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Abstract
Most modern processors use Dynamic Voltage and Fre-

quency Scaling (DVFS) for power management. DVFS allows
to optimize power consumption by scaling voltage and fre-
quency depending on performance demand. Previous research
has indicated that this frequency scaling might pose a secu-
rity threat in the form of a covert channel, which could leak
sensitive information. However, an analysis able to deter-
mine whether DVFS is a serious security issue is still missing.
In this paper, we conduct a detailed analysis of the threat
potential of a DVFS-based covert channel. We investigate
two multicore platforms representative of modern laptops and
hand-held devices. Furthermore, we develop a channel model
to determine an upper bound to the channel capacity, which
is in the order of 1bit per channel use. Last, we perform an
experimental analysis using a novel transceiver implementa-
tion. The neural network based receiver yields packet error
rates between 1% and 8% at average throughputs of up to
1.83 and 1.20bits per second for platforms representative of
laptops and hand-held devices, respectively. Considering the
well-known small message criterion, our results show that a
relevant covert channel can be established by exploiting the
behaviour of computing systems with DVFS.

1. INTRODUCTION

Current mobile computing systems are expected to optimize
their power consumption for various reasons, e.g., for pro-
longing the battery life time or for thermal protection. One of
the most commonly used techniques for power optimization
is Dynamic Voltage and Frequency Scaling (DVFS). DVFS
allows the optimization of the energy consumption by chang-
ing the operating frequency and the supply voltage, according
to performance needs. Typically, a software component in
the operating system, denoted as governor, is responsible for
selecting the frequency based on a specific predefined policy,
the associated parameters, and run-time information.

Another important design challenge for current computing
systems is to provide security and confidentiality of sensitive
information, despite the concurrent execution of applications.
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Figure 1: The two applications source (src) and sink (snk) are
placed on different cores and are isolated from each other. While
src has access to restricted data, snk can use the systems com-
munication interfaces. If the two applications can establish a covert
communication channel to transfer data, the restricted data can be
leaked to an attacker. This covert channel compromises the security
paradigm of permission separation and application isolation.

To ensure security and confidentiality, system designers of-
ten apply the security paradigm of permission separation and
application isolation. This paradigm dictates that applica-
tions have specific sets of permissions to shared resources and
memory, and are executed in isolation. The corresponding
mechanisms like sandboxing, virtualisation, and fine-grained
permission control are typically implemented by the Operat-
ing System (OS), possibly supported by hardware. Examples
are the process sandboxing implemented in Android or the
usage of virtualisation to separate business and private data
on a single device (e. g. Virtual Machine). One of the biggest
threats for the security paradigm of isolation and permission
separation are covert channels, as they are used to compromise
the confidentiality of data by allowing secret communication
between applications.

In this paper, we investigate the implications of frequency
scaling on the security of mobile multicore systems, i.e., the
possibility to establish a covert channel between two isolated
applications with a sufficient bandwidth and a low error rate to
break the security paradigm of permission separation and ap-
plication isolation. With emerging trends like edge computing,
nowadays also many embedded systems, besides consumer
laptops and hand-held devices, are equipped with more pow-
erful processors using DVFS. This means, that this security
threat has an impact on a large number of current and future
devices. We will show, that a DVFS-based covert channel can
be established using frequency scaling for optimizing the en-
ergy consumption, without the need for elevated privileges by
the attacker. This finding makes a DVFS-based covert channel
based a threat for a broad range of devices.



Figure 1 illustrates the example scenario we use to analyse
the security threat. Similar to previous research on covert
channels [2], we consider two colluding applications trying
to establish a covert channel on a multicore system. The first
application, the source application (src) running on core 0,
has access to restricted data but no access to the communica-
tion interfaces. While a covert channel can be used to leak any
kind of data, in our example we assume that the restricted data
has very high security demands. Such a restricted piece of data
can be a cryptographic key, which only needs a channel with
a very low bandwidth to be leaked. The second application,
called sink application (snk), runs on core 1 and has full ac-
cess to a communication interface but no permitted access to
the restricted data available to src. The two applications are
isolated from each other and, according to this security princi-
ple, are not allowed to communicate. We consider a common
setting in current multicore architectures; a processor with
multiple cores in the same voltage and frequency domain, i. e.,
the cores share the same voltage and frequency level at any
point in time. Further, we assume that the system is idle, hence
only the OS and its vital processes are active at attack time.
As the system is idle, the behaviour of DVFS will depend on
the utilization generated by the source application. If the sink
application is able to detect the frequency changes induced by
the source application, it can establish a covert channel. We
will refer to this channel as frequency covert channel, as the
key shared resource is the frequency of the cores.

After the frequency trace is transfered from the sink applica-
tion to the attacker, the restricted information can be extracted.
In our scenario, the attacker uses a Neural Network (NN) for
signal decoding, to compensate two characterstics of the fre-
quency covert channel. First, the frequency covert channel
shows the platform-dependent governor behaviour and second,
the current operating frequency of a system not only depends
on the utilization, but also on the past operating frequencies.
While static decoders would have problems handling these
characteristics, NN based decoders with recurrent units allow
decoding these frequency sequences.

Contributions. Our main contributions in this work are:
1. We are the first to apply a formal communication model to

the frequency covert channel.
2. We derive an upper bound on the capacity of the frequency

covert channel. A tight capacity bound allows us to esti-
mate the threat potential of a frequency covert channel for
a specific hardware-software platform and is an important
characteristic for the design of mitigation strategies.

3. We present an implementation of a robust communication
scheme, which is based on our communication model and
exploits its characteristics. In contrast to previous work,
our implementation does not require elevated privileges
for system file access and allows the source and the sink
application to communicate if they run on different cores.
In addition, we show the feasibility of the frequency covert
channel under realistic conditions and all of our findings

are supported by extensive experimental validation on two
platforms representative of modern laptops and hand-held
devices.

4. To the best of our knowledge, we are the first ones to
present the usage of NN for signal decoding in a covert
channel attack.

2. RELATED WORK

Security issues related to privilege separation are well studied
and were first discussed in 1973 by Lampson [8]. He defined
the confinement problem and stated the issue of exploitable
covert channels and side channels. In this paper, we only
discuss covert channels; they allow active information transfer
between entities that are not supposed to communicate by the
security policy.

