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Switzerland

ABSTRACT

Redirected walking with advanced planners such as MPCRed or
FORCE requires both knowledge about the virtual environment -
mostly in the form of a skeleton graph representing the virtual envi-
ronment - and a robust prediction of the user’s actions. This paper
presents methods for both parts and evaluates them with a number
of test cases.

Since frame rate is crucial for a virtual reality application, the
computationally heavy extraction and preprocessing of the skeleton
graph is done offline while only parts directly linked to the user’s
behavior such as the prediction are done online. The prediction is
done using a target-based long-term prediction and the targets are
determined automatically and combined with targets predefined by
the designer of the virtual environment.

The methods presented here provide a graph that is well suited
for planning redirection and allows prediction techniques previ-
ously only demonstrated in studies to be applied to large scale vir-
tual environments.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality

1 INTRODUCTION

Real walking has been well established as a navigation technique
for large virtual environments. It is closest to the way humans nav-
igate the real world and was shown to have many positive aspects
such as improving the cognitive map users build of the environment
[7, 13]. Moreover, the user is not required to learn a new naviga-
tion metaphor which is often a disadvantage of more abstract or
semi-natural interfaces as discussed in [8]. However, real walking
as a way of navigating virtual environments requires a large open
space for the user to walk around in, which is probably the most
limiting factor for use with large virtual environments. To reduce
the required amount of space, Razzaque et al. introduced Redi-
rected Walking [12]. Here, the user’s movements are not translated
to the virtual environment one-to-one, but instead an imperceptible
mismatch is introduced. This mismatch causes the user’s real and
virtual path to deviate and allows infinite environments to be ex-
plored in a limited physical space by directing the user away from
the boundaries of the available physical space.

In the following years, different types of mismatch were pro-
posed including scaling the user’s forward movement or rotations
or warping a straight line into a circle (see [14] for a summary). For
each of these techniques their potential and limits were researched
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in various environments and combinations to determine the maxi-
mum gain (≈strength of the mismatch) that could be applied before
negatively affecting user experience. However, in many situations
it is possible to reduce gains or apply different redirection tech-
niques for a better user experience. To this end, it was proposed to
include multiple techniques, allow a range of gains, and use a plan-
ning method to select the one to be applied at the moment [9, 18].
Zmuda et al.’s FORCE (Fully Optimized Redirected Walking for
Constrained Environments) and Nescher et al.’s MPCRed (Redi-
rected walking using Model Predictive Control) already showed a
significant improvement in performance compared to a ”steer to
center” approach where the user is always redirected with a fixed
gain towards the center of the physical space. However, to properly
plan the redirection, it is necessary to know the user’s future walk-
ing trajectory. Both Zmuda et al. and Nescher et al. use a manually
defined skeleton graph with assigned probabilities for planning in
their respective studies.

At the same time, prediction for redirected walking was done
based on the user’s current movement or facing direction [6, 14] or
the recent history thereof [15]. These techniques all use the user’s
current position in the tracked space and make no use of knowledge
of human locomotion or user’s position in the virtual environment.
At that time, Nitzsche et al. had already proposed a distinction
of prediction methods in two categories [11]: Short-term predic-
tion that uses a model of human locomotion to predict the user’s
future path based on current or recent tracking data; and long term-
prediction that is based on the user’s intention to move to a certain
location. While all methods mentioned above fall in the first cate-
gory, newer methods include a varying degree of knowledge about
the environment. Nescher et al. [10] is a very early example that
is functionally very similar to previous methods, but includes two
distinct target locations and the user’s smoothed movement direc-
tion is compared against them. Later on, a prediction based on
models of human locomotion was proposed by Zank et al. [16].
They use the fact that human locomotion is stereotypical [5], which
allows generic models of human locomotion to be combined with
predefined target points to assign probabilities to individual targets.
Other approaches also use distinct target locations in combination
with eye tracking to estimate the user’s intention [4, 17].

