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Abstract 

Accurate representation of turbulence phenomenon in Computational Fluid Dynamics (CFD) 

modeling of cross-ventilation around and inside buildings is a challenging and complex problem, 

especially under the sheltering effect of surrounding buildings. Steady Reynolds Averaged Navier-

Stokes (RANS) models are broadly used in many practical applications. However, these models 

mainly fail to predict accurate distribution of flow characteristics in the cavity formed between the 

buildings, and hence miscalculate the attributed cross flow and airflow rate through buildings. In this 

study, a novel and systematic methodology is proposed to enhance the accuracy of the 𝑘 − 휀 model for 

the urban study applications such as cross-ventilation in the sheltered buildings. 

A microclimate CFD model for a case study of a cross-ventilation experimental work by 

Tominaga and Blocken [1] was firstly constructed and validated. In the next step, the closure 

coefficients of the 𝑘 − 휀  model were modified using a stochastic optimization and Monte Carlo 

Sampling techniques. The probability density function (PDF) of all closure coefficients were given to 

the optimizer and proper objective function defined in terms of different validation metrics. The 

modified coefficients obtained from the developed systematic method could successfully simulates the 

cross-ventilation phenomena inside the building with an airflow rate prediction error less than 8% 

compared to the experiment while other RANS models predicted the airflow rate with up to 70% error. 

The effectiveness of the optimization technique was also discussed in terms of validation metrics and 

pressure coefficients. 

Keywords: CFD, Cross-ventilation, Turbulence, Optimization, Sheltered Building    

 

 

 
1 Corresponding author: University Park, Nottingham, NG2RD, UK 
Tel.: +44 0115 95 14129; fax: +44 0115 951 3159 
Email: Parham.Mirzaei_Ahranjani@nottingham.ac.uk 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/304169137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Parham.Mirzaei_Ahranjani@nottingham.ac.uk


2 
 

Nomenclature  

𝜌 Density 𝑈𝐻 Inflow mean streamwise velocity at building 

height 𝐻 

𝑡 Time 𝐻 Building height 

𝑥𝑖 Three components of the spatial coordinate 

(𝑖 = 1, streamwise (𝑥); 𝑖 = 2, lateral (𝑦); 𝑖 =
3, vertical (𝑧)) 

𝛼 Power-law exponent 

𝑞 Hit rate 

𝑈𝑖 Three components of the mean velocity vector 

(𝑖 = 1, streamwise; 𝑖 = 2, lateral; 𝑖 = 3, 

vertical) 

𝑁 Number of data points 

𝑂𝑖  Observed value 

𝜏𝑖𝑗 Viscous stress tensor 𝑃𝑖  Predicted value 

𝑆𝑀𝑖
 Momentum source 𝐹𝐵 Fractional bias 

𝜇𝑡 Turbulent viscosity 𝐹𝐴𝐶2 Fraction of the predictions within a factor of 

2 of the observations 

𝛿𝑖𝑗 Kronecker Delta function 𝑁𝑀𝑆𝐸 Normalized mean square error 

𝑘 Turbulent kinetic energy 𝑢𝑖 Three components of the fluctuating 

velocity vector (𝑖 = 1, streamwise; 𝑖 = 2, 

lateral; 𝑖 = 3, vertical) 
P pressure 

𝜇𝑒𝑓𝑓 Effective viscosity 𝜎𝑘 𝑘 − 휀 model constant 

𝐶𝜇 𝑘 − 휀 model constant 𝜎𝜀 𝑘 − 휀 model constant 

𝜇 Molecular viscosity 𝐶𝜀2 𝑘 − 휀 model constant 

휀 Turbulent dissipation rate 𝐶𝜀1 𝑘 − 휀 model constant 

𝑃𝑘 Shear production term W Building width 

D Building length 𝐶𝑝 Pressure coefficient 

 

1. Introduction  

Buildings account for about 40% of total final energy consumption in the US and European 

countries [2]. Increasing rate of industrialization and urbanization, and emerging of more mega cities 

indicate the importance of integration of the energy saving strategies into the modern buildings [3]. 

Natural ventilation has been extensively used in traditional and modern buildings to improve thermal 

comfort and air quality [4, 5], and to decrease the cooling energy demand of buildings. Moreover air 

quality of dwellings and comfort level of occupants can be significantly enhanced by utilizing natural 

ventilation strategies [6]. Nonetheless, accurate design of buildings to benefit from these natural 

ventilation strategies highly depends on reliable prediction of the airflow parameters, crossing through 

buildings.  

Different analytical and empirical models were developed in the last three decades to characterize 

natural ventilation in buildings. As descripted in [7], these methods include small-scale or full-scale 

experimental test, multi-zone and Computational Fluid Dynamic (CFD) models. In the recent years 

due to an exponential growth in the computational capability of the processors, application of the CFD 

models in wind-driven related topics such as cross-ventilation [8-10], energy prediction [11-15],  

pedestrian level ventilation [16, 17], and pollution dispersion [18, 19] has been noticeably surged. 

Most of the microclimate CFD studies adapted Reynolds-averaged Navier Stokes (RANS) as their 

turbulence models. The number of  large eddy simulations (LES) [20-23] and unsteady Reynolds-

averaged Navier Stokes (URANS) [17, 24] studies are considerably less due to the limitation of these 

models in terms of high computational cost and complexity. Therefore, steady RANS models are 
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recognized as reliable and low cost simulation techniques, which are commonly accepted in the wind-

driven CFD studies.  

In general, cross-ventilation researches can be classified into two categories of unsheltered or 

isolated (generic) building and sheltered scenarios where the effect of flow distraction caused by 

surrounding buildings or other environmental obstacles is also considered. Acceptable accuracy of 

CFD modeling of cross-ventilation for unsheltered scenario was reported in many researches. In the 

works presented by Ramponi and Blocken [8], Tepner et al. [9], van Hooff et al. [25], and Yusuf and 

Mirzaei [26] RANS and LES models were successfully applied to the unsheltered building scenario. 

Many studies also considered the sheltering effect of the neighborhood buildings on the airflow inside 

a building and around it at the pedestrian level [6, 17, 22, 27-34]. The complexity of the turbulent flow 

in the case of sheltered building was demonstrated in these studies while detailed representation of 

surrounding environment was emphasized. The complexity of the sheltering effects in CFD 

simulations is still a challenging issue for CFD users and it can be concluded that the accuracy of CFD 

models for sheltered buildings is still a challenging problem.   

Due to the high complexity of URANS and LES models along with their inherent high 

computational cost, many of the above mentioned studies utilized RANS models for modeling of the 

turbulence. However, these models mainly fail to predict accurate distribution of the turbulent kinetic 

energy (TKE), specifically for the sheltered building and street canyon airflow scenarios. As described 

in [35-38], the RANS turbulence models are generally showing poor accuracy in the modeling of the 

flow separation over the roof and the wake region behind the buildings. This is mainly due to the 

inaccurate prediction of the momentum diffusion in the wake region inside the street canyon and 

behind the buildings. Also, the RANS turbulence modes are not inherently able to simulate the 

unsteady fluctuations around the building, which has a noticeable impact on the momentum diffusion 

in the wake region behind building [35]. This major limitation in the modeling of the TKE results in 

an inaccurate cross-ventilation pattern inside a sheltered building, which itself results in an inaccurate 

simulation of the airflow crossing the sheltered building. Despite some valuable guidelines for cross-

ventilation modeling of unsheltered building using the RANS models, e.g. [8], a similar 

comprehensive study for the sheltered building scenario cannot be addressed. A few existing studies 

such as [22] are based on the highly expensive and complex LES models. Although some of the 

existing investigations utilized the RANS models in their study for cross-ventilation of generic 

buildings, e.g. [27, 39], the developed CFD models are mainly validated with the experimental data 

obtained from the unsheltered building scenarios.  

