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Frommicroscopy data to in silico
environments for in vivo-oriented simulations
Noriko Hiroi1,*†, Michael Klann2†, Keisuke Iba1, Pablo de Heras Ciechomski3, Shuji Yamashita4,
Akito Tabira1, Takahiro Okuhara1, Takeshi Kubojima1, Yasunori Okada4, Kotaro Oka1, Robin Mange2,
Michael Unger2, Akira Funahashi1 and Heinz Koeppl2*

Abstract

In our previous study, we introduced a combination methodology of Fluorescence Correlation Spectroscopy (FCS)
and Transmission Electron Microscopy (TEM), which is powerful to investigate the effect of intracellular environment
to biochemical reaction processes. Now, we developed a reconstruction method of realistic simulation spaces based
on our TEM images. Interactive raytracing visualization of this space allows the perception of the overall 3D structure,
which is not directly accessible from 2D TEM images. Simulation results show that the diffusion in such generated
structures strongly depends on image post-processing. Frayed structures corresponding to noisy images hinder the
diffusion much stronger than smooth surfaces from denoised images. This means that the correct identification of
noise or structure is significant to reconstruct appropriate reaction environment in silico in order to estimate realistic
behaviors of reactants in vivo. Static structures lead to anomalous diffusion due to the partial confinement. In contrast,
mobile crowding agents do not lead to anomalous diffusion at moderate crowding levels. By varying the mobility of
these non-reactive obstacles (NRO), we estimated the relationship between NRO diffusion coefficient (Dnro) and the
anomaly in the tracer diffusion (α). For Dnro = 21.96 to 44.49μm2/s, the simulation results match the anomaly
obtained from FCS measurements. This range of the diffusion coefficient from simulations is compatible with the
range of the diffusion coefficient of structural proteins in the cytoplasm. In addition, we investigated the relationship
between the radius of NRO and anomalous diffusion coefficient of tracers by the comparison between different
simulations. The radius of NRO has to be 58 nm when the polymer moves with the same diffusion speed as a reactant,
which is close to the radius of functional protein complexes in a cell.

Introduction
The complex physical structure of the cytoplasm has been
a long-standing topic of interest [1,2]. The physiologi-
cal environment of intracellular biochemical reactants is
not one of well diluted, homogeneous space. This fact
is in contradiction with the basic assumption underly-
ing the standard theories for reaction kinetics [3]. The
difference may render actual in vivo reaction processes
deviate from those in vitro or in silico. Lately, we showed
the results of a combined investigation of Fluorescence
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Correlation Spectroscopy (FCS) and Transmission Elec-
tron Microscopy (TEM) [4,5]. We examined the effects
of intracellular crowding and inhomogeneity on the mode
of reactions in vivo by calculating the spectral dimen-
sion (ds) which can be translated into the reaction rate
function. We compared estimates of the anomaly param-
eter, obtained from FCS data, with the fractal dimension
from an analysis with transmission electron microscopy
images. Therefrom we estimated a value of ds = 1.34 ±
0.27. This result suggests that the in vivo reactions run
faster at initial times when compared to the reactions in
a homogeneous space. The result is compatible with the
result of our Monte Carlo simulation. Also, in our fur-
ther investigation, we confirmed by the simulation that the
above-mentioned in vivo like properties are different from
those of homogeneously concentrated environments. Also
other simulation results indicated that the crowding level

© 2012 Hiroi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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of an environment affects the diffusion and reaction rate
of reactants [6-9]. Such knowledge of the spatial condi-
tion enables us to construct realistic models for in vivo
diffusion and reaction systems.
The novel points of this study are the following three:

(i) we investigated the influence of the mobility of
non-reactive obstacles (NRO) on the anomaly
coefficient,