While these new approaches offer good prediction possibilities,
they need additional information about the virtual environment as
previously pointed out [2, 11]. To use these techniques in practice,
it is necessary to generate both the skeleton graph required for the
planning as well as the selection of locomotion targets for predic-
tion automatically so that they can be used by a designer creating
applications and without having in-depth knowledge of redirection
and prediction algorithms. At the same time, it must be possible
for the designer to add application-specific knowledge into the pre-
diction such as knowledge on the user’s task, since this knowledge
could improve the prediction significantly.

Azmandian et al. proposed a first approach to retrieve possi-
ble future paths directly from the virtual environment [2]. Using a
navigation mesh, they retrieve paths of fixed length from a graph
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Figure 1: Example of the skeleton graph (green) with automatically generated waypoint targets (blue) and designer-added target (red).

Figure 2: Example of a skeleton graph required for planning with MPCRed or
FORCE.

spanned by the centroids of the mesh’s polygons, which can result
in a zig-zagged path depending on the triangulation. However, both
Zmuda et al.’s and Nescher et al.’s planning approaches consider
kinks in the skeleton graph to be good locations to apply rotational
gains, since they expect the user to execute a sharp turn. Therefore,
by using this kind of triangulation of the environment, the redirec-
tion potential is overestimated.

In this paper, we present methods for retrieving a skeleton graph
suitable for redirection planning and for finding potential waypoint
targets for prediction. The graph-retrieval as well as preprocessing
for the target-retrieval is done offline while the target-retrieval itself
is done online depending on the user’s position in the virtual world.

2 REQUIREMENTS AND ASSUMPTIONS

The proposed algorithm is split in an online and an offline part. In
order to improve real-time performance, as much computation as
possible is done offline and only computations directly connected
to the user’s actions should be conducted online.

The following list summarizes the requirements that have to be
met by such an algorithm:

1. Automatically generate a skeleton graph that represents the
walkable area (WA) in the virtual environment and can be
used for redirection planning (see Figure 2);

Figure 3: Example of waypoint targets and directions (WP) for prediction with
user position P.

2. The skeleton graph follows all paths of the environment, but
never intersects the boundary of the WA;

3. The skeleton graph has no kinks where the user is not ex-
pected to turn in order to minimize the overestimation the
redirection potential;

4. Waypoint targets are automatically generated online for hu-
man locomotion prediction (see Figure 3);

5. The designer of the virtual environment can add custom target
points when building the environment that are combined with
the automatically generated waypoint targets.

Figure 1 shows an example of a virtual environment with a skele-
ton graph (green lines), waypoint targets (blue disks) and a designer
added target (red disk) at a location where the designer expects the
user to go based on the task.

When talking about ”prediction” we follow the convention used
in [4, 10, 11] and are referring to an online estimation process that
returns a probability distribution over a set of possible user actions.
Each probability indicates how likely it is that the user will take the
respective action. A locomotion target is a point and direction that
corresponds to a location where a user might deliberately walk to.
The addition of a direction to the target is crucial to ensure that a
path model correctly represents the user’s direction of movement at
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Figure 4: Outline of the overall procedure. The gray boxes represent steps presented in this paper, the blue boxes represent steps that have been published previously
such as the planning of the redirection and the prediction of user actions. White boxes represent data that is provided directly be a sensor or the game engine.

Figure 5: Intersection of L1 and L2

end of the path like for the waypoints in Figure 3 or for a picture
hanging on a wall. Given a starting position and a target, locomo-
tion models are used to approximate the path a human is likely to
take when walking from the starting position to the target.

2.1 Definitions

Even though the presented implementation was done in the Unity
game engine, the math presented here assumes a right-handed coor-
dinate system with the z-axis pointing up. The following algorithms
use points in 3D space and lines or edges that are defined only be
the two points they connect. Triangles are the only faces allowed
and a triangle is defined by three edges. Px is defined to be the x
component of point P and L1xy is the projection of line L1 onto the
xy plane.

