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Abstract: 
For effective integration of large amounts of renewables and high-efficiency energy technologies, their 
benefits have to be quantified. Network-level energy optimisation approaches can determine the optimal 
location of generation technologies within a region and the optimal layout of energy distribution networks to 
link them. Mixed-integer linear programming (MILP) formulations are generally employed and this is often a 
burden for large scale models as the computational time drastically increases with the problem size. 
Most methods used to reduce the complexity of MILP problems focus on the temporal scale or use 
aggregated demand profiles for the spatial dimension. There is a lack of a method addressing the spatial 
complexity to assess the potential of interlinked energy networks at large scale. Therefore, this paper 
introduces a combined clustering schema enabling quantification of the potential of district heating networks 
based on building characteristics. 
A city-scale case is divided into multiple districts based on the output of the clustering algorithm. The 
parameters taken into account by the clustering method are the cluster density, homogeneity index and load 
magnitude. The analysis of the clustering map along with building characteristics of each cluster reveals the 
required characteristics for the installation of a district heating network or distributed energy system. 

 
Keywords: 

Combined clustering, Energy hubs, Distributed energy systems, Genetic algorithm, MILP energy 
optimisation. 

1. Introduction 
The COP21 conference in Paris 2015 aimed to maintain below 2 °C the rise of global temperature 

above pre-industrial levels, fixing a target of 1.5 °C [1]. This is ensured by the ratification of “Paris 

Agreement” protocol by 55 Parties responsible for at least an estimated 55% of global greenhouse 

gas emissions (GHG) [2]. Mitigating climate change by lowering GHG emissions from energy 

systems while still providing a desired level of services is possible when considering the vast range 

of renewable and highly efficient energy technologies available today [3]. However, the transition 

towards low carbon energy systems needs to be effective. This can be achieved by quantifying the 

needs for the creation, expansion or modification of energy networks in order to adequately 

integrate renewables and high-efficiency energy converters.  

This paper first presents the challenge researchers face when dealing with large scale optimization 

of distributed energy systems (DES) and the solution obtained by using clustering techniques in 

order to reduce the problem complexity. The methodology employed to facilitate large scale 

modelling of DES in a bottom-up approach is presented in the next section, followed by a section 

introducing a combined clustering method based on building characteristics. The clustering method 

developed is employed with the bottom-up framework in an iterative process involving an 
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evolutionary approach to converge toward an optimal solution. An application to a case study 

assesses the computational benefits of the developed framework in handling a large-scale 

optimization problem while conserving a building level of detail on the energy model.  

Finally, the parameters intrinsic to the clustering algorithm are highlighted and their importance is 

quantified. The case study reveals that the density, qualifying how distant buildings are from each 

other, and the heterogeneity in the scheduling of the energy consumption, are both important 

parameters which have to be considered. Conversely the loads magnitude indicator, representing 

how large a consumer is, appears to be of relatively minor significance for the design of district 

heating networks (DHN). An extension of this work will apply the method to multiple case studies 

to deduce the characteristics driving the requirements for the deployment of DHN. 

1.1. Distributed energy systems optimisation   

Evaluating the potential savings available by combining multiple energy sources and carriers is an 

energy optimisation problem, assessing the trade-off between centralised and/or distributed energy 

system infrastructures for the supply of energy at different scales. Such problems dealing with the 

design and/or operations scheduling of single or multiple energy systems are often formulated as 

Linear Programming (LP) [4–7] or Mixed-Integer Linear Programming (MILP) in the literature [5], 

[8–19]. Researchers are today moving from the single plant optimisation problem [6, 28] (current 

practice of centralised energy system for energy supply) towards the distributed energy systems 

(DES) optimisation problem where multiple energy converters and carriers can be installed and 

operated together. In this new context of multi-energy systems, finding the optimal design and 

operating strategy to increase the overall energy efficiency of a system is not straightforward. The 

benefit of decentralised energy systems (increase of overall efficiency, decrease of transport losses 

and risk minimisation [21], [22]) versus the benefits of centralised systems (economies of scale 

already existing networks) has to be carefully evaluated [23]. 

