
Research Collection

Conference Paper

Improved De Novo Peptide Sequencing using LC Retention Time
Information

Author(s):
Frank, Yves; Hruz, Tomas; Tschager, Thomas; Venzin, Valentin

Publication Date:
2017

Permanent Link:
https://doi.org/10.3929/ethz-b-000208947

Originally published in:
Leibniz International Proceedings in Informatics 88, http://doi.org/10.4230/LIPIcs.WABI.2017.26

Rights / License:
Creative Commons Attribution 3.0 Unported

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository for Publications and Research Data

https://core.ac.uk/display/304142058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3929/ethz-b-000208947
http://doi.org/10.4230/LIPIcs.WABI.2017.26
http://creativecommons.org/licenses/by/3.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Improved De Novo Peptide Sequencing using LC
Retention Time Information
Yves Frank†1, Tomas Hruz2, Thomas Tschager∗3, and
Valentin Venzin†4

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
3 Department of Computer Science, ETH Zürich, Zürich, Switzerland
4 Department of Computer Science, ETH Zürich, Zürich, Switzerland

Abstract
Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) is an important
tool in proteomics for identifying the peptides in a sample. Liquid chromatography temporally
separates the peptides and tandem mass spectrometry analyzes the peptides, that elute one after
another, by measuring their mass-to-charge ratios and the mass-to-charge ratios of their prefix
and suffix fragments. De novo peptide sequencing is the problem of reconstructing the amino
acid sequences of the analyzed peptide from this measurement data. While previous approaches
solely consider the mass spectrum of the fragments for reconstructing a sequence, we propose
to also exploit the information obtained from liquid chromatography. We study the problem of
computing a sequence that is not only in accordance with the experimental mass spectrum, but
also with the retention time of the separation by liquid chromatography. We consider three models
for predicting the retention time of a peptide and develop algorithms for de novo sequencing
for each model. An evaluation on experimental data from synthesized peptides for two of these
models shows an improved performance compared to not using the chromatographic information.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, J.3 Life
and Medical Sciences: Biology and Genetics

Keywords and phrases Computational proteomics, Peptide identification, Mass spectrometry,
De novo peptide sequencing, Retention time prediction

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.26

1 Introduction

The amino acid sequences of peptides in a sample can be analyzed with the following tandem
mass spectrometry experiment [7]. First, the peptides are separated temporally by liquid
chromatography. Then, the mass spectrometer measures the mass-to-charge ratio of a peptide
and fragments multiple copies of it at random positions. Finally, the mass spectrometer
measures the mass-to-charge ratio of the resulting fragments. The peptide sequencing
problem is to reconstruct the amino acid sequence of the peptide from the experimental data.
This problem has been extensively studied [5, 18]. Nevertheless, when analyzing unknown
peptides the otherwise very successful database search approach is not applicable and de
novo sequencing, which is the reconstruction of the whole sequence from scratch, is necessary.

∗ Corresponding author: thomas.tschager@inf.ethz.ch.
† Preliminary work for this study was carried out during the bachelor theses of Y. Frank and V. Venzin.

© Yves Frank, Tomas Hruz, Thomas Tschager, and Valentin Venzin;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Improved De Novo Peptide Sequencing using LC Retention Time Information

Several algorithms for de novo sequencing [2, 1, 6, 10] consider the differences of the
peptide’s fragment masses to reconstruct the peptide’s sequence. Various scoring functions
have been proposed that try to exploit as much information as possible from the mass
spectrum of the fragments to find a sequence that explains the observed spectrum as well as
possible. However, the information obtained from the chromatographic separation in the
first step of the experiment is not considered by these scoring functions.

In liquid chromatography, the peptides in a sample have to pass through a column.
The time a peptide needs to traverse the column is called retention time and depends on
the chemical properties of the peptide. This process results in the temporal separation of
the peptides in a sample. Predicting the retention time of a peptide from its amino acid
sequence is a challenging task [14, 11]. Several studies use retention time prediction models
for peptide sequencing as a filtering step after a database search to increase the confidence of
identification and to identify false positive identifications [12, 16].

However, to the best of our knowledge, the retention time information has not been
considered by de novo peptide sequencing algorithms. This information can be useful, because
it allows to reconstruct parts of a sequence that cannot be resolved by mass spectrometry
(e.g. amino acids and fragments with equal masses). Moreover, it is available without
additional experimental effort. However, simply filtering the solutions of a standard de novo
sequencing algorithm by predicted retention time is not an option, as it requires to compute
all possible solutions in the worst case to find an optimal solution. We formulate and study
a de novo sequencing problem that integrates the retention time as an additional constraint
and does not require filtering many candidates. We are interested in a sequence that both
matches the experimental spectrum and the measured retention time. We consider three
additive retention time prediction models and develop algorithms for each model.

In this study, we do not aim for a replacement for available de novo sequencing tools,
but rather explore ways of exploiting the retention time information in de novo sequencing
algorithms. We evaluate the performance of two algorithms on experimental measurements
from synthesized peptides. In our evaluation, we consider a basic scoring function to clearly
expose the impact of using retention time prediction models. We compare our algorithms to
DeNovo∆ [4, 17], an algorithm that considers the same symmetric difference scoring model
but no retention time information. This scoring model shows improved identification rates
compared to the prevalent shared peak count scoring model [1]. For the third prediction
model, we present some preliminary results.

Considering the retention time information comes at the cost of higher computational
effort and requires additional parameters for retention time prediction (either estimated from
suitable datasets or taken from the literature). Yet, we believe that it is useful to exploit
retention time information for peptide identification and to further study the integration of
retention time information in algorithms for de novo peptide sequencing.

2 Notation and Problem Definition

In this paper, we model amino acids by characters and peptides by strings. We consider
an alphabet Σ of characters. A string S = a1 . . . an is a sequence of characters. The empty
string is denoted by S∅. Every character a ∈ Σ has a mass m(a) ∈ R+. The mass of a string
S = a1 . . . an is the sum of its character’s masses m(S) =

∑n
i=1 m(ai). The empty string S∅

has mass 0. A substring of S is denoted by Si,j = ai . . . aj for 1 ≤ i ≤ j ≤ n. The prefix set
Pre(S) contains all prefixes of S including the empty string, i.e. Pre(S) = dni=1S1,i ∪ {S∅}.
The theoretical spectrum of S is the union of all its prefix and suffix masses TS(S) =

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:3

(a) Linear: tlin(S) = t(A) + t(I) + t(A) + t(G) + t(A) + t(K)

(b) Position-dependent: tpos(S) = tpre(A, 1) + tpre(I, 2) + t(A) + t(G) + tsuf(A, 2) + tsuf(K, 1)

(c) Neighborhood-based: tnei(S) = t(−, A) + t(A, I) + t(I, A) + t(A, G) + t(G, A) + t(A, K) + t(K,−)

Figure 1 Retention time prediction for string S = AIAGAK. (a) In the linear model, the retention
time of a string is the sum of its character’s coefficients. (b) In the position-dependent model (with
γ = 2), the position of the first and the last two characters is considered additionally. (c) The
neighborhood-based model considers all pairs of consecutive characters in a string. The first and the
last character have additional coefficients, as they only have one adjacent character.