Immersive virtual environments are in 3D space, however hu-
man locomotion takes place in a 2D plane. This allows using much
simpler and faster 2D algorithms for most calculations. In order
to still be able to apply the proposed procedure to arbitrary virtual
environments, including multi-story environments, we use a special
implementation of 2D geometry with layers: All differences in z-
position between two points are ignored if the difference is below a
certain value zres. This means for example (illustrated in Figure 5)
that two lines L1 and L2 intersect iff:

P = L1xy∩L2xy 6= /0 and |L1z(P)−L2z(P)| ≤ zres (1)

If |L1z(P)−L2z(P)|> zres, L1 and L2 do not interact in any way,
meaning they cannot intersect or occlude points. Since the method
is meant for human locomotion, it can be assumed that the user
moves at a natural walking speed, in a continuous fashion (no dis-

continuities) and within the boundaries of areas defined as walka-
ble.

3 ALGORITHM

Figure 4 outlines the methods presented in this paper and how they
are used together with existing redirected walking algorithms and
prediction approaches. The purpose of the methods presented here
is to provide the predictor and the redirection planner with possi-
ble user paths and the following sections will explain step by step
how these paths can be generated from only two inputs, namely the
navigation mesh of the virtual environment and the user’s position.
Figures 6,9,12,16, and 17 at the beginning of each section show
which part of the overall pipeline shown in figure 4 the respective
section explains.

The navigation mesh represents the walkable area in a scene with
a triangle mesh and is meant for simplified agent navigation. The
procedure presented here is based on this triangle mesh, making
the concept applicable to any engine that can provide such a mesh.
The offline part of the algorithm is implemented as a Unity editor
script, so that a designer can add his own points-of-interest to the
list of potential targets and run the pre-calculations after finishing
the environment. The online part is depending to the user’s location
and is updated as his position changes during run-time. No third
party libraries were used except for Unity’s integrated navigation
mesh generation.

3.1 Walkable Mesh Preparation

Figure 6: Walkable Mesh Preparation. Generate simplified walkable area from
navigation mesh

In a first step, the navigation mesh needs to be prepared. When
the Unity navigation mesh is created, it contains all the areas Unity
considers walkable based on slope and area, even though they might
be disconnected from each other. However, this might not represent
the area that is actually reachable by a human by walking. To select
the correct submesh, the designer interactively selects one vertex
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(a) Original navigation mesh (b) Retrieved triangle mesh (c) Removed inside vertices

Figure 7: First steps of mesh processing. Starting with the Unity navigation mesh a, retrieved triangle mesh b, and after removing inside vertices and the Delaunay
triangulation c.

in the mesh and all connected triangles are included in the Walk-
able Mesh (WM). The mesh is transformed into a custom Walka-
bleMesh structure that is optimized towards fast operations rather
than Unity’s space-efficient mesh representation. At the same time,
any vertices that are not on the outside edge of the mesh are re-
moved and the mesh is Delaunay triangulated. Therefore any vertex
has now exactly two connected outside edges that coincide with the
outside border of the WM and every triangle has at least one outside
edge. Figure 7 shows the steps applied to an example environment.

Since Unity generates a mesh for navigation of agents, it rep-
resents the environment relatively accurately. However, this accu-
racy is not required and will affect performance negatively since
the runtime of most of the algorithms used afterwards scale with
the number of edges in this mesh. Therefore the WM is simplified.
First, vertices closer than 0.3 meters are collapsed into one. Then
any vertex is removed where the outside edges have a dot product
larger than 0.95. This is done starting at the outside vertex with
the largest dot product (Algorithm 1). This value was chosen as a
compromise between conserving the large-scale structure and re-
moving unnecessary details. The resulting outline of the walkable
mesh shown in Figure 8 has a reduced number of vertices but still
accurately represents the environment on a scale relevant to human
locomotion.

Algorithm 1 Simplify the outside polygon

Polygon poly← CCW outside polygon of the WM
SortedDictionary<float, vertex> d
for all vertex v in poly do

add v and the dot product of v’s neighboring edges to d
end for
sort d by the dot product in descending order
while d(0).key > 0.95 do

n1,n2← neighbors of d(0).value
remove d(0) from d
update dot product of n1 and n2

end while

3.2 Skeleton Graph

Figure 9: Generate Skeleton Graph from original Walkable Area

(a) Original walkable mesh. The depicted area is approximately 15x3
meters in size.