1.2. Clustering methods enabling large scale energy optimisation  

Considering multiple energy systems in a MILP problem becomes computationally demanding in 

terms of solving time when increasing the problem space by augmenting the number of integer 

variables (exponential increases of the solving time [8]). This is often the case when adding specific 

constraints on technologies (minimum part-loads, banded efficiencies and/or costs), or when 

increasing the spatial or temporal dimensions of the problem. Commonly in research, large scale 

optimisation of DES is made possible by applying different reduction techniques. Typical day 

approaches are commonly employed to reduce the temporal scale by representing a full year 

horizon using shorter periods, which may be selected using k-medoids or k-means clustering 

methods [24], [25]. Other approaches, such as rolling horizon, can also be employed to divide the 

entire problem horizon into sub-problems solved sequentially, thus reducing the number of decision 

variables per interval [8], [16]. At the spatial resolution, often aggregation techniques are employed 

to represent the energy demand of many buildings by a single node [14], [26]. 

There is a lack of a method addressing the full spatial complexity and assessing the potential of 

interlinked energy networks at large scale, while considering a building scale level of detail to avoid 

sub-optimal solutions. We present a method formulated as a bottom-up approach, considering each 

building individually in the optimisation problem, by combining it with a clustering method.  

2. Methodology 
The multi-scale hierarchical approach for DES optimisation presented in [27] is employed and 

integrated with a combined clustering approach in order to enable solving of large scale DES 

problems while considering building scale level of detail. This is done in an iterative manner 

between the clustering method and a bottom-up optimisation framework. This section first 

introduces the optimisation problem and gives an overview of the multi-scale hierarchical approach 
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used. Full details of the multi-scale approach can be found in [27]. A city-scale case is divided into 

multiple clusters based on the output of the clustering algorithm. The optimisation problem is run 

individually for each cluster before being run between clusters at the higher scale (inter-cluster) 

based on the optimal results from the cluster scale. 

2.1. The energy hub approach  

The energy hub framework [28] is employed for the MILP formulation of the optimisation problem. 

The energy hub formulation allows representing the efficiency of multiple energy systems within a 

matrix coupling energy demand and supply [29] as shown in Fig. 1. Equations are given in the 

Appendix. The objective function (1) is to minimize the equivalent annual cost for design (2) and 

operations (3) of multiple urban energy systems including networks. The investment costs are 

multiplied by the capital recovery factor (CRF). A discount rate of 3% is used, with a lifespan of 20 

years for the technologies and 40 years for the network pipelines in order to calculate the CRF. The 

operating costs are calculated for a year of operation. 

The available energy systems considered in this study are natural gas boiler (NG), combined heat 

and power engine (CHP), photovoltaic panel (PV), thermal storage (TS) and district heating 

network (DHN), considering that gas and electrical networks are already connected to all buildings. 

CHP engines and NG boilers sizes can vary from mini-CHP or NG boiler of 2kW to large size CHP 

plant or boiler of 5MW.  

 

 

Fig. 1. Energy hub design space 

The maximum allowable size of PV panels is 

constrained by the total roof area available per 

building. Similarly the total capacity of 

thermal storage available per area depends on 

the number of buildings considering a fixed 

maximum capacity of 20 kWh per building. 

Cost and efficiency depend on the technology 

size which is a design variable of the 

optimisation problem. Size price and 

efficiency bands are obtained from various 

sources [14], [30], [31] and harmonized with 

Swiss prices in Table 1, see in appendix

2.2. Iterative hierarchical multi-scale framework to facilitate large scale 
optimisation 

The hierarchical multi-scale optimisation framework developed in [27] is combined with a genetic 

algorithm and a combined clustering algorithm in order to avoid sub-optimal solution, by 

considering only one clustering result as input for the energy optimisation problem. The combined 

framework is presented in Fig. 2. It is divided in three phases (a,b,c in Fig. 2): a structuring phase 

(a), during which the clustering algorithm divide the problem space in multiple sub-problems 

(clusters); an optimisation phase (b) run per cluster; and a general optimisation between clusters (c) 

based on optimal solutions at the cluster level. Fig. 2 presents the workflow coloured based on the 

software used at each step. The building locations and load profiles are given as input to the energy 

optimisation problem, as is the set of technologies available to supply the energy demand. Each 

building is considered as an energy hub and energy systems can be installed at any location. A first 

density based clustering algorithm creates a set of hierarchically nested clusters as a tree structure. 