{m(T),m(S)−m(T) | T ∈ Pre(S)}. Note that for every prefix T ∈ Pre(S) the string S has a
complementary suffix of mass m(S)−m(T). We say a mass m is explained by S if m ∈ TS(S).

We define three simple models for predicting the retention time of a string S = a1 . . . an

(Figure 1). The first model is a simple additive model with one coefficient for each character
in Σ assuming the retention time of a string mainly depends on the composition of its
characters [9]. The second model additionally considers the position of the characters at
the beginning and the end of the string [9, 8]. The last model uses coefficients for pairs of
consecutive characters to model the influence of a character’s direct neighborhood [8, 15].

Linear model. Every character a ∈ Σ has a retention time coefficient t(a) ∈ Z. The retention
time of a string S is the sum of the retention time coefficient of its characters,

tlin(S) =
n∑
i=1

t(ai). (1)

Position-dependent model. We define distinct retention time coefficients for the first γ and
the last γ positions of a string, where 1 ≤ γ ≤ bn2 c. The retention time coefficient of the
i-th character for i ≤ γ is denoted by tpre(ai, i) ∈ Z and the retention time coefficient
of the (n− j + 1)-th character for j ≤ γ by tsuf(an−j+1, j) ∈ Z. The retention time of a
string S is the sum of the corresponding retention time coefficients

tpos(S) =
γ∑
i=1

tpre(ai, i) +
n−γ∑
j=γ+1

t(aj) +
γ∑
k=1

tsuf(an−k+1, k). (2)

Neighborhood-based model. We define retention time coefficients t(a, b) ∈ Z for pairs of
consecutive characters a, b ∈ Σ. The first and the last character a1 and an of a string
S have additional coefficients t(−, a1), t(an,−) ∈ Z, as these characters have only one
adjacent character in S. The retention time of S is the sum of all these coefficients,

tnei(S) = t(−, a1) +
(
n−1∑
i=1

t(ai, ai+1)
)

+ t(an,−). (3)

The coefficients for all three models need to be estimated based on a training dataset
(Sections 4.1 and Appendix Section B) or taken from the available literature.

We recall the de novo peptide sequencing problem with respect to the symmetric difference
scoring model [17]: Given a mass M and a set of fragment masses X (measured by the
mass spectrometer), find a string S of mass M that minimizes |TS(S)4X|. Equivalently to
computing a string with mass M that minimizes |TS(S)4X|, we can compute a string that
maximizes |TS(S)∩X| − |TS(S) \X|, as X is a fixed input and S can be chosen. Throughout
this paper, we assume that 0,M ∈ X.

WABI 2017

26:4 Improved De Novo Peptide Sequencing using LC Retention Time Information

We consider a variant of this problem that also considers the measured retention time
and a retention time prediction function t∗ : Σ∗ → Z. A function t∗() can return negative
values, as a substring can have a negative effect on the retention time of a string.

I Problem 1 (De Novo Sequencing Problem). Let Σ be an alphabet of characters, with a
mass m(a) ∈ R+ for each a ∈ Σ. Given a peptide mass M ∈ R+, a retention time T ∈ N,
a tolerance parameter ε ≥ 0 and a set X = {xi ∈ R+ | i = 1, . . . , k}, find a string S of
characters in Σ with m(S) = M and |t(S)− T | ≤ ε that minimizes |TS(S)4X| among all
strings with mass M and a retention time t∗(S) ∈ [T − ε, T + ε].

2.1 Model Simplifications

The model used in this paper simplifies several aspects of experimental data. First, the peptide
molecule contains an H2O molecule in addition to the amino acid molecules. Therefore, the
peptide mass has an offset of 18 Dalton compared to the sum of the amino acid masses.
To simplify the description of the algorithms, we do not consider this offset (i.e. the mass
M is the sum of only the amino acid masses) and the mass offsets of different ion types.
However, we do consider both offsets in the implementation of our algorithms using techniques
described in [17]. Moreover, the mass spectrometer measures masses-to-charge ratios. Charge
state deconvolution [7] is required as a preparatory step to convert mass-to-charge ratios
to masses if multiply charged fragments should be considered. Our model can consider
fixed modifications by altering the amino acid masses and variable modifications by adding
new characters to the alphabet. Finally, we consider integer values in the description of
the algorithm and ignore the mass accuracy of the mass spectrometer. We discuss in the
appendix how we account for the mass accuracy and also refer to [17].

3 Algorithms for De Novo Sequencing with Retention Time

We briefly describe the algorithm DeNovo∆ [17] for computing a string of mass M that
minimizes |TS(S)4X| without considering retention times. We refer to [17] for a detailed
description and a proof of correctness. Then, we describe algorithms based on DeNovo∆ for
solving the de novo sequencing problem for each considered prediction model.

The search space of DeNovo∆ is modeled by a directed acyclic multigraph G = (V,E)
based on the given set X. A vertex in G represents a mass and a path in G represents a string.
For every massm ∈ X there are two verticesm andM−m in G, i.e. V = {m,M−m |m ∈ X}.
An edge in G is always directed from the smaller to the larger mass. Two vertices v and
w are connected by an edge if there exists a string with mass w − v. For each such string
with mass w− v, we add an edge from v to w to the multigraph and label it with this string.
That is, if v and w are connected by an edge with label l(v, w), there is also an edge from v

to w for every permutation of l(v, w). In practice, we only consider edges with a maximal
label length p. We denote the concatenation of the edge labels along a path P by l(P).

Given a path P that starts at vertex 0, every traversed vertex represents the mass of a
prefix of the string l(P). If P additionally ends in vertex M , the path label both explains
v and M − v for every traversed vertex v. We find a string S of mass M that minimizes
|TS(S)4X| by iteratively extending two paths both starting at vertex 0. One path represents
a prefix and the other path a reversed suffix. We extend both paths until the sum of their
labels’ masses is equal to M and then concatenate the prefix and the reversed suffix to a
string of mass M .

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:5

0

p1 v

w = M − bq1 a b

A G A

K I GD

Figure 2 Multigraph G with two paths P = (0, p1, v) and Q = (0, q1, a, b). P and Q form a path
pair, as there exists a sequence of balanced extensions leading to P and Q. A balanced extension of
(P,Q) by (v, w) results in a path pair (P ′, Q), with P ′ = (0, p1, v, w) and m(l(P ′)) +m(l(Q)) = M .
The path labels represent a prefix and a reversed suffix and can be combined to a string AGADGIK.

I Definition 2 (Balanced extension). Given two paths P and Q, a balanced extension extends
the path that represents the string of smaller mass by a single edge, unless the resulting
paths represent strings with a total mass larger than M . An arbitrary path is extended if
both paths represent strings with equal masses.

