 

significance threshold (Table 4). Phe
67

, present in HLA-B*35:01, HLA-B*08:01, and HLA-
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B*51:01, ranked at the top with a two-fold higher frequency in cases than in controls (frequency: 

0.55 vs. 0.25, p=0.007).  

Molecular docking of Sulfamethoxazole or Trimethoprim with B*14:01 and B*35:01:  For 

HLA-B*14:01, molecular docking predictions of non-covalent interactions (H bonds and van der 

Waal contacts) showed that neither SMX nor TMP were predicted to bind with high affinity to the 

antigen binding cleft of HLA-B*14:01. The estimated DG values were -6.7 kcal per mole for SMX 

and -6.4 kcal per mole for TMP (<−10 kcal per mole suggests high affinity binding, −6.5 to −9.0 

moderate affinity, >−6.5 kcal per mole, low affinity). However, drug metabolites and peptides 

may form intermolecular contacts with HLA-B*14:01 by covalent interactions. It is notable that 

HLA-B*14:01 exhibited a chemically reactive side chain located at a site in the antigen binding 

cleft critical for peptide binding: a cysteine at position 67 (Cys
67

), the residue detected in our 

amino acid analysis. As the cysteine sulfhydryl group is often in a reactive thiolate form in cells, 

free unpaired cysteine residues have the potential to form covalent bonds with reactive groups 

(e.g., with peptides that contain cysteine, or other molecules with reactive groups). SMX is 

known to be metabolized into reactive forms, such as sulfonamide, that have the potential to 

bind Cys
67

 in the antigen binding cleft of HLA-B*14:01. These covalent bonds may partially 

explain the association between TMP-SMX and HLA-B*14:01, as metabolite binding at this site 

would result in altered peptide presentation to T cells. Based on the location of the reactive 

group in sulfonamide and the free sulfhydryl of Cys
67

 in the HLA-B*14:01 model, SMX was 

accommodated in a site comprised of residues associated with TMP-SMX DILI (Cys
67

, Trp
97

 and 

Thr
163

, Figures 3A and 3B). These data suggested functional interactions between HLA antigen 

binding clefts and reactive SMX metabolites.  

For HLA-B*35:01, molecular docking predicted SMX to bind better than TMP (estimated DG = -

7.6 kcal/mol for SMX, versus DG = -6.9 kcal/mol for TMP) (Figures 3C and 3D). SMX was 

predicted to form hydrogen-bond interactions with residues in the antigen-binding clefts of HLA-

B*35:01 that are identical in HLA-B*15:02, a previously identified HLA allele associated with 

TMP-SMX induced severe cutaneous adverse drug reactions such as SJS/TEN in a Thai 

population
(12)

.   

HLA-B*14:01 and HLA-B*35:01 in DILI patients due to other agents: In the European 

American subset, among 20 drugs with at least 10 DILI cases, only six drug subsets, including 

TMP-SMX, have HLA-B*14:01 present (Supplementary Table S5). HLA-B*14:01 was the most 

prevalent in TMP-SMX with 5 of 51 patients carrying HLA-B*14:01 (CF=0.098). Isoniazid and 
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minocycline rank second with two of 32 patients carrying HLA-B*14:01 (CF=0.063). We did not 

find HLA-B*14:01 in seven DILI patients due to non-antibacterial sulfonamides (3 celecoxib, 3 

sulfasalazine, and 1 zonisamide DILI patients) (Supplementary Table S6). We further tested if 

HLA-B*14:01 is associated with DILI regardless of the causal drugs by performing multivariable 

logistic regression with age, gender, and PC1 through PC10 adjusted.  Based on 903 high 

confidence DILI cases and 12,156 controls, the association between HLA-B*14:01 and DILI did 

not reach the significance level (OR (95% CI) = 1.58 (0.96-2.50), p=0.073).  

For HLA-B*35:01 in the African American subset, three drug subsets, including TMP-SMX, have 

at least 10 DILI cases. HLA-B*35:01 was the most prevalent in the TMP-SMX cases, with 5 of 

10 patients carrying HLA-B*35:01 (CF=0.5). The other two drugs were Isoniazid with 2 of 19 

DILI patients carrying HLA-B*35:01 (CF=0.105), and amoxicillin with clavulanic acid with one of 

10 patients carrying HLA-B*35:01 (CF=0.1). Among two African American patients with DILI 

caused by Darunavir, a non-antibacterial sulfonamide, one patient carried HLA-B*35:01 

(Supplementary Table S6). We also tested if HLA-B*35:01 is associated with overall DILI, 

regardless of the causal drugs, on 124 cases and 5,439 controls by adjusting age and PC1, 

HLA-B*35:01 did not have a significant effect on overall DILI (OR (95% CI) = 1.06 (0.35-2.42), p 

>0.99).  