Those pre-clusters are ordered and grouped based on a combined clustering score function, 

developed in the next section. Based on the output of this combined clustering approach a set of 

clusters is created. The energy hub optimisation problem is then considered per cluster. In each 

cluster, multiple network shapes are generated based on a minimum spanning tree algorithm, 
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interconnecting at each generation a growing number of buildings within each cluster from no 

district heating network to fully connected DH network, as presented in [32]. Per network 

generation, the loads of the buildings included in the DHN are aggregated and losses considered as 

a linear relation with the network size. Aggregated buildings which are part of the network are 

considered as a single energy hub, with the other remaining buildings considered as individual hubs. 

The energy hub optimisation problem is solved per hub, and this is done per network generation and 

per cluster, as described in Fig. 2 (b). Finally once the optimisation problem has been run per 

cluster, the optimal solution is retained and the design variables are passed to an inter-cluster scale 

optimisation problem (9). This ultimate optimisation problem consider the possibility of 

interconnecting clusters as an integer design variable, as in [33]. 

The iterative loop between the result of the optimisation steps (b,c) and the clustering algorithm is 

developed in order to avoid ending up with sub-optimal solutions driven by the clustering algorithm 

output. The cluster set as output from the combined clustering can be based on building location 

and load profiles, reflected by density indices, load homogeneity and load magnitude of given 

clusters. 

 

Fig. 2. Iterative multi-scale optimisation of DES 

3. Combined clustering approach 
Clustering methods drastically reduce the computational time in a ‘divide and conquer’ fashion. 

This can be done without significantly reducing the problem accuracy, e.g. lower than 2% 

difference in the objective function in [27]. However, the clustering schema has an influence on the 

results and design of the DHN due to the limitations imposed on the building interconnections at an 

inter-cluster level based on the intra-cluster optimisation results. The following section highlights 
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the different characteristics influencing the design of the DHN as well as the technology design 

variables. Finally, the combined clustering algorithm is presented to explore optimal solutions under 

different clustering maps, based on different building characteristics. 

3.1. Spatial clustering and its limitations 

The density distribution represents how far each object is from another object. A density-based and 

hierarchical algorithm is employed, called OPTICSxi (Ordering Points To identify the Clustering 

Structure). Density based algorithms evaluate for each object of a cluster that there is a minimum 

number of objects MinPts in a maximal neighbourhood distance EpsDist. The xi parameter is a 

contrast parameter defining the relative drop in density. More details on OPTICS can be found in 

[34]. For the distance matrix, the Minkowski Euclidean distance function is chosen as it best 

represents a measure of the distance between two objects. OPTICS is chosen as it is a density based 

algorithm which does not require selecting the number of clusters in advance. This number depends 

only on the minimum number of points to form a cluster, the maximal reachability distance and the 

data. 

3.1.1. Density based clustering 

Fig. 3 shows the district heating network connections for a small case comprised of three different 

clusters where the difference between Fig. 3a and Fig. 3b is the demand profiles of the buildings. 

On Fig. 3b, buildings are considered as residential, and profiles from one building to another are 

highly correlated (correlation coefficient is higher than 0.5, calculated in (13) as defined in [35]). 

This implies the same behaviours in the consumption patterns of building occupants. The graph on 

the bottom (Fig. 3d) shows the similarities in the hourly profiles, represented here for 12 optimally 

selected typical days (288 hourly time steps). The demand profiles have been randomly generated 

based on an approach presented in [36] where data are re-sampled per blocks of hourly period to 

maintain specific energy patterns. The correlation coefficient is lower than 0.5 for those demand 

profiles. The building types are similar to those from a mixed-use area.  

The first clustering indicator essential to define the possibility of having a DH network is the 

distance between energy hubs: for highly dense clusters (e.g. 8 or 2 in Fig. 3a and Fig. 3b), even 

with different energy demand behaviour, it is worthwhile to install a district heating network. For 

cluster 8, the highest density, even the design variables fixing the sizes of the selected technologies 

remain the same after optimisation. 