Despite many modifications performed on the RANS turbulence models, e.g. 𝑅𝑁𝐺 𝑘 − 휀 [40] and 

Realizable 𝑘 − 휀 [41, 42], their application for the atmospheric boundary layer (ABL) flow modeling 

is still a challenging issue [43]. In addition to the poor accuracy of these RANS models in predicting 

the momentum diffusion, there is another limitation related to the closure coefficients used in these 

models. This drawback is associated with the fact that the closure coefficients are mainly obtained 

based on different experimental and empirical data analysis based on some of the fundamental and 

classical flow problems, e.g. homogeneous decaying turbulence, free shear flow, and fully developed 

channel flow [44]. Nonetheless, such flows have limited similarities with the airflow characteristics in 

the ABL. Therefore, it can be concluded that there is an inherent uncertainty in these coefficients, and 

as demonstrated in [44, 45], the flow-independent values for these coefficients are unlikely to exist. 
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Modification of the closure coefficients has been done previously in different CFD applications. 

Weihing et al. [46] investigated the turbulent heat transfer phenomenon in a heated channel with 

periodic surface ribs in which commonly used closure coefficients of RANS models fail to predict the 

massively separated flow behavior and turbulent heat flux. They showed the superiority of the full 

differential transport closures to the eddy-viscosity closures in capturing rapidly-evolving flow and 

thermal field. In another work by Shams et al. [47], the limitations of eddy-viscosity model for 

turbulent heat transfer prediction in low-Prandtl fluids were investigated while a set of new 

correlations and new closure coefficients were proposed for natural and mixed convection regimes 

using an algebraic heat flux model (AHFM) and the low-Reynolds 𝑘 − 휀 model. In the work presented 

by Duynkerke [48], the closure coefficients of the standard 𝑘 − 휀 model were modified based on a 

comparison with a LES simulation and a measurement study for neutral and stable ABL flows over a 

flat terrain. The value of the modified closure coefficients in this study were obtained to be 𝐶𝜇 =

0.033, 𝐶𝜀1 = 1.46, 𝐶𝜀2 = 1.85, 𝜎𝜀 = 2.38, and 𝜎𝑘 = 1. A similar study by Detering and Etling [49] 

was done in which modified closure coefficients were presented for mesoscale ABL simulation above 

flat and complex terrain. In the recent years, thanks to the increased computational power, statistical 

techniques have been used by some researchers to calibrate the closure coefficients of the RANS 

models. In most of the statistical methods, e.g. [50, 51], the effect of the inherent uncertainty of the 

closure coefficients was investigated for different flow problems. Using the Latin Hypercube 

Sampling (LHS) method and different probability density function (PDF) forms for the closure 

coefficients of the standard 𝑘 − 휀 model, Dunn et al. [52] showed that the highest uncertainty of the 

flow parameters occurs in the recirculating region and near the reattachment point. Guillas et al. [53] 

proposed a Bayesian technique for calibration of the closure coefficients of the standard 𝑘 − 휀 model 

for a symmetric street canyon simulation. Their results showed that for 𝐶𝜇 and 𝐶𝜀2 values between 

0.02 ≤ 𝐶𝜇 ≤ 0.04  and 2 ≤ 𝐶𝜀2 ≤ 2.2  the highest probability can be obtained to match the 

experimental data. Furthermore, in the work presented by Iqbal et al. [54], the modified closure 

coefficients proposed in [53] were used in a numerical analysis for the pedestrian wind environment 

around a group of high-rise buildings. They further altered the coefficients by performing two 

additional experiments and concluded that when 𝐶𝜇 =0.12, 𝐶𝜀1 = 1, 𝜎𝑘 = 0.53, 𝜎𝜀 = 0.5, and 𝐶𝜀2 =

1.92 better agreement with the experimental data can be achieved in comparison with the standard 𝑘 −

휀 with the default coefficients.  

According to literature, there is a lack of understanding in the impact of the closure coefficients on 

the predicted CFD results in urban studies. Hence, this study aims to develop a systematic and 

computationally cost effective method to optimize closure coefficients of the RANS turbulence 

models utilized in urban studies such as cross-ventilation through sheltered buildings. For this 

purpose, the microclimate CFD model of a sheltered building scenario is initially developed and 

validated using an experimental work by Tominaga and Blocken [1]. The accuracy of different 

turbulence models, i.e. the standard 𝑘 − 휀  [55], 𝑆𝑆𝑇 𝑘 − 𝜔  [56], 𝑅𝑁𝐺 𝑘 − 휀  [57, 58], and 𝜔-based 

Baseline Reynolds Stress model (𝐵𝑆𝐿 𝑅𝑆𝑀) [59] are discussed in terms of the velocity and TKE 

fields inside the building and the airflow rate through the opening of the target building. Using 

statistical analysis, including the Monte Carlo Sampling technique and stochastic optimization 

methods, a discussion is presented to investigate the sensitivity of the CFD computations to the 

standard 𝑘 − 휀 closure coefficients. Development of a systematic approach to calibrate the CFD model 
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based on the available measurement provides an opportunity to conduct a more accurate, more 

reliable, faster and easier CFD analysis using the RANS models compared with the LES models.  

2. Methodology 

2.1.  Mathematical modeling 

The 3D steady Reynolds averaged Navier-Stokes (RANS) equations is used to simulate the cross-

ventilation behavior. These equations can be derived by substituting the mean and fluctuating 

components of the airflow variables into the Navier-Stokes equations [60]: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑈𝑗)

𝜕𝑥𝑗
= 0 

 

(1) 

𝜕(𝜌𝑈𝑖)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑖𝑈𝑗) = −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗 − 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅) + 𝑆𝑀𝑖 

(2) 

where 𝑈𝑖 is the average velocity, 𝑢𝑖 is the fluctuating velocity, 𝜏𝑖𝑗 is the viscous stress tensor (including 

both normal and shear components of the stress), 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ is the Reynolds (turbulent) stress and 𝑆𝑀𝑖 is 

the momentum source.  