Patient characteristics for HLA-B*14:01 and HLA-B*35:01 carriers and non-carriers: We 

observed slightly longer latency of liver injury (median 29 vs. 21) and higher proportion of 

peripheral eosinophilia (40% vs. 16%) in TMP-SMX DILI patients with HLA-B*14:01 than those 

without the allele, but the differences were not statistically significant. No significant differences 

were found for liver biochemistries at onset and at peak, pattern of liver injury, recovery of liver 

biochemistries, severity and outcomes either (Supplementary Table S7).  Similarly, the 

characteristics and the outcomes of African Americans with and without HLA-B*35:01 were not 

significantly different from each other.  

Discussion 

Our study found that HLA-B*14:01 was associated with TMP-SMX related DILI in European 

Americans with the risk being 9.2-fold higher among individuals carrying the allele than those 

without. The HLA-B*14:01 allele was about 5.5-fold more frequent in European American 

patients with TMP-SMX DILI than controls. This large frequency difference was also present in 

one of five TMP-SMX DILI validation cases carrying HLA-B*14:01 from the iDILIC cohort.  For 

the African American subset, HLA-B*35:01 ranked at the top as a potential risk factor for TMP-
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SMX DILI. While only 10 African American TMP-SMX DILI patients are available in our dataset, 

half of them carried HLA-B*35:01, a much higher allele and carriage frequencies than in the 

control group. Although replication studies with a larger sample size are needed, our results are 

promising and consistent with previous genetic studies of drug-specific DILI that identified HLA 

Class I and II genes
(8, 30, 31)

 as genetic risk factors for DILI.   

In the European American subset, HLA-A*34:02, HLA-B*27:02, and HLA-C*08:02 were the 

other top alleles that showed a significant association with TMP-SMX DILI. However, we 

considered HLA-B*14:01 as the most promising risk factor for the following reasons. First, HLA-

B*14:01 remained significant after correcting for multiple testing. Second, both HLA-A*34:02 

and HLA-B*27:02 were present in only two TMP-SMX DILI patients. Together with their low 

frequency in controls, the estimated effect sizes (OR) were unstable, as shown by the large 

95% CI. Therefore, further replication is definitely needed. Third, while HLA-C*08:02 is the most 

common allele among these four top alleles, HLA-C*08:02 is known to be in strong linkage 

disequilibrium with B*14:01/B*14:02 
(32)

. In our data, all eight HLA-C*08:02 carriers carried either 

HLA-B*14:01 (five patients) or HLA-B*14:02 (three patients). Since HLA-B*14:02 did not show 

association with TMP-SMX DILI, the association signal of HLA-C*08:02 is more likely dependent 

on HLA-B*14:01. As we demonstrated in the conditional analysis, after adjusting for the effect of 

HLA-B*14:01, the significant effect of HLA-C*08:02 on TMP-SMX DILI was diminished.  

HLA-B*14:01 and HLA-B*14:02 are highly correlated in terms of their predicted peptide-binding 

specificity. Despite this similarity, HLA-B*14:01 has much lower frequency than HLA-B*14:02 in 

the general population (e.g, AF= 0.008 vs. 0.03 in European Americans). Interestingly, within 

the TMP-SMX DILI subset, we observed an opposite phenomenon where HLA-B*14:01 had 

higher frequency than HLA-B*14:02 (AF=0.049 vs. 0.029). Further, the HLA-B*14:02 frequency 

was similar between cases and controls. This implied that the effect of HLA-B*14:01 was 

independent from HLA-B*14:02.  To date, we have not found any reports linking HLA-B*14:01 to 

DILI in general or to drug-specific cases. Among all causal drugs in the DILIN cohort, HLA-

B*14:01 was more prevalent in the TMP-SMX subset than in other drug-specific subsets or the 

subset caused by non-antibacterial sulfonamide like drugs. Therefore, if the effect HLA-B*14:01 

on DILI risk we observed in this study is correct, it is specific to TMP-SMX only (and likely to 

sulfamethoxazole).  

