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Theory is developed to address the significant problem of electrostatic interactions between
charged polarisable dielectric spheroids. The electrostatic force is defined by particle dimen-
sions and charge, dielectric constants of the interacting particles and medium, and inter-
particle separation distance; and it is expressed in the form of an integral over the particle
surface. The switching behaviour between like charge repulsion and attraction is demon-
strated as depending on the ratio of the major and minor axes of spheroids. When the
major and minor axes are equal, the theory yields a solution equivalent to that obtained for
spherical particles. Limiting cases are presented for non-polarisable spheroids, which describe
electrostatic behaviour of charged rods, discs and point charges. The developed theory rep-
resents an important step towards comprehensive understanding of direct interactions and
mechanisms of electrostatically driven self-assembly processes.
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I. INTRODUCTION

Direct interactions and electrostatic forces often serve
as a basis for novel self-assembly mechanisms, where
the interacting particles combine to form larger ordered
structures, typically when subjected to an external stim-
ulus (solvent polarity, pH factor, irradiation, temper-
ature) and driven by thermodynamic and other con-
straints. Significant advances1 have been reported on
designing nanoparticles with specific shapes, morpholog-
ical features and interfaces that result in directional in-
teractions in order to achieve the desired extended struc-
tures and their functionalities. Breakthroughs in particle
synthesis led to the production of particles in the shape
of rods,2 cones3 and discs, typically containing silica,
metals, metal oxides,4–6 and polymers,7 with high yield
and size/shape selectivity; these include some elegant ex-
amples of rods and ellipsoids of Au-Pt8, CdSe9, gold10,
gibbsite6, and polymer latex.11 These new approaches
to particle synthesis have offered a diverse spectrum of
particle anisotropy and clustering behaviour, including
the formation of low symmetry clusters12 and spheri-
cal self-assembled objects,13 chain-like structures13 and
bundling.14 Equilateral polygonal platelets have been
lithographically fabricated to demonstrate that colloidal
interactions and self-assembly in anisotropic nematic flu-
ids can be effectively tailored through the control over
the particles’ shapes.15

Some additional chemical and biological application
areas reliant on the accurate description of electro-
static interactions between objects with spheroidal, or
near spheroidal, shapes are fullerenes of higher or-
der (e.g. C70),16 complex polyoxometalates (POMs)

a)Author to whom correspondence should be addressed. Electronic
mail: Elena.Besley@nottingham.ac.uk

(e.g. Preyssler-type POMs),17 elliptocytes (abnormally
shaped red blood cells),18 and some proteins.19,20 More-
over, non-sphericity affects the self-assembly of many
other types of nanoparticles,21 the formation photonic
and liquid crystals,22,23 and light scattering.24 There-
fore, it is crucial to understand the correlation between
the shapes of building blocks, the electrostatic interac-
tions between them, and the morphology of the result-
ing structures.25 For example, proteins having different
amino acid sequences can fold into very similar shapes,
and subsequently self-assemble into oligomers and other
hierarchical structures, such as fibres, closed shells, or
tubes.26,27. Further examples are the multicellular tumor
spheroid (MCTS) models for mimicking the microenvi-
ronment of tissues.28 These experiments have shown the
effect of surface charge on nanoparticle penetration into
a MCTS.

Directed self-assembly of polarizable ellipsoids in an
external electric field has been computationally stud-
ied using Monte Carlo simulations of a two point-charge
model of polarizable prolate ellipsoids.29 However, there
have not been corresponding developments towards a
general methodology for treating electrostatic interac-
tions between non-spherical particles. Exact solutions to
this problem have only been presented for a single uni-
formly charged spheroidal shell,30 and where the image
charge method has been used to treat conducting ellip-
soidal particles.31

In this paper, an analytical theory of electrostatic in-
teractions between spheroidal particles has been devel-
oped, building on previous work,32–36 where analytical
expressions have been given for the electrostatic force be-
tween charged, dielectric sphere - sphere32 and sphere -
planar surface systems.33 In these electrostatic models,
the mutual effect of charge is obtained from Gauss’s law,
which couples uniquely the electrostatic potential with
the distribution and magnitude of electric charge on the
surfaces of the interacting objects. The accumulated sur-
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face charge is integrated to obtain an analytical expres-
sion for the electrostatic force acting on interacting ob-
jects at arbitrary separation. The result is a simple series
expression for the force that can be efficiently generalized
for studying interactions not only in vacuum32,33 but also
in solution34 and in electrolytes.35,36 The solution has
been evaluated by comparison with existing solutions for
a range of simple geometries including a point charge
corresponding to a non-polarizable sphere, a charged rod
corresponding to a non-polarizable prolate spheroid and
a disc corresponding to a non-polarizable oblate spheroid.