In this study two classes of turbulence models are used, including eddy viscosity and Reynolds 

stress models. In the eddy viscosity models, the Reynolds stresses can be related to the mean velocity 

gradients and eddy (turbulent) viscosity by the gradient diffusion hypothesis, in a manner analogous to 

the relationship between the stress and strain tensors in laminar Newtonian flow: 

−𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗 (𝜌𝑘 + 𝜇𝑡

𝜕𝑈𝑘

𝜕𝑥𝑘
)  

(3) 

where 𝜇𝑡 is the eddy viscosity or turbulent viscosity and 𝑘 is the turbulent kinetic energy. In the 

two-equation models, the turbulent velocity scale is computed from the TKE. Moreover, the turbulent 

length scale is estimated from TKE and its dissipation rate. The TKE and its dissipation rate are 

provided from the solution of their transport equations. In eddy viscosity models the effective 

viscosity is defined as: 

𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡   (4) 

where 𝜇 is the molecular viscosity and 𝜇𝑒𝑓𝑓 is the effective viscosity. The turbulence viscosity can be 

calculated via the following relationship: 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
   (5) 

For the standard 𝑘 − 휀 model, values of 𝑘 and 휀 can be directly extracted from their differential 

transport equations: 

𝐷(𝜌𝑘)

𝐷𝑡
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝜌휀 

(6) 
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𝐷(𝜌휀)

𝐷𝑡
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎휀
)

𝜕휀

𝜕𝑥𝑗
] +

휀

𝑘
(𝐶휀1𝑃𝑘 − 𝐶휀2𝜌휀) 

(7) 

where 𝐶𝜇 , 𝜎𝑘 , 𝜎𝜀 , 𝐶𝜀1 and , 𝐶𝜀2 are the model constants while 𝑃𝑘 is the viscous stress production term. 

Values of above parameters, which are the default values for most of the commercial CFD software, 

are as follows [61]: 

𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1, 𝜎𝜀 = 1.3  

 

(8) 

Furthermore, Reynolds stress models are calculated based on the transport equations for all 

components of the Reynolds stress tensor and the dissipation rate [60]. These models do not use the 

eddy viscosity hypothesis, but solve an equation for the transport of Reynolds stresses in the fluid. The 

exact production term and the inherent modeling of the stress anisotropies make Reynolds Stress 

models to be more theoretically suitable for the complex flows [44, 62]. A separate transport equation 

must be solved for each of the six Reynolds stress components of 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ . The differential equation of 

Reynolds stress transport thus can be represented as below [60]: 

𝜕𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑘
(𝑈𝑘𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ) −

𝜕

𝜕𝑥𝐾
((𝛿𝑘𝑙𝜇 + 𝜌𝐶𝑆

𝑘

휀
𝑢𝑘𝑢𝑙̅̅ ̅̅ ̅̅ )

𝜕𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅

𝜕𝑥𝑙
)   = 𝑃𝑖𝑗 −

2

3
𝛿𝑖𝑗𝜌휀 + 𝜑𝑖𝑗 + 𝑃𝑖𝑗,𝑏 

(9) 

where 𝑃𝑖𝑗 and 𝑃𝑖𝑗,𝑏 are the shear and buoyancy turbulence production terms of the Reynolds stresses, 

respectively. 𝜑𝑖𝑗  is the pressure-strain tensor, and 𝐶𝑠 = 0.22 is the equation constant. In this study, 

ANSYS CFX 𝐵𝑆𝐿 Reynolds Stress model is used for the initial case study, which is based on the 𝜔-

equation and automatic wall treatment. The constants of the RANS turbulence models are the default 

values provided in ANSYS CFX formulations, which are later modified with optimization technique 

to enhance the simulation results. 

2.2.  The closure coefficients for the standard 𝐤 − 𝛆 model 

In this section, a very short description about the closure coefficients of the standard 𝑘 − 휀 model 

and their relations are presented. The goal is to show the uncertainty of the closure coefficients and the 

reported range of them in literature. Detailed description of the underlying physics for calculating the 

closure coefficients can be found in [44, 63]. As described in [44], the default values of the closure 

coefficients in the standard 𝑘 − 휀  model are obtained from a compromise to enable the model to 

perform for a variety of the airflow problems. The classical way to find the associated values is 

derived based on a series of fundamental flows. The value of 𝐶𝜀2  is calculated based on a 

homogeneous, isotropic, decaying turbulence assumption of an ideal flow in which 𝑘 and 휀 equations 

become [45]: 

𝑑𝑘

𝑑𝑡
= −휀 

 

𝑑휀

𝑑𝑡
= −𝐶𝜀2

휀2

𝑘
 

(10) 

An analytical solution for these equations is 𝑘(𝑡) = 𝑘0 (
𝑡

𝑡0
)

−𝑛
in which 𝑡0 = 𝑛𝑘0/휀0  is the 

reference time and 𝑛 can be defined as 𝑛 =
1

𝐶𝜀2−1
; this led to 𝐶𝜀2 =

𝑛+1

𝑛
. In literature, different values 
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for 𝑛  and thus 𝐶𝜀2  are reported. Standard value for 𝐶𝜀2  is 1.92, which is a default value for the 

commercial software such as ANSYS CFX, ANSYS FLUENT, STAR-CCM+, and PHOENIX. 

Default value of 𝐶𝜀2 for 𝑅𝑁𝐺 𝑘 − 휀 is 1.68 while Mohamed and Larue [50] suggested a value of 𝐶𝜀2 =

1.77.  

The value of 𝐶𝜇 calculated based on the balance between the production and dissipation in the 

simple turbulent shear flow, which can be expressed as below: 

𝑃𝑘 = 𝜇𝑡 (
𝜕𝑈1

𝜕𝑥3
)

2

= 𝐶𝜇

𝑘2

휀
(

𝜕𝑈1

𝜕𝑥3
)

2

= 휀 
(11) 

Using the eddy-viscosity approximation (𝑢1𝑢3̅̅ ̅̅ ̅̅ = 𝜐𝑡
𝜕𝑈1

𝜕𝑥3
), the coefficient can be obtained as 𝐶𝜇 =

(
𝑢1𝑢3̅̅ ̅̅ ̅̅ ̅

𝑘
)

2
. Experimental and numerical analyses by Kim et al. [64] show that the variation of 𝐶𝜇 in areas 

far from the wall (𝑦+ > 50) is between 0.06 to 0.095, resulting in an average value of 𝐶𝜇 = 0.09. The 

value of this quantity for a temporal-mixing layer, except near the edge, was reported between 0.07 

and 0.11 [44]. 

The relationship between 𝐶𝜀1  and 𝐶𝜀2  can be also found from the homogeneous shear flow 

properties, which results in 
𝑃𝑘

𝜀
=

𝐶𝜀2−1

𝐶𝜀1−1
 [44]. Experiments done by Tavoulakis and Karnik [51] for 

different shear flows resulted in different values for 
𝑃𝑘

𝜀
, ranging from 1.33 to 1.75. This ratio is 

𝑃𝑘

𝜀
 = 

2.09 when default values of 𝐶𝜀1and 𝐶𝜀2  are used, which is noticeably different from the reported 

experiment value  [45]. Another constraint for the closure coefficients is based on the physics of the 

fully developed channel flow in log-law region that results in [44]: 

𝜎𝜀 =
𝜅2

𝐶𝜇
1/2(𝐶𝜀2 − 𝐶𝜀1)

 
(12) 

where 𝜅 is the Von Karman constant, varying from 0.33 to 0.45 [65]. The value of 𝜎𝑘 = 1 is also 

proposed by Launder and Spalding [61]. According to [45, 52], there is no data or experiment 

available to define a suitable range for this constant. The value of this constant for the 𝑅𝑁𝐺 𝑘 − 휀 

model is 𝜎𝑘 = 0.7179 in ANSYS CFX formulation.  

2.3.  Description of the cross-ventilation experiment 

Experimental data by Tominaga and Blocken [1] are used in this study to validate the 

microclimate CFD model. The experiment was conducted to analyze the cross-ventilation of an 

unsheltered and sheltered building in an isothermal boundary layer wind tunnel as shown in Fig. 1(a). 