(b) Mesh without details

Figure 8: Original WM and and simplified mesh.

A common feature of prediction and planning of redirection is that
there is a skeleton graph representation of the virtual environment.
It is necessary to have a graph that represents the skeleton of the en-
vironment and contains all paths and junctions in the environment.
Therefore, it is required that this graph follows corridors in the mid-
dle and in a smooth line. In open areas, it is expected to be curved
smoothly and split and join close to narrow points and junctions.

The Voronoi diagram is a partition of space where a cell contains
the area of space that is closer to a certain point than to any other
point in the set. Reversely, this means that all the points on the edge
of any cell have equal distance to all closest points of which there
are at least two. This makes it well suited as a starting point for a
skeleton graph of the virtual environment if the vertices of the WM
are used as points. For an extended introduction refer to [1].

The Voronoi diagram (VD) can easily be generated from the De-
launay triangulation, due to its property that no other vertex must
be inside a triangles circumcircle. The VD can therefore be gener-
ated by simply connecting the circumcircle centers of neighboring
triangles.

When using circumcircles to generate this path, there is a risk
that the center lies outside of the walkable area. This happens
mainly for triangles with a single outside edge where this edge is
significantly longer than one of other two edges. To overcome this,
the maximum length for outside edges is limited and longer edges
are split and re-triangulated before creating the VD.

This results in a Voronoi Diagram that consists of many short
edges that increase the run-time of the online parts. Therefore it
is simplified. However, the smoothing applied to the outside edges
of the Walkable Mesh cannot be applied yet, because the unwanted
artifacts include very large angles in corridors like shown in fig-
ure 10. Instead, the graph is smoothed before removing vertices.
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Figure 10: Original Voronoi Diagram (cyan) calculated from the mesh (blue)
and the resulting simplified graph (red).

This is achieved by fitting a Bézier spline for every vertex with ex-
actly two connecting edges that is supported by the vertex and the
neighboring two vertices in both directions along the graph (Figure
11a). In case that one of the supporting vertices has more than two
neighbors, no additional vertices are included in this direction (Fig-
ure 11b). Vertices with only one or more than two neighbours are
not moved. This ensures that ends are not modified and junctions
also do not move. After this step, vertices with small angles are
removed in the same way as for the outside edges. In a last step,
vertices closer than 1m to each other are collapsed into one vertex.

This results in a graph that represents the structure of the virtual
environment with a good tradeoff between accuracy and number of
vertices and edges. In case MPCRed should be used, an additional
step is required to replace corners by arc segments [9].

(a) Spline with 5 support points

(b) Spline with 4 support points

Figure 11: Examples for smoothing spline for Vi. Green vertices are used as
support for the spline S, white vertices are not used. Vi,new is the resulting new
position of Vi

3.3 Visibility Polygon

Figure 12: Calculate Visibility Polygon from the simplified walkable mesh and
current user position

During the online phase, it is crucial to know what area the user can
see to determine potential locomotion targets. However, it is not
required to know this in 3D space, but rather in the 2D represen-
tation explained above. At this point, the user’s orientation is not
considered and a 360◦ visibility polygon is calculated. This makes
the calculation independent of the HMD used and does not ignore
targets that are slightly outside of the field of view.

The visibility calculation starts from the WalkableMesh triangle
the user is currently located in. This is done because the vertices
of this triangle are the only ones guaranteed to be visible from the
user’s position. In the first frame, the triangle is determined by brute
force, but in every following frame, the triangles are searched start-
ing with the triangle the user was in during the last update and then

checking neighboring triangles, if he is not there anymore. This
will increase the search performance greatly, since the triangles are
large compared to the typical human walking speed. This means
that in most cases, there are only one or three triangles that need
to be checked, before the user is found (see Algorithm 2). This
is because either the user is still in the same triangle as before or
one of the two neighboring triangles (every triangle has at least one
outside edge, because all inside vertices were removed).