II. METHODOLOGY

A. Geometry the problem and expansion of the
electrostatic potential

The problem to be addressed involves two dielectric
spheroidal particles, denoted as i = 1, 2 in Fig. 1, of arbi-
trary size and defined by semi-axes ai and ci, permittivity
ki, and carrying an arbitrary charge Qi in a surrounding
dielectric medium of permittivity km. The particles are
placed on the same axis of symmetry z at the distance
R between their centres. The problem is solved in spher-
ical coordinate systems with an origin at the centre of
the spheroids. The distribution of electric potential in-
side and outside the spheroids is described by the Laplace
equation

∆Φ = 0, (1)

which is supplemented by two boundary conditions. The
first assumes continuity of the electric potential on the
surface of the i-th spheroid:

Φi,in|ri=ρi(µi)
= (Φi,out + Φj,out)|ri=ρi(µi)

, (2)

where Φi,in is the potential inside the spheroid, and
Φi,out + Φj,out is the potential outside the spheroid with
contributions from both the i-th and j-th spheroids,
j = 3 − i, ri is the radial coordinate in the spherical
coordinate system with the pole in the center of the i-th
particle, ρi (µi) is the spheroid surface radial coordinate
in the spherical frame system:

ρi (µi) =

(
1− µ2

i

a2i
+
µ2
i

c2i

)−1/2
,

µi = cos θi, θi is a polar angle. The second boundary con-
dition states that the normal component of the dielectric
displacement field is discontinuous due to the presence of
a free charge on the surface of a spheroid:

ki (ni · ∇Φi,in)|ri=ρi(µi)

− km
[
ni · ∇ (Φi,out + Φj,out)

]∣∣
ri=ρi(µi)

=
σi (µi)

ε0
. (3)

Here ni is the unit normal vector on the surface of the
i-th spheroid, σi (µi) is the surface charge density of the
i-th spheroid, and ε0 is the permittivity of vacuum.

The electrostatic potential inside the i-th spheroid,
which satisfies the Laplace equation (1) can be expanded
in terms of Legendre polynomials Pn (µi):

37

Φi,in =

∞∑
n=0

An,ir
n
i Pn (µi). (4)

The potential outside each spheroid that satisfies equa-
tion (1) and vanishes at infinity, takes the form37

Φi,out =

∞∑
n=0

Bn,ir
−n−1
i Pn (µi). (5)

In order to apply boundary conditions (2) and (3) and
determine the expansion coefficients An,i and Bn,i it is
necessary to re-expand the potential (5) and use only one
set of spherical coordinates for each spheroid38

Φj,out =

∞∑
n=0

∞∑
m=0

Bm,j
(m+ n)!

m!n!

×R−m−n−1rni Pn (µi) . (6)

The corresponding derivatives of the electrostatic poten-
tial are

∂Φi,in
∂ri

=

∞∑
n=0

An,inr
n−1
i Pn (µi),

∂Φi,out
∂ri

=

∞∑
n=0

Bn,i (−n− 1) r−n−2i Pn (µi),

∂Φj,out
∂ri

=

∞∑
n=0

∞∑
m=0

Bm,jn
(m+ n)!

m!n!

×R−m−n−1rn−1i Pn (µi) ,

∂Φi,in
∂µi

=
1

1− µ2
i

∞∑
n=0

An,i (n+ 1)

× rni [µiPn (µi)− Pn+1 (µi)] ,

∂Φi,out
∂µi

=

∞∑
n=0

Bn,ir
−2n−1
i (n+ 1)

× rni [µiPn (µi)− Pn+1 (µi)] ,

∂Φj,out
∂µi

=

∞∑
n=0

∞∑
m=0

Bm,j
(m+ n)!

m!n!
R−m−n−1

× (n+ 1) rni [µiPn (µi)− Pn+1 (µi)] .

(7)

B. The case of isolated spheroid

The surface charge distribution σi (µi) is found from
the assumption that the surface of an isolated spheroid
is equipotential:

Φout|r=ρ(µ) = φ0, (8)

where the surface potential φ0 is described as:39,40

φ0 =
Q

4πkmε0

 1√
a2−c2 arctan

√
a2

c2 − 1, a > c;
1

2
√
c2−a2 ln c+

√
c2−a2

c−
√
c2−a2 , c > a.

(9)



Electrostatic interactions between spheroidal particles 3

FIG. 1: A geometric representation of two interacting
dissimilar spheroids. Dielectric constants, permanent
charges, and the semi-axes for spheroids 1 and 2 are

denoted as k1, Q1, a1, c1 and k2, Q2, a2, c2.