Target building has a dimension of 𝑊 × 𝐷 × 𝐻 = 0.2 𝑚 × 0.2 𝑚 × 0.16 𝑚 with two openings of the 

similar size (0.092 𝑚 × 0.036 𝑚) on opposite walls. The thickness of walls and ceiling is 3 𝑚𝑚. 

In the case of the sheltered building, eight similar cuboid buildings without opening are 

surrounding the target building at a distance equals to the building width (𝑊 ). Location of the 

measurement points in the central vertical section of the building is also displayed in Fig. 1(b). Flow 

𝑧 
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data at these measurement points, including velocity and TKE, are used for the CFD validation and 

statistical optimization. 

  
(a) (b) 

Figure 1 (a) Configuration of the sheltered building and (b) measurement points in the centeral vertical section. 

2.4.  Outline of CFD domain and setup 

A rectangular computational domain, as shown in Fig. 2, was considered based on the 

recommendations by AIJ guidelines [66] and similar studies [8, 16]. The domain width, length, and 

height were 2.6 𝑚 × 4.2 𝑚 × 0.96 𝑚. ICEM CFD meshing package was used to create the structured 

hexahedral mesh using the blocking technique. Boundary conditions were implemented at inlet 

boundary directly from the experiment; including vertical profiles of the streamwise velocity and TKE 

(see Fig. 3). A power law profile was used for the inlet velocity, which represents the wind profile at 

the lower part of a neutral atmospheric boundary layer: 

𝑈(𝑧)

𝑈𝐻
= (

𝑧

𝐻
)

0.25

 
(13) 

where 𝑈(𝑧) is the streamwise velocity at the height of 𝑧, and 𝑈𝐻 = 4.3 𝑚
𝑠⁄  is the velocity at the 

building height 𝐻. The measured vertical profile of the TKE was also approximated by an exponential 

formulation proposed in [1]: 

𝑘(𝑧)

𝑈𝐻
2 = 0.033 𝑒𝑥𝑝−0.32(𝑧

𝐻⁄ ) 
(14) 

The turbulent kinetic energy dissipation rate 휀(𝑧) was approximated in accordance with the AIJ 

guidelines [66]: 

휀(𝑧) = 𝐶𝜇

1
2𝑘(𝑧)

𝑈𝐻

𝐻
𝛼 (

𝑧

𝐻
)

𝛼−1

 
(15) 

 where 𝐶𝜇 denotes the model constant equals to 0.09 and 𝛼 = 0.25.  

Measurement Points 

Leeward 

opening 

Windward 

opening 

𝐻 

0.036 𝑚 

0.092 𝑚 

 

  0                           𝑥/𝐷                    1 

𝑧/𝐻 

𝑦 

𝑥 

1 
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Figure 2 Computational domain and grid arrangement 

  
(a) (b) 

Figure 3 Vertical profile of (a) the time averaged streamwise velocity and (b) turbulent kinetic energy of the 

experiment, and inlet flow and incident flow from the empty-domain test case. 

Due to the gradual change of the vertical wind velocity profile in the wind tunnel, an empty-

domain CFD simulation test was first performed with the same grid distribution in the vertical 

direction equals to the main CFD model. Mean velocity and TKE vertical profiles of the inlet and 

incident flows are depicted in Fig.3 for the empty domain test case. There was no streamwise 

inhomogeneity observed in the vertical profile of the mean velocity, however, a streamwise gradient in 

the vertical profile of the TKE was found near the ground surface at 𝑧 𝐻⁄ < 0.5 . This streamwise 

inhomogeneity seems acceptable as the TKE at the reference height is equal to that of the inlet flow 

[8]. A no-slip smooth boundary condition was also considered for the ground and building surfaces. 
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Symmetric wall boundary conditions were assigned to the lateral boundary surfaces while a free-slip 

wall boundary condition was assumed for the top boundary surface.  

The RANS equations were solved using the commercial software ANSYS CFX, which uses an 

element-based finite volume discretization method. Two near-wall modeling approaches, including 

scalable and automatic wall functions, were used depending on the utilized turbulence model. Scalable 

wall function is based on the modification of the Launder and Spalding [55] to treat roughness of 

walls. In automatic wall function approach available in ANSYS CFX, wall treatment automatically 

switches from wall-functions to a low-Re near wall formulation as the mesh is refined. For building 

surfaced an average 𝑌+ ≈ 1 was applied while an expansion ratio of about 1.2 and a first layer size of 

0.0005 𝑚  were considered for the boundary layer meshes. The CFD solver iterations have been 

continued until reaching residuals of less than 10−4 for momentum, 𝑘 and 휀 equations. 

 

   
(a)  (b)  (c)  

Figure 4 Vertical distribution of the mean streamwise velocity inside the sheltered building at:             

  (a) 
𝒙

𝑫
= 𝟎. 𝟏𝟐𝟓, (b) 

𝒙

𝑫
= 𝟎. 𝟓, (c) 

𝒙

𝑫
= 𝟎. 𝟖𝟕𝟓. 

A mesh sensitivity study was conducted for the case of the sheltered building to find a mesh-

independent grid. The number of cells for coarse, medium and fine meshes were 2,332,870 and 

4,040,656 and 6,998,621, respectively. The vertical distribution of the mean streamwise velocity for 

different mesh settings at three different positions, i.e. inlet plane (𝑥/𝐷 = 0.125), center plane (𝑥/𝐷 =

0.5), and outlet plane (𝑥/𝐷 = 0.875), is shown in Fig. 4. The standard 𝑘 − 휀 model was used for the 

mesh sensitivity analysis. The sensitivity of the velocity profile to the cell size was found to be very 

low after refinement of the medium mesh and hence it was used for the rest of the calculations. 

2.5.  CFD validation of the cross-ventilation for an isolated building model  

In order to show the reliability of the CFD simulation, a separate simulation was initially 

performed for the case of unsheltered building. The numerical results were compared with an 

experimental study by Tominaga and Blocken [1] and a numerical analysis presented by Hoof et al. 

[25] where ANSYS FLUENT was utilized as the CFD solver. Similar CFD setting as [25] was 

considered in this study though ANSYS CFX was used as the solver. Vertical distribution of the mean 
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streamwise velocity (𝑈
𝑈𝐻

⁄ ) at three different positions (𝑥/𝐷 = 0.125, 𝑥/𝐷 = 0.5, 𝑥/𝐷 = 0.875) is 

illustrated in Fig. 5 and it can be seen that the numerical results of current study and those of van 

Hooff et al. [25], which are both based on the 𝑅𝑁𝐺 𝑘 − 휀 model, show a very good agreement with the 

experimental data. It was also observed that the value of the streamwise velocity gradient ∂U̅
∂z⁄  

formed at the inlet opening around the incoming jet decreases as the flow approaching to the leeward 

opening where ∂U̅
∂z⁄  reaches to its minimum value.  

               

   
          (a)           (b)           (c) 
Figure 5 Vertical distribution of the mean streamwise velocity inside the unsheltered building at:             

  (a) 
𝒙

𝑫
= 𝟎. 𝟏𝟐𝟓 ,(b) 

𝒙

𝑫
= 𝟎. 𝟓, (c) 

𝒙

𝑫
= 𝟎. 𝟖𝟕𝟓.   