In the literature, the HLA-B*14:01 allele has been linked to protection against HIV progression 

and with lower plasma viral levels (pVL) in HIV patients 
(32, 33)

. Different AA residues at a single 
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AA position can also a play role (protective or risk) in disease outcomes as illustrated in HIV 

related studies 
(33)

. In the current study, the main identified risk allele, HLA-B*14:01, has an 

unpaired cysteine at position 67.  This provides clues not only to a shared epitope with other 

HLA alleles that could in theory be implicated in risk of DILI but also a clue to the structure of the 

reactive metabolites and specific groups of SMX such as sulfonamide RS(O)NR'2 that might be 

expected to covalently bind with host proteins.  

In the smaller group of African American persons with TMP-SMX related DILI, HLA-B*35:01 

appeared to be an important HLA risk allele. HLA-B*35:01 was previously reported to be 

associated with DILI caused by Polygonum multiflorum, a Chinese herbal medicine 
(34)

, in 

Chinese patients. However, the relationship between HLA-B*35:01 and DILI with other drugs 

has not been reported. HLA-B*35:01 is known to share peptide-binding specificities with HLA-

B*51:01 and HLA-B*53:01. Our allelic cluster analysis also showed that the cluster of these 

three alleles had stronger association with TMP-SMX DILI than HLA-B*35:01 alone. The two 

significant AA residues in positions 63 (Asn
63

) and 67 (Phe
67

) identified are also present in HLA-

B*51:01 and HLA-B*53:01. Therefore, it is likely that these three alleles are equally important, 

but this conclusion deserves further study in large cohorts of African Americans with DILI. On 

the other hand, molecular docking led us to HLA-B*15:01, which shares nearly identical peptide 

binding preference as HLA-B*35:01. Since HLA-B*15:01 was reported to associate with 

SJS/TEN due to TMP-SMX in Thai population, the similarity in the antigen-binding cleft between 

these two alleles offer potential clues to explain the role of HLA-B*35:01 in TMP-SMX DILI in 

African Americans. 

Despite these comprehensive analyses suggesting HLA-B*14:01 and HLA-B*35:01 as risk 

factors for TMP-SMX induced DILI in European Americans and African Americans, respectively, 

the limitations in this study need to be considered. First, the numbers of cases were limited, a 

common problem in most drug-specific genetic association studies. Using our European 

American subset for a post-hoc power calculation, given 51 cases and 12,156 controls and 

assuming AF of the risk allele at 0.009 (same as HLA-B*14:01) and complete LD between the 

risk allele and the testing allele, we  have 80% power to detect genetic relative risk at 5.9 for an 

allele at the same AF. This calculation implies that our sample size was sufficient to detect HLA-

B*14:01 but will require more samples to detect other HLA risk alleles with smaller effect sizes. 

In addition, because of this sample size limitation, several approaches were used to enhance 

the analysis quality, including using large population control datasets for comparison, Fisher 

exact tests to accommodate the low counts, and logistic regression models with Firth 
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penalization to reduce the potential bias of parameter estimates. With these strategies, we 

expected a reduced chance of biased findings. Second, while HLA genotype data in DILI 

patients were obtained from advanced sequencing techniques, the HLA data in population 

controls (eMERGE-1 and PAGE) were obtained fromimputation of SNPs in the MHC region. 

This may raise concerns if HLA calls are inaccurate in the control group. The imputation quality 

by various programs have been compared before. Karnes et al.
(35)

 reported 97.6% concordance 

rate for European Americans and 92.9% concordance rate for African Americans using HIBAG. 

Particularly, alleles in Class I genes had over 98% concordance rates. Therefore, with the large  

sample size of the control groups used in this study, the impact of minor imputation errors on 

the result should be small, particularly for the Class I genes. Third, binding interactions between 

SMX and TMP were predicted, rather than being experimentally determined. Moreover, 

predictions of SMX and TMP contact with HLA-B*14:01 were based on an atomic model (as 

opposed to a solved crystal structure). However, HLA-B*14:01 is nearly identical to the crystal 

structure of HLA-B*14:02, with only one difference in α1 and α2 domains, residues 1-180, that 

form the antigen binding cleft: (Ser
11

 vs. Ala
11

). Since the side chain at this position is not 

oriented toward peptide ligands (in class I HLA molecules, the side chain at position 11 is 

oriented towards the α1 helix), this polymorphic difference between HLA-B*14:01 and –B*14:02 

is unlikely to influence reduce confidence in modeling the antigen binding cleft of HLA-B*14:01. 

Overall, the results from our molecular docking may to help us understanding interactions with 

SMX and its metabolites.  

Given the rarity of liver injury due to TMP-SMZ and the relatively small effect size for the 

associated HLA alleles, our observations are not necessarily immediately clinically actionable 

from the perspective of pre-prescription screening to avoid a clinical event. However, our 

observations may help to both inform the immunopathogenesis of DILI related to trimethoprim-

sulfamethoxazole and also help in the risk stratification and early diagnosis of such patients. 