Using expansion (5) in (8) gives:

∞∑
n=0

B
′

nPn (µ) ρ−n−1 (µ) = φ0, (10)

where the B′n are constant coefficients corresponding to
an isolated spheroid. Expanding both parts of equation
(10) in terms of Legendre polynomials yields

∞∑
n=0

βknB
′

n ≡ 2φ0δk,0, k = 0, 1, 2, . . . , (11)

where

βkn =

1∫
−1

ρ−n−1 (µ)Pn (µ)Pk (µ) dµ. (12)

Solution of the linear system (11) gives the expansion
coefficients B′n,i. Inside an isolated spheroid with an
equipotential surface the electric field is zero; therefore
the second boundary condition, (3), can be rewritten as

σ (µ) = −kmε0 (n · ∇Φout)|r=ρ(µ). (13)

Using (5) and the expansion coefficients B′n,i, the surface
charge distribution is given by:

σ (µ) = kmε0

∞∑
n=0

B
′

nρ
−n−2 (µ) (n+ 1)

× [(nr + nθµ)Pn (µ)− nθPn+1 (µ)] . (14)

Here and thereafter, the components of the normal vector

n = nr r̂+nθ
√

1− µ2θ̂ on the surface of the spheroid are
defined as

nr =
1√

1 +
(

1
a2 −

1
c2

)2
µ2 (1− µ2) ρ4

,

nθ =

(
1
a2 −

1
c2

)
µρ2√

1 +
(

1
a2 −

1
c2

)2
(1− µ2)µ2ρ4

.

(15)

Note that equation (14) is expressed in a general form
and can be applied to any three dimensional shape with
axial symmetry. In this paper, it is tested against the

known formula for the surface charge density on an iso-
lated spheroid with a uniformly distributed potential39

σi (µi) =
Qi

4πa2cρi (µi)

(
1− µ2

i

a4i
+
µ2
i

c4i

)− 1
2

. (16)

Figure 2 compares the numerical results obtained using
Eq. 14) and the analytical expression (16) for three differ-
ent cases corresponding to the aspect ratio of a : c = 1 : 1
(sphere), a : c = 3 : 4 (prolate), and a : c = 4 : 3 (oblate).
The deviation of the numerical results is within 0.1%,
mainly in the charge deficient areas as compared to the
distribution of charge on the surface of a sphere; thus
demonstrating the reliability of the proposed method.

C. Two spheroids at a finite separation

If two spheroids are located at a finite distance apart,
the boundary condition (2) takes the following form:

∞∑
n=0

An,iρ
n
i (µi)Pn (µi) =

∞∑
n=0

Bn,iρ
−n−1
i (µi)Pn (µi)

+

∞∑
n=0

∞∑
m=0

Bm,j
(m+ n)!

m!n!
R−m−n−1ρni (µi)Pn (µi) . (17)

Here, the electrostatic potential of the j-th spheroid is
re-expanded in a spherical coordinate system with the
origin at its centre using an addition theorem for Leg-
endre polynomials.38 Multiplying both sides of (17) by
Pk (µi) and integrating over the limits −1 to 1 yields:

∞∑
n=0

αkn,iAn,i =

∞∑
n=0

βkn,iBn,i

+

∞∑
n=0

∞∑
m=0

αkn,i
(m+ n)!

m!n!
R−m−n−1Bm,j , (18)

where

αkn,i =

1∫
−1

ρni (µi)Pn (µi)Pk (µi) dµi, (19)

and βkn,i is defined by Eq. (12). The second boundary
condition (3) expanded in terms of Legendre polynomials
takes the form:

∞∑
k=0

CkPk (µi) =

∞∑
k=0

DkPk (µi), (20)

where

Ck =
2k + 1

2

1∫
−1

{
ki (ni · ∇Φi,in)− km

×
[
ni · ∇ (Φi,out + Φj,out)

]}∣∣∣
ri=ρi(µi)

Pk (µi) dµi, (21)
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(a) Sphere (a : c = 1 : 1) (b) Prolate (a : c = 3 : 4) (c) Oblate (a : c = 4 : 3)

FIG. 2: Surface charge distribution on an isolated spheroid: analytical results using Eq. (16) are shown as black
lines, and numerical values obtained by Eq. (14) are shown by circles (sphere), triangles (prolate) and squares

(oblate). The embedded plots represent the relative deviation between the two approaches.

and

Dk =
2k + 1

2
Υk,

Υk =

1∫
−1

σi (µi)Pk (µi) dµi.
(22)

Substitution of the derivatives (7) of the electrostatic po-
tential into Eq. (21) gives:

Ck =
2k + 1

2

{
ki

∞∑
n=0

An,i

[
nΓ

(3)
kn,i − (n+ 1) Γ

(4)
kn,i

]
+ km

∞∑
n=0

Bn,i (n+ 1)
[
Γ
(1)
kn,i + Γ

(2)
kn,i

]
− km

∞∑
n=0

∞∑
m=0

Bm,j
(m+ n)!