3.1.2. Loads based clustering 

Load distribution reflects building use (sector) and user behaviour. The results from C8 in Fig. 3 

indicate the importance of the load distribution as reflected in the Homogeneity Index (HI), which 

can be used as a clustering parameter. For cluster 9 the HI of the clustering has an influence. Indeed 

in cluster 9 in Fig. 3b, there is only a small network (interconnecting the highest energy consumer 

with two other buildings) and mostly distributed energy systems with gas boilers installed. Whereas 

in Fig. 3a for the same cluster 9, there is a full network deployed and a larger share of storage and 

CHP systems installed. Energy demand profiles and load peaks are different for a zone consisting 

only of residential buildings or a zone of pure commercial and office space buildings. Indeed, the 

energy consumption in the residential sector is mostly happening at different times from the offices. 

In a mixed zone with residential and office buildings there are possibilities of having a levelling out 

of the consumption curve when aggregating together multiple profiles, reducing the difference 

between peaks and average energy consumption. This opens up the possibility of decreasing the 

total energy consumption by an exchange of energy between buildings with different energy 

profiles. This is made possible by favouring the installation of large size CHP engines running at 

higher efficiency (which could not have been operated otherwise due to minimum part load 

constraints) in parallel with storage devices. The final result is a DH network interconnecting a 

large share of the buildings as seen in Fig. 3b. The deployment of the DHN is driven here by the 
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decrease of the homogeneity index for a mixed case compare to a residential case. It is then the 

increase of the heterogeneity (the complement of the homogeneity index) of the cluster which leads 

to a fully interconnected cluster 9 in Fig. 3a. 

 

Fig. 3. Comparison for 3 clusters between mixed-case (HI < 0.5) and residential case (HI > 0.5) on 

DHN designs based on demand profile variations: (a) DH network design and technologies 

installed per cluster and inter-cluster corresponding to (c) heating demand for a mixed-case of 

residential and office buildings for cluster 9. (b) DH network design and technology for residential 

buildings obtain after optimisation and (d) demand profiles for buildings of cluster 9. 

The load magnitude is calculated as the sum of the heating demand over a full year. A higher load 

should be considered as an input to the clustering algorithm, as its inclusion in a cluster can have a 

large influence on the overall results. It can be used to balance the grid or as an energy centre and 

creates the possibility of installing a large energy system with higher efficiency curves. The case 

where a large load should be part of a particular cluster can only be considered by adding the load 

based dimension to the clustering algorithm. 

3.2. Combined clustering algorithm 

A combined clustering algorithm is developed in order to take into account spatial and temporal 

aspects of building characteristics. This is done with the help of a feedback loop between the 

clustering output and the results of the energy optimisation at the cluster and inter-cluster level. Fig. 

4 presents the clustering framework in which inputs are tuned using an evolutionary approach. First 

a set of clusters is determined (a) based on the hierarchical tree of clusters resulting from OPTICSxi 

density based algorithm. The clusters are extracted from the lowest branches of the hierarchical 

nested tree where clusters are characterized by different density. Clusters are ordered based on their 
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density and the following characteristics are calculated (b) per cluster and per combination of 

existing clusters (i.e. at each node of the tree):

density function, homogeneity index and load 

magnitude. The thresholds are evaluated to 

ensure that clusters of very low density are 

not considered. A score is calculated based on 

the weights α, β, γ by multiplying respectively 

the normalized density, homogeneity and load 

magnitude indices, (c): 

𝛼 ∙ 𝐷𝑌 + 𝛽 ∙ (1 − 𝐻𝐼)  + 𝛾 ∙ 𝑀𝐴𝐺  (13) 

Clusters of different density, magnitude and 

homogeneity indexes are combined (all 

combinations from 1 to 3 clusters are 

considered) and grouped based on a 

maximisation of the score function. Before 

finalising the result of a clustering iteration, a 

last refinement is evaluated (d) by looking for 

a possible improvement of the score function. 