I Definition 3 (Path pair). A path pair is a pair of paths P = (0, . . . , v) and Q = (0, . . . , a, b)
in G that results from a sequence of balanced extensions starting from two paths P0 = (0)
and Q0 = (0).

Figure 2 depicts an example for a path pair and a balanced extension. The set of masses
that are explained by a path pair (P,Q) is the partial theoretical spectrum

PTS(P,Q,M) ={ m(T),M −m(T) | T ∈ Pre(l(P)) ∪ Pre(l(Q)) }. (4)

The score of the path pair is the number of masses explained by (P,Q) that are in X minus the
number of explained masses that are not in X, i.e. |PTS(P,Q,M)∩X|− |PTS(P,Q,M)\X|.
The set of masses explained by an edge (v, w) is denoted by

TSe((v, w),M) = { m(T) + v, M − (m(T) + v) | T ∈ Pre(l(v, w)), m(T) 6= 0 }. (5)

I Lemma 4. For every path pair P = (0, . . . , v) and Q = (0, . . . , a, b) with v ≤ b and
v + b ≤ M it holds that a ≤ v ≤ b. The balanced extension of (P,Q) by an edge (v, w)
additionally explains all masses in N((v, w), (a, b)) = TSe((v, w),M) \ TSe((a, b),M).

Proof. Assume that there exists a path pair (P,Q) with v ≤ a. This path pair results by
definition from a sequence of balanced extensions. Consider the balanced extension in this
sequence, where the last edge (a, b) of Q is added. In this step, either P ended in v or in
some vertex v′ < v. In both cases, a is the larger mass and Q represents the heavier string.
Hence, the extension by (a, b) is not a balanced extension and (P,Q) is not a path pair.

Consider a balanced extension of (P,Q) by an edge (v, w). The edge (v, w) explains
all masses in TSe((v, w),M). However, some of these masses might also be explained by
(P,Q). We show that TSe((v, w),M) \ PTS(P,Q,M) = N((v, w), (a, b)), i.e. that all masses
explained by (v, w) that are also explained by (P,Q), are explained by the last edge (a, b)
of Q. We note that all masses in TSe((v, w),M) are larger than v and smaller than M − v.
Moreover, all masses in PTS(P,Q,M) that are larger than v and smaller than M − v are
explained by the edge (a, b). Therefore, it follows that the balanced extension with (v, w)
additionally explains all masses in N((v, w), (a, b)). J

Using Lemma 4, the algorithm DeNovo∆ [17] (Algorithm 1) computes a dynamic pro-
gramming table DP . An entry DP [v, (a, b)] contains the optimal score of a path pair ending
at the vertex v, respectively at the edge (a, b). As a base case, we add a loop edge (0, 0) to the

WABI 2017

26:6 Improved De Novo Peptide Sequencing using LC Retention Time Information

Algorithm 1 DeNovo∆ [17]
1 DP[v,(a,b)] = −∞ for all (a,b) ∈ E and all v ∈ V
2 DP [0 ,(0 ,0)] = 2
3 for (v ∈ V in ascending order):
4 for ((a,b) ∈ E in lexicograph . asc. order with DP[v,(a,b)] 6= −∞):
5 for ((v,w) ∈ E with w + b ≤M):
6 if (w ≤ b):
7 DP[w,(a,b)] = max(
8 DP[w,(a,b)], DP[v,(a,b)] + gain ((v,w),(a,b))
9)

10 else:
11 DP[b,(v,w)] = max(
12 DP[b,(v,w)], DP[v,(a,b)] + gain ((v,w),(a,b))
13)

graph and initialize DP [0, (0, 0)] = 2. Given the optimal score DP [v, (a, b)], the algorithm
considers all possible balanced extensions of the corresponding path pair with outgoing edges
of v. By Lemma 4, the additionally explained masses of such a balanced extension can be
computed only given the last vertex v and the last edge (a, b) of the two paths. The score of
the resulting new path pair can be computed by adding

gain((v, w), (a, b)) = |N((v, w), (a, b)) ∩X| − |N((v, w), (a, b)) \X| (6)

to the score DP [v, (a, b)]. The corresponding entry in the table is updated if the new score
exceeds the value stored in this entry at this step of the algorithm. The optimal score for a
string of mass M is equal to the maximum value of an entry DP [M − b, (a, b)] among all
edges (a, b) in G. The corresponding paths can be reconstructed starting from this entry.
The combination of the resulting prefix and reversed suffix then leads to the desired string of
mass M . The time complexity of DeNovo∆ is in O (|V | · |E| · d · p), where d is the maximal
out-degree of a vertex in G and p is the maximal length of an edge label [17].

3.1 Linear Prediction Model

In this section, we extend DeNovo∆ for the de novo sequencing problem with the linear
retention time prediction model. First, we note that the retention time of a path pair
P = (0, . . . , v) and Q = (0, . . . , a, b) with a ≤ v ≤ b is the sum of the retention times of
both substrings t = tlin(l(P)) + tlin(l(Q)). The retention time t′ of a path pair obtained
from (P,Q) by applying a balanced extension by some edge (v, w) can be computed as
t′ = t+ tlin(l(v, w)). That is, we only need t and the edge label l(v, w) for computing t′.

However, it is not sufficient to only store the optimal score DP [v, (a, b)] of any path
pair ending in v, respectively (a, b), and its retention time to reconstruct a solution for our
problem. There can be multiple path pairs ending in the same vertex and the same edge
with different retention times. If we consider an optimal solution and its sequence of path
pairs computed by the algorithm, a path pair P = (0, . . . , v) and Q = (0, . . . , a, b) in this
sequence does not necessarily have an optimal score among all path pairs ending in v and
(a, b). Nevertheless, its score is optimal among all path pairs with the same retention time
that end in v and (a, b). Therefore, we need to store for each possible retention time t the
optimal score of a path pair ending in vertex v and edge (a, b).

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:7

DeNovo∆Lin (Algorithm 2) stores for each entry DP [v, (a, b)] an array containing a score
for every possible retention time t. DP [v, (a, b)][t] is the optimal score for a path pair ending
in v, respectively (a, b), with retention time t. For a given vertex v and an edge (a, b), the
algorithm performs balanced extensions by all outgoing edges (v, w) of v. For every balanced
extension and every feasible retention time t, the algorithm then computes the new retention
time t′ and the new score of the resulting path pair and updates the corresponding entry
in the table. We can see by an inductive argument that the optimal scores in the table are
computed correctly. As the base case, we note that DP [0, (0, 0)][0] = 2 is correct, as an
empty path pair explains the masses {0,M} ⊆ X and has retention time 0. As soon as the
entry DP [v, (a, b)] is reached in line 7, all optimal scores for path pairs ending in vertex v
and edge (a, b) have been computed. This holds by induction, as every possible balanced
extension leading to a path pair ending in v and (a, b) has already been considered (given the
optimal score of a preceding path pair). Moreover, the array in DP [v, (a, b)] is not further
modified as soon as the algorithm reaches the vertex v and the edge (a, b) in line 7. Therefore,
the invariant holds that, if the algorithm considers a vertex v and an edge (a, b) in line 7, the
corresponding entry DP [v, (a, b)] contains the optimal score for each feasible retention time.