m!n!
R−m−n−1

×
[
nΓ

(3)
kn,i − (n+ 1) Γ

(4)
kn,i

]}
, (23)

where the following notation has been introduced:

Γ
(1)
kn,i =

1∫
−1

ρ−n−2i (µi)nr,i (µi)

× Pn (µi)Pk (µi) dµi,

Γ
(2)
kn,i =

1∫
−1

ρ−n−2i (µi)nθ,i (µi)

× [µiPn (µi)− Pn+1 (µi)]Pk (µi) dµi,

Γ
(3)
kn,i =

1∫
−1

ρn−1i (µi)nr,i (µi)Pn (µi)Pk (µi) dµi,

Γ
(4)
kn,i =

1∫
−1

ρn−1i (µi)nθ,i (µi)

× [µiPn (µi)− Pn+1 (µi)]Pk (µi) dµi.

(24)

Similarly, substitution of Eq. (14) into Eq. (22) yields:

Υk = km

∞∑
n=0

(n+ 1)B′n,i

(
Γ
(1)
kn,i + Γ

(2)
kn,i

)
. (25)

Hence, Eq. (20) can be rewritten as

ki

nmax∑
n=0

An,i

[
nΓ

(3)
kn,i − (n+ 1) Γ

(4)
kn,i

]
+ km

nmax∑
n=0

Bn,i (n+ 1)
[
Γ
(1)
kn,i + Γ

(2)
kn,i

]
− km

nmax∑
l=0

n−nmax∑
n=0

Bn,j

[
lΓ

(3)
kl,i − (l + 1) Γ

(4)
kl,i

]
× (l + n)!

l!n!
R−l−n−1 = Υk. (26)

Finally, combining Eqs. (18) and (26) gives the required
set of linear equations for the coefficients An,i and Bn,i:

∞∑
n=0

αkn,iAn,i +

∞∑
n=0

0 ·An,j

−
∞∑
n=0

βkn,iBn,i −
∞∑
n=0

γkn,iBn,j = 0,

∞∑
n=0

Λkn,iAn,i +

∞∑
n=0

0 ·An,j

+

∞∑
n=0

Ωkn,iBn,i −
∞∑
n=0

Θkn,iBn,j = Υk,i;

(27)
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where i = 1, 2, j = 3− i, k = 0, 1, 2, . . . ,∞,

γkn,i ≡
nmax−n∑
l=0

(l + n)!

l!n!
R−l−n−1αkl,i,

Λkn,i ≡ ki
[
nΓ

(3)
kn,i − (n+ 1) Γ

(4)
kn,i

]
,

Θkn,i ≡ km
nmax−n∑
l=0

[
lΓ

(3)
kl,i − (l + 1) Γ

(4)
kl,i

]
× (l + n)!

l!n!
R−l−n−1,

Ωkn,i ≡ km (n+ 1)
[
Γ
(1)
kn,i + Γ

(2)
kn,i

]
,

Υk,i ≡
∞∑
n=0

B′n,iΩkn,i.

(28)

D. Electrostatic force

The Maxwell stress tensor is used to calculate the elec-
trostatic interaction force41 acting on spheroid i due to
the presence of spheroid j

Fi =

∮
Si

TindS, (29)

where

Tn = ε0km

(
EnE−

1

2
nE2

)
= ε0km

[
1

2

(
E2

n − E2
τ

)
n + EnEττ

]
, (30)

is the normal component of the Maxwell stress tensor and

τ = −nθ
√

1− µ2er + nreθ is the tangent unit vector.
Here, the normal component of the electric field is given
by:

En,i = − (ni · ∇ (Φi,out + Φj,out))|ri=ρi(µi)

=

∞∑
n=0

Bn,i (n+ 1) ρ−n−2i (µi) {Pn (µi)nr,i (µi)

+ [µiPn (µi)− Pn+1 (µi)]nθ,i (µi)}

−
∞∑
n=0

∞∑
m=0

Bm,j
(m+ n)!

m!n!
R−m−n−1ρn−1i (µi)

× {nPn (µi)nr,i (µi)

+ (n+ 1) [µiPn (µi)− Pn+1 (µi)]nθ,i (µi)} . (31)

The tangential component of the electric field is defined
as:

Eτ ,i = − (τi · ∇ (Φi,out + Φj,out))|ri=ρi(µi)

=
√

1− µ2
i

∞∑
n=0

(n+ 1)Bn,iρ
−n−2
i (µi)

×
{
nr,i (µi)

1− µ2
i

[µiPn (µi)− Pn+1 (µi)]− nθ,i (µi)Pn (µi)