(ii) we investigated the influence of the size of the NROs,
and

(iii) we reconstructed the static simulation space based
on TEM images and run diffusion tests in these
virtual volumes as well

in order to make the in silico simulation environment
more realistic. The in vivoNROs have a wide size distribu-
tion and complex shapes. Based on our simulations we can
suggest simpler systems with just one class of NROs which
result in the same properties in the observed effective dif-
fusion of the tracermolecules in the complex environment
and experimental results.
While several projects investigated diffusion and reac-

tion within compartments like the ER [10,11], this study
aims at resolving the diffusion and reaction of cytosolic
proteins outside of these structures, for instance signaling
molecules that have to travel from the plasma membrane
to the nucleus [12,13]. Cryoelectron tomography can be
used to obtain a 3D reconstruction of only the scanned
cell section [14,15]. Statistical methods, in contrast, can
be used to learn the properties of the 3D space and to
generate many samples from it [16,17]. In order to gen-
erate reaction volumes with the same properties like the
TEM images, we therefore learned the image statistics.
This enables us to test the influence of the structures such
as mitochondria and membrane enclosed compartments
on the diffusion and reaction of molecules in the cytosol.
By using state-of-the-art volume visualization techniques
we can also show the shape of the generated volumes.
The generated structures are used for a volumetric 3D

pixel (voxel)-driven graphical representation, which was
further filtered into a smooth analytic surface using the
software package BioInspire [18,19]. This analytic conver-
sion for the visualization was done to better understand
the properties of the 3D structure, which is not obvious
from single 2D slices. The analytic surface is also the natu-
ral description of large intracellular objects likemembrane
enclosed compartments or mitochondria [11,16] and
avoids the discreteness of pixel/voxel-based approaches
[20]. The 3D ray tracing visualization package BioInspire
is used to interactively sample the analytical surface to
create the final image; therefore, never losing any details
by going over some intermediate representation such as a
triangle mesh as is common in literature [21,22].

Generally, TEM images visualize the information of
scattering/absorption or permeation of electron rays
through a sample slice of the cell. The electron rays are
detected by charge-coupled devices and converted to grey
scale images. The part in a sample section where elec-
trons have been scattered or absorbed appear darker on
the image, while the parts permeating electron rays appear
white. There exist many imaging studies which investi-
gated intracellular structures by electron microscopy. In
those images, organelle, such as nucleus, mitochondria,
rough endoplasmic reticulum, zymogen granules, Golgi
complex, etc., appear as clear shadows, resulting from
scattered or absorbed electron rays.
Based on the above reasons, we assumed that the black

segment in the TEM images consisted of solid struc-
tures comprising the non-reactive obstacle. Simultane-
ously, the non-reactive surface can provide anchorage for
small mobile molecules. The faint segment areas in TEM
images presumed to be made up of sol proteins, which
formed the main reaction chamber for the intracellular
reactants.
Besides the (at least temporarily) static structures the

cytoplasm is known to be filled with all kinds of mobile-
crowding molecules [2]. Therefore, we added the mobility
of the NRO and their size to the parameters that are
investigated in this study.
In our former simulation, we used just one size of NRO,

which could, e.g., represent single molecular obstacles
[4,5]. But in a cell, many of those molecules represent-
ing the NRO exist as complexes or polymers, for instance
cytoskeletal proteins. In order to include this informa-
tion, we analyzed if the overall radius of the obstacles
would affect the diffusion and reaction processes. Espe-
cially, we checked the results obtained in such simulations
for anomalous diffusion, which is a sensitive probe for
crowding conditions [9].
Anomalous diffusion is a common phenomenon in cell

biology [23] but was previously defined by using a random
walker on percolation clusters [24]. Percolation theory
deals with the number and properties of clusters which are
formed as follows [25]; each site of a very large lattice is
occupied randomly with probability p, independent of its
neighbors. The resulting network structure is the target
of percolation theory [26]. When the probability p is over
the critical value (pc), the cluster reaches from one side to
the opposite side of the lattice. This pc is the threshold to
undergo phase transition like the gelation of polymer sol.
Anomalous diffusion is observed when the reaction space
is occupied inhomogeneously with obstacles until the rel-
ative volume of obstacles reaches close to the threshold.
The value of pc for the 3D cube is 0.312 [27].
In several numerical simulations including our model, a

percolation lattice is used as a simple example of the dis-
ordered medium [7,28,29] and we found that it is similar
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to the in vivo reaction space. Likewise the structured in
vivo reaction space is similar to porous media [6,30]. Such
structures, which are often self-similar, can readily be seen
under the TEM and are easily generated for instance by
self-organizing molecules such as titanium dioxide and
sol–gel powders.
When p = 1, the cluster becomes a regular lattice with-

out disorder. If the non-obstructed space in the cell forms
such a regular lattice, the time dependency of the mean
squared displacement (MSD) of a random walker on the
lattice grows linear with time. On the other hand, if the
random walker is confined at a specific volume, the MSD
converges to a constant [31]. The case between these two
extreme cases was named anomalous diffusion by Gefen
et al. [24]. The exponent α represents the anomaly of the
MSD [23]:

〈
(�x(t) − �x(0))2〉 = �tα (1)

We estimated diffusion constants of NRO based on
simulation results in different environments. Our in silico
models enables us to verify the consistency of the hypoth-
esis that the intracellular component is built using a self-
organization and that the structure provides a percolation
cluster-like environment for soluble molecules. We com-
puted α from theMonte Carlo simulations in these virtual
environments, as well as D(t), and compared it with the
experimental results from FCS measurements to find the

parameters of the in silico models which match the in
vivo results.

Main text
Reconstruction of reaction space based on TEM image data
Based on TEM images (Figure 1) the intracellular envi-
ronment was reconstructed (Figures 2 and 3) as described
in Methods,“Generation of virtual cellular structures”. The
3D visualization of the static NRO structure helps to grasp
the properties of the volume, which cannot be seen from
single 2D images. A video showing the complete vol-
ume and sweeping through it is available as Supporting
material (see Additional file 1).
The 1D statistics about neighboring pixels/voxels is suf-

ficient to generate similar structures in two and three
dimension applying an isotropy assumption. The struc-
tures show a wide size distribution in 2D images and a
tubular network in the 3D volume. Only completely spher-
ical structures are not generated in the present approach.
The applied filters in the volume generation process have a
tendency to increase the size of structures (eroding) or to
reduce it (dilation). By controlling the NRO volume frac-
tion in the process we could create volumes which have
the sameNRO volume fraction like the TEM images. Note
that the smoothing of the surface for visualization likewise
can increase the volume occupied by NROs (cf. Figure 3).
With respect to the diffusion of molecules through

such structures the identification of the true fine-grained
structure becomes very important. The diffusion test sim-
ulations in these 3D structures were performed with the

Figure 1Material TEM images.(A) Original TEM images of the cytoplasmic region of 3Y1 cell for reaction space reconstruction.These images were
captured by 1,000 magnifications. bar = 1.0μm = 56.8 pixels. (B) The binarized images of the photos (A). The binarizing algorithm is described in
“Methods”.
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Figure 2 Reconstructed reaction space based on TEM images for the reaction space. (A, B) Sample images from the generated 3D space.
(C, D) Comparison of original TEM image statistics and generated volume statistics. The reconstructed space has 17.6 × 17.6 × 17.6 nm resolution.
(B, D) Low pass filtered by a median filter in order to reduce noise. (E) Visualization of the 3D structure by raytracing. See SI movie for a complete
overview of the 3D reaction space .

continuous space discrete time Brownian dynamics simu-
lation [6,32,33] (seeMethods “Diffusion simulations in the
virtual environment”). In the rather noisy structure cor-
responding to the thresholded TEM images, the diffusion
is hindered much stronger than in a smoothed structure.
We fitted the observed MSD to Equation (1) yielding � =
3.37 ± 0.14 in the noisy volume and � = 3.79 ± 0.15
in the smooth volume, i.e., the MSD grows faster in the
smooth volume. The anomaly is α = 0.940 ± 0.004 and

α = 0.948 ± 0.005, respectively. All simulations stopped,
when the first of the 10,000 molecules starting from
the center had reached the surface of our test volume—
which restricts a further increase of the MSD. This time
span/distance is not sufficient to leave the anomalous
regime. The effective diffusion coefficient is on average
reduced to 63% of the input value in the noisy volume and
to 70% in the smooth volume at this point in time. Espe-
cially, the larger surface of the noisy volume leads to an
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Figure 3 Surface generation of the NRO structure. Filtered versions of the above images going from left to right (A: 0%, B: 15%, C: 25%, and D
50% of the original voxel resolution) require (1.26, 1.21, 1.07, and 0.89 GB) of memory with an initial memory footprint of 0.49 GB, which amounts to
around 50MB per 1 million voxels. This reflects a linear memory usage with predictable performance requirements as the number of input voxels
grow. Depending on the number of control points and coarse graining of the data points the surface becomes smoother, thus improving the
perception of the overall 3D structure. The excluded volume grows slightly with the coarse graining and at the high value of D too many details of
the structure are lost. (E) different slices of the reaction volume. The complete volume is also shown in the SI video (Additional file 1) .