2.6.  CFD validation of the cross-ventilation in the sheltered building 

The vertical distribution of the streamwise velocity calculated by different RANS turbulence 

models at three different streamwise positions for the sheltered building scenario is shown in Fig.6 and 

results are compared with those of the experiment. In the case of the sheltered building scenario, the 

incoming jet velocity shows a noticeable decrease in comparison with the unsheltered case (see Fig. 

5), which can be explained as the blocking effect of the surrounding buildings. For the sheltered 

building scenario, the level of agreement between the experimental and CFD data for all the RANS 

turbulence models are very poor in contrast to the unsheltered building scenario. At the windward 

plane (
𝑥

𝐷
= 0.125), the standard 𝑘 − 휀, 𝑆𝑆𝑇 and 𝑅𝑁𝐺 models fail to capture the velocity profile of the 

incoming jet. The  𝐵𝑆𝐿 𝑅𝑆𝑀 model accurately predicts the velocity profile at the lower part of the 

building, but it over-predicts the velocity in the upper part of the building similar to other turbulence 

models. The same mismatch between the experimental and CFD data can be observed in the center 

plane (
𝑥

𝐷
= 0.5) where the standard 𝑘 − 휀, 𝑆𝑆𝑇 and 𝑅𝑁𝐺 models predict a constant velocity profile. In 

the lower part of the building, the 𝐵𝑆𝐿 𝑅𝑆𝑀 model shows more accurate results. In the leeward plane 

(
𝑥

𝐷
= 0.875) , the standard  𝑘 − 휀  and 𝐵𝑆𝐿 𝑅𝑆𝑀  models predict similar velocity profiles and both 

overestimate the streamwise velocity in the upper part of the building. However, in the leeward plane, 

the 𝑆𝑆𝑇 and 𝑅𝑁𝐺 models resolve a very different pattern for the streamwise velocity where flow is 

simulated to inversely enter the building through the leeward opening.      
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(a) (b) (c) 

Figure 6 Comparison of vertical distribution of the mean streamwise velocity obtained by experiment, the 

standard 𝒌 − 𝜺 (SKE),𝑹𝑵𝑮, 𝑺𝑺𝑻, and 𝑩𝑺𝑳 𝑹𝑺𝑴 models inside the sheltered building at: (a) 
𝒙

𝑫
= 𝟎. 𝟏𝟐𝟓, (b) 

𝒙

𝑫
= 𝟎. 𝟓, (c) 

𝒙

𝑫
= 𝟎. 𝟖𝟕𝟓. 

To have a general picture of the flow pattern inside the sheltered building, streamlines are plotted as 

demonstrated in Fig. 7 for four different turbulence models, including the standard 𝑘 − 휀, 𝑆𝑆𝑇, 𝑅𝑁𝐺 𝑘 −

휀, and 𝐵𝑆𝐿 𝑅𝑆𝑀. Focusing on the streamlines from the experiment, it can be seen that the crossing jet 

through the windward opening is much weaker than that of the unsheltered building shown in Tominaga 

and Blocken [1] . It is mainly due to the flow distraction effect of the upstream building, which forces the 

airflow moving downward in the vortex generated in its wake region. Inside the building section, a large 

counter-clockwise recirculation is formed while its center is near the leeward opening. For the eddy-

viscosity based models, i.e. the standard 𝑘 − 휀, 𝑆𝑆𝑇, 𝑅𝑁𝐺 𝑘 − 휀, a very large single counter-clockwise 

recirculating flow is predicted although its center is miscalculated far from the leeward opening, and 

placed in the center of the building. In contrast to the eddy-viscosity based models, the 𝐵𝑆𝐿 𝑅𝑆𝑀 predicts 

a more similar flow pattern to the experiment, and it can be seen that the center of the recirculation is 

close to the leeward opening. However, the direction of the streamlines between the windward opening 

and the center of the building is not similar to that of the experiment where the flow is more vertically 

inclined. The above mentioned discrepancies between different turbulence models are mainly originated 

from the accuracy of these models in the prediction of the roof separation/reattachment and the wake 

formed behind the upstream building, and also due to their inherent poor accuracy in prediction of the 

TKE distribution inside the street canyon. In fact, low accuracy of the steady RANS models in 

understanding of the momentum diffusion in the wake region between the upstream and downstream 

adjacent buildings results in inaccurate calculation of cross-ventilation through the target building. 
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(a)  (b)  

 
 

 

(c) (d) 

 
 

 

(e)  (f) 

Figure 7 Streamlines in the vertical center section of the sheltered building: (a) experimental data by 

Tominaga and Blocken [1], (b) 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒌 − 𝜺, (c) 𝑺𝑺𝑻, (d) 𝑩𝑺𝑳 𝑹𝑺𝑴 , (e) 𝑹𝑵𝑮 𝒌 − 𝜺. 

Spatial average of the measured TKE distribution inside the sheltered building scenario was 

reported to be 43% lower than that was measured for the unsheltered building scenario [1]. Results of 

the validation study for the unsheltered building showed that the CFD prediction of the TKE inside the 

building was lower than the experimental data reported in [1]. This inaccuracy was even worse in the 

case of the sheltered building scenario. In Table 1, average of the normalized TKE (𝑘/𝑈𝐻
2) at three 

streamwise positions inside the building model are shown for different turbulence models, and 
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compared with those of the experiment. It can be evidently seen that all turbulence models under-

predict the TKE at least one order of magnitude lower than the experimental data.    

Table 1 Spanwise averaged turbulent kinetic energy at three different streamwise positions inside the sheltered 

building  

𝑘/𝑈𝐻
2 × 104 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑘 − 휀 𝑅𝑁𝐺 𝑆𝑆𝑇 𝐵𝑆𝐿 𝑅𝑆𝑀 

𝑥

𝐷
= 0.125 211 2.21 1.45 2.1 8.19 

𝑥

𝐷
= 0.5 67 2.24 1.23 3.65 1.02 

𝑥

𝐷
= 0.875 69 10.4 15.2 17.2 1.05 

 

Value of the calculated non-dimensional airflow rate 
𝑄

𝑈𝐻𝐴𝑖𝑛𝑙𝑒𝑡
 for the sheltered building condition 

is shown in Table 2 for the standard 𝑘 − 휀 , 𝑆𝑆𝑇 , 𝑅𝑁𝐺 𝑘 − 휀 , and 𝐵𝑆𝐿 𝑅𝑆𝑀 . These values are 

compared with that was reported in [1]. The accuracy of the CFD model in prediction of the airflow 

rate of the cross-ventilation varies according to the selected turbulence model. For the given geometry 

and boundary conditions, the eddy viscosity-models fail to predict the airflow rate value and its 

direction through the openings of the sheltered building scenario. The experimental airflow rate is 

reported in [1] to be 0.07 while its value for the case of the standard 𝑘 − 휀 is -0.0004. The negative 

sign for the non-dimensional airflow rate means that the predicted airflow enters the building through 

the leeward opening instead of the windward opening. Estimated airflow rates for 𝑅𝑁𝐺 𝑘 − 휀 and 𝑆𝑆𝑇 

were -0.0052 and -0.0012, which both are incorrect in terms of magnitude and direction. The 

𝐵𝑆𝐿 𝑅𝑆𝑀  model provided a more accurate velocity distribution and airflow rate. However, the 

𝐵𝑆𝐿 𝑅𝑆𝑀 model significantly under-predicted the airflow rate crossing the openings with the value 

equal to 0.0162. Here, it is important to be noted that the direction of the measured airflow rate during 

the experiment cannot be determined explicitly as the tracer gas technique was used for measuring the 

volume flow rate. The accuracy of the airflow rate measurement in the experiment was reported to be 

±7% [25].     