The US department of defence reported in its 1985 Orange
Book [16] that trusted computing environments must have “the
capability to audit the use of covert channel mechanisms with
bandwidths that may exceed a rate of one (1) bit in ten (10)
seconds”. Furthermore, Moskowitz and Kang [12] defined
the small message criterion and concluded that bandwidth
and capacity alone are insufficient metrics to quantify the
threat potential of covert channels. They argue that, if the
amount of sensitive information is very small, the capacity
of the leakage channel is not an accurate measure to define
the threat potential. Consequently, we can state that even
a covert channel with very low capacity poses a substantial
threat, if the leakage of small amounts of highly sensitive data
can compromise the system. Therefore, we will determine
the capacity of the frequency covert channel, which exists
in almost all computing architectures, and carefully state a
possible application scenario to justify the threat potential
emphasising the small message criterion.

Architectural Covert Channels. Due to the complex archi-
tecture of modern processors and resource sharing among
different processes and cores, there are many possibilities
for the implementation of covert channels. Researchers ex-
ploited cache covert channels to transfer data between two
virtual environments running on the same hardware plat-
form [19, 18, 15, 9]. A variety of other shared resources in
current multicore systems can be used for the implementation
of covert channel attacks, for example branch predictors [4],
inter process communication [6], process priorities in An-
droid devices [7], or more recently hardware random number
generators have also been used to establish high throughput
covert channels [3]. Bartolini et al. [2] analysed a thermal
covert channel which takes advantage of the temperature mea-
surements in multicore systems and found channel capacity
bounds in the order of 300bits per second (bps). Moreover,
they showed an experimental implementation that yields data
rates in the order of 50bps. Similar to this previous research,
we use characteristics of the system architecture to establish a
covert channel.
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Covert Timing Channels. Covert timing channels are based
on injecting and monitoring timing variations on certain events.
Murdoch [13] presented the possibility to identify servers in
the Tor network by exploiting the clock skew in response pack-
ets, which is caused by temperature variations of the system.
This analysis was further extended to detect whether virtual
machines share the same infrastructure or to actively trans-
mit data between two entities with a data rate of 20.5bits per
hour [14, 22, 21]. Yue et al. [20] presented a covert channel
where information was encoded into the inter-packet spacing
of the network traffic by directly controlling the operating
frequency of a device. Similarly, we will establish a covert
channel by taking advantage of the timing variation of spe-
cific operations. However, we do not control the operating
frequency through operations that require elevated privilege
levels, nor do we decode information by reading system times-
tamps. Furthermore, while the above mentioned covert chan-
nels are established within a communication network, the
covert channel we analyse is established between different
applications within the same device.

Utilization based Covert Channels. Wang and Lee [17] pre-
sented a covert timing channel which allows the communica-
tion between two otherwise isolated applications. The source
blocks a functional unit for a certain amount of time to cause a
delay in computation of the sink. This is interpreted as sending
a 1; to send a 0, the source stays idle. Marforio et al. [10]
analysed a frequency based covert channel where the source
utilizes the processor or stays idle, causing a change of the
frequency of the core. The sink application detects frequency
changes by reading the core frequency from system files, and
can interpret whether a 0 or a 1 is sent. The frequency covert
channel we study in this paper is similar to the timing channel
presented by Wang and Lee [17] and the frequency covert
channel presented by Marforio et al. [10]. All of these chan-
nels use the core utilization to encode data. Opposed to the
covert channel by Wang and Lee [17], we place the source and
the sink application on two different cores allowing cross core
communication. Wang and Lee [17] could control the timing
changes directly by blocking a functional unit. In contrast, we
indirectly control the timing changes by changing the utiliza-
tion of the core such that the frequency governor scales the
operating frequency in a desired manner. As the governor may
not behave as desired, our implementation takes advantage of
a feedback loop that allows the sender to react to not desired
governor behaviour. Marforio et al. [10] uses system readings
for the implementation of the frequency covert channel, which
can be easily blocked by changing the access permission to
these system files. In contrast to that, our implementation uses
timing measurements to determine the frequency, as it is harder
to mitigate such measurements. Therefore, we can state that
our work presents a new covert channel implementation which
combines and extends the two previously presented timing and
frequency covert channels. Further, unlike Marforio et al. [10],
we analyse the characteristics of the frequency covert channel

KERNEL
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Hardware Driver

CPU Frequency Driver
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sysfs /proc/stats
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Figure 2: A simplified illustration of the CPU frequency control in
the Linux Kernel, depicting which modules interact.

in a detailed way by providing a capacity bound that gives an
initial estimate of the threat level of such a channel, and we
show a simple and robust implementation of the frequency
covert channel.

3. FREQUENCY SCALING IN LINUX

In this section we outline the implementation of DVFS in the
Linux Kernel, as we base our investigation on this system.
Many devices also feature additional modules that can con-
trol the operating frequency, as for example CPU throttling
through Dynamic Thermal Management (DTM) or device
manufacturer specific power and performance optimization or
CPU hot-plug techniques. These additional frequency control
modules are not analysed in detail in this work. Our threat
scenario considers the device to be idle and we can therefore
assume CPU throttling caused by DTM will not occur. Other
power optimization techniques for commercial devices can be
considered (systematic) interference in the channel, as long as
there is a change of the frequency depending on the execution
pattern, and are therefore not considered in this work.

Linux is used among a diverse range of devices; e. g. server
or desktop systems, laptops, powering Android on smart-
phones or tablets and various embedded systems like the Rasp-
berry Pi. In addition, the open source nature of the Linux
Kernel and its components allows us to review the code which
handles frequency scaling. Examples of CPU frequency driver
implementations in Linux are the intel p_state or the acpi-
cpufreq1 driver. In this work, we consider the acpi-cpufreq
driver, which is used in Android systems as well as in Ubuntu
and similar OSs. Figure 2 gives a simplified overview of its
main components, which we discuss in detail in this section.

3.1. THE CPU FREQUENCY DRIVER

The CPU frequency driver operates as an interface to all the
other Kernel components, most importantly the sysfs nodes
and the hardware driver. One responsibility of the CPU fre-
quency driver is to maintain the sysfs nodes used to control
frequency scaling from userspace. Furthermore, the CPU fre-
quency driver instructs the hardware driver to set the frequency
for each frequency domain, interacts with the scheduling unit

1http://www.acpi.info
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and passes information like the utilization statistics from the
Kernel to the governor.