This is done by taking into account outlier 

entities (and created new clusters), which 

were not considered at the first density based 

clustering iteration (a). This is made possible 

by increasing xi, the relative drop in density 

from 0.1 in the first iteration to 0.5, which 

allows sparser clusters. The MinPts parameter 

is fixed at two entities, enabling the creation 

of a cluster of outliers from 2 buildings. 

EpsDist the maximal reachability distance is 

fixed at 200 meters for the density based step, 

in order to not consider density-based clusters 

including very distant buildings. 

 

Fig. 4. Combined nested clustering algorithm

Finally, a clustering map is generated and the optimisation problem objective function can be 

evaluated using the multi-scale framework presented in Fig. 2. A genetic algorithm is used to 

evaluate the result of the objective function and to tune the weights of the score function, α, β, γ 

positive continuous decision variables bounded in the interval [0 - 2]. The choice of the genetic 

algorithm is motivated by the large discontinuous search space. Elitism is enabled preserving the 

best solution across generations. The crossover fraction is 0.8; crossover is biased with a ratio of 1.5 

towards the better parent; the mutation rate is 0.2.  

4. Results  
The case study for evaluation consists of 32 buildings of a mixed residential-commercial area on the 

South-East side of Geneva. Buildings location and characteristics are extracted from an open data 

source SITG (Geneva Territorial Information System). The hourly heating and electricity demand 

profiles per building are based on variable profiles generated based on building occupation levels 

[37], and fitted to the actual buildings size and yearly energy consumption. The objective function 

studied here is the equivalent annual costs (EAC) for the supply of the total energy demand of the 

considered buildings, including design and operating of the distributed energy systems. 

By tuning the weights α, β, γ of the score function (13) of the clustering algorithm, the resulting 

map for optimisation is divided in a number k of clusters, between 4 and 7, leading to different 

values of the fitness function Fig. 5a. The density distribution indicates that for the lowest number 
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of division in 4 clusters, the fitness value increases. A higher number of clusters seems to provide a 

higher probability of leading to a better solution. This is also reflected in Fig. 6 where the division 

into 6 and 7 clusters minimized the objective function. Results are comparing the design obtained 

and objective function for a density-based solution where the clustering step only includes the 

spatial dimension (α=2, β=0, γ=0), against a solution where the temporal dimension of the loads and 

their magnitude has been taken into account (α=1.9, β=1.9, γ=0.3). The combined solution obtained 

considering the loads distribution and spatial dimension appears on Fig. 6 as the best solution 

determined by the GA algorithm. The fitness function of those two solutions is compared with a 

reference solution where the possibility of a DHN is not considered Fig. 5b. 

 

Fig. 5. Difference in the optimal solution for different weights of the clustering score function: (a) 

Fitness function kernel density estimation. (b) Equivalent annual cost (EAC) for the reference case, 

density-based case and combined clustering case. 

 

Fig. 6. Density estimation of the fitness value after optimisation based on the weights of the 

combined clustering algorithm: density (α), heterogeneity index (β) and loads magnitude (γ). 

By considering the possibility of installing a district heating network, the equivalent annual costs 

(EAC) are decreased by 60.5 kCHF Fig. 5b, when the optimisation map is achieved using a density-

based clustering method; the clustering is shown in Fig. 7. The EAC can be even further decreased 

(by 79.2 kCHF in Fig. 5b) when the temporal aspect is also considered in the clustering step using 

combined clustering; the clustering is shown in Fig. 8. Considering altogether the density 

coefficient DY and the load heterogeneity index (1-HI) creates cluster 2 in Fig. 8 with distant 

buildings. This enables the design of a large network connection within cluster 3, which is then 

connected to cluster 2 at the inter-clustering optimisation level. Whereas in the density based 

optimisation problem, restricted by the definition of cluster 5, the optimisation problem ends up 
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with a sub optimal solution by not being able to consider this large connection, as the optimal 

solution for cluster 2 is the installation of fully distributed energy systems.  

From the results of Fig. 6, the role of the load magnitude index is not clear. The optimal solution 

retained after a GA optimisation of 250 hours for 50 generations with a population of 10 

individuals, is a division of the problem space into 6 clusters with the weights (α=1.9, β=1.9, 

γ=0.3), showing a balance between the importance of density and load heterogeneity and a weak 

impact of the load magnitude. 