Indeed, in future state where integrated health care systems (e.g., Geisenger) undertake whole 

exome or whole genome sequencing of all their patients, our genetic association findings may 

assist in the thorough evaluation of risk - benefit ratios and help promote safe prescription 

practices.  
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Table 1:  Selected clinical and laboratory characteristics for TMP-SMX DILI patients by 
ethnicity 
  European Americans 

(N=51) 
African-Americans 

(N=10) 
Age (years), mean (SD)) 48 (20) 45 (18) 

Females, n (%) 29 (57%) 4 (40%) 

BMI (kg/m
2
), mean (33)) 25.8 (6.5) 34.0 (13.5) 

Diabetes mellitus, n (%) 7 (14%) 5 (50%) 

Latency (days in median, IQR) 25 (10, 34) 14.5 (9, 20) 

Jaundice (%) 31 (61%) 4 (40%) 

Liver Biochemistries – Peak values 

   ALT (U/L, mean (SD)) 

   Alk P (U/L, mean(SD)) 

   Total bilirubin (mg/dl, mean(SD)) 

   INR (mean (SD)) 

 

1015 (1719.7) 

481 (294.6) 

10.2 (10.0) 

1.4 (0.8) 

 

798 (671.0) 

485 (685.8) 

10.4 (11.1) 

1.2 (0.25) 

Peripheral eosinophilia (>500/µL), n (%) 11 (22%) 0 (0%) 

Stevens Johnson syndrome, n (%) 0 (0%) 0 (0%) 

Pattern of liver injury, n (%) 

   Hepatocellular 

   Cholestatic 

   Mixed 

 

13 (26%) 

18 (35%) 

20 (39%) 

 

6 (60%) 

3 (30%) 

1 (10%) 

Severity of Liver Injury, n (%) 

  Mild 

  Moderate 

  Moderate-hospitalized 

  Severe 

  Fatal 

 

8 (15.7%) 

15 (29.4%) 

16 (31.4%) 

10 (19.6%) 

2 (3.9%) 

 

2 (20%) 

0 (0%) 

7 (70%) 

1 (10%) 

0 (0%) 

Death, n (%) 2 (3.9%) 0 (0%) 

Liver Transplantation, n (%) 0 (0%) 0 (0%) 

Chronic DILI, n (%) 8 (15.7%) 2 (20%) 

Abbreviations:  ALT, serum alanine aminotransferase; Alk P, serum alkaline phosphatase; 

BMI, body mass index; DILI, drug-induced liver injury; INR, international normalized ratio; IQR, 

interquartile range (25-75%) 
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Table 2: HLA alleles associated with TMP-SMX DILI by ethnic group 
 

*Firth logistic regression adjusted for age, PC2, and PC3; Conditional analysis: Firth logistic regression adjusted for age, PC2, PC3, 
and HLA-B*14:01  
**FDR: False discovery rate by Benjamini-Hochberg method to correct multiple testing of 85 alleles.  
 
 

  Fisher Exact Test  *Firth Logistic Regression  
*Conditional analysis on 
B*14:01 

Race Allele 
Case 
AF 

Contro
l AF 

Fishe
r P  OR (95% CI) 

Adjuste
d P 

**FD
R  OR (95% CI) 

Adjuste
d P 

Europea
n 
America
n B*14:01 0.049 0.009 0.002  9.20 (3.16, 22.35) 0.0003 0.024  --- --- 

 A*34:02 0.020 0.001 0.002  
47.52 (5.17, 
320.43) 0.0012 0.050  

27.25 
(3.85,150.33) 0.002 

 C*08:02 0.078 0.032 0.016  3.78 (1.66, 7.62) 0.0026 0.074  2.11(0.57, 5.56) 0.230 

 B*27:02 0.020 0.002 0.024  
13.53 (2.50, 
48.04) 0.0056 0.119  

14.94 
(2.74,53.53) 0.004 

African 
America
n B*35:01 0.25 0.09 0.026        

 
DPB1*04:0
1 0.20 0.06 0.034        

 A*68:02 0.20 0.05 0.038        



  Li et al.  (21) 
 

 21 

Table 3: Association results between HLA-B allelic cluster and TMP-SMX DILI by ethnic group 
 
Race Alleles in the 

cluster 
Cluster 
Freq: Cases 

Cluster 
Freq: 
Controls 

Fisher P* Adjusted P* 

European 
American 

B*14:01, 
B*14:02 0.078 0.032 0.018 0.0028 
B*57:01, 
B*58:01, B*15:17 0.049 0.046 0.810 0.799 
B*35:02, 
B*35:12, 
B*51:01, 
B*35:01, B*53:01 