increase in the excluded volume for finite particle radii,
which is consistent with an increased reduction of the dif-
fusion. Therefore, the more fragmented space leads to a
stronger reduction in the diffusion [6].
Also depending on the local structure the effective dif-

fusion varies. As indicated in Figure 4, the structures can
(locally) vary in their isotropy, leading to an anisotropic
diffusion. It is especially important that the reaction
space reconstruction process leads to isotropic structures
because even slight deviations are sensitively recognized
by the diffusion process. Likewise the original micro-
scope data where each voxel is 17.6 × 17.6 × 60 nm are
non-isotropic.
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Figure 4 Isotropy of the effective diffusion in the virtual
cytoplasm. Local anisotropy and global variation in the observed
diffusion in different structures .

The comparison of the diffusion properties in the recon-
structed reaction space and FCS measurements shows
that the static (or at least temporarily static) struc-
tures are not sufficient to explain in vivo diffusion. The
anomaly coefficient α = 0.94 does not match the val-
ues observed in in vivo FCS measurements (α = 0.768 ±
0.14) [4,5]. Especially, the molecular crowding by mobile
NROs seems to have an important effect [9,34]. The
computational complexity of the multitude of interac-
tions between all particles and the dimension of the
simulation-parameter space however renders the analy-
sis within such a detailed 3D volume structure impos-
sible. Therefore, we investigated the influence of mobile
NROs within a scalable discrete lattice-based simulation
framework.

Dynamics of NRO change the diffusion and reaction speed
We performed Monte Carlo simulation with mobile NRO
in our lattice-based simulation space described in Meth-
ods “Lattice-based Monte Carlo simulation” (the lattice-
based simulator is also included as Additional file 2 and
available from [35]). The motivation to move the NRO
despite the increased computational complexity is to
make the simulation environment compatible with real-
istic intracellular conditions, and to investigate if we can
find a simulation-parameter regime matching our former
FCS results [4,5].
First, if the jump probability describing the mobility

of the particles (Pf ) of the reactants equals the jump
probability of the NROs (i.e., Pf = 1), the diffusion of reac-
tants was independent from the crowding level of their
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environment. They show normal diffusion instead of
anomalous diffusion (Figure 5A). By FCS analyses, we
observed anomalous diffusion of green fluorescent pro-
tein (GFP) in cytoplasm. The simulation results with the
NRO jump probability Pf = 1 thus was not compati-
ble with experimental results. Especially, when the relative
volume of NROs is lower than 50%, the diffusion of the
reactants shows no anomalous subdiffusive behavior.
Starting from this incompatibility with the experimen-

tal results, we varied the following two parameters: (i)
the probability which determines the mobility of NRO in
the simulation space and (ii) the radius of NROs to ana-
lyze the effect of the size of NROs on the diffusion of the
reactants.

NROmobility which leads to matching diffusion with
experimental results
We varied the jump probability Pf , which determines the
mobility of NRO in the simulation space (Figure 5B). In

Figure 5Monte Carlo simulation with varying value of mobility
and aggregation level of NRO. (A) If all NRO are mobile with the
same speed as the reactant and have the same size like it, the
reactants in a cell show nearly a normal diffusion independent from
the level of crowdedness. If the mobility of NRO is lower than the
reactant diffusion in the reaction space, the reactants show
anomalous diffusion as observed by FCS experiments. The different
lines show the results produced by the different levels of crowding
(0–70% of the volume is occupied by NRO). (B)Mobility of NRO is the
same as the mobility of the reactant while the size is varied .

this analysis, we fixed the size of NRO to occupy only one
lattice site (i.e., single or small crowding molecules). The
frequency of NROmovement was given in the range from
1/40 to 1/10 of the frequency of reactant moves, which
move in every simulation step. This means that the NRO
move once per 10 steps (Pf = 1/10), once per 20 steps
(Pf = 1/20), once per 30 steps (Pf = 1/30), once per 40
steps (Pf = 1/40), or never (Pf = 0), respectively.
The results in Figure 5A show that if Pf is less than