 

 

Fig. 7. Density based clustering 

 

Fig. 8. Density and loads based clustering 

5. Conclusion 
Clustering methods are shown to be a promising approach to facilitate large scale modelling and 

optimisation of urban energy systems. By alleviating limitations of MILP model, clustering 

methods enable the formulation and the solution of large scale optimisation problems for the 

exploration of design possibilities for the 4th generation DHN [38]..  

The combined framework of the multi-scale approach with a clustering algorithm presented in this 

work allows the execution of optimisation problem at large scales. The framework’s formulation 

maintains a high resolution level of details on the building scale, and by sub-dividing a large 

problem in sub-problems to reduce the computational burden it does not omit an optimal solution. 

This technique allows defining the building characteristics intrinsic to the cluster definition along 

with an optimisation problem.  

In future work, the calibration of the clustering method across multiple cases will improve the 

ability to find good clustering patterns, which will allow assessing the durability of the role of 

spatial and temporal indicators for the deployment of energy streams. 
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Appendix A 
A detailed formulation of the energy hub model employed in this framework is described here: 

Objective function: 

𝑚𝑖𝑛 ∑ {𝐼𝑡𝑒𝑐ℎ × 𝐶𝑅𝐹 + ∑ 𝑂𝐶𝑡𝑒𝑐ℎ(𝑡)ℎ𝑜𝑟𝑖𝑧𝑜𝑛
𝑡=1 } 
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DH-network

  C1

  C2

  C3

  C4

  C5

  C6

 Outliers

 Anchor

DH-network
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Where:  

𝐼𝑡𝑒𝑐ℎ = ∑ 𝛿𝑡𝑒𝑐ℎ × 𝐶𝑡𝑒𝑐ℎ
𝑙𝑖𝑛𝑒𝑎𝑟𝑛𝑡𝑒𝑐ℎ

𝑡𝑒𝑐ℎ=1 × 𝑃tech
𝑚𝑎𝑥    (2) 

𝑂𝐶𝑡𝑒𝑐ℎ(𝑡) = ∑ 𝑃𝑡𝑒𝑐ℎ(𝑡) × 𝐶𝑠𝑢𝑝𝑝𝑙𝑦
𝑙𝑖𝑛𝑒𝑎𝑟𝑛𝑡𝑒𝑐ℎ

𝑡𝑒𝑐ℎ=1     (3) 

𝐶𝑎𝑟𝑏𝑡𝑒𝑐ℎ(𝑡) = ∑ 𝑃𝑡𝑒𝑐ℎ(𝑡) × 𝐶𝑎𝑟𝑏𝑠𝑢𝑝𝑝𝑙𝑦
𝑒𝑚𝑛𝑡𝑒𝑐ℎ

𝑡𝑒𝑐ℎ=1     (4) 

Considering the following energy demand constraints:  

𝐿(𝑡) = Θ ×  𝑃𝑡𝑒𝑐ℎ(𝑡) + 𝐴−𝑄−(𝑡) − 𝐴+𝑄+(𝑡)  (5) 

𝐸(𝑡 + 1) = 𝑛𝑠 ∙ 𝐸(𝑡) + 𝑄+(𝑡) − 𝑄−(𝑡) (6) 

𝜂𝐶𝐻𝑃 ∙ 𝑃𝐶𝐻𝑃(𝑡)  ≤ 𝐵 ∙ 𝛿𝐶𝐻𝑃
𝑜𝑛 (𝑡)   ∀𝑡  (7) 

0.5 ∙ 𝑃𝐶𝐻𝑃
max(𝑡)  ≤ 𝜂𝐶𝐻𝑃 ∙ 𝑃𝐶𝐻𝑃(𝑡) + 𝐵 ∙ {1 − 𝛿𝐶𝐻𝑃

𝑜𝑛 (𝑡)}   ∀𝑡    (8) 

At the inter-cluster level the district heating network formulation based on [33]: 