3.2. THE GOVERNOR

The governor should be called periodically with the timer pe-
riod Ts, also called sampling period, to determine the new
frequency fset for every frequency domain. Due to differences
in hardware and user needs, many customized frequency gover-
nors are available for devices based on open source platforms
like the Linux Kernel. The multitude of governor options
allows the user to set the trade-off between performance and
battery lifetime. Different governors can vary in terms of static
characteristics like minimum and maximum frequency, but
also in their frequency dynamics. In this work, we will focus
on the conservative governor, which is one of the most com-
monly used governors in mobile, battery powered systems.

Roughly speaking, the conservative governor uses the av-
erage core utilization in the past time interval to determine
the new frequency fset . If the utilization is below or above a
certain threshold, the governor reduces or increases the fre-
quency, respectively. Here, fcur is the current frequency target
and ∆ f is the frequency scaling step. To scale the frequency,
the governor uses the relationship between idle time ti and the
total measurement time tm, which is equal to the time elapsed
between the last and the current call time of the governor. For
simplicity, let us call the term ti/tm idleness. The governor
adapts the frequency depending on the lower idleness thresh-
old Ilow and the higher threshold Ihigh. There are three scaling
cases: (i) If the idleness is lower than Ilow, the frequency fnew
is increased by ∆ f . In case the target would be higher than
fmax, fnew is set to fmax. (ii) If the idleness is between Ilow
and Ihigh, the frequency is not changed. (iii) If the idleness
is higher than Ihigh, the frequency fnew is decreased by ∆ f .
Whenever the target would be lower than fmin, fnew is set to
fmin.

After calculating fnew, the CPU frequency driver selects
fset from the discrete set of frequency levels that are available
on the system. To select the frequencies, the CPU frequency
driver applies one of two rules: (A) If the frequency is scaled
up, fnew > fcur, fset is set to the highest available frequency
below or at the target. (B) If the frequency is scaled down,
fnew < fcur, fset is set to the lowest available frequency at or
above the target. After the frequency has been changed to fset ,
fcur is set to fnew.

4. NEURAL NETWORKS AS SIGNAL DECODER

A NN can be employed to make the decoding adaptive, thus
less error prone, compared to static decoders. In particular,
Connectionist Temporal Classification (CTC) introduced by
Graves [5, Chapter 7], can be used for this application, as
the decoding can be categorised as time-sequence classifica-
tion with variable length symbols. CTC is the state-of-the-
art technique for dealing with temporal classification tasks.
It allows a recurrent NN to make soft labelling decisions at

i Input Neuron o Output NeuronLSTM Neuron

i

o

o

o

o

o

C
T

C
 D

ec
od

er

SymbolsNormalized
Empricial
Frequency

Figure 3: Network architecture example of a signal decoder based
on a Neural Network (NN) with Long-Short-Term-Memory (LSTM)
neurons using Connectionist Temporal Classification (CTC).

every timestamp and calculate the probability of the correct
sequence. By using this probability for the loss function, the
NN is able to learn to predict the label sequence without the
pre-knowledge of the occurring locations and quantity of the
labels. An NN example architecture is illustrated in Figure 3.

The NN itself consists of one input neuron, bidirectional
Long-Short-Term-Memory (LSTM) hidden layers, which are
improved recurrent NN layers, and one layer fully connected
to the last hidden layer. The output layer has to consist of
Y +1 neurons, where Y is the number of used symbols. One
output neuron for each symbol used in the transmission and
one additional one for the blank symbol. The blank symbol is
used as separator for the other symbols and can be placed by
the NN whenever no other symbol seems probable. The output
of the output layer is then fed to the so called CTC-decoder,
which converts this output into the final symbol sequence.

The downside of a NN based decoder is that it needs a lot
of training data and high computational overhead for training.
However, the training of the network can be done offline and
training data can be generated easily as the attacked platform
setup can easily be replicated for commercial devices, like the
ones analysed in this work. The training of the NN is crucial
for the performance of the decoder. If the NN is not designed
fitting the complexity of the decoding task, the training is
badly parametrised or the training data is of bad quality, the
decoder might not work at all.

5. THREAT MODEL

We consider the scenario presented in Figure 1, whereas we
assume that the source and sink application are already de-
ployed. This could either be done through code injection, or
by installation by the user. For example, an attacker could
put two separate applications on the application store, which
are not suspicious because each on its own does not violate
any security restrictions and might be marked coming from a
different source.

The sink application snk measures and records the current
frequency. The gathered information can then be forwarded
over a communication interface to an attacker device. Fur-
ther, we assume that the attacked device is idle or only lightly
utilized during the attack, e.g., a hand-held device like a smart-
phone during the night or a laptop powered on in an empty
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office during a weekend. Therefore, the source application
src and the sink application snk can wait until the average
system utilization is low and will presumably stay low for
some time.

The target platforms for this work are mobile devices with
shared frequency domains among multiple cores. This archi-
tectural feature is present in almost all state-of-the-art pro-
cessor architectures that are used in computing devices such
as mobile phones, tablet computers, laptops or servers. For
instance, commonly used big.LITTLE architectures in mo-
bile processors typically feature one frequency domain for
all LITTLE and one frequency domain for all big cores, e. g.
the Samsung Exynos 5422 Octa. Moreover, in systems with
hyper-threading, where multiple logical cores reside on a sin-
gle physical core, these logical cores share the same frequency
domain. The frequency of cores can be inspected with two
methods: (a) reading system files, or (b) timing measurements.
On Linux, method (a), can easily be blocked by requiring
elevated privilege levels to read the system file2. The main
restriction of method (b) is that it only works if the source and
the sink application are placed on two cores within the same
frequency domain.

Timing Measurements Method. To inspect the frequency
via timing measurements with method (b), the sink application
snk executes a tight loop with a fixed number of instructions
and measures the computation time. This measurement is then
used to determine the empirical frequency of the core. The
sink application snk just needs access to a reliable timer in
order to determine the time between starting and stopping the
measurement load. For instance, the sink application can use
the gettimeofday() system call standard interface, which is
a POSIX-conforming, not requiring elevated privileges. While
the timing measurements method (b) does not need any ele-
vated privileges, it comes with two major challenges: (i) its
accuracy suffers from interference from other tasks and the
measurement load, and (ii) the measurement load increases the
total utilization of the cores and it can influence the frequency
via the governor, i. e., the measurements indirectly can change
the quantity to be determined. In Section 9 we show how to
implement the frequency covert channel without the need for
elevated privileges in an implementation that overcomes the
challenges of the timing measurement method.