After computing all entries DP [v, (a, b)], we can find the optimal score of a solution by
iterating over all entries DP [M − b, (a, b)][t] for (a, b) ∈ E and all feasible retention times
t ∈ [T − ε, T + ε]. We can reconstruct a corresponding string starting from this entry.

The running time of DeNovo∆ is in O (|V | · |E| · d · p) [17], where d is the maximal
out-degree of a vertex in G and p is the maximal length of an edge label. The additional
overhead of DeNovo∆Lin (highlighted lines in Algorithm 2) is to iterate over all feasible
retention times t for each entry DP [v, (a, b)] and compute the new retention time t′. The
number of scores to be stored varies depending on the entry and the retention time coefficients.
For a path pair ending in v, respectively (a, b), we have to consider all retention times in
[rtmin · (v + b), rtmax · (v + b)], where rtmin and rtmax are the minimum and the maximum
retention time per mass unit. For example, we only store one optimal score in entry
DP [0, (0, 0)], but up to drtmax · M − rtmin · Me scores in entries DP [M − b, (a, b)] for
(a, b) ∈ E. The time complexity of DeNovo∆Lin is in O (|V | · |E| · |RTM | · d · p), where
|RTM | denotes the number of possible retention times for a string of mass M . In practice,
most entries DP [v, (a, b)] contain only few scores and it is advisable to use a memory-efficient
data structure instead of an array to reduces the memory consumption of the algorithm.

3.2 Position-dependent Prediction Model
In the position-dependent prediction model, the retention time of a string S is not equal to
the retention time of all permutations of S. The retention time coefficient of a character in
the first and the last γ positions of the string may be different from the coefficient of the same
character at another position. To compute the retention time of a path pair P = (0, . . . , v)
and Q = (0, . . . , a, b) with a ≤ v ≤ b, we first have to distinguish the prefix and the suffix
path. We compute the retention time of (P,Q) by summing the retention times tP and tQ of
the path labels. Assuming that P is the prefix path and Q the suffix path,

tP =
∑

ai∈ l(P)

{
tpre(ai, i) i ≤ γ
t(ai) i > γ

and tQ =
∑

aj∈ l(Q)

{
tsuf(aj, j) j ≤ γ
t(aj) j > γ.

(7)

If we want to update the retention time after a balanced extension of (P,Q) by an edge
(v, w), we have to compute the retention time of the edge label l(v, w). This retention time
depends on whether the edge label contains some of the first or the last γ characters of a

WABI 2017

26:8 Improved De Novo Peptide Sequencing using LC Retention Time Information

Algorithm 2 DeNovo∆Lin – Linear retention time prediction model
1 for ((a,b) ∈ E and v ∈ V)
2 DP[v,(a,b)] = array with entries −∞ for each feasible ret. time
3 DP [0 ,(0 ,0)][0] = 2
4 for (v ∈ V in ascending order):
5 for ((a,b) ∈ E in asc. lex. order with a ≤ v ≤ b):
6 for ((v,w) ∈ E with w + b ≤M):
7 for (entry t in DP[v,(a,b)]):
8 t’ = t + tlin(l(v, w))
9 if (w ≤ b):

10 DP[w,(a,b)][t’] = max(
11 DP[w,(a,b)][t’], DP[v,(a,b)][t] + gain ((v,w),(a,b))
12)
13 else:
14 DP[b,(v,w)][t’] = max(
15 DP[b,(v,w)][t’], DP[v,(a,b)][t] + gain ((v,w),(a,b))
16)

solution string S of mass M . However, there can be multiple such solution strings resulting
from different further balanced extensions of this path pair. Independently of the solution
string S, we can decide whether l(v, w) contains some of the first γ characters given the
length k of l(P). If k ≥ γ, the edge label clearly does not contain any of the first γ characters
of any solution resulting from extending (P,Q). Likewise, we know that l(v, w) contains
none of the γ last characters if l(Q) has more than γ characters. However, if l(Q) has less
than γ characters, we cannot decide whether l(v, w) contains some of the last γ characters
without knowing the length of the solution string. Let us assume for now that l(v, w) does
not contain some of the last γ characters of the solution. The retention time of the new path
pair resulting the balanced extension of (P,Q) by the edge (v, w) is

t′ = t+
∑

ai∈l(v,w)

{
tpre(ai, i) i+ k ≤ γ
t(ai) i+ k > γ.

(8)

If P would be the suffix path, tpre(ai, i) would be replaced by tsuf(ai, i) in the above equation.
It is important that the above assumption holds for every balanced extension leading

to a solution string S. Otherwise, the retention time of the new path pair is not computed
correctly. We cannot check if our assumption holds for an individual balanced extension.
However, given a solution string S and a path pair that represents a prefix and a suffix of
S, we can check if either the balanced extension leading to this path pair or a preceding
balanced extension did not satisfy the assumption. If so, either the prefix or the suffix path
label has at least n − γ characters, where n is the length of S. This does also hold for all
subsequent path pairs, as we only add characters to path labels in a balanced extension.

When reconstructing a solution from the dynamic programming table, we have to
additionally check, if one of the path labels has n− γ or more characters, before we combine
them to a solution string. If so, the assumption was not fulfilled at some step and we discard
this solution, as its retention time was not computed correctly. Note that we cannot consider
these strings, unless they can be constructed by another sequence of balanced extensions. It
is very unlikely that the assumption is not fulfilled in practice, as we consider small values of
γ. We never observed such a situation in our evaluation with γ = 2.

In our dynamic program, we have to store some additional information to compute a
solution with respect to the position-dependent prediction model. First, we have to store

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:9

l(P) = p1 p2

l(P ′) = p1 p2 l1 l2

l(Q) = q1 q2 q3

S = p1p2l1l2q3q2q1

t = tnei (P,Q) = t(−, p1) + t(p1, p2) + t(q3, q2)+
t(q2, q1) + t(q1,−)

t′ = tnei (P
′, Q) = t+ t(p2, l1) + t(l1, l2)

tnei(S) = tnei (P
′, Q) + t(l2, q3)

Figure 3 The retention time t of a path pair (P,Q) is the sum of the retention time coefficients
up to the last characters p2 and q3. The path pair (P ′, Q) resulting from a balanced extension of
(P,Q) by an edge with label l1l2 has retention time t + t(p2, l1) + t(l1, l2). A path pair (P ′, Q)
with m(l(P ′)) +m(l(Q′)) = M can be combined to a solution string S by concatenating l(P ′) and
the reversed string of l(Q′). The retention time of S is tnei(P ′, Q′) + t(l2, q3).

whether P is a prefix or a suffix path. Second, we have to store the length of both path
labels, unless they are larger than γ. DeNovo∆Pos (Algorithm A.1 in the appendix) stores
the optimal scores of path pairs ending in v and (a, b) in an array with an entry for every
retention time t, the length α and β of the path labels and a Boolean flag bit indicating
if the path ending in v is the prefix or the suffix path. Given the optimal score of a path
pair, the algorithm performs every possible balanced extension with an outgoing edge of
v, computes the new score and retention time, and updates the corresponding entries. We
reconstruct a solution starting from a path pair ending in some vertex M − b and some edge
(a, b) and the algorithm additionally verifies that both the prefix and the suffix path label
have more than γ characters. DeNovo∆Pos considers at most γ2 · |RTM | optimal scores for
each table entry DP [v, (a, b)], where |RTM | is the number of possible retention times for a
string of mass M . Therefore, the running time is in O

(
|V | · |E| · |RTM | · γ2 · d · p

)
, where d

is the maximal out-degree of a vertex in G and p is the maximal length of an edge label.