1/10, diffusing reactants show the anomalous subdiffusive
behavior for all tested NRO levels from 10 to 70%. This
result is in agreement with previous works which indi-
cated that the more static NROs result in a stronger con-
finement of the reactants [6,31], hence a more anomalous
behavior (smaller α).
For all Pf < 1, we can obtain an anomalous parameter

compatible with our experimental results (α = 0.768 ±
0.14) with about 20% relative volume of NRO in the reac-
tion space. The estimated Pf value to reproduce the com-
patible α is 0.2383 to 0.3689. This means that the reactants
move 2 to 5 times faster than the NROs in the reaction
volume. However, the estimated relative volume amount
is less than the occupied volume in the TEM images of
37%. Previous studies showed that the NRO-effect on the
diffusion strongly depends on the size of the NROs [6,36].
Therefore, also the size has to be taken into account.

NRO size which leads to matching diffusion with
experimental results
We also varied the aggregation level of NRO in the sim-
ulation space (Figure 5B). In this analysis, we fixed the
mobility of the NROs to the same rate like the mobility of
the reactants (Pf = 1).
The radius of the NRO was varied from 1 to 5 pixels.

The original size (rnro = 1) means that the object occupies
8 pixels. We assumed the reactants diffuse in cytoplasm.
Because the reactants affect the moves of the NROs in the
same way like the NROs block the way of the reactants,
the concentrations of both NROs and reactants have to set
in the right proportion. In order to adopt our simulation
environment to the case of cytoplasmic enzyme, we chose
1.0μM as the approximate concentration of the reactant.
Our simulation environment for varying NRO radius is
1000 reactants in the lattice with 50 × 50 × 50 total sites.
To reconstruct the realistic intracellular environment by
our simulation space, we assume the size of 1 pixel equals
to 77.8 nm. This is about 15 times larger than the diame-
ter of GFP, which is the molecule for which we analyzed
the diffusion in a cytoplasmic region. Also, the approxi-
mate compartment size is 64μm3 = 64 fl. This volume is
acceptable as a part of cytoplasm; the expected whole vol-
ume of cytoplasm of a cell is 2.8 pl [37]. Now the radius of
NRO varied from 1 to 5 pixels means the diameter of NRO
is 155.6 to 778 nm.
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By changing the size of NRO, we find that the rel-
ative NRO volume is different for each different NRO
size to produce compatible anomalous diffusion coeffi-
cient with experimental results. When the NRO size is
small (155.6 nm, i.e., 30 times larger than a reactant), a cell
can involve only 15 to less than 20% relative volume of
NRO to produce a compatible anomalous diffusion coef-
ficient with experimental results. If the NRO size is large
(778 nm, i.e., 150 times larger than a reactant), a cell can
involve over 30% relative volume of NRO to produce a
compatible anomalous diffusion coefficient. This result
is also consistent with a previous studies which showed
that smaller objects have a much bigger influence on the
diffusion of test molecules [6,36].

Empiric relationship between α,Dnro, and rnro
We fitted the empiric functions given in Table 1 to the
results of our Monte Carlo simulation with various condi-
tions in order to find parameter ranges which are consis-
tent with the results from FCS measurements. Note that
these empiric functions do not need to have a physical
meaning, but for instance show that the Stokes–Einstein
relationD ∝ 1/r is not valid in the cytoplasm, because due
to the microscopic structure different radii exhibit differ-
ent viscosity. For instance large molecules sense a bigger
hindrance in their mobility and can even be trapped by the
meshes of the cytoskeleton [2,6].
The relation between Dnro and rnro (Table 1, third

equation) is calculated from the first two equations in
Table 1 for the condition Pf = 1. Based on the appro-
priate size of the NRO from the previous section and the
relationship with rnro we conclude that Dnro = 21.96
to 44.49μm2/s in order to obtain the desired α in the
simulation at the target NRO fraction of 37%.
This diffusion coefficient is still in the same range like

the diffusion coefficient of GFP in cytoplasm. On the
one hand it is rather fast for large molecules but on the
other hand our model in silico cytoplasm is just con-
structed out of one class of NROs compared to the com-
plex size distribution in vivo [9,34]. The diffusion coeffi-
cient is not more than 10 times faster than the diffusion
coefficient of large macromolecules (e.g., microtubule)
in cytoplasm, thus supporting that our results are in a
realistic physiological regime.