6. CHANNEL CAPACITY BOUND

The frequency covert channel can be considered value and
time-discrete for the following two reasons: (i) it has a discrete
number of different frequency levels, and (ii) only updates the
operating frequency with a period of Ts. Using this value and
time-discrete channel model, we can calculate the channel
capacity using the number of states the channel can take and
the state diagram, based on the derivations presented by Miedl

2I. e. with the acpi-cpufreq drivers
/sys/devices/system/cpu/cpu$i/cpufreq/scaling_cur_freq
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Figure 4: The state diagram of the frequency covert channel for
Laptop and the conservative governor. Every state is defined by the
tuple ( fnew, fset), e. g. (920,900).

and Thiele [11]. The number of states in the state diagram |S|
does not only depend on the possible frequency levels of the
system, but also on the characteristics of the governor. As |S|
influences the complexity and capacity bound of the channel,
let us derive a bound for |S|. Based on the detailed description
of the conservative governor in Section 3, a state can be char-
acterized by the pair ( fnew, fset) with the target frequency fnew
and the actual frequency fset which is selected by the CPU
frequency driver. The value of fnew can change by ∆ f only
and due to the clipping of fnew to fmin and fmax we have at
most 2d( fmax− fmin)/∆ f e different possible values of fnew.
As there are two possible rules to determine fset from fnew, see
rules (A) and (B) in Section 3.2, we find 4d( fmax− fmin)/∆ f e
as an upper bound on the total number of states.

The detailed system setup is described later on in Section 7;
but for the purpose of the example we just need the governor
parameters fmin, fmax, ∆ fre f and the frequency levels from
Table 1. Using the parameters of the governor in one of our
platforms, Laptop, and using the assumption that a symbol
represents either an increase in frequency or a decrease, we
obtain the state diagram as shown in Figure 4. Although stay-
ing at the same frequency is possible, we do not consider it a
valid symbol, because of implementation artifacts of the gov-
ernor presented in Section 8.1. Using this state diagram, we

C = log2 λ1 (1)
∣∣∣∣ Bmax =

C
Ts

(2)

can derive the connection matrix A of size |S|× |S|. Now we
can calculate the channel capacity bound using Equation (1),
where λ1 is the principal eigenvalue of A. For Laptop, our
analysis yields an upper bound on the channel capacity of
C = 0.972 bits per channel use. If we apply this scheme to our
second platform, Hand-Held, we get a capacity of C = 0.982
bits per channel use.

As outlined in Table 1, Laptop has a sampling period
Ts = 80ms by default and Hand-Held Ts = 100ms, using Equa-
tion (2) this yields a maximum bandwidth Bmax = 12.15bps
and 9.82bps, respectively. As we are considering the fre-
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quency covert channel to be noiseless, at the same time, this
also equals the maximum throughput.

Finally, we note that these calculated upper capacity bounds
cannot be achieved in a practical settings, as they are based on
idealized conditions. The bounds assume a perfect transmis-
sion scheme, no errors due to interferences of other processes,
a perfect synchronization between the source and sink appli-
cations and no implementation artifacts of the governor. In
addition, the bound calculation is based on the assumption that
every state transition is observable. We expect a further degra-
dation of the achievable capacity for two main reasons: (i) the
sink application can only observe fset and it is not possible
to determine fnew; (ii) some state transitions cannot be de-
tected. An example for a not observable state transition is the
transition from state (1040,1000) to (920,1000) on Laptop.
Therefore, we present a simple implementation of the channel
in Section 9, to determine how tight the capacity bound is. The
methodology to derive the channel capacity bound presented
here can also be applied to other platforms with other gover-
nors. The only constraint is that it must be possible to derive
the state diagram of the channel.

7. SETUP AND INITIAL TESTS

Our experiments are carried out on two diverse hardware plat-
forms representative for two kinds of mobile devices:
1. A Lenovo ThinkPad T440p laptop, based on a 4th gener-

ation Intel Core i7-4710MQ quad-core processor. It can
be clocked at frequencies in the range from 800 MHz to
2.4 GHz in 15 frequency levels, excluding the Intel Turbo
Boost;

2. An Odroid-XU3 board, featuring a Samsung Exynos 5422
System-on-Chip (SoC) with an ARM big.LITTLE proces-
sor with two quad-core clusters of Cortex-A7 and Cortex-
A15 cores. The LITTLE cluster is clocked at frequencies
in the range of 200 MHz to 1.4 GHz in 13 frequency levels;
the big cluster in a range of 200 MHz to 2.0 GHz in 19
levels.

In the rest of the paper, we refer to platform 1 as Laptop and
to platform 2 as Hand-Held. While Laptop is representative
for business laptops, Hand-Held is representative for hand-
held devices (i.e. tablets or smartphones). Laptop is running
Ubuntu 16.04.1 LTS and Hand-Held is operating on Ubuntu
14.04.4 LTS.

To ensure that all of the experiments can easily be re-
produced, we defined a strict experimental environment for
our two chosen platforms. On both platforms we use the
/dev/cpu_dma_latency interface of the Linux kernel to set
the maximum wakeup latency to 0 µs. As the deepest allowed
sleep state is POLL (C0 active), the system cannot go into sleep
mode, which could cause changes in the timing behaviour of
the governor.

To ensure repeatability of the experiments, we place both
devices in an air-conditioned server room with an ambient
temperature of ≈ 23C◦. Furthermore, we fix the fan speed of

Param. Value Param. Laptop Hand-Held

∆ frel 5% Ts 80ms 100ms
Ilow 20% fmin 0.8GHz 0.2GHz
Ihigh 80% fmax 2.4GHz 2.0GHz
f-levels in 0.1GHz steps w/o {1.2, 2.0}GHz all

Table 1: Parameters of the conservative governor and the charac-
teristics of the platforms Laptop and Hand-Held .

if (unlikely(wall_time>(2*sampling_rate) &&

j_cdbs->prev_load)) {

load = j_cdbs->prev_load;

j_cdbs->prev_load = 0;

} else {

load = 100*(wall_time-idle_time)/wall_time;

j_cdbs->prev_load = load;

}

Snippet 1: From cpufreq_governor.c in kernel 4.4.0. If the
time between two consecutive governor calls exceeds twice the
sampling period, the current utilization measurement is discarded
and the last one is used, if it is not zero.

both platforms Laptop and Hand-Held to the maximum level3.
With these measures we minimize any thermal side effects. To
minimize scheduling artifacts we run the source and sink appli-
cation in the SCHED_FIFO scheduling class at highest priority
on both platforms, using the pthread_setschedparam()

interface.
Source and sink application are executed on two separate

cores that share a frequency domain. The source application
will be placed on core 4 (physical core 2) and the sink appli-
cation on core 0 (physical core 0) of Laptop. On Hand-Held,
we run the two apps on the cores 6 and 7, two big cores; the
channel would still work if the two applications were executed
on two of the LITTLE cores. The applications are pinned to
the respective cores using the pthread_setaffinity_np()
interface. Finally we note that during all the experiments the
systems are only running the source, the sink and the default
system services of the OS. We do not alter the standard settings
of the governor, presented in Table 1.