The result of the visibility calculation will be a star-shaped poly-
gon. This is because a star-shaped polygon is defined to be a poly-
gon where there exists a point inside from which the entire polygon
can be seen, which in this case is the user’s position. The fact that
the resulting polygon will be star-shaped allows certain simplifica-
tions. All vertices will be connected by a single line of edges and
there are no disconnected parts (in contrast to a polygon with holes
such as the outline of the WM). From this, it follows, that given the
user position P and the vertices of the polygon sorted CCW V1, ...Vn

the angle αi = tan(Vi,y−Py
Vi,x−Px

) will be increasing (αi+1 ≥ αi∀i = [1,n]).

(a) Star-shaped polygon. The
entire polygon is visible from P

(b) V8 is occluded and not visi-
ble from P]

Figure 13: Examples of polygons with ordered vertices. Note that in the star-
shaped case α is non-decreasing whereas in case b) α7 > α8.

It therefore makes sense to sort all vertices in WM counter-
clockwise around the user. Now, every vertex that is not occluded
will be visible to the user and other edges in WM are the only thing
that can occlude a vertex. However, naively checking occlusion for
every edge for every vertex has a run-time of O(n2). Instead, the
properties of star-shaped polygons described above allow a prese-
lection of edges E that can potentially occlude a vertex V from the
user at position P (see Figure 14 for examples of these cases):

• A vertex can only be occluded by edges that have at least one
point closer to P than the distance from P to V . For this check,
the orthogonal distance of P to the edge can be used, because
the orthogonal distance is the shortest distance to P and if
no point on the edge is closer to P than V , the edge cannot
occlude V .

• V and P must be on opposite sides of E.

• A vertex V can only be occluded by an edge E that has one
vertex in clockwise and one in counter-clockwise direction of
V

Therefore, by sorting all vertices in an angular fashion and all edges
by orthogonal distance to P, the visibility polygon can be calculated
more efficiently.

The resulting algorithm is summarized in Algorithm 3. The algo-
rithm starts at one of the vertices of the triangle the user is currently
in. From this vertex, the list of sorted vertices is traversed CCW
and the visibility of each vertex is checked until a visibile vertex is
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(a) Vi cannot be oc-
cluded by (Vi−1,Vi+1)

(b) Vi can be occluded
by (Vi−1,Vi+1)

(c) Vi cannot be oc-
cluded by (Vi−2,Vi−1)

Figure 14: Cases of occlusion of Vi from user position P depending on angle
and side relative to an edge.

found. This vertex becomes the new current vertex and is added to
the list of visible vertices.

However, this is still scales poorly for larger environments since
creating a sorted list alone takes O(n · log(n)) time. The run-time
is already reduced by simplifying the walkable mesh as described
above, but certain additional precalculations can be made to further
improve online performance (see Algorithm 4).

For the visibility calculation, it is important to know which ver-
tices of the WM are visible to the user and while the user moves, the
mesh vertices do not. Since a point V in the WM can be seen from
a point P iff P is inside the visibility polygon spanned by V , we can
precalculate the area from which any vertex can be seen. Therefore,
a visibility polygon is calculated from the position of each vertex in
the WM during the offline phase and is stored for later use. During
the online phase, we only need to check if P is inside the precal-
culated visibility polygon of each vertex. If he is, he can see the
respective vertex.

However, the runtime still scales with the overall number of ver-
tices in WM. Therefore, we also calculate ahead of time which
vertices can potentially be seen from a certain triangle, which is
done by intersecting the triangle with the already calculated visibil-
ity polygons. If the intersection is non-empty, there exists a point in
the triangle from which the vertex can be seen. This list of poten-
tially visible vertices can be retrieved at run-time with the knowl-
edge of which triangle currently contains the user. This reduces the
run-time of the algorithm from O(n2) to O(k2) where n is the total
number of vertices in the WM and k is the total number of vertices
that can be seen from any point within the user triangle T . For any
virtual environments with limited visibility, k can be expected to be
much smaller than n.