0.115 0.115 1 0.604 

B*07:02, 
B*42:01, 
B*81:01, B*55:01 

0.137 0.158 0.683 0.891 

B*37:01, 
B*49:01, 
B*47:01, 
B*13:01, 
B*44:02, 
B*44:03, B*18:01 

0.245 0.217 0.472 0.537 

B*13:02, B*52:01 0.020 0.029 1 0.874 
African 
American 

B*35:01, 
B*53:01, 
B*51:01 

0.55 0.23 0.002 - - - 

B*07:02, B*81:01 0.1 0.1 1 - - - 
B*44:03, B*18:01 0.15 0.08 0.224 - - - 

 
* Fisher P: p values from Fisher exact tests; Adjusted P: p values from Firth logistic regression with covariate adjustment of age, 
PC2, and PC3. 
Note: For African American group, only Fisher exact test was performed. 
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Table 4: Amino acids (AAs) showing significant association with TMP-SMX DILI by ethnic group  
 

   Fisher Exact test  Firth logistic regression* 
Race/Referen
ce HLA allele 

AA 
position 
(residue) 

B* alleles shared the 
same residue  

Case AA 
Freq 

Control 
AA Freq 

 P  OR (95% 
CI) 

Adjusted P 

European 
American 

HLA-B*14:01 

67 (Cys) B*14:01, B*14:02, 
B*15:10, B*15:18, 
B*27:02, B*27:05, 
B*38:01, B*39:01, 
B*39:06, B*39:24, 
B*73:01  

0.18 0.11 0.057  2.2 (1.2,3.7) 0.008 

 97 (Trp) B*14:01, B*14:02 0.08 0.03 0.02  3.8 (1.7,7.6) 0.003 
 163 (Thr) B*14:01, B*14:02, 

B*08:01, B*18:01, 
B*18:02, B*18:13, 
B*18:18, B*37:01, 
B*38:01, B*39:01, 
B*39:06, B*39:24, 
B*41:01, B*41:02, 
B*42:01, B*42:02, 
B*55:01 

0.41 0.27 0.002  1.9 (1.2,3.1) 0.007 

African 
American 

HLA-B*35:01 

63 (Asn) B*14:01, B*14:02, 
B*07:02, B*08:01,  
B*15:10, B*18:01, 
B*38:01, B*39:01, 
B*39:03, B*39:06, 
B*39:10, B*42:01, 
B*42:02, B*51:01 

0.85 0.58 0.02  … … 

 67 (Phe) Phe:  B*08:01, B*51:01, 
B*53:01, B*78:01 

0.55 0.25 0.007  … … 

*Firth logistic regression included covariate adjustment of age, PC2, and PC3
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Figure Legends 
 

Figure 1:  Consort diagram to outline the sample sizes used in this study 

 

Figure 2: HLA-B allele cluster from predicted peptide-binding specificity for European 

American (panel A) and African Americans (panel B). The color key was based on the 

distance between allele binding specificity. Red color (near 0) indicates high similarity on 

binding specificity between alleles, and white (near 1) indicates completely different binding 

specificity. Allele clusters tested for association with TMP-SMX DILI are marked by 

rectangles. 

 

Figure 3: Results of molecular docking. Panels A and B: HLA-B*14:01 exhibited an 

unpaired cysteine at position 67 with the potential to bind reactive SMX metabolite 

sulfonamide. The molecular surface of a model of HLA-B*14:01 is shown in light blue. 

Sulfonamide is shown as sticks, white for carbon, blue for nitrogen, red for oxygen. Cys67, 

Trp97, and Thr163 are shown in red. Panels C and D: Molecular docking predicted interaction 

between SMX and the antigen binding cleft of HLA-B*35:01. The crystal structure of HLA-

B*35:01 is shown (PDB code 6BJ8), colored based on sequence similarity to HLA-B*15:02. 

Blosum62 similarity values are: blue, 40–50, cyan, 50–60, green, 60–70, yellow, 70–80, 

orange 80–90, and red 90–100. Molecular docking (AutoDock Vina, ΔG=-7.6 kcal/mol) 

predicted SMX interaction with residues shared by HLA-B*35:01 and HLA-B*15:02 shown as 

sticks. Predicted H bond interactions are shown as black dashed lines. The position 67 

(Phe67), which we detected in our AA analysis, was not predicted to form contact 

with SMX by molecular docking.
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