7.1. PLATFORM-DEPENDENT GOVERNOR BEHAVIOUR

We conduct initial experiments on Laptop using the 4.4.0-112-
generic Linux Kernel. These experiments revealed that, in
practice, the governor behaviour deviates from the ideal be-
haviour described in Section 3, causing unexpected frequency
scalings, that lead to problematic transmission behaviour.
7.1.1. Timing Issues
The first problem arises due to the fact that the governor is not
called with a period of Ts, therefore the total measurement time
tm can vary (see Section 3.2). According to a communication

3Laptop: # echo ’level 7’ > /proc/acpi/ibm/fan

Hand-Held: # echo 255 > /sys/devices/odroid_fan.14/pwm_duty
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Figure 5: The plot shows the unexpected governor behaviour due
to non periodical governor calls, indicated by the vertical dashed
lines, and architecture dependencies. At the third call (285.5ms)
the governor assumes that the core was idle and does not update
the utilization value, which causes a frequency upscaling while the
utilization was below 20%. Furthermore, due to limited visibility of
governor states only one frequency scaling can be observed going
from 1000MHz to 800MHz at the fifth governor call (603.6ms).

exchange with one of the acpi developers, this can be due to
one of two reasons, (i) the core is not active, or (ii) the call to
the governor is managed by a work queue in kernel versions
older than 4.7. After version 4.7, the developers decided
to change the implementation and hook the governor calls
with the scheduler, to increase the governor call periodicity.
Therefore, this behaviour might not be observable using newer
versions of the Linux kernel.

As the system should give rescheduled threads a chance to
start on a reasonably high frequency after a core has been idle,
the developers introduced Snippet 1 into the governor code.
This piece of code causes a further deviation from the ideal
governor behaviour as described in Section 3.2. The devel-
opers assume that the core was idle if the time between two
consecutive governor calls (wall_time) is bigger than twice
the governors sampling period Ts (sampling_rate). In this
case, the governor discards the current utilization measurement
(100*(wall_time-idle_time)/wall_time) and uses the
last measurement (j_cdbs->prev_load), if it is not zero. As
the replacement of the measured utilization must not happen
multiple times in a row, the governor performs a destructive
read on the last measurement (j_cdbs->prev_load=0).

By setting up a debug Kernel, we were able to insert ad-
ditional debug outputs, to observe the timing behaviour of
the governor. As illustrated in Figure 5, we can observe that
the governor is not called periodically but with a jitter. The
intention of the experiment was to scale up once, and then
scale down, which should take only two channel uses. As the
governor is called the second time at 105.4ms and the third
time at 285.9ms, the elapsed time between the two calls is
180.5ms. This is longer than twice the sampling period Ts,
namely 160ms, and the governor assumes that the core was
idle and does not update the utilization, but keeps assuming
an utilization of 80%. As a result, the governor scales the fre-
quency up instead of down, despite the fact that the utilization
is below the lower utilization threshold of 20%.

Decoder
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src app Core 0

Core 1 

Frequency
Level Goal

UtilizationInput
Symbolstream
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Frequency FrequencyOutput 
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Figure 6: Block diagram of the transceiver system with signal flow
indicated by solid arrows and indirect influences of one component
on another with dashed arrows.

7.1.2. State Transition Issues
The second problem that arises was already mentioned in
Section 6: some state transitions are not visible as frequency
changes of the core. While this behaviour is exactly as ex-
pected in our analysis in Section 3, the calculation of the
capacity bound in Section 6 assumes that every state is a valid
symbol. As it is not possible to identify every state with the
frequency fset alone and as it is not possible to observe fnew,
we cannot use all states to encode symbols. From our example
in Figure 5, we can conclude that the governor is in the state
(1040,1000) after the third governor call (285.9ms), consider-
ing the governor state diagram in Figure 4. While the governor
is in the state (1040,1000), we can observe the frequency
1000MHz and expect that it will decrease to 900MHz with
the next governor call (391.2ms), as the utilization is lower
than 20%. However, with the fourth governor call the governor
moves from state (1040,1000) to (920,1000), which cannot
be observed as the frequency stays at 1000MHz. At 603.6ms
the governor is called the fifth time and the state changes from
(920,1000) to (800,800), resulting in a visible state transition
due to the frequency scaling from 1000MHz to 800MHz.

We can conclude that we can expect a degradation of the
bandwidth of the frequency covert channel, mainly caused
by three problems: (i) the governor is not called periodically
with the sampling period Ts, but with a certain jitter, (ii) due to
the jitter, the governor may uses old utilization measurements
instead of the actual one (see Snippet 1), and (iii) not all state
transitions lead to visible frequency scaling.

8. CHANNEL IMPLEMENTATION

Figure 6 illustrates the structure of the frequency covert chan-
nel implementation. In this section, we describe the used
transmission scheme and the two applications source (src) and
sink (snk).

8.1. TRANSMISSION SCHEME

Considering the conservative governor functionality outlined
in Section 3, its practical behaviour analysed in Section 7.1,
as well as the standard parameters outlined in Table 1, we
can derive a robust transmission scheme, based on following
constraints:
1. As the timing of the frequency scaling is not foreseeable

by our applications, a transmission scheme relying on fixed
symbol length is not possible. Therefore, staying at the
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same frequency level is not considered a valid symbol
in our calculations and designs, as this would not allow
multiple consecutive symbols of the same value.

2. Due to the functionality of the governor (see Section 3),
any symbol can only be based on an incremental change of
the frequency level.