}
+
√

1− µ2
i

∞∑
n=0

∞∑
m=0

Bm,j
(m+ n)!

m!n!
R−m−n−1

× ρn−1i (µi)

{
nnθ,i (µi)Pn (µi)

+ (n+ 1)
nr,i (µi)

1− µ2
i

[µiPn (µi)− Pn+1 (µi)]

}
. (32)

Eq. (30) can be substituted into Eq. (29) for the electro-
static force and rewritten as:

Fz,i = −2πε0km

×
1∫
−1

{[
1
2

(
E2

n,i − E2
τ ,i

)
µi − En,iEτ ,i

√
1− µ2

i

]
nr

−
[
1
2

(
E2

n,i − E2
τ ,i

)√
1− µ2

i + En,iEτ ,iµi

]
× nθ

√
1− µ2

i

}
× ρ2 (µi)

×
√

1−
[(

1
a2i
− 1

c2i

)
µi

]2
ρ4 (µi) (1− µ2

i )dµi,

(33)

which solves the posed electrostatic problem.

III. RESULTS AND DISCUSSION

We next consider the effect of non-sphericity on the
nature of electrostatic interactions between two polaris-
able spheroids of the same shape, size (a1 = a2 ≡ a,
c1 = c2 ≡ c) and dielectric constant (k1 = k2 ≡ k),
but with different charges Q1/Q2 = 2, whilst keeping the
capacitance of spheroids constant. We assume that at
infinite separation distance between spheroids their ca-
pacitance is equal to the capacitance of a sphere. The
assumption of the constant capacitance implies that dur-
ing the deformation of an isolated sphere the ratio be-
tween its surface charge and surface potential remains
constant. Therefore, this assumption has been chosen as
the most physically meaningful for the case when the ef-
fect of non-sphericity on the electrostatic interaction is
studied and the effects of changed charge and/or poten-
tial are excluded.

This approach allows us to find the relationship be-
tween the axes of a spheroid, a and c, and radius of the
corresponding sphere, r, into which the spheroid degen-
erates at a = c. Under the assumption of constant ca-
pacitance

Csphere = Cspheroid, (34)

where

Csphere = 4πkmε0r (35)



Electrostatic interactions between spheroidal particles 6

and

Cspheroid = 4πkmε0

×


√
a2 − c2

(
arctan

√
a2−c2
c

)−1
, a > c;

2
√
c2 − a2

(
ln c+

√
c2−a2

c−
√
c2−a2

)−1
, c > a.

(36)

Using the non-sphericity parameter x = a/c and substi-
tuting Eqs. (35) and (36) into (34) gives the following
relationship between the radii of a spheroid, a, c and the
radius of the equivalent sphere, r:

c =

{
r arctan

√
x2−1√

x2−1 , a > c (oblate) ;
r

2
√
1−x2

ln 1+
√
1−x2

1−
√
1−x2

, c > a (prolate)
(37)

The relationship (37) has been used in all numerical tests
presented in this paper for a range of x from 0.83 to 1.17.

The electric potential generated by a point charge
Qpoint is typically represented by equipotential surfaces
(regions in which every point has the same potential),
which take the form of concentric spheres centred at the
point charge.39 If the point charge is substituted by a
small sphere with the same charge, Qsphere = Qpoint,
and the uniformly distributed surface potential (this
condition also implies the uniformly distributed surface
charge), the sphere will create the same electric poten-
tial outside its boundaries as the point charge (Gauss’s
law). Therefore, the electrostatic forces between two
point charges and two uniformly charged non-polarizable
and non-overlapping spheres are equivalent. The same
reasoning can also be applied to charged objects of any
arbitrary shape using the superposition principle. For
example, a prolate spheroid has an equipotential surface
of a uniformly charged rod with the length equal to the
interfocal distance 2f of the corresponding spheroid, and
an oblate spheroid has an equipotential surface of a disc
with the radius equal to the radius of the focal line f and
with the following radial distribution of surface charge
density:41

σ (r) =
Qdisc

2πf
√
f2 − r2d

, (38)

where Qdisc is the charge of the disc, and rd is a radial co-
ordinate on the disc surface. Table I contains the analyt-
ical equations of the electrostatic forces for the following
cases:

• two point charges at a distance R, which corre-
sponds to two spheres of radii r1 and r2 at a surface-
to surface separation s = R− r1 − r2;

• a charged rod of length 2f and a point charge
separated at a distance R from the center of the
rod that corresponds to a prolate spheroid with
c = f/

√
1− x2 and a sphere of radius r at a surface-

to surface separation s = R− c− r;

• a charged disc of radius f and a point charge at a
distance R from the center of the disc that corre-
sponds to an oblate spheroid with c = f/

√
x2 − 1

and a sphere of radius r at a surface-to surface sep-
aration s = R− c− r;

• a charged disc of radius f1 and a charged rod
of length 2f2 at a distance R between their cen-
ters that corresponds to an oblate spheroid with
c1 = f1/

√
x21 − 1 and a prolate spheroid with

c2 = f2/
√

1− x22 at a surface-to surface separation
s = R− c1 − c2;

• two charged rods of lengths 2f1 and 2f2 at a dis-
tance R between their centers that corresponds to

two prolate spheroids with c1,2 = f1,2/
√

1− x21,2
at a surface-to surface separation s = R− c1 − c2.