Table 1 Empiric relations between α,Dnro, and rnro
Relationship between α and Dnro α = 0.0093Dnro + 0.4606

Relationship between α and rnro α = 0.1302 × ln rnro + 0.0976

Relationship between Dnro and rnro Dnro = 14.0 ln rnro − 39.0

The empiric relations are fitted to the simulation results. We used the value
DGFP = 82 ± 2μm2/s for GFP and its mutant protein in solution [38]. The last
relation is then deduced from the first two for Pf = 1.0 and a NRO volume
fraction of 37%.

On the other hand, if the diffusion of NRO occurs at
the physiological macromolecule level (ex. tubulin in cyto-
plasm is measured as 4–10μm2/s [39]), the diameter of
NRO must be about 33–43 nm. This is smaller than the
single NRO in our simulation. That means if the reac-
tion space is crowded only with this size of obstacles,
the anomalous diffusion constant will be smaller than the
physiological value at the relative NRO volume fraction of
37%, which we found in our TEM image data. This value
of relative NRO volume should be independent from the
mobility state of the NROs.

Conclusions
We can conclude from simulation results in the recon-
structed reaction space that the correct identification
of noise or concrete structures in TEM images is very
important because the diffusion strongly depends on
it. The reconstructed tubular structures are consistent
with, e.g., ER structures [11]. The structures are static
in simulations of that reconstructed space (at least on
the short timescales of the simulation), but future work
aims at modeling the spatial dynamics of such mem-
brane enclosed compartments [40]. The present gener-
ated structures could serve as a starting point for the
size distribution of the compartments. Finally, a detailed
and multi-scale simulation should include both the quasi-
static cellular structures and the mobile NROs responsible
for the majority of the molecular crowding effects. At the
same time, investigation of the mixing ratio of differently
sized NROs is also necessary in order to find a functional
size distribution.
As the microscope data are discretizing the cell inter-

nal structures one could argue that the simulation should
also use the 3D analytical surface representation, recon-
structed inside the BioInspire visualization software. At
the moment the simulation is not using this surface as
the interfaces between the simulation and visualization
are currently being defined. For an investigation of tran-
sient anomalous diffusion in such structures [23], much
longer time spans need to be covered, which means that
particles will diffuse much further away. Therefore, peri-
odic boundary conditions for the volume are necessary.
The reaction space might also be reconstructed based on
the Fourier transform of the TEM images, which would
lead to smooth boundaries under periodic boundary con-
ditions.
The TEM image-reconstruction for a realistic simula-

tion space gave us (i) an impression how the microscopic
intracellular environment is structured in 3D and (ii) lets
us further compare the results with that of lattice based
andmore scalable simulations, which also includes mobile
NROs. By searching a compatible condition between the
results of TEM-reconstructed space and artificial space,
we could estimate the parameters for in silico simulation
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environments with realistic intracellular structures and
dynamics.
Due to computational limitations these environments

have to be tremendously simplified compared to the com-
plexity of the in vivo system. Thus, our efforts match for
instance the approach of Hou et al. [41] trying to create a
simplified yet realistic in vitromodel of the cytoplasm.
We confirmed that the diffusion characteristics of inert

test molecules in a crowded space are preserved in
the characteristics of molecules which take part in a
Michaelis-Menten reaction by using discrete reaction
space [42]. The reaction proceeds quickly at the begin-
ning, but later on the reactants are exhausted slowly in
our simulations. This result may mean that the intracel-
lular environment transforms reaction processes in a cell
from the in vitro reaction in a fractal manner [8]. It is
comparable to the classic mass action system with a time-
dependent rate constant. Also the observable effective
reaction rate constant depends on the level of crowding
and the effective diffusion, and might sensitively react in
the case of anomalous diffusion [32]. These results sup-
port the importance to confirm detailed structures of the
reaction space because the reaction environment affects
the reaction process.
Therefore, the next challenge for in vivo oriented sim-

ulations will be performing simulations of bimolecular
enzymatic reaction processes in the reconstructed reac-
tion volume based on true cell environment, also by
estimating the concrete value of environmental dynam-
ics, and possibly by mixing static structures and mobile
NROs.