3. It is not possible to further decrease the frequency if the
core is at fmin, nor is it possible to increase it if the core is at
fmax. Also, considering our threat model (see Section 5) the
attack will only start if the system is idle, therefore we can
assume that the core frequency is fmin at the transmission
start. Thus, we have to make sure that the first channel use
increases the frequency of the core. In addition, we have to
restrict the number of consecutive symbols that would de-
or increase the frequency.

4. We have to take into account the non-ideal governor be-
haviour shown in Section 7.1, i. e. unexpected frequency
scalings during a transmission. As our source application
cannot forecast but only detect and react to frequency scal-
ings, we have to tolerate a frequency variation by one level.

5. Due to the characteristics of the frequency covert channel,
we know that an error that is not recognized and corrected
by the source application will corrupt all following sym-
bols.
In our transmission scheme we allow two kinds of data

symbols, 0 and 1. A 0 is transmitted by scaling up 2 levels
and then back to the center frequency, a 1 is transmitted by
scaling down 2 levels and then back to the center frequency, re-
spectively. To avoid that one non-correctable error corrupts all
following symbols, the symbol-stream is divided into packets
of fixed length. Each of these packets has a pre- and postamble.
The preamble consists of scaling up the frequency to the 10th

frequency level and then scaling down by 2 levels to reach the
center frequency. Similarly, the postamble consists of scaling
up 2 levels and then scale down to the lowest frequency level.
By going back to the lowest frequency level we can guarantee
that the channel is reset after every packet and ensure that no
error is dragged on from one packet to another.

8.2. SOURCE APPLICATION

As shown in Figure 6, the main task of the source applica-
tion is to utilize the core such that the frequency is scaled
depending on the input frequency level goal. Moreover, the
source application compensates for non observable state tran-
sitions, governor miss-scalings and non-periodical execution
of the governor (see Section 7.1) by detecting and tracking the
current frequency level.

This functionality is mostly implemented in the source ap-
plication sub-function forceScale(), illustrated in Figure 7.
The inputs of the function forceScale() are the current fre-
quency level goal flg, which describes the desired frequency
level, and the current measured empirical frequency curEF,
which is at the same time also an output. curEF is first set at
the initialization phase of the source application and updated

hitcnt==hitgoal

curEF=utilCore(sdir, curEF);

(lowEF,hghEF)=getEF(flg);

curEF<lowEF

curEF>hghEF

hitcnt++

sdir=SD; hitcnt=0;

sdir=SU; hitcnt=0;

sdir=noScale;

curEF = forceScale(flg,curEF)

Yes

No

Yes

Yes

No

No

Figure 7: A simplified flowchart of the function forceScale()

of the source application using pseudocode with C-like notation.
The inputs are the current frequency level goal flg and the current
empirical frequency value curEF, with curEF also being the output
of the function.

every time forceScale() is called.
forceScale() is called whenever a new symbol is ready

to be transmitted. First, the sub-function getEF is called to de-
termine the low and high threshold for the empirical frequency.
As measurement can vary slightly, the source application uses
these thresholds to define an interval within the empirical fre-
quency has to be for a certain frequency level, rather than
using fixed values.

Next, the source application checks whether the current
empirical frequency measurement curEF lies within or outside
of the low and high threshold. Here, it can distinguish three
cases: (I) If curEF is smaller than the lower threshold lowEF,
the frequency needs to be scaled up (sdir=SU). (II) If curEF is
bigger than the higher threshold highEF, the frequency needs
to be scaled down (sdir=SD). (III) If curEF is between the
two thresholds, the desired frequency level has been reached
and no more scaling is required (sdir=noScale). Case (III)
is called a hit and the counter variable hitcnt is incremented,
otherwise hitcnt is reset. As faulty measurements can occur,
a symbol transmission (frequency scaling) is only considered
successful if hitgoal consecutive hits occur.

If a symbol transmission was successful, forceScale()
returns. In case the transmission was not completed success-
fully, the function utilCore() is called to force the desired
frequency scaling. The inputs to utilCore() are the desired
scaling direction sdir and the current empirical frequency
curEF, which are used to determine the parameters needed
to generate the appropriate core utilization. The function
utilCore() also implements a so called backchannel, which

8



allows the source application to update the current empirical
frequency based on the timing measurements, as described
in Section 5. The timing measurements are done using a
tight loop similar to the one in the cpuburn stress-test4 and
gettimeofday(). One timing measurement is performed
during the initialization of the application to get a reference
value, which is used as divisor for all later timing measure-
ments to determine the empirical frequency.

The main of the source application implements a timeout
function, which aborts sending of a packet after a pre-defined
time and restarts the transmission process.

8.3. SINK APPLICATION

The frequency is indirectly measured by the sink application,
with a sampling period T ; by default T = 20ms. With the
period T , the sink application inspects the frequency using the
same timing measurement method as the source application
(also see Section 5). The sink application performs multiple
timing measurements which are later averaged when determin-
ing the empirical frequency, in order to minimize measure-
ment uncertainty. To increase the accuracy of the empirical
frequency measurements, the length of the tight loop used for
the timing measurements can be increased. However, a long
tight loop also causes more utilization, which leads to a higher
channel interference. Therefore, we need to tune the length of
the tight loop depending on the attacked device to achieve a
good trade-off between accuracy and interference. All time
measurements are performed using gettimeofday(), which
proves precise and lightweight enough for our purposes.

All samples are stored in a preallocated in-memory log and
dumped at the end of the execution to a log-file. After the
experiment has terminated, the log-file can be transferred for
off-line analysis. In our implementation, the conversion from
the empirical frequency measurement to output symbols is
done offline.

9. EXPERIMENTAL ANALYSIS

We first analyse a static decoding strategy, based on an of-
fline evaluation of the platform to determine the empirical
frequency to frequency level mapping. An example for a mes-
sage transmission with a packet length of 5bits is illustrated
in Figure 8. Starting from the top, plot (a) shows the input
symbols, where S indicates the preamble and E the postamble.
In plot (b), we can see the goal frequency level input to the
source application. According to this frequency goal and input
through the backchannel, the source application tries to gener-
ate the utilization presented in plot (c). Plot (d) shows the sink
application empirical frequency measurements including the
measurement artifacts.