3.3 Neighborhood-based Prediction Model

The neighborhood-based model predicts the retention time of a string S by considering all
pairs of consecutive characters. We define the retention time of a prefix of S as the sum of the
retention time coefficients of the pairs of consecutive characters and the additional coefficient
of the first character. Note that we consider only one coefficient for the last character in the
prefix. The other coefficient depends on the next character in S that is not part of the prefix.
We define the retention time of a suffix analogously and compute the retention time of (P,Q)
by summing the retention times of the path labels (Figure 3): We denote the two substrings
by l(P) = p1, . . . , pn and l(Q) = q1, . . . , qm. The retention time of (P,Q) is

tnei(P,Q) = t(−, p1) +
(
n−1∑
i=1

t(pi, pi+1)
)

+
(2∑
i=m

t(qi, qi−1)
)

+ t(q1,−). (9)

We can update the retention time after a balanced extensions of (P,Q) as follows. Consider
a balanced extension of the prefix path P by an edge (v, w) with l(v, w) = l1 . . . lk. Let pn

be the last character of l(P). The retention time t′ of the new path pair resulting from the
balanced extension is t′ = tnei(P,Q)+ t(pn, l1) +

∑k−1
i=1 t(li, li+1). The retention time of a

solution S is not the sum of the retention times of a prefix of S and its complementary suffix.
We have to additionally consider the coefficient of the last character of the prefix and the
first character of the suffix, which are consecutive in S. If we combine the path labels of a
path pair (P ′, Q) to a string S (Figure 3), the retention time of S is tnei(P,Q) + t(pn, qm),
where pn and qm are the last characters of P and Q.

WABI 2017

26:10 Improved De Novo Peptide Sequencing using LC Retention Time Information

DeNovo∆Nei (Algorithm A.2 in the appendix) extends the algorithm DeNovo∆ and
computes a solution with respect to the neighborhood-based prediction model as follows.
Instead of storing the optimal score DP [v, (a, b)] of a path pair ending in vertex v and edge
(a, b), we distinguish prefix and suffix path and store an optimal score for each retention
time t, last character p of the path ending in v. The algorithm considers at most |Σ| · |RTM |
optimal scores for each pair of a vertex v and an edge (a, b), where |RTM | is the number
of possible retention times for a string of mass M and |Σ| is the size of the considered
alphabet. The running time of DeNovo∆Nei is in O (|V | · |E| · |RTM | · |Σ| · d · p). We refer
to the appendix for a more detailed description of the algorithm.

4 Experimental Evaluation and Discussion

In this section, we study the performance of our algorithms for de novo peptide sequencing
with retention time prediction. We first describe the considered dataset and a method for
estimating the parameters of the three models. Then, we compare the identification rates of
the proposed algorithms to the identification rate of DeNovo∆ [17].

4.1 Dataset and Parameter Estimation
We use the SWATH-MS Gold Standard (SGS) dataset (peptideatlas.org, identifier
PASS00289, [13]). Specifically, we consider the 944 spectra of synthesized peptides from
DDA-experiments that have also been considered in [17]. The database search tool Comet [3]
identified a sequence for each of these spectra using the very restricted database containing
only the 422 synthesized peptides (see [17] for a detailed explanation). We randomly split
the dataset into a training set with 80% of the spectra (755 spectra) and a test set with
the remaining 20% of the spectra (189 spectra). We use the training set to estimate the
retention time coefficients by linear regression and choose the tolerance parameter ε for
each model using the test set. We choose the tolerance parameter ε based on the minimum
and maximum prediction error (Appendix B) and set ε = 1000 (in seconds) for the linear
prediction model and ε = 750 for the position-dependent model. The neighborhood-based
prediction model requires many retention time coefficients for each character. Due to the
small training dataset, the estimate of some coefficients is based on few observations and some
cannot be estimated and are set to 0. A much larger training dataset would be necessary to
train this model. We analyze all spectra for the linear and position-dependent model, but
limit our evaluation of the neighborhood-based prediction model to some exemplary spectra.
It is also be possible to use retention time coefficients reported in the literature (e.g. [9] and
references therein), if training data is not available.

4.2 Comparison of DeNovo∆Lin and DeNovo∆Pos
We analyzed the 944 considered spectra with DeNovo∆Lin and DeNovo∆Pos. Both algorithms
compute all solutions with a score of at least 90% of the optimal score and a predicted
retention time within the tolerance range. Figure 4 shows a comparison of the identification
rates of DeNovo∆ [17], DeNovo∆Lin, and DeNovo∆Pos. Without considering the retention
time, DeNovo∆ reported the annotated sequence as best-scoring sequence for 586 spectra
(62.1%). Considering the linear retention time prediction model, DeNovo∆Lin computed the
annotated sequence with an optimal score for 610 spectra (64.6%). DeNovo∆Pos considers
the position-dependent prediction model and achieved the highest identification rate. The
annotated sequence was reported as best-scoring sequence for 629 spectra (66.6%). A filtering

peptideatlas.org

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:11

Top 1 Top 5 Top 10 Top 100 not in list

Position of annotated sequence in the list of solutions

N
um

be
r

of
 s

pe
ct

ra

0
20

0
40

0
60

0
80

0

586
610

629

693
712 723 728 742 753

793 798 808

125 127 124

62.1%
64.6%

66.6%

73.4%
75.4% 76.6% 77.1%

78.6% 79.8%

84.0% 84.5% 85.6%

13.2% 13.5% 13.1%

DeNovo∆
DeNovo∆Lin
DeNovo∆Pos

Figure 4 Position of annotated sequence in the list of reported sequences (sorted by score).
DeNovo∆ reported the annotated sequence among the top 5 sequences in 73.4% of the spectra,
DeNovo∆Lin in 75.4% and DeNovo∆Pos in 76.6% of the spectra.

approach that considers the top 100 sequences reported by DeNovo∆, would not be as
successful as the proposed algorithms. While the annotated sequence was reported by
DeNovo∆ for 793 spectra among the top 100 sequences, DeNovo∆Lin reported it in 798 cases
and DeNovo∆Pos in 808 cases. Even an optimal filtering approach by retention time would
miss the sequences that have not been reported by DeNovo∆. For few spectra, DeNovo∆Lin
and DeNovo∆Pos did not report the annotated sequence, where DeNovo∆ did report it, as
the predicted retention time of the annotated sequence was not in the chosen tolerance range.