This provides a list of all vertices in the WM that are visible from
the user’s current position. To get the required star-shaped polygon,
these vertices need to be connected as summarized in Algorithm
5. Since the resulting list of vertices is already sorted counter-
clockwise around the user, the algorithm can go through the list
and try to connect consecutive vertices. There are two cases, ei-
ther two consecutive vertices in polygonPoints are connected by an
existing outside edge in the WM (see Figure 15a), in which case
the connecting edge will be part of the visibility polygon, or they
are not. This is the case if one or both vertices of an edge are oc-
cluded by other vertices (see Figures 15b and 15c). In this case,
an additional edge needs to be created (this edge is only part of the
visibility polygon, not of the WM). This is done by casting a ray
from the user position through the current and the following vertex
and intersecting them with the boundary of the WM. Then the inter-
sections are analyzed to distinguish the cases shown in Figures 15b
and 15c. Depending on the case, the required vertices and edges are
added to the polygon.

Algorithm 2 Find user triangle

define list of triangles toBeChecked
define list of triangles wasChecked
if LastPlayerTriangle 6= /0 then

Add LastPlayerTriangle to toBeChecked
else

Add all triangles in WM to toBeChecked
end if
while toBeChecked is not empty do

if toBeChecked(0) contains user then
return toBeChecked(0)

else
Add toBeChecked(0) to wasChecked
for all neighbours n of toBeChecked(0) do

if wasChecked does not contain n then
Add n to toBeChecked

end if
end for
Remove toBeChecked(0) from toBeChecked

end if
end while
return /0

Algorithm 3 Find visibile vertices (without precalculations)

define list of vertices visibility
find triangle T in WM containing user position P
list of vertices vertByAngle← all vertices in WM
sort vertByAngle in counter clockwise order around P
list of vertices vertByDist← all vertices in WM
sort vertByDist by distance to P
V ← any vertex in T
while V is not the original vertex again do

Vnext ← Find vertex in vertByAngle that has smallest angle in
CCW direction
if Vnext is not hidden from P by any edge then

add V to visibility
V ←Vnext

end if
end while

Algorithm 4 Find visibile vertices (with precalculations)

define list of vertices visibility
find triangle T in WM containing user position P
list of vertices potentialVert ← retrieve potentially visible ver-
tices from dictionary
for all vertices V in potentialVert do

if P ∈ visibilityPolygon(V ) then
add V to visibility

end if
end for

125



(a) Common edge (b) Edge with one visible vertex (c) Edge without visible vertices

Figure 15: Three cases of connecting visible vertices. The user is located at position P, green vertices are visible from his current position, red vertices are not.a
Connecting two vertices with common outside edge. b Connecting two vertices with one partial outside edge and one inside edge. c Connecting two vertices with
one partial outside edge and two inside edges.

Algorithm 5 Generate visibility polygon from vertices

define list of vertices polygonPoints
for i = 0 to number of vertices in visibility do

add visibility(i) to polygonPoints
if WM does not contain edge visibility(i) to visibility(i+ 1)
then

I1← intersections of ray from P through visibility(i) with
the outside edges of WM
I2← intersections of ray from P through visibility(i) with
the outside edges of WM
Determine intersection cases and add I1 and/or I2 to
polygonPoints

end if
end for
convert polygonPoints to polygon

3.4 Target Locations

Figure 16: Determine navigation targets from visibility and skeleton graph and
combine the result with set of predefined application targets.

For a locomotion prediction as discussed by Zank et al. [16] it
is necessary to have a set of target points for locomotion in order
to predict the user’s intention. There are two kinds of targets that
need to be distinguished: application targets and waypoint targets.
Application targets are actual objects in the virtual environment de-
fined by the application or the task the user has in the virtual envi-
ronment. What exactly these objects are depends on the application
but can include things like a treasure chest or character in a game or
a terminal the user needs to operate in a training scenario. These ob-
jects have to be tagged by a designer or could potentially be learned
later on from recorded user data in a data-driven approach. The
waypoint targets on the other hand do not correspond to an object,

instead they are pieces of geometry that shape the user’s path such
as doors, choke points or junctions where a user has to pass through
to get to certain areas of the environment.