Most of the measurement artifacts shown in (d) can be elim-
inated from the signal in the off-line post-processing. The out-
put signal of the post-processing is illustrated in plot (e). In the

4https://patrickmn.com/projects/cpuburn/
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Figure 8: The input symbol stream (a), is converted to the goal
frequency level (b). Using this input, the source generates the
utilization trace (c). This utilization causes frequency scalings visible
in the empirical frequency measurements trace (d). By filtering and
discretize the frequency levels trace (e) is obtained, to reconstruct
the symbol stream.

off-line post-processing we apply an average filter with a win-
dow size of 9samples and discretize the empirical frequency
measurements according to the determined platform specific
empirical frequency to frequency level mapping. Although the
frequency scaling is not exactly as intended by the source ap-
plication, the example shows that it is still possible to correctly
decode the signal. This is thanks to the source application
and coding measures which can compensate most governor
implementation artifacts mentioned in Section 7.1. For exam-
ple, at the end of the second bit (shortly before 3208ms), the
frequency level drops below the center frequency. To compen-
sate this drop, the source application increases the utilization
again to force the system back to the center frequency.

While the static decoding implementation worked fine for
short and few packets, in depth experiments showed its limi-
tations. Using the static decoding scheme, we were not able
to reliably reproduce the transmission error rates results using
multiple datasets. Packet error rates varied between 20% and
up to 60% for repeated transmissions of the same 200 packets
with a length of 8bit. The main reason the static decoding
strategy did not work is that the system shows a higher sensi-
bility to interferences than we anticipated. Unlike in our initial
tests, the measurement artifacts could not be fully compen-
sated by the offline post-processing and caused more symbol
errors. Furthermore, traces were scaled or offset by a random
factor, due to system interferences in the initialization process
of the source or the sink application. Due to this empirical fre-
quency scaling, the static mapping from empirical frequency
to frequency level was incorrect and led to false decoding.

9.1. NEURAL NETWORK BASED DECODING

To address the limitations of the static decoding scheme, we
employ a NN as a signal decoder that takes a normalized em-
pirical frequency measurement as an input. The LSTM layers
contain 72neurons each using tanh as activation function for
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Figure 9: Using the empirical frequency measurements (a) as input,
the Neural Network (NN) determines the symbol probabilities (b).
The Connectionist Temporal Classification (CTC) decoder uses the
probabilities to generate the label sequence (c) and then determine
the final output symbol stream (d), equal to the input shown in
Figure 8.

the output of the neurons and sigmoid for the gates. The out-
put layer consists of 5neurons using the softmax activation
function. We need 5 output neurons for the 5 possible labels
S (preamble), E (postamble), 0, 1 and blank (-). An example
for a packet decoding is illustrated in Figure 9 for the same
packet as used in Figure 8. Plot (b) illustrates the probabilities
for the different symbols, determined by the NN. The plots (c)
and (d) illustrate the two step task the CTC-decoder performs.
First, the one-hot encoded label vectors are converted to a
label sequence and further to the final output symbol sequence.

For the training, we generated packets with a random length
between 8 and 32bits, summing up to a total of 32000bits. By
using random length packets, we can prevent the NN from
just learning the length of the packets instead of correctly
classifying the pre- and postamble and do not need to re-train
it for each different packet length again. We concatenated
the recorded traces such that the resulting training sequences
consist of 5000empirical frequency readings; such a sequence
is called sample. In the training, we used 200 of those sam-
ples, grouped into 10 mini-batches, where 20samples (1 mini-
batch) is used for validation. The training itself consist of two
phases (i) 200epochs for the initial training and no regulative
measures, and (ii) 1000epochs for the fine tuning, using a clip-
norm of 70.0 to prevent gradient explosion. We used a Nes-
terov accelerated stochastic gradient descent optimizer with a
learning rate of 0.001, a momentum of 0.9 and a decay of 0.
Furthermore, if the validation loss decreases we save the NN
model after each epoch, to make sure we use the best model
in the final decoder.

9.2. THREAT LEVEL EVALUATION

We evaluate the robustness of our transmission scheme for
different payload length of the packets, i. e. 8, 16, 32 and
64bit. For every packet length we send 5traces of 200packets
each with random payload bits generated using the python
random packet. The payload of each of our traces is big
enough to contain multiple 512bit elliptic-curve cryptography
keys [1], see Table 2.

To evaluate the throughput degradation of the frequency

Packet Payload Payload Bits per Trace Laptop BL Hand-Held BL

8bit 1600bit 1.79bps 1.43bps
16bit 3200bit 2.27bps 1.82bps
32bit 6400bit 2.63bps 2.11bps
64bit 12800bit 2.86bps 2.29bps

Table 2: Packet payload, the corresponding number of data bits per
trace and the throughput on the baseline platforms.

covert channel, caused by the governor implementation ar-
tifacts, we compare the results of our experiments with two
theoretical baseline platforms. These baseline platforms have
the same parameters as the respective real platform Laptop
and Hand-Held (see Table 1), but we assume that none of the
frequency covert channel and the governor implementation ar-
tifacts occur (see Section 7.1 and Section 8). We calculate the

TPre f =
payload

Ts · (CUPRE +CUBIT · payload +CUPOST )
(3)

throughput TPre f of the baseline platforms using Equation (3),
in which the payload is the number of bits per packet. CUPRE
is the number of channel uses for the preamble and CUPOST
for the postamble, which are both 12. The number of channel
uses per bit, denoted as CUBIT , is 4. The respective throughput
for each packet length is given in Table 2 for both baseline
platforms.
9.2.1. Achievable Rates and Error Probability

The upper diagram in Figure 10 shows the achieved through-
put in bps, calculated as an average of each single packet
throughput for all packets that have been transmitted without
error. The packet throughput is calculated by dividing the
number of payload bits in a packet by the time needed to send
the whole packet, including preamble and postamble. The
middle diagram presents the degradation of the throughput
between the baseline and the real platforms, i. e. the percent-
age of throughput loss. The Packet Error Rate (PER) in % is
illustrated in the bottom diagram.