4.3 Discussion
We develop algorithms for three additive retention time prediction models. However, we
did not study the predictive robustness of our models and efficient methods for parameter
estimation in detail. In the experimental evaluation, we especially studied the effect of
considering the retention time information. We compare the performance of our algorithms
to the algorithm DeNovo∆ [17] that uses the same scoring model, but no retention time
information. An accurate retention time prediction model is crucial for exploiting the retention
time information successfully, as the identification rates of our algorithms depend on the choice
of the tolerance parameter ε. Increasing ε diminishes the effect of considering the retention
time, while decreasing ε might exclude the correct sequence from the search space. This is
especially an issue if the prediction model is not accurate, as for the neighborhood-based
retention time model with our small training dataset. To get a glimpse on the performance
of DeNovo∆Nei, we set ε = 500 (in seconds) and analyzed the spectra from the test set,
where the correct sequence was not excluded due to the predictive error. In three cases, the
annotated sequence was reported by DeNovo∆Nei, but by no other considered algorithm.
The position of the annotated sequence improved compared to the position reported by
DeNovo∆Pos for 12 spectra.

The running time of our prototypical implementations is in some cases not yet practical.
DeNovo∆Lin needs less than 3 seconds per spectra for half of the considered spectra, but
several hours in exceptional cases. In general, DeNovo∆Pos is more time-consuming. Half
of the spectra were analyzed within about 2 minutes. However, we note that we did not
optimize our implementations for speed and memory usage.

WABI 2017

26:12 Improved De Novo Peptide Sequencing using LC Retention Time Information

5 Conclusion

In this paper, we propose the first algorithms for exploiting the retention time information
in de novo peptide sequencing. We study three retention time prediction models and develop
algorithms for computing a sequence that matches the experimental mass spectrum as
well as possible and is in accordance with the observed retention time. The experimental
evaluation of our algorithms shows that identification rates can definitively be improved by
exploiting this additional information. Yet, the proposed algorithms score sequences with a
very simplistic scoring function that only counts explained and measured masses, but does
not consider any other available information. For real-world applications, a more evolved
scoring function using all available information needs to be integrated. While [17] introduces
a new scoring model, we explore ways of exploiting the retention time information. The
proposed algorithms open room for developing new scoring functions that consider both the
retention time information and the symmetric difference scoring model.

Acknowledgments. We would like to thank Peter Widmayer, Christian Panse, Witold
Wolski, and Ludovic Gillet for helpful discussions. Moreover, we thank the reviewers for
their constructive criticism.

References
1 Ting Chen, Ming-Yang Kao, Matthew Tepel, John Rush, and George M. Church. A dy-

namic programming approach to de novo peptide sequencing via tandem mass spectrometry.
Journal of Computational Biology, 8(3):325–337, 2001. doi:10.1089/10665270152530872.

2 Vlado Dančík, Theresa A. Addona, Karl R. Clauser, James E. Vath, and Pavel A. Pevzner.
De novo peptide sequencing via tandem mass spectrometry. Journal of Computational
Biology, 6(3-4):327–342, 1999. doi:10.1089/106652799318300.

3 Jimmy K. Eng, Tahmina A. Jahan, and Michael R. Hoopmann. Comet: an open-source
MS/MS sequence database search tool. Proteomics, 13(1):22–24, 2013. doi:10.1002/pmic.
201200439.

4 Ludovic Gillet, Simon Rösch, Thomas Tschager, and Peter Widmayer. A better scor-
ing model for de novo peptide sequencing: The symmetric difference between explained
and measured masses. In 16th International Workshop on Algorithms in Bioinformat-
ics, WABI 2016, volume 9838, pages 185–196, 2016. (extended version: [17]). doi:
10.1007/978-3-319-43681-4.

5 Christopher Hughes, Bin Ma, and Gilles A. Lajoie. De novo sequencing methods in proteom-
ics. Proteome Bioinformatics, 604:105–121, 2010. doi:10.1007/978-1-60761-444-9_8.

6 Kyowon Jeong, Sangtae Kim, and Pavel A. Pevzner. UniNovo: a universal tool for de
novo peptide sequencing. Bioinformatics (Oxford, England), 29(16):1953–1962, 2013. doi:
10.1093/bioinformatics/btt338.

7 Michael Kinter and Nicholas E. Sherman. Protein Sequencing and Identification Using Tan-
dem Mass Spectrometry. Wiley-Interscience, New York, 2000. doi:10.1002/0471721980.

8 Oleg V. Krokhin. Sequence-specific retention calculator. Algorithm for peptide retention
prediction in ion-pair RP-HPLC: Application to 300- and 100-A pore size C18 sorbents.
Analytical chemistry, 78(22):7785–95, 2006. doi:10.1021/ac060777w.

9 Oleg. V Krokhin, Robertson Craig, Vic Spicer, Werner Ens, Kenneth G. Standing, Ron-
ald C. Beavis, and John A. Wilkins. An improved model for prediction of retention times of
tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide map-
ping by off-line HPLC-MALDI MS. Molecular & cellular proteomics : MCP, 3(9):908–19,
2004. doi:10.1074/mcp.M400031-MCP200.

http://dx.doi.org/10.1089/10665270152530872
http://dx.doi.org/10.1089/106652799318300
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1007/978-3-319-43681-4
http://dx.doi.org/10.1007/978-3-319-43681-4
http://dx.doi.org/10.1007/978-1-60761-444-9_8
http://dx.doi.org/10.1093/bioinformatics/btt338
http://dx.doi.org/10.1093/bioinformatics/btt338
http://dx.doi.org/10.1002/0471721980
http://dx.doi.org/10.1021/ac060777w
http://dx.doi.org/10.1074/mcp.M400031-MCP200

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:13

10 Bin Ma. Novor: Real-time peptide de novo sequencing software. Journal of
The American Society for Mass Spectrometry, 26(11):1885–1894, 2015. doi:10.1007/
s13361-015-1204-0.

11 Luminita Moruz and Lukas Käll. Peptide retention time prediction. Mass spectrometry
reviews, 2016. doi:10.1002/mas.21488.

12 Magnus Palmblad, Margareta Ramström, Karin E. Markides, Per Håkansson, and Jonas
Bergquist. Prediction of chromatographic retention and protein identification in liquid
chromatography/mass spectrometry. Analytical Chemistry, 74(22):5826–5830, 2002. doi:
10.1021/ac0256890.

13 Hannes L Röst, George Rosenberger, Pedro Navarro, Ludovic Gillet, Saša M. Miladinović,
Olga T. Schubert, Witold Wolski, Ben C Collins, Johan Malmström, Lars Malmström, and
Ruedi Aebersold. OpenSWATH enables automated, targeted analysis of data-independent
acquisition MS data. Nature biotechnology, 32(3):219–223, 2014. doi:10.1038/nbt.2841.