Table 2 Non-dimensional airflow rate 
𝑸

𝑼𝑯𝑨𝒊𝒏𝒍𝒆𝒕
 for the sheltered building scenario  

Non-

dimensional 

airflow rate 

Experimental 

data 

Standard 

𝑘 − 휀 
𝑅𝑁𝐺 𝑘 − 휀 𝑆𝑆𝑇 𝐵𝑆𝐿 𝑅𝑆𝑀 

𝑄

𝑈𝐻𝐴𝑖𝑛𝑙𝑒𝑡

 
0.07 -0.0004 -0.0052 -0.0012 0.0162 

To understand the reason of such inaccuracy in predicting crossing airflow rate for the RANS 

models, the distribution of pressure coefficient (𝐶𝑝 =
𝑃−𝑃𝑟𝑒𝑓

0.5𝜌𝑈𝐻
2 ) along a horizontal line starting from the 

mid height of the leeward surface of the upstream building and ending at the windward surface of the 

downstream building is plotted as shown in Fig.8. The estimated pressure differences by the 

standard 𝑘 − 휀, 𝑅𝑁𝐺, and 𝑆𝑆𝑇 turbulence models are very low at the windward and leeward openings 

of the target building; hence, an incorrect airflow direction and airflow rate were predicted at these 

locations. Results of the 𝐵𝑆𝐿 𝑅𝑆𝑀  model showed a better performance in the calculation of the 

airflow direction. In the 𝐵𝑆𝐿 𝑅𝑆𝑀  model, a noticeable pressure difference is estimated for the 
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windward and leeward openings, which has forced the air to move through the windward opening and 

moves out of the leeward opening. The variation of the internal pressure inside the building (0 ≤
𝑥

𝐷⁄ ≤ 1) is almost constant although its average value varies for different RANS models. It is 

noteworthy to mention that the stability of the numerical results using steady Reynolds Stress models 

was a challenging issue in the case of the sheltered building. Utilization of the Reynolds Stress models 

requires careful considerations of the convergence issue. Furthermore, it was noticed that the 

fluctuating behavior of the flow parameters became more challenging when a finer mesh was used for 

the 𝐵𝑆𝐿 𝑅𝑆𝑀 model. 

  

Figure 8 Pressure coefficient (𝑪𝑷 =
𝑷−𝑷𝒓𝒆𝒇

𝟎.𝟓𝝆𝑼𝑯
𝟐 ) along a horizontal line starting from the upstream building leeward 

face to the downstream building windward face through the openings.  

3. Improving of the turbulence modeling accuracy using stochastic optimization  

As it was shown in the previous section, accuracy of the steady RANS turbulence models for 

cross-ventilation modeling of the sheltered building scenarios is generally poor. Because of the 

limitations of the unsteady RANS and LES models, it is desirable to propose a method to improve the 

accuracy of the RANS models for CFD modeling of the sheltered cross-ventilation scenarios. To this 

end, a stochastic optimization of the closure coefficients is presented in this section to improve the 

accuracy of the standard 𝑘 − 휀 model.  

The optimization method used in this study is based on the integration of the Monte Carlo 

Sampling (MCS) technique and the Nonlinear Programing with Non-Monotone and Distributed Line 

Search (NLPQLP) optimization method [67]. A schematic of the stochastic optimization methodology 

for the closure coefficients are depicted in Fig. 9. In the optimization process, the probability density 

function (PDF) of the closure coefficients are given as uncertainty variables into the program, then a 

series of CFD simulations performed automatically in order to characterize the statistical 

characteristics of the output variables, which in this case are validation metrics. 
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The brief description of the formulation of stochastic optimization can be mathematically stated as 

finding a set of design variables X that [68]: 

Minimize:         𝑓(𝜇𝑦(𝑋), 𝜎𝑦(𝑋))  

Subject to:         𝑔𝑖(𝜇𝑦(𝑋), 𝜎𝑦(𝑋)) ≤ 0  

𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈 (16) 

where 𝑋𝐿 and 𝑋𝑈 are the lower and upper limits for input parameter 𝑋. In this formulation, the output 

constraint 𝑔𝑖  is expressed in terms of mean value and standard deviation. The objective function 

considered in this study was defined for four terms, including the mean value and standard deviation 

of the validation metrics. A weighted sum approach was used to define the objective function, which 

includes a term for mean value variation relative to the target and a term to minimize the standard 

deviation of the output responses [68]: 

𝐹 = ∑ [
𝑤1𝑖

𝑠1𝑖

(𝜇𝑦𝑖
− 𝑀𝑖)

2
+

𝑤2𝑖

𝑠2𝑖

𝜎𝑦𝑖
2 ]

𝑙

𝑖=1

 (17) 

where 𝑤1𝑖
 and 𝑤2𝑖

 are the weighting factors, and 𝑠1𝑖
 and 𝑠2𝑖

 are the scale factors related to each term.  

𝑀𝑖 stands for the target of the output response 𝑖 and 𝑙 is the total number of output responses. The 

statistical variability of output responses (i.e. 𝜇𝑦𝑖
and 𝜎𝑦𝑖

), which are required by the stochastic 

optimization formulation, can be estimated using Monte Carlo simulation (MCS) technique. The 

number of random CFD simulations generated in the Monte Carlo simulation are 50, compromising 

between the statistical analysis accuracy and the computational cost. A total of 250 CFD simulations 

were executed during the optimization process. Simulations were conducted using an 8-core AMD® 

CPU processor, which took about 4 days. 

 

Figure 9  Schematic of the stochastic optimization of the closure coefficients of the standard 𝒌 − 𝜺. 

In order to quantify the agreement between the experimental and CFD results, the below 

validation metrics are applied to the simulated scenarios [35]. These metrics are defined for both 𝑈 

and 𝑘 variables at 63 measurement points shown in Fig. 1(b). These validation metrics, include the hit 

rate 𝑞, the fraction of the predictions within a factor of 2 of the observations (𝐹𝐴𝐶2), the fractional 

bias (𝐹𝐵), and the normalized mean square error (𝑁𝑀𝑆𝐸): 

𝑞 =
1

𝑁
∑ 𝑛𝑖

𝑁

𝑖=1

     𝑖𝑓  |
𝑃𝑖 − 𝑄𝑖

𝑃𝑖
| ≤ 𝐷𝑞    𝑜𝑟 |𝑃𝑖 − 𝑄𝑖| ≤ 𝑊𝑞   𝑛𝑖 = 1  𝑒𝑙𝑠𝑒  𝑛𝑖 = 0  

(18) 
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𝐹𝐵 =
[𝑄] − [𝑃]

0.5([𝑄] + [𝑃])
 

 

(19) 

𝑁𝑀𝑆𝐸 =
[(𝑄𝑖 − 𝑃𝑖)2]

[𝑄][𝑃]
 

(20) 

𝐹𝐴𝐶2 =
1

𝑁
∑ 𝑛𝑖

𝑁

𝑖=1

    𝑛𝑖 = 1      𝑖𝑓   0.5 ≤
𝑃𝑖

𝑄𝑖
≤ 2     𝑒𝑙𝑠𝑒      𝑛𝑖 = 0       

(21) 

where 𝑂𝑖 and 𝑃𝑖 are the measured and computed values of a given variable for sample 𝑖, respectively. 