Our experimental analysis shows that the achievable
throughput is lower than the capacity bound determined in
Section 6. The difference between capacity bound and maxi-
mum throughput of our baseline platforms can be explained
by the transmission scheme, as it needs 4 channel uses per bit
in an error free environment without governor implementa-
tion artifacts. Therefore we can only achieve a throughput of
0.25bits per channel use for packets of infinite length, which
is significantly lower than the upper channel capacity bound
of 0.972bits per channel use for Laptop and 0.982 for Hand-
Held, respectively. This is necessary due to the platform depen-
dent behaviour and implementation artifacts of the governor
(see Section 7.1). The throughput degradation, relative de-
crease of the throughput on the real platforms Laptop and
Hand-Held to the baseline platforms, are caused by correction
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and PER (d). The throughput plunge at 32bit packets indicates high
channel disturbance.

scalings the source application has to apply due to unexpected
frequency scalings. Moreover, despite the expected increasing
trend for the throughput with rising packet length, both plat-
form Laptop and Hand-Held show a plunge for packets with a
length of 32bits. This shows that the platform dependencies
and implementation artifacts of the governor cause high dis-
turbance in the channel, independent of the duration of the
core utilization. However, we can observe increasing PERs
for increasing packet lengths, which correlates with the higher
likelihood for bit errors for increasing packet length.

Last, we can observe that the PER on Hand-Held is lower
approximately by a factor of 4, than on Laptop. We chalk
the lower PER up to a combination of two reasons: (i) dif-
ferent Kernel versions of Hand-Held and Laptop, and (ii) the
architecture of the processor of Hand-Held. Hand-Held is
operated on Kernel version 3.10.96, while Laptop uses 4.4.0-
112-generic. As we presented in Section 7.1, different Kernel
versions can cause differences in the behaviour of the governor
due to implementation artifacts. Furthermore, on Laptop all
cores share one frequency domain, whereas the LITTLE and
the big cores in Hand-Held have separate frequency domains.
Due to the fact that the Hand-Held will try to utilize the LIT-
TLE cores as much as possible and only migrate processes into
the big cluster if necessary, we experience less interferences
for our transmission. Our analysis suggests that shorter pack-
ets show lower PERs but also yield less throughput. However,
we can not make a definite statement that is true for every plat-
form, as our analysis also shows platform variations. In order
to find the best configuration for a specific platform, further
exploration considering the packet length as well as possible
error detection/correction codes and protocol overhead has to
be done.
9.2.2. Interference by other processes
In our scenario, we assume that the attacked device is idle,
which is a valid expectation considering the usage pattern of
mobile and embedded devices. Nonetheless, other processes
could still increase the core utilization and interfere with the
channel. While short utilization bursts caused by background
processes and idle applications can be handled, a high uti-
lization floor would cause more problems. Short utilization

bursts have the same effect on the governor behaviour as the
issues introduced by Snippet 1, namely a single unexpected
frequency scaling. We show with our implementation that
single unexpected frequency scalings can already be handled
with measures like a backchannel, an appropriate transmission
scheme (see Section 8) and a smart decoder (see Section 9.1).
In contrast, if the interfering utilization is constant and high
enough to force the governor to scale to a frequency higher
than the lowest possible frequency, the number of reachable
frequency levels is reduced. The reduction of frequency levels
can only be compensated in the design of the transmission
scheme or by a smart source application. In conclusion, we
can state that burst interference by other processes can be com-
pensated during an attack, while permanent interference might
make an attack impossible. Thus, launching an attack while
the device is idle maximizes the chance of success.
9.2.3. Threat Classification

In our analysis we consider the small message criterion by
Moskowitz and Kang [12] with the following scenario: The
highly sensitive data is a cryptographic key which could be
used to enter a company network or servers. The cryptographic
key is saved on the hand-held device of a company, such that
the employee can access the company network and servers
while being on a business trip. Today, the National Institute
of Standards and Technology considers elliptic-curve cryp-
tography with a key size of 512bit to be highly secure [1].
We assume that an attacker manages to deploy a setup of the
slowest implementation of our frequency covert channel on
the hand-held device. Furthermore, the attacker uses one par-
ity bit per packet for error detection and a handshake scheme.
The handshake scheme involves sending an acknowledge from
the sink to the source application after 7data packets to ac-
knowledge whether the packets were received correctly. In
this scheme, every packet transmission is repeated as many
times as necessary to transmit it successfully at least once.
Considering the throughput of 0.82bps and the packet error
rate of 1.05% (see Figure 10), we can state that the application
level throughput is 0.56bps. This means, that if the attack is
carried out in a night, i. e. the device is not used for 5hours,
this 512bit key can be leaked from the source to the sink ap-
plication 19 times, already accounting for the overhead for
error detection, retransmissions and the handshake protocol.
Furthermore, as our implementation and transmission scheme
are very simple, this attack can be executed more efficiently.
For example an attacker could find a more efficient symbol en-
coding and achieve throughputs closer to the channel capacity
bound. Using this reasoning, we can state that the frequency
covert channel poses a significant threat for a wide range of
devices.

10. CONCLUDING REMARKS

In this work we analysed a covert channel based on the fre-
quency of the core, called frequency covert channel. We show
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that the main threat posed by the frequency covert channel is
the possibility to leak data, which can be used to compromise
the widely used OSs security paradigm of permission separa-
tion and application isolation. To this end, a source application
utilizes the core such that its frequency scalings encode the
transmitted data. As a counterpart, a sink application can de-
tect the changes of the frequency by repeatedly measuring the
duration of a fixed set of operations. We presented a model of
a typical frequency covert channel and derived the correspond-
ing channel capacity bounds which is applicable for every
platform-governor combination that allows to derive a channel
state diagram. We classified the channel as discrete and noise-
free and derived upper channel capacity bounds of about 1bit
per channel use for the conservative governor (see Section 6).
The channel capacity bound can be used to compare different
kinds of covert channels or help to estimate the associated
security risk and develop mitigation strategies.

Based on the channel model, we developed transmission
schemes for two distinct and representative platforms, Laptop
and Hand-Held, which we experimentally evaluated. Our
findings show that it is possible to achieve throughputs of 1 to
2bps with packet error rates between 1% to 8%. Furthermore,
when considering the achievable performance of the frequency
covert channel, we show that there is a high dependency on
the used hardware, frequency governor and OS version (see
Section 9).

Despite the low capacity of the frequency covert channel,
considering that (i) the attacker does not need any special per-
missions to establish the frequency covert channel, (ii) almost
every current mobile multicore system and many embedded
systems are affected, (iii) systems can often be compromised
by leaking relatively small amount of information, i. e. a cryp-
tographic key or a password, and (iv) these systems are often
idle, which makes the execution of the attack easier, we can
state that this covert channel needs special attention.
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