These target locations are used for prediction and describe loca-
tions the user is expected to walk to. In the past, these points were
predefined manually for the small scale environments used in stud-
ies. However, this is not feasible for a large scale environments.
Assuming that the user has no additional knowledge about the en-
vironment, it is likely that he plans out his own path to the limit
of what he can see right now. This means that the intersections of
the user’s visibility polygon with the skeleton graph should closely
match the points the user would plan his path to. In addition to the
resulting target points, all predefined application targets inside the
user’s visibility polygon are added to the set of potential locomo-
tion targets. This results in a list of points the user could potentially
be moving to and redirection can be planned from the current user
position to these points.

3.5 Prediction

Figure 17: User model to generate future user paths and estimate their likeli-
hood for planning redirection.

However, since in reality the user will only go to one of these tar-
gets, the planning is not optimal. Estimating the likelihood of the
user going to each target allows to discount unlikely targets when
planning the redirection and will improve the user experience for
the more likely ones.

After more simple approaches of predicting a user’s locomotion
like [11, 14, 15], which are mainly based on extrapolating the user’s
current or recent movement, there is recent work by Gandrud et al.
[4] and Zank et al. [16, 17]. Here, eye tracking or models of human
locomotion are used to provide a more sophisticated prediction of
a user’s destination that incorporates knowledge of human locomo-
tion as well as the Virtual Environment into the prediction. They
are also able to provide a probability distribution over the targets
instead of only giving a future direction of movement.
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(a) Mesh A1 (b) Mesh A2 (c) Mesh A3 (d) Mesh A4 (e) Mesh A5

Figure 18: Resulting skeleton graph for artificial evaluation meshes A1-A5.

These approaches need targets that are fixed in space while
the user walks, but determining the targets every frame using the
method described above would result in targets that are constantly
moving. However, the planning is also not updated every frame and
a new prediction is only required when planning. After planning
redirection, the selected technique is usually applied for a certain
time, in the case of Nescher et al. [9] for 2.5 seconds. While this is
also limited by computational time, it is also not required to re-plan
redirection for every frame. Given a good prediction, the selected
redirection should remain valid until the next planning step is com-
pleted. Therefore, new targets can be determined when planning
is finished and movement behavior can be observed until the next
planning cycle is executed at which point the probability distribu-
tion is retrieved and new targets are determined. Since the planning
cycle is short which limits the distance the user can travel before the
next planning cycle and we already consider a 360◦ field of view, it
can be expected that this does not heavily impact the overall perfor-
mance. This is due to the fact that the time the user needs to reach
the border of his current visibility is much larger and rapid turns do
not matter, because targets behind are already considered due to the
360◦ field of view.

4 EVALUATION

In the following section, the presented algorithms will be evalu-
ated with both artificial and realistic test environments. The arti-
ficial environments demonstrate the overall performance in simple
scenarios, while the realistic test cases show that the methods also
work for more complex virtual environments typically encountered
in real world applications.

The artificial environments A1-A4 are taken from [2] for better
comparability. The environment A5 is the study environment [9].
The application environments C1-C3 are parts of a larger demon-
stration scene of a small village on a lake. It consists of houses and
canals with walkways and open spaces in between and is shown in
Figure 1. It was chosen for offering both narrow, maze-like struc-
tures as well as open spaces and, while only small segments are
shown, the methods were applied to the whole environment.

Figures 18 and 19 show the skeleton graph extracted by the pre-
sented method. Our method results in a very small number of lines
that represents the structure of the environment. They are mostly
in the middle of corridors in maze like environments and are very
similar to what Zmuda and Nescher propose in their respective pa-
pers. The only difference is that Nescher uses arc segments instead
of corners, but this could easily be added. One issue is the creation
of small tails that remain, especially in corners of the application
meshes. However, removing them aggressively is not a solution
since there are situations where they actually correspond to an im-
portant piece of the environment like seen in Figure 18e.