14 Kosaku Shinoda, Masahiro Sugimoto, Masaru Tomita, and Yasushi Ishihama. Informatics
for peptide retention properties in proteomic LC-MS. Proteomics, 8(4):787–98, 2008. doi:
10.1002/pmic.200700692.

15 Vic Spicer, Marine Grigoryan, Alexander Gotfrid, Kenneth G. Standing, and Oleg V.
Krokhin. Predicting retention time shifts associated with variation of the gradient slope in
peptide RP-HPLC. Analytical chemistry, 82(23):9678–85, 2010. doi:10.1021/ac102228a.

16 Eric F. Strittmatter, Lars J. Kangas, Konstantinos Petritis, Heather M. Mottaz, Gordon A.
Anderson, Yufeng Shen, Jon M. Jacobs, David G. Camp, and Richard D. Smith. Ap-
plication of peptide LC retention time information in a discriminant function for peptide
identification by tandem mass spectrometry. Journal of Proteome Research, 3(4):760–769,
2004. doi:10.1021/pr049965y.

17 Thomas Tschager, Simon Rösch, Ludovic Gillet, and Peter Widmayer. A better scoring
model for de novo peptide sequencing: The symmetric difference between explained and
measured masses. Algorithms for Molecular Biology, 12(1), 2017. (extended version of [4]).
doi:10.1186/s13015-017-0104-1.

18 Susan K. Van Riper, Ebbing P. de Jong, John V. Carlis, and Timothy J Griffin. Mass
spectrometry-based proteomics: Basic principles and emerging technologies and direc-
tions. Advances in experimental medicine and biology, 990:1–35, 2013. doi:10.1007/
978-94-007-5896-4_1.

A Pseudocode of DeNovo∆Pos and DeNovo∆Nei

DeNovo∆Pos (Algorithm A.1) computes the optimal score for a path pair with retention
time t, a prefix path with label length α ending in vertex v and a suffix path with label
length β ending in edge (a, b). The algorithm distinguishes prefix and suffix path, as the
retention time of a string is different to the retention time of its reversed string. We store
the length of the path labels only up to length γ, as the exact length is only important
as long as the path labels have less than γ characters. If the algorithm reaches an entry
DP [v, (a, b)] in line 7, all optimal scores for path pairs ending in vertex v and edge (a, b)
have been computed correctly, as all balanced extensions leading to such path pairs have
already been considered. The algorithm then considers all balanced extensions by outgoing
edges of v and computes the score and the retention time of the resulting path pairs. After
computing all entries of the table, the solution can be reconstructed starting from an entry
in some array DP [M − b, (a, b)] for (a, b) ∈ E with optimal score and a feasible retention
time. The algorithm additionally has to check if the prefix and the suffix path label of the
reconstructed solution have more than γ characters.

DeNovo∆Nei (Algorithm A.2) computes and stores the optimal score for a path pair
that ends in a given vertex v and a given edge (a, b) with a retention time t, where the path
ending in v is a prefix (suffix) and p is the last character of the corresponding path label. As

WABI 2017

http://dx.doi.org/10.1007/s13361-015-1204-0
http://dx.doi.org/10.1007/s13361-015-1204-0
http://dx.doi.org/10.1002/mas.21488
http://dx.doi.org/10.1021/ac0256890
http://dx.doi.org/10.1021/ac0256890
http://dx.doi.org/10.1038/nbt.2841
http://dx.doi.org/10.1002/pmic.200700692
http://dx.doi.org/10.1002/pmic.200700692
http://dx.doi.org/10.1021/ac102228a
http://dx.doi.org/10.1021/pr049965y
http://dx.doi.org/10.1186/s13015-017-0104-1
http://dx.doi.org/10.1007/978-94-007-5896-4_1
http://dx.doi.org/10.1007/978-94-007-5896-4_1

26:14 Improved De Novo Peptide Sequencing using LC Retention Time Information

Algorithm A.1 DeNovo∆Pos – Position-dependent retention time prediction model
1 for ((a,b) ∈ E and v ∈ V):
2 DP[v,(a,b)] = (|RTM | × γ × γ × 2)-array initialized with −∞
3 DP [0 ,(0 ,0)][0 ,0 ,0 ,0] = 2
4 for (v ∈ V in ascending order):
5 for ((a,b) ∈ E asc. lex. order with a ≤ v ≤ b):
6 for (entry (t,α,β,bit) in DP[v,(a,b)]):
7 for ((v,w) ∈ E with w + b ≤M):
8 t’ = retention time of resulting path pair
9 if (bit == 1):

10 α′ = max(γ, α+ |l(v, w)|); β′ = β

11 else:
12 α′ = α; β′ = max(γ, β + |l(v, w)|)
13
14 if (w ≤ b):
15 DP[w,(a,b)][t’,α′ ,β′ ,bit] = max(
16 DP[w,(a,b)][t’,α′ ,β′ ,bit],
17 DP[v,(a,b)][t,α,β,bit] + gain ((v,w) ,(a,b))
18)
19 else:
20 DP[b,(v,w)][t’,α′ ,β′ ,¬bit] = max(
21 DP[b,(v,w)][t’,α′ ,β′ ,¬bit],
22 DP[v,(a,b)][t,α,β,bit] + gain ((v,w) ,(a,b))
23)

a base case, the algorithm computes the optimal score for a path pair ending in vertex 0 and
the loop edge (0, 0) as DP [0, (0, 0)][0,−, 0]. Note that there exists only one such path pair
with retention time t = 0 and we define the last character as −. The algorithm considers the
vertices and edges of G in ascending order. Whenever the algorithm reaches a vertex v and
an edge (a, b), it has already computed the optimal score of path pairs ending in this vertex
and this edge for any combination of retention time t, last character p. Given these scores,
the algorithm considers all possible balanced extensions by outgoing edges of v and computes
the score and the retention time of the resulting path pair. The algorithm updates the
corresponding entries in the table and continues with the next pair of endpoints of a path pair.
Finally, the optimal score can be computed by iterating over all entries DP [M − b, (a, b)] and
considering the feasible retention time interval and all possible last characters of the path
ending in M − b. In contrast to DeNovo∆, which has a running time in O (|V | · |E| · d · p),
where d is the maximal out-degree of a vertex in G and p is the maximal length of an edge
label, DeNovo∆Nei has to consider for each pair v and (a, b) all possible retention times and
all possible last characters. That is, the algorithm considers for each pair v and (a, b) at
most |RTM | · |Σ| optimal scores and performs for each optimal score all possible balanced
extensions. Therefore, the running DeNovo∆Nei is in O (|V | · |E| · |RTM | · |Σ| · d · p), where
|RTM | is the number of feasible retention times for a string of mass M and |Σ| is the size of
the alphabet.