Methods
Cell culture
Cell culture reagents for 3Y1 cells were obtained from
Wako Pure Chemical Industries, Ltd. (Japan). The cell
lines were routinely cultured in Dulbecco’s Minimal
Essential Medium supplemented with 10% fetal bovine
serum in a 5% CO2 incubator. We obtained 3Y1 cell
line from Japanese Collection of Research Bioresources
(JCRB) Cell Bank for use at Keio University.

Transmission electron microscopy
We obtained 101 images of rat fibroblast 3Y1 cells.
We selected those images from the cytoplasmic regions,
mainly at a magnification 1000.
The cells were collected on the day when the cells

reached at the confluent condition in order to obtain a
homogeneous population in their cell cycle (G1 to G0
cells).
In preparation for TEM, the cells were fixed with 4%

formaldehyde and 2% glutaraldehyde in 0.1-M phosphate
buffer (pH 7.4) for 16 h at 4°C, and successively with 1%
osmium tetraoxide in 0.1-M phosphate buffer (pH 7.4).

The cells were dehydrated in graded ethanol and embed-
ded in epoxy resin. Ultrathin sections (approximately 60-
nm thick) were prepared with a diamond knife and were
electron-stained with uranyl acetate and lead citrate, and
were examined using an electron microscope (H-7650;
Hitachi Ltd.).
First, the TEM images were binarized into objects

and background using the auto-thresholding function of
ImageJ (http://rsbweb.nih.gov/ij/; see Figure 1). Briefly,
this algorithm computes the average intensity of the pixels
at below or above, a particular threshold. It then computes
the average of these two values, increments the threshold,
and iterates the process until the threshold is larger than
the composite average. That is,

threshold = (average background + average objects)
2

.

Subsequently, the binary images were translated into a
1-0 matrix in Matlab to reconstruct the simulation space.
The simulation space for Figures 2, 3, and 4 was recon-
structed based on TEM images as indicated below.

Generation of virtual cellular structures
In order to reconstruct the intracellular environment
we learned the following statistics from the thresh-
olded binary TEM images (cf. Figure 1B): Pb(I(pxi) =
1|I(pxi−1), I(pxi−2), I(pxi−3)), the probability that this
pixel pxi is black (I(pxi) = 1), given the sequence of the
neighboring three pixels, averaged over all directions (cf.
Figure 2C). Likewise, we learned the probability of a pixel
being black which is between two other pixels (separated
by a distance j), and the average blackness (0.3755).
The 300 × 300 × 300 px in silico volume is generated

by drawing lines from Pb, each separated by 16 px in all
directions. Next, we interpolated the pixels in between
the lines (distance 8, 4, 2, and 1 px) to generate the com-
plete volume. The generated volume is then iteratively
processed by filtering it (erosion and dilation) until its P̂b
in all directions equals the empirical Pb of the images (cf.
Figure 2A,C). In order to preserve not only big structures
but also finer objects in the processed volume, the raw
volume was fed back into the processed volume repeat-
edly by averaging over both images, while the weight of
the raw image was reduced in each iteration. In order
to produce a smoother surface, the volume was also low
pass filtered (cf. Figure 2A–D). The necessary 3D filters
were created based on ordfilt3 by Olivier Salvado from
the Matlab central File Exchange (File ID: #5722). The
present Matlab code to generate the volumes is available
as Additional file 3.
In order to avoid boundary effects only the pixels 10-290

are used subsequently in the simulations, and accordingly
a sphere with a diameter of 4.928μm is created at the scale
of 1 px = 17.6 nm.

http://rsbweb.nih.gov/ij/
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Visualization
The 3D NRO structure described in the previous
section—even if filtered twice, once in 2D with ImageJ
(section “Transmission electron microscopy”) and once
in 3D in Matlab (cf. Figure 2A,B)—still contains high-
frequency components from image noise and the dis-
cretization of data into voxels. Image stacks acquired from
TEM are discretizations of the actual natural analytic (or
at least very highly detailed) environment of the cell’s
internal structures, which is why the direct visualization of
the voxel space itself only reveals the coarse grained, cubic
3D environment. As input to the BioInspire raytracing
engine, a total of 12.5 million voxels (4.5 million of which
are occupied by NROs) were given, corresponding to the
spherical subvolume of the simulation space. As touched
upon in the introduction a 3D filter of the software pack-
age BioInspire was used to create a smooth surface by
averaging over the 3D structure. The difference in non-
processed data and filtered data can be seen in Figure 3
where the number of control points and parameters is
adjusted. Clearly, the filtered version with a smoother
surface is preferable for a clear visualization of the 3D
structure. A section of the volume is shown in Figure 2
for comparison with the 2D 300 × 300 pixel image of
single slices.