Figure 20 shows the resulting visibility polygon from the user
position marked with the blue dot. Figure 21 shows the visibility

(a) Mesh C1 (b) Mesh C2

(c) Mesh C3

Figure 19: Resulting skeleton graph for application evaluation meshes C1-C3.

and resulting estimated paths for the example C3. The model used
here is the one by Cirio et al. [3]. It can be seen that the paths
indeed lead to reasonable target locations and they can be used to
plan redirection.

4.1 Run-times
In the following section, the run-times for the online parts of the
algorithm are evaluated. The evaluation was conducted on a XMG
U506 laptop with an Intel i7-6700 CPU. The application environ-
ment is used and the processed walkable mesh contains 351 ver-
tices, the skeleton graph contains 211 edges. The user position was

Figure 20: Intersections of skeleton graph (dark blue) and visibility (red) of user
(blue dot) and resulting target locations in teal.
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Figure 21: Mesh C3 with visibility (red) and estimated locomotion paths for four
waypoint targets. The possible user paths that were generated using Cirio et
al’s path model [3].

driven by artificial data that moves the user along a predefined path
of 142 meters length through the environment at a speed on 1m/s.
Along the path, the calculation time for the visibility calculation
and intersection with the skeleton graph is recorded. The average
time for the visibility calculation is 19ms, Figure 22 shows the cal-
culation time along the path as well as the resulting number of edges
in the visibility polygon.

4.2 Non-static Environments
Many of the calculations presented here are done offline and as-
sume a static environment. However, many virtual environments
are not static, instead many parts of the environment can be moved
by users or even move by themselves. There are multiple categories
of moving objects that have a different impact on the performance
and applicability of the presented methods. The first group con-
tains small moveable objects like chairs, books, etc. These objects
are too small to influence anything and can be ignored easily since
they would be removed by the simplification of the WM anyways.
The second group are doors. On the first glace one might think
that a closed door should cut the skeleton graph at this location and
block visibility. However, as long as the user can open the door
this would just require the door to be added as an application target.
Therefore, the result stays almost the same, only the path model
will be slightly off because the user needs to stop and open the door
before passing through. It is also possible that the environment con-
tains agents that move on their own. They will mainly influence the
user’s locomotion path which can easily be taken into account with
more sophisticated path models. The only case that will signifi-
cantly influence the planning is a moving object that is significantly
larger than the user so that it actually changes his paths and cannot
be moved by him so he has to plan around it. However, this would
be a change that influences the whole virtual environment in a sig-
nificant way and can therefore be expected to be uncommon and
infrequent. For this reason, we recommend to just generate two (or
even more) skeleton graphs and visibility precalculations and swap
them as needed during run-time.

5 CONCLUSION

In this paper, we present a method for automatically preparing vir-
tual environments for redirection with planning by generating a
skeleton graph from the navigation mesh provided by the respec-
tive game engine. Based on examples, we show that the method
generates suitable results in various environments. In addition, a
method for automatically generating waypoint targets at run-time
is presented. This allows model-based prediction methods to be
used without manually adding target positions, which makes it pos-
sible to use these methods easily. However, it still is unclear how
much the model-based prediction will improve the user experience

in terms of reduced number of resets and amount of gains applied.
Using a model based prediction will also give the planner a better
estimate of the true redirection potential that can be expected. How-
ever, redirection will still be necessary to plan beyond the limits of
these prediction approaches which means it is still necessary to use
predefined probabilities along the graph for planning. Therefore, it
might be useful to record data movement data from users in the vir-
tual environment. If the virtual environment is an application where
the layout does not change between users like a virtual exhibition,
probabilities can be learned from previous users and assigned to
the edges in the skeleton graph which allows planning with better
probabilities beyond the user’s field of view.
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