B Parameter Estimation

In this work, we are mainly interested in the algorithmic problem of using retention time
information for de novo sequencing and do not focus on efficient procedures for estimating

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:15

Algorithm A.2 DeNovo∆Nei – Neighborhood-based retention time prediction model
1 for ((a,b) ∈ E and v ∈ V):
2 DP[v,(a,b)] = (|RTM | × |Σ| × 2)-array initialized with −∞
3 DP [0 ,(0 ,0)][0 , - ,0] = 2
4 for (v ∈ V in ascending order):
5 for ((a,b) ∈ E in ascending order of a and b):
6 for (entry (t,p,bit,score) in DP[v,(a,b)]):
7 for ((v,w) ∈ E with w + b ≤M):
8 t’ = retention time of resulting path pair
9

10 if (w ≤ b):
11 p’ = last character of l(v, w)
12 DP[w,(a,b)][t’,p’,bit] = max(
13 DP[w,(a,b)][t’,p’,bit],
14 DP[v,(a,b)][t,p,bit] + gain ((v,w),(a,b))
15)
16 else:
17 p’ = last character of l(a, b)
18 DP[b,(v,w)][t’,p’,¬bit] = max(
19 DP[b,(v,w)][t’,p’,¬bit],
20 DP[v,(a,b)][t,p,bit] + gain ((v,w),(a,b))
21)

the coefficients of our models. We use linear regression for estimating the coefficients for our
three retention time models. Even with these simple models and estimation procedures, our
method shows improved identification rates and an increased performance might be achieved
by considering a larger dataset.

We consider 944 spectra from the SGS dataset and partition the dataset randomly into a
training set containing 80% of the spectra for estimating the retention time coefficients and a
test set containing the remaining 20% of the spectra for selecting the tolerance parameter ε.
The retention time coefficients are estimated by linear regression. We choose the coefficients
such that the sum of the squared loss

∑
Si,Ti

(Ti − t(Si))2 is minimized, where Ti is the
measured retention time, and t(Si) the predicted retention time of the annotated sequence
Si. For example, for estimating the coefficients of the linear model, we first compute the
occurrence vector for each sequence in the dataset. The occurrence vector of a sequence is a
vector of length |Σ| that indicates how often a character occurs in the sequence; e.g., the
occurrence vector of the string AGA has value 2 at entry A, value 1 at entry G and value 0 at
all other entries. Then, the retention time of a sequence S is the product of its occurrence
vector occ(S) and the vector of the retention time coefficients t. Standard software tools for
statistical methods can be used to compute t, such that

∑
i(Ti − t · occ(S))2 is minimized.

In order to choose the tolerance parameter ε, we analyzed the difference between the
measured and the predicted retention time of the sequences in the test set. Figure B.1 shows
the differences between the predicted and the measured retention times for all three models
on the test dataset. Especially for the neighborhood-based prediction model, we have to
predict many retention time coefficients for each character. Several coefficients are estimated
based on few observations and others cannot be estimated at all. Therefore, we cannot
extensively evaluate the identification rates of our algorithm with the neighborhood-based
prediction model, as a much larger training dataset for estimating all parameters would
be necessary. Our comparison of the identification rates regarding this prediction model is

WABI 2017

26:16 Improved De Novo Peptide Sequencing using LC Retention Time Information

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

linear position−dependent neighborhood−based

−
10

00
−

50
0

0
50

0
10

00

se
co

nd
s

Figure B.1 Retention time prediction models – Difference between predicted and measured
retention time of all sequences in the test set with respect to the three prediction model.

limited to some examples, where the prediction model works well.
We chose the tolerance parameter ε independently for each prediction model as half

the difference between the maximum error emax and the minimum error emin, i.e. ε =
(emax − emin)/2. Concretely, we set ε = 1000 for the linear prediction model and ε = 750
for the position-dependent model. The neighborhood-based prediction model has a very
large predictive error for several sequences due to the small training dataset. For our limited
evaluation, we ignore the 5 largest and the 5 smallest retention time errors when picking the
tolerance parameter and use ε = 500.

C Experimental Evaluation – Supplementary Figures

In our experiments, we only considered spectra from peptides with an assumed (precursor)
charge state 2 (as reported by Comet). Moreover, we assume that all measured fragment
masses are singly charged, i.e. the mass-to-charge ratio is equal to the mass of a fragment.
While it is possible to also consider spectra with higher charge states, the analysis of such
spectra requires additional data preprocessing to convert the measured mass-to-charge ratios
of the fragments to the corresponding masses (charge state deconvolution). Figure C.2
shows a distribution of the number of identified spectra with respect to the length of the
corresponding peptide sequence. The position-dependent prediction model improves the
identification rates on peptides with less than 15 amino acids, while the linear prediction
model is favorable for longer amino acid sequences.

In the description of our algorithms, we only consider integer values and ignore the
measurement accuracy. For our evaluation, we consider two masses two be equal if they
differ by at most 0.02 Da. Moreover, as described in [17], we use a simple merging algorithm
to reduce the size of the graph. We observed a great variation of spectrum graph sizes in
our experiments. The spectrum graphs contained roughly 8400 edges on average, whereas
the largest observed graph contained 23000 edges. Spectra measured on low resolution lead
to denser spectrum graph, i.e. to a larger number of edges, but a lower number of vertices.
However, we did not study the performance and runtime of our algorithms on this type of
spectra.

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:17

>15

15

14

13

12

11

10

9

8

7

Number of identified spectra

Le
ng

th
 o

f a
nn

ot
at

ed
 s

eq
ue

nc
e

0 50 100 150 200

12 (1.3%)

14 (1.5%)

13 (1.4%)

31 (3.3%)

18 (1.9%)

21 (2.2%)

20 (2.1%)

48 (5.1%)

44 (4.7%)

43 (4.6%)

37 (3.9%)

88 (9.3%)

93 (9.9%)

89 (9.4%)

84 (8.9%)

165 (17.5%)

96 (10.2%)

95 (10.1%)

86 (9.1%)

137 (14.5%)

90 (9.5%)

86 (9.1%)

89 (9.4%)

126 (13.3%)

146 (15.5%)

134 (14.2%)

132 (14.0%)

185 (19.6%)

78 (8.3%)

77 (8.2%)

72 (7.6%)

99 (10.5%)

40 (4.2%)

40 (4.2%)

40 (4.2%)

49 (5.2%)

12 (1.3%)

11 (1.2%)

13 (1.4%)

16 (1.7%)
considered spectra
DeNovo∆
DeNovo∆Lin
DeNovo∆Pos

Figure C.2 Identified spectra with respect to the length of the annotated sequence.

WABI 2017

	Introduction
	Notation and Problem Definition
	Model Simplifications

	Algorithms for De Novo Sequencing with Retention Time
	Linear Prediction Model
	Position-dependent Prediction Model
	Neighborhood-based Prediction Model

	Experimental Evaluation and Discussion
	Dataset and Parameter Estimation
	Comparison of DeNovoDeltaLin and DeNovoDeltaPos
	Discussion

	Conclusion
	Pseudocode of DeNovoDeltaPos and DeNovoDeltaNei
	Parameter Estimation
	Experimental Evaluation – Supplementary Figures