Diffusion simulations in the virtual environment
The continuous space discrete time diffusion simulator
as described in [32] is used to simulate the diffusion of
inert tracer molecules through a cell which contains the
generated structures. The structures are represented by a
binary 3D grid of spheres at the positions of black voxels
of the generated volume. The static spheres had a radius of
rs = 10.92 nm, such that their volumematches the volume
of each pixel of (17.6 nm)3. We performed the simulations
in 20 different structures to average over the different real-
izations. The diffusion of tracer molecules with molecular
radii of ri = 2.6 nm was simulated with 10 sets of 1000
molecules each. All original diffusion coefficients are arbi-
trarily set to D0 = 1μm2/s, and �t is chosen such that
max�x/(ri + rs) = 0.08, i.e. �t = 1.27 × 10−7s. The
effective diffusion Deff = 〈(x(t) − x(t0))2〉/(2d(t − t0))
was obtained in 3 dimensions (d = 3) as well as in
each dimension separately (d = 1). The test volume was
a cell with a diameter of 4.928μm and was accordingly
filled with approximately 4.5 million obstacles. The simu-
lations were performed on the Brutus computing cluster
at ETH Zurich, needed 10 h for 0.15 s of physical time
and 400MBmemory at max (non-parallelized, but the dif-
ferent sets were running in parallel). With a Intel Core
i7 2600K at 3.5GHz and 8GB RAM 1 × 106 steps, (i.e.,
0.127s) of all 10000 particles of one set needed 3 h. The
simulation is available from [33].We used this virtual envi-
ronment for the calculation of effective diffusion constant

and for the investigation of the local anisotropy of
the volume.

Lattice-based Monte Carlo simulation
We also performed a scalable lattice-based Monte Carlo
simulation and compared it with the results from the
simulations in our virtual environment as well as experi-
mental results from [4,5] by changing the size andmobility
of NRO, in order to clarify the characteristics of such a
crowded environment. This simulation is available from
[35] or Additional file 2.

Diffusion simulationwith immobile NRO
The simulation space is a 50 × 50 × 50 cubic lattice
with periodic boundary conditions. The reaction space is
randomly interspersed with NRO. The random walkers
representing the diffusing reactants can jump to a neigh-
boring lattice site in each iteration, which is selected ran-
domly. If the chosen lattice site was previously empty, the
reactant fills the site; if the site was occupied by an NRO,
a new position is randomly allocated for the reactant.
The simulator is implemented in the C++ programming
language.

Reaction simulation with immobile NRO
The reaction simulated in our model is A + A → A. If
the chosen lattice site of reactant A1 in a diffusion step
is occupied by another reactant A2, A2 is obliterated and
only A1 remains at the new lattice site.

Pseudo-mono reaction process simulationwithmobile NRO
We changed the characteristics of NRO such that they can
move randomly as well. Their probability to move Pf was
varied from the same as reactants (Pf = 1) to 40 times
smaller (Pf = 1/40), i.e., slower, to investigate the effect of
NRO mobility to the reactants behaviors.
All NRO move as single independent molecules.

The other conditions for this simulation remain the
unchanged.

Pseudo-mono reaction process simulationwith
aggregated NRO
We also varied the diameter of NRO to test the effect
of NRO size to the reactant behaviors. By this analysis,
we investigated the condition relating with NRO aggrega-
tion level, which move with Pf = 1, i.e., with the same
probability as the reactants. The other conditions for this
simulation remain the unchanged.

Additional files

Additional file 1: Video of the 3D volume. Dynamic exploration of the
generated 3D virtual cytoplasm.

http://www.biomedcentral.com/content/supplementary/1687-4153-2012-7-S1.mov
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Additional file 2: Lattice-based simulator. Zip folder contains
reaction–diffusion simulator with mobile and fixed lattice-based NROs of
variable size. Code is written in C++ and requires the respective compilers.

Additional file 3: MATLAB code for volume generation. Zip folder
contains original images to learn statistics from and MATLAB code to
generate the 3D volumes. Requires MATLAB.
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