𝑁 = 63 is the number of data points used in the optimization process. The ideal value of the validation 

metrics for a complete agreement between the experimental and numerical results is 1 for 𝑞 and 𝐹𝐴𝐶2, 

and 0 for 𝐹𝐵 and 𝑁𝑀𝑆𝐸. 

4. Result and discussion 

A parametric sensitivity study for cross-ventilation of the sheltered building is firstly conducted to 

obtain the effect of the CFD model outputs to the closure coefficients variation. Parametric sensitivity 

study is thus performed by varying the closure coefficients, i.e. 𝐶𝜀1, 𝐶𝜀2, 𝐶𝜇 and 𝜎𝑘, in a specified 

range as shown in Table 3. The range of these coefficients is chosen with regards to the previous 

studies in literature and the result of the parametric study. Value of 𝜎𝜀 is calculated using Eq.12. In 

Table 3, the default value of the closure coefficients that are embedded in commercial CFD software 

such as ANSYS CFX, ANSYS FLUENT, and STAR-CCM+, and PHOENIX are also shown. For the 

parametric sensitivity analysis, 20 uniformly distributed samples were considered for each parameter 

in the specified range in Table 3. 

Table 3 Default value and range of the closure coefficients for the parametric sensitivity study  

 𝐶𝜀1 𝐶𝜀2 𝜎𝑘 𝐶𝜇 

 

Standard value 

Ranges 

 

1.44 

1.0-1.5 

 

1.92 

1.5-3.2 

 

1.0 

0.8-1.4 

 

0.09 

0.05-0.15 
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(a) (b) 

  
(c) (d) 

Figure 10 Variation of the validation metrics for the sheltered building scenario: (a) 𝑭𝑨𝑪𝟐𝑼, (b) 𝑭𝑩𝒌, (c) 𝒒𝑼, (d) 

𝑵𝑴𝑺𝑬𝒌. 

In Fig.10, variation of the validation metrics for streamwise velocity 𝑈  and turbulent kinetic 

energy 𝑘 is shown for the sheltered cross-ventilated building model. The highest FAC2U is obtained 

for the higher values of 𝐶𝜀2 and lower values of 𝐶𝜇 in the considered ranges. Fractional bias for the 

turbulent kinetic energy FBk strongly depends on 𝐶𝜀2. The result shows a higher agreement with the 

experimental data for the higher values of 𝐶𝜀2. 𝑁𝑀𝑆𝐸𝑘  is considerably high, but its value strongly 

depends on 𝐶𝜀2 and 𝐶𝜇. For low values of 𝐶𝜇 and high values of 𝐶𝜀2, 𝑁𝑀𝑆𝐸𝑘 is in its minimum value. 

High value of hit rate parameter for the velocity (𝑞𝑈) is also estimated for the lower values of 𝐶𝜀1 and 

higher values of 𝐶𝜀2 and 𝐶𝜇. Thus, typical variation of the validation metrics for the sheltered building 

test case shows a strong effect of 𝐶𝜀2 on the CFD result accuracy although it reveals that the variation 

of 𝜎𝑘  has a very low impact on the CFD results. Therefore, it was concluded that only 𝐶𝜀1, 𝐶𝜀2, 𝐶𝜇 and 

𝜎𝜀 are required to be considered in the optimization process while the value of 𝜎𝑘 was assumed as its 

default value of 1. 
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(a) 𝑚𝑒𝑎𝑛 𝑁𝑀𝑆𝐸𝑘 (b) 𝑚𝑒𝑎𝑛 𝐹𝐴𝐶2𝑈 

  
(c) 𝑚𝑒𝑎𝑛 𝑁𝑀𝑆𝐸𝑘 (d) 𝑚𝑒𝑎𝑛 𝐹𝐴𝐶2𝑈 

Min   Max 

Figure 11 Variation of the validation metrics for the optimization process of the sheltered building. 

As depicted in Fig. 11, contours of variation of the validation metrics during the optimization 

process are presented. These graphs determine the range of the closure coefficients in which higher 

agreement between the CFD and experimental results occurs with the highest probability. The 

modified value for 𝐶𝜀1 is close to its default value of 1.44, however, values close to 𝐶𝜀1 = 1.5 show 

better accuracy in terms of validation metrics. The values of 𝐶𝜀2 between 2.7 ≤ 𝐶𝜀2 ≤ 3.2 show the 

highest agreement between the CFD and experimental data. In this case, the mean values of 𝑁𝑀𝑆𝐸𝑘 

and 𝐹𝐴𝐶2𝑈 are around their minimum and maximum values, respectively. For 𝐶𝜇, a higher value than 

its default value (i.e. 𝐶𝜇 = 0.09) seems to result in a closer agreement with the experimental data. In 

terms of mean value of 𝑁𝑀𝑆𝐸𝑘, a range of 0.11 ≤ 𝐶𝜇 ≤ 0.14 is preferable, but if the mean value of 

𝐹𝐴𝐶2𝑈 is considered, then values between 0.13 ≤ 𝐶𝜇 ≤ 0.15 show a better agreement. In Fig.12, the 

standard deviation contours of the validation metrics related to the optimization process are 

furthermore displayed. Fig.12 (a) shows that the minimum standard deviation of 𝑁𝑀𝑆𝐸𝑘 occurs for 

𝐶𝜀1 ≈ 1.5  and 2.7 ≤ 𝐶𝜀2 ≤ 3.2 . However, according to Fig.12 (b), in the mentioned ranges, the 

standard deviation value of 𝐹𝐴𝐶2𝑈 is relatively high.  
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(a) 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑀𝑆𝐸𝑘 (b) 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝐴𝐶2𝑈 

Min  Max 

Figure 12 Contours of standard deviation of the validation metrics for the sheltered building: (a) 𝑵𝑴𝑺𝑬𝒌, (b) 

𝑭𝑨𝑪𝟐𝑼. 

As illustrated in Fig. 13, streamlines at the vertical center of the building model are shown for the 

standard 𝑘 − 휀 with default and modified closure coefficients models while they are compared with 

those of the experiment. As described before, in the case of the standard closure coefficients (see 

Fig.13(b)), the velocity field inside the building model is not accurately simulated mainly due to the 

poor prediction of the momentum diffusion and TKE inside the upstream and downstream cavities 

around the target building, and also incorrect pressure difference estimation across the openings of the 

target building. For the case of the modified coefficients, as shown in Fig.13 (c), the CFD model 

shows a considerable improvement in predicting the velocity field inside the target building. In this 

case, as shown in Fig. 8, pressure difference over the windward and leeward openings are noticeably 

increased. No wall pressure measurement was done in the experiment, however, an estimation of the 

pressure coefficient on building walls can be obtained using a method similar to Quan et al. [69] for 

low-rise sheltered buildings. The difference between the average pressure coefficent at the windward 

surface and the leeward surface (∆𝐶𝑝 = 𝐶𝑝𝑤𝑖𝑛𝑑𝑤𝑎𝑟𝑑
− 𝐶𝑝𝑙𝑒𝑒𝑤𝑎𝑟𝑑

) for a plan-area density 𝐶𝐴 = 0.25 

was reported to be about ∆𝐶𝑝 = 0.4. The CFD result for ∆𝐶𝑝 for the standard 𝑘 − 휀  with default 

coefficients, 𝑅𝑁𝐺 𝑘 − 휀 and 𝑆𝑆𝑇 are 0.048, -0.037 and -0.053, respectively. For the case of the 𝑘 − 휀 

model with modified coefficents ∆𝐶𝑝 = 0.23, which is noticably closer to the expected value reported 

in [69]. As a result, the incoming jet through the windward opening has enough momentum to 

infiltrate the building and moves out from the leeward opening in a similar pattern as it can be seen in 

the experiment. Moreover, results of the standard 𝑘 − 휀 with the modified closure coefficients show a 

better agreement with the experiment than those of the 𝐵𝑆𝐿 𝑅𝑆𝑀 with the default closure coefficient 

(Fig. 7(d)). 
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(a)  

 
 

 

(b)  (c)  
Figure 13 Streamline in the vertical center section of the sheltered building: (a) experiment by Tominaga and 

Blocken [1], (b) standard 𝒌 − 𝜺, (c) 𝒌 − 𝜺  with the modified closure coefficients. 

