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Abstract 

A large body of both theoretical and empirical literature has affirmed a positive impact of 

human capital accumulation in the form of health on economic growth. Yet Baumol (1967) 

has presented a model in which imbalances in productivity growth between a ‘progressive’ 

(manufacturing) sector and a ‘nonprogressive’ sector of the economy (of which health care 

forms an integral part) lead to perpetual expenditure shifts into the latter and, as a 

consequence, to a decline in overall GDP growth. Which of the two views has an empirical 

grounding is here tested by means of Granger causality analysis of a panel of 21 OECD 

countries. The results do not lend support to the hypothesis that health capital formation 

fosters economic growth in rich countries. They are more in line with the predictions of 

Baumol’s model of unbalanced growth. 
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1. Introduction 

Ever since Solow’s (1957) growth model has been ‘augmented’ by human capital, the growth-

enhancing role of human capital accumulation has been recognized. The pioneering empirical 

studies by Barro (1991) and Mankiw, Romer and Weil (1992) focused on the educational 

dimension of human capital, yet it has been known for long that human capital can also be 

accumulated by improving the health status of the population (Schultz, 1961, Mushkin, 1962). 

Weil’s (2007) paper is the most recent in a chain of studies that have affirmed the growth-

enhancing role of health capital formation empirically.  

On the other hand, Weil (2007: 1295) also suggests that health’s positive effect on GDP is 

strongest among poor countries. For rich countries, the existing empirical evidence on 

whether health capital formation stimulates GDP growth at all is mixed. For instance, while 

Rivera and Currais (1999a, 1999b, 2003) find a positive effect of health expenditure growth 

on productivity growth for OECD countries, Knowles and Owen (1995, 1997) as well as 

McDonald and Roberts (2002) reject the hypothesis that life expectancy is a statistically 

significant explanatory variable for productivity growth in high-income countries. Bhagrava 

et al. (2001) even estimate a negative effect of the adult survival rate on economic growth for 

the US, France, and Switzerland.1 Acemoglu and Johnson (2006) reach a similar conclusion. 

A possible reason why the impact of health capital formation on GDP growth might turn 

negative in the process of economic development is offered by Baumol’s (1967) model of 

‘unbalanced growth’. According to this model, imbalances in productivity growth between a 

‘progressive’ (manufacturing) sector and a ‘nonprogressive’ (services) sector lead to perpetual 

expenditure shifts into the latter. As a consequence of these expenditure shifts, the growth rate 

of overall GDP will decline. Interestingly, Baumol singles out the health sector as a cardinal 

example for an industry beset by which has to become known as the ‘Cost disease’.  

So far, the ‘health and growth’-literature – focusing on the compelling supply-side 

arguments in support of a growth-enhancing role of health capital formation – has largely 

ignored the adverse structural change effect that Baumol (1967) calls attention to. On the 

other hand, the literature on structural change – for which Baumol’s model of unbalanced 

growth is one of its cornerstones – has recently discovered health capital formation as a 

                                                 
1 Drawing on current life tables, the adult survival rate measures the probability that a 15-year-old will reach the 

age of 60. 
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possible ‘cure’ for ‘Baumol’s (Cost) Disease’.2 My aim in this paper is to bring these two 

strands of literature together and to investigate the causal relationship between health capital 

formation and GDP growth empirically. The empirical part of the paper focuses on rich 

countries because, for one thing, the growth-stimulating effect of health capital formation in 

poor countries is uncontested and, for another thing, ‘Baumol’s Disease’ is a phenomenon 

that affects mainly developed economies. The econometric methodology I will use – the 

(dynamic) panel Granger causality framework – is relatively new and has (to the best of my 

knowledge) not been applied to study the relationship between health capital formation and 

economic growth before.  

The paper is organized as follows. The next section introduces Baumol’s model of 

unbalanced growth and discusses some theoretical and empirical controversies around it. 

Section 3 goes on to survey the state of the (empirical) ‘health and growth’-literature. Section 

4 opens up the empirical part of the paper introducing the data and methods to be used in the 

estimations, especially the methodology of (dynamic) panel Granger causality tests. Section 5 

presents the results of the causality analysis including results of some robustness checks, and 

section 6 concludes.  

 

2. Baumol’s model of ‘unbalanced growth’ revisited 

William J. Baumol’s (1967) article ‘Macroeconomics of unbalanced growth’ is widely 

regarded as a major contribution to the literature on structural change. Whereas the first 

champions of the ‘tertiarization hypothesis’, Allan Fisher (1935) and Colin Clark (1940), 

traced back the gradual shift in production from the agricultural to the manufacturing sector 

and onwards to the services sector mainly to changes in demand, Baumol offers a supply-side 

explanation.3 In a nutshell, his model tells the following story. Productivity growth is higher 

in the ‘progressive’ (secondary) than in the ‘nonprogressive’ (tertiary) sector, but wages grow 

more or less the same in both sectors. Therefore, unit costs and also prices rise much faster in 

the tertiary sector than in the secondary. Demand for certain services, like health care for 

instance, is hardly price-elastic, hence consumers are willing to pay the higher prices. 

Therefore, an ever higher share of total expenditures will be channeled into the services sector 

– hence the ‘Cost disease’. Also, since aggregate productivity growth is a weighted average of 

                                                 
2 In a purely theoretical paper, Pugno (2006) sets up an endogenous growth model and hypothesizes that the 

growth-stimulating effect of health capital formation is likely to overcompensate the adverse sectoral shift effect 

when it comes to GDP growth. 
3 For a survey of the different ‘tertiarization’ theories, cf. Schettkat and Yocarini (2006). 
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the sectoral productivity growth rates with the weights provided by the nominal value added 

shares, the aggregate productivity growth rate will decline over time as the sector with the low 

productivity growth receives an ever-increasing weight. Thus, Baumol’s model of unbalanced 

growth predicts a tendency for per-capita output in mature economies to stagnate.  

The model is based on one fundamental assumption, namely that ‘regular’ growth in labor 

productivity can only occur in the ‘progressive’ sector. It is important to understand what the 

term ‘regular’ here means. For Baumol, regular productivity growth is the result of 

technological innovation which manifests itself in new capital goods. Capital goods are also 

responsible for economies of scale, being another source of productivity growth. Regular 

productivity growth is thus defined to depend on certain technological requirements. In the 

service industries, Baumol argues, and also in agriculture and construction, physical capital 

cannot be employed on the same scale as in manufacturing. These industries he therefore 

relegates to the ‘nonprogressive’ sector.4 Baumol does not claim that increases in labor 

productivity are impossible in the ‘nonprogressive’ sector, only that this sector comprises 

“activities which, by their very nature, permit only sporadic