The electrostatic force calculated using Eq. (33) for non-
polarizable spheroids: k1 = k2 = km, including a sphere
as a specific case, should, therefore, give the same re-
sult as the electrostatic force obtained from the simple
expressions summarised in Table I for cases involving a
charged rod, a disc, and a point charge. For these simple
geometries, Fig. 3 compares calculations of the electro-
static force as a function of surface-to-surface as defined
with reference to Table I. The results obtained using
the methodology presented above and the corresponding
analytical expressions given in Table I are in excellent
agreement. These limiting cases can be interpreted as
electrostatic forces between non-polarizable spheroids.

Consider next the transition from repulsion to attrac-
tion of like charged identical spheroids by changing their
eccentricity. It should be noted that determining the
range of parameters in which, for particles of the same
charge, a transition from repulsion to attraction takes
place as the distance between them decreases is not a
trivial task. Even for spherical particles, the boundaries
of this region are determined by the ratio of the charges
on the particles, the ratio of their sizes and their dielectric
constant relative to that of the medium.32,42 For parti-
cles of a spheroidal shape, even for the case of an axi-
ally symmetric distribution of surface charges, the eccen-
tricities have to be added to the parameter space. This
challenging task remains outside the scope of the present
work, which is focused primarily on the development of
analytical and numerical solutions to the electrostatic in-
teractions between different non-spherical geometries of
charged dielectric particles.

It is well known that for the case of spherical parti-
cles of the same radius carrying equal charges, there is
no attraction even for conducting particles.42,43 Consider
the case when one particle carries twice the charge of the
other, i.e. Q1 = 2Q2. As the distance between the sur-
faces of the particles decreases, the number of terms in
the multipolar expansion required for an accurate esti-
mation of the potential increases and the dimensionality
of the set of algebraic equations defining the expansion
coefficients increases accordingly (see44). Therefore, the
test calculations are restricted to interactions at suffi-
ciently large interparticle distances, s = 0.01r, at which
for spherical particles with the same dielectric constant
repulsion transforms into attraction at k1 = k2 ≈ 18.5
(km = 1). Therefore, for comparison we consider the
values k1 = k2 = 18, 18.5 and 19.
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TABLE I: Simple limiting cases of the interactions involving charged rod, disc, and point charge. Expressions for
the electrostatic force are derived in Appendix A.

Fpoint−point = K
Q1Q2

R2
(Coulomb force)

Frod−point = K
QrodQpoint

R2 − f2

Fdisk−point = K
QdiscQpoint

R2 + f2

Fdisc−rod = K
QdiscQrod

2f1f2

(
arctan

R+ f2
f1

− arctan
R− f2

f1

)

Frod−rod = K
Qrod1Qrod2

4f1f2
ln

(R+ f1 − f2) (R− f1 + f2)

(R+ f1 + f2) (R− f1 − f2)

(a) (b)

FIG. 3: (a) Electrostatic force, scaled by the Coulomb force, calculated as a function of the surface-to-surface
separation for a prolate spheroid and a sphere (1 ), an oblate spheroid and a sphere (2 ), an oblate and a prolate

spheroids (3 ), two prolate spheroids (4 ), and two spheres (Coulomb force) (5 ). Lines are analytical results given by
the equations in Table I, symbols are numerical calculations using Eq. (33) with x = 4/3 for oblate spheroids and

x = 3/4 for prolate spheroids; (b) Relative errors.

For the case of polarizable spheroidal particles in vac-
uum (km = 1), Fig. 4 shows the electrostatic force be-
tween two identical spheroids carrying different amount
of charge (Q1/Q2 = 2) as a function of the non-sphericity
parameter, x, calculated for three values of the dielectric
constant, k = 18, 18.5 and 19. The spheroids are kept at a
fixed surface-to-surface separation s = 0.01r. The values
given for the dielectric constants have been selected from
extensive numerical experiments, to reveal the switch in
electrostatic behaviour from attraction to repulsion, be-
tween like-charged spheroids depending on the value of
the non-sphericity parameter, x. For k = 18.5 and above,