𝐿(𝑡) = Θ ×  𝑃𝑡𝑒𝑐ℎ(𝑡) + 𝐴−𝑄−(𝑡) − 𝐴+𝑄+(𝑡) + ∑ 𝑄𝑗𝑖(𝑡) × 𝐻𝐿𝑖𝑗 − ∑ 𝑄𝑖𝑗(𝑡)  (9) 

𝑄𝑖𝑗(𝑡)  ≤ 𝛿𝑖𝑗  ×  𝐵     , 𝛿𝑖𝑗 + 𝛿𝑗𝑖  ≤ 1   (10) 

𝑂𝑗 ≥ 𝑜𝑖 + 1 − 𝑁𝑒(1 − 𝛿𝑖𝑗)       ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗 (11) 

The Homogeneity Index (HI) on the load profile per cluster is calculated as defined by [35]: 

𝐻𝐼𝑐𝑙𝑥
=

∑ ∑ 𝐶𝑜𝑟𝑟(𝑀𝑗
𝑐𝑙𝑥 ,𝑀𝑘

𝑐𝑙𝑥)
𝑁𝑐𝑙𝑥
𝑘=𝑗+1

𝑁𝑐𝑙𝑥
𝑗=1

𝑁𝑐𝑙𝑥×(𝑁𝑐𝑙𝑥−1)/2
  

(12) 

Table 1. Size band cost and efficiency per technology [30], [31] 

PTech.
max  

[kW] 

𝛈𝐂𝐇𝐏
𝐞𝐥𝐞𝐜  

[-] 

𝛈𝐍𝐆−𝐛
𝐞𝐥𝐞𝐜  

[-] 

𝐂𝐂𝐇𝐏
𝐥𝐢𝐧𝐞𝐚𝐫 

[CHF/kW] 

𝐂𝐍𝐆−𝐛
𝐥𝐢𝐧𝐞𝐚𝐫 

[CHF/kW] 

2-20 0.25 0.8 1128 211.5 

20-50 0.27 0.8 775.5 176.25 

50-180 0.30 0.8 564 131.13 

180-350 0.30 0.8 564 111.39 

350-500 0.30 0.8 564 91.65 

500-5000 0.32 0.8 493.5 42.35 

Technology Efficiency Fix cost Linear cost Life time 

NG-boiler ηNG−b
elec  2820 [CHF] CNG−b

linear 20 years 

CHP ηCHP
elec  4260 [CHF] CCHP

linear 20 years 

PV panels 0.15 2000 [CHF] 500 [CHF/m2] 20 years 

Storage 
0.96 ch/disc 

0.99 self 
800 [CHF] 80 [CHF/kWh] 20 years 

DH-network 5% [km]  240 [CHF/m] 40 years 

Nomenclature 
𝐴     storage system charging (-) or discharging (+) efficiency, [-] 

𝐵     big M constraint to reduce computational time, B is an arbitrary large number, [-] 

𝐶𝑙𝑖𝑛𝑒𝑎𝑟    linear cost per technology, [CHF/kW] 

𝐶𝑎𝑟𝑏𝑒𝑚  linear carbon emissions per energy stream, [kgCO2/kW] 

𝐶𝑅𝐹    Capital Recovery Factor, calculated with a discount rate of 3% [-] 

𝐸     energy storage term, [kWh] 

𝐻𝐿    heat losses proportional to the distance and heat transfer between two energy hubs, [%] 

𝐼𝑡𝑒𝑐ℎ    investment cost per technology, [CHF] 

𝐿     energy hub loads, [kW] 
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𝑂𝐶𝑡𝑒𝑐ℎ    operating costs per technology, [CHF] 

𝑃tech
𝑚𝑎𝑥    design variable on size of a given technology, [kW] 

𝑄     energy exchange between two energy hubs [kWh] 

𝑀𝑗
𝑐𝑙𝑥    j-th member of cluster x, [-] 

𝑁𝑐𝑙𝑥
    number of members within cluster x, [-] 

𝑁𝑒     number of energy hub e, [-] 

𝛿     binary variable 

n     energy dissipation, self-losses of an energy storage system, [-]  

Θ     efficiency matrix coupling energy supply and energy demand of an energy hub, [-] 
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