When the modified closure coefficients are used, not only the velocity field prediction accuracy 

increases, but the airflow rate calculation is also significantly improved. For the case of the modified 

closure coefficients, the non-dimensional airflow rate was estimated to be about 0.064, which is a 

quite closer number to the experimental result with a less than 8% error. As shown in Fig.8, in the case 

of the modified coefficients, the pressure difference over the windward and leeward windows greatly 

rose in a way that airflow can pass through the windward opening and move out from the leeward 

opening. The highest pressure difference across the building and consequently the highest airflow rate 

were calculated for the standard 𝑘 − 휀 model using the optimized closure coefficients. 

According to the results, average value of 𝑘/𝑈𝐻
2  at the windward opening was increased from 

2.2 × 10−4 for the standard 𝑘 − 휀 (see Table 1) to 14.5 × 10−4 when the modified coefficients were 

utilized, which resulted in a more accurate velocity gradient for the incoming jet crossing the opening. 

However, the value is still lower than that of the experiment. The reason is due to the inherent 

incapability of the steady RANS models to reproduce large-scale fluctuation inside the cavities around 

the buildings and inside the building model. As described in [1], the 𝑘 profile inside the building was 

high where the velocity gradient was high. In the case of the standard 𝑘 − 휀  with the modified 

coefficients, as depicted in Fig. 14 (a), the velocity gradient is modeled more accurately than the 

default coefficients results at the windward opening (
𝑥

𝐷
= 0.125). A greater production term is also 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑘 − 휀 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑘 − 휀 
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estimated using the modified closure coefficient, and consequently a better velocity field and airflow 

rate were predicted for the sheltered building scenario. In Fig. 14 (b) and Fig. 14 (c), vertical profiles 

of the streamwise velocity are shown at  
𝑥

𝐷
= 0.5 and 

𝑥

𝐷
= 0.875. A good agreement between the CFD 

results of the modified closure coefficients and experiments can be also seen for the lower part of the 

sheltered building with an average error of less than 30%. The streamwise velocity at the upper part of 

the building was under-predicted for both models which is related to the inaccuracy of models in 

predicting the TKE at that region.   

 
 

 

 

 

 

 
 (a)   (b)   (c)  

Figure 14 Vertical distribution of the streamwise velocity for the sheltered building at: (a) 
𝒙

𝑫
= 𝟎. 𝟏𝟐𝟓,  

 (b) 
𝒙

𝑫
= 𝟎. 𝟓, (c) 

𝒙

𝑫
= 𝟎. 𝟖𝟕𝟓. 

The effectiveness of the optimization methodology can be discussed in terms of validation metrics 

as they were considered as objective function for the optimizer. The hit rate value of the velocity field 

(𝑞𝑈) for the standard 𝑘 − 휀 model was 0.21 while it was predicted to be 0.35 for the 𝑘 − 휀 model with 

modified coefficients. The predicted values of 𝐹𝐴𝐶2 for the velocity field were 0.12 and 0.29 using 

standard 𝑘 − 휀 with default and modified coefficients, respectively. The 𝑁𝑀𝑆𝐸 values for TKE field 

showed a noticeable reduction from 49.4 to 9.8 but it is still far from the ideal value of 0, which is 

mainly due to the inherent incapability of RANS models to capture the TKE inside the street canyons. 

5. Conclusions 

The accuracy of different RANS turbulence models were compared with the result of an 

experiment of a cross-ventilation for a sheltered building. As frequently stated in literature, a 

significant discrepancies between the experimental and CFD results can be observed for the 

distribution of streamwise velocity and TKE around the sheltered building. It was shown that, for the 

considered case study of a sheltered building, the RANS models not only fail to predict the crossing 

airflow through the target building, but they also fail to estimate the correct direction of flow inside the 

building. Using stochastic optimization and Monte Carlo Sampling technique, the coefficients of the 

standard 𝑘 − 휀  were modified in a way that the accuracy of the CFD model was considerably 
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increased for a sheltered building test case. The following findings can be addressed as the main 

conclusion of the study:  

- Application of RANS models for cross-ventilation modeling in densely packed urban 

areas is questionable due to their poor accuracy in reproducing the flow parameters in the 

wake regions inside the buildings and cavities around them. 

- For the considered test case, all RANS models except the 𝐵𝑆𝐿 𝑅𝑆𝑀  failed to predict 

velocity and TKE distributions inside the building and pressure difference between the 

windward and leeward openings.  

- Airflow rate predictions for all RANS models, excluding 𝐵𝑆𝐿 𝑅𝑆𝑀 , were incorrectly 

calculated in term of the direction from the leeward opening toward the windward one. 

However, the 𝐵𝑆𝐿 𝑅𝑆𝑀 under-predicted the airflow rate by more than 70% error.  

- The default value of the closure coefficients of the standard 𝑘 − 휀 model in commonly 

used CFD tools such as ANSYS CFX, ANSYS FLUENT, PHOENIX, and STAR-CMM+ 

are 𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1  and 𝜎𝜀 = 1.3 , while the obtained values 

based on the optimization method for the considered sheltered building case are 1.45 ≤

𝐶𝜀1 ≤ 1.5 , of 2.7 ≤ 𝐶𝜀2 ≤ 3.2  and 0.12 ≤ 𝐶𝜇 ≤ 0.15 . The default value of 𝜎𝑘 = 1  is 

suggested to be acceptable while the value of 𝜎𝜀 is obtained based on a correlation.   

- For the 𝑘 − 휀 model with the optimized closure coefficients, prediction accuracy of the 

CFD model for the sheltered scenario was significantly improved for all the flow 

parameters, including the velocity and TKE distributions, and pressure coefficient. The 

crossing airflow rate prediction accuracy was also noticeably increased with an error about 

8%.  

- Due to the inherent incapability of the steady RANS to reproduce large-scale turbulent 

fluctuations around and inside the building, TKE estimation inside the building is still 

lower than that of the experiment even for the optimized case. 

It is important to note that the universality of the modified coefficient and their physical meanings 

for other flow fields are still remaining as a challenging issue. Therefore, future work will be focused 

to extend the proposed optimization approach in this study to other flows in urban areas. This will 

provide a set of appropriate closure coefficients for RANS models to achieve higher accuracy for 

design and analysis of ventilated buildings.   
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