the interaction can switch from a counter-intuitive at-
traction between like-charged particles (negative value of
the force ratio) driven by charge-induced polarisation, to
repulsion (positive value of the force ratio). This switch
occurs either as the shape of the interacting spheroidal
particles changes from oblate to prolate or if the value
of the non-sphericity parameter for two oblate spheroids
is increased sufficiently. For chosen values of dielectric
constant and charge ratio, the minimum in the electro-
static force corresponds to two oblate spheroids (x > 1).
This behavior is as a result of a specific distribution of
the surface charge, which depends on the non-sphericity
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FIG. 4: The electrostatic force scaled by the Coulomb
force between two identical like-charged spheroids in
vacuum (km = 1) with the charge ratio of Q1/Q2 = 2

calculated as a function of the non-sphericity parameter
x = a/c at a fixed surface-to-surface separation

s = 0.01r for three values of the dielectric constant k =
18, 18.5 and 19.

parameter (see Fig. 2), and the complex nature of polar-
isation interactions between spheroids.

IV. CONCLUSIONS

An analytical expression for the electrostatic force act-
ing between two dielectric spheroids located on the same
axis of symmetry is presented. Variation in the elec-
trostatic force with a change in the value of the non-
sphericity parameter shows an interesting switch in elec-
trostatic behaviour between two like-charged spheroids
with a charge ratio of 2. At a critical value of the dielec-
tric constant, k = 18.5, and above, the F/FCoulomb ratio
has a negative value, which corresponds to an attrac-
tive interaction between like-charged oblate spheroids. If
the shape of the interacting spheroidal particles changes
from oblate to prolate or if the value of the non-sphericity
parameter of two oblates is increased sufficiently the in-
teraction switches from attraction to repulsion.

The proposed analytical model was benchmarked
against existing analytical solutions for the interaction
between non-polarisable rods, discs, and point charges,
and against an earlier electrostatic model for dielectric
shperes32 showing excellent agreement. The result is of
practical significance and represents a first step towards
a more general theory of electrostatic interactions be-
tween non-spherical objects as it can be generalized to
any arbitrary shape with axial symmetry, as shown in
the approach taken in Ref.45. Derivations for the elec-
trostatic force for the simple limiting cases of a charged
rod, disc, and point charge and additional computational
issues are discussed in Appendices.
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Appendix A: Derivation of electrostatic forces for simple
limiting cases given in Table I

1. Uniformly charged rod and point charge

The force between a uniformly charged rod and a point
charge (see Fig. 5) can be derived by integrating the force
between an infinitely small element of the rod and the
point charge over the length of the rod:

Frod,z =

R+f∫
R−f

K
QrodQpoint

z2
dz

2f
= K

QrodQpoint

R2 − f2
, (A1)

where K = 1
4πε0

≈ 9 × 109 Vm/C is a constant of pro-
portionality.

FIG. 5: A uniformly charged rod with charge Qrod and
length 2f and a point charge Qpoint. R is the distance

between the centre of the rod and the point charge.

2. Two uniformly charged rods

The force between two uniformly charged rods (see
Fig. 6) can be derived by a double integration of the
force between infinitely small elements of the rods over
their lengths:

Frod−rod =

R+f2∫
R−f2

f1∫
−f1

K
Qrod1Qrod2

(z2 − z1)
2

dz1
2f1

dz2
2f2

= K
Qrod1Qrod2

4f1f2
ln

(R+ f1 − f2) (R− f1 + f2)

(R+ f1 + f2) (R− f1 − f2)
. (A2)

Here z = 0 is assumed to be the centre of the first rod.

3. Charged disc and point charge

The force between a uniformly charged ring and a point
charge (see Fig. 7) can be derived by integrating the force
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FIG. 6: Two uniformly charged rods with charges
Qrod1 and Qrod2 and lengths 2f1 and 2f2. R is the

distance between their centres.

between an infinitely small element of the ring and the
point charge over the circumference of the ring:

Fr,z =

2πr∫
0

KQpoint
cosα

r2 +R2

Qring

2πr
dl

= KQpointQring
R

(r2 +R2)
3/2

. (A3)

FIG. 7: A uniformly charged ring with charge Qring and
radius r and a point charge Qpoint. R is the distance
between the centre of the ring and the point charge.

The force between a disc with the surface charge den-
sity

σ (r) =
Qdisc

2πf
√
f2 − r2

and a point charge (see Fig. 8) can be calculated by in-
tegrating the force from Eq. (A3) between an infinitely
thin ring element of the disc and the point charge over
the circumference of the ring:

Fd,z =

f∫
0

KQpoint
h

(r2 +R2)
3/2

× Qdisc

2πf
√
f2 − r2

2πrdr =
KQpointQdisc

(f2 +R2)
. (A4)

4. Charged disc and uniformly charged rod

The force between a disc with the surface charge den-
sity

σ (r) =
Qdisc

2πf
√
f2 − r2

and a uniformly charged rod (see Fig. 9) can be calcu-
lated by integrating the force from Eq. (A4) between the

FIG. 8: A charged disc Qdisc with the radius f and a
point charge Qpoint. R is the distance between the

centre of the disc and the point charge.

charged disc and an infinitely small element of the rod
over the length of the rod:

Fd,z =

R+f2∫
R−f2

KQdiscQroddz

2f2 (f21 + z2)
= K

QdiscQrod

2f1f2

×
(

arctan
R+ f2
f1

− arctan
R− f2
f1

)
. (A5)

FIG. 9: A charged disc Qdisc with the radius f1 and a
uniformly charged rod Qrod with the length 2f2. R is

the distance between the centres of the disc and the rod.

Appendix B: Limiting case of two polarizable spheres

As verification, the presented methodology has been
tested for the case of two dielectric spheres: ai = ci ≡ ai,
i = 1, 2. In this case

φi,0 =
Qi

4πkmε0ai

and ρi (µi) = ai. Eq. (11) takes the form:

∞∑
n=0

1

2n+ 1
B′na

−n−1δnk = φ0δk,0, (B1)

which gives

B′k = (2k + 1)ak+1φ0δk,0. (B2)

The normal vector components (15) are deduced to

nr = 1, nθ = 0. (B3)
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Substituting (B2) and (B3) to (14) gives:

σ (µ) =
Q

4πa2
. (B4)

Therefore, the first equation in (27) takes the form:

An,i = Bn,ia
−2n−1
i +

∞∑
m=0

Bm,j
(m+ n)!

m!n!
R−m−n−1, (B5)

whereas the second equation in (27) gives:

kmB0,ia
−1
i = aiφi,0, k = 0;

kiAk,ika
k−1
i + kmBk,i (k + 1) a−k−2i

− km
∞∑
n=0

Bn,jka
k−1
i

(k + n)!

k!n!
R−k−n−1 = 0, k ≥ 1.

(B6)

Substituting (B5) in to (B6) yields:

Bk,i

ak+1
i

+
(ki − km) k

(ki + km) k + km
aki

×
∞∑
n=0

Bn,j
(k + n)!

k!n!
R−k−n−1 =

σiai
kmε0

δk0. (B7)

The same equation was obtained in Ref.32 for the case of
km = 1.

In order to confirm the analytical derivations made
above, the electrostatic force between two polarizable
spheres of the same size has been calculated using
Eq. (33) and compared with the force calculated using
the model from Ref.32. The following parameters have
been chosen to reproduce the most relevant case of like
charge attraction: k1 = k2 = 20, Q1 = 1e, Q2 = 10e,
and km = 1. Figure 10 demonstrates that the results are
in a good agreement and the relative error does not ex-
ceed 1% at short separation and less than 10−5% when
the spheres are far apart. The greatest error (0̃.15%) is
achieved at the point where the force changes sign and
crosses the x-axis.

Appendix C: Error analysis related to the number of terms
in the expansion of the electrostatic force

Convergence of the present methodology is demon-
strated for the example of two geometrically identical
spheroids with the same dielectric constants but different
charges. Numerical experiments showed that in the case
ofQ1/Q2 = 2 and k1 = k2 = 17 and 20 the solution is sta-
ble for 0.83 ≤ x ≤ 1.17. Figure 11 shows the electrostatic
forces and the calculation errors versus number of terms
for spheroids described here at a separation of 0.01r. For
the examples of prolate spheroids and spheres the method
shows excellent convergence at values of n in the range
20 ≤ n ≤ 140, whereas for the case of oblate spheroids
convergence stops at n = 120 and thereafter the error
increases. The linear system (27) is generally sparse and
ill-conditioned, i.e. contains many zero elements and el-
ements with large differences in values. Moreover, the
problem of two oblate spheroids has no trivial solution

FIG. 10: Electrostatic force (relative to the Coulomb
force) between two polarizable spheres of the same

radius r with the dielectric constants k1 = k2 = 20 and
charges Q2/Q1 = 2 in vacuum km = 1 calculated by
means of the methodology from Ref.32 (line) and the

present model (33) (symbols) versus surface-to-surface
separation s relative to the sphere radius r. The
embedded plot represents the relative difference

between the forces.

for the non-polarizable case (unlike the problem of two
prolate, non-polarizable spheroids). Three separate nu-
merical methods have been tried to solve the problem
(27):46 lower-upper (LU) decomposition with iterative
improvement of a solution, singular value decomposition
(SVD) and preconditioned biconjugate gradient method
(PBCG). All methods give identical results and for fur-
ther calculations the LU-decomposition method has been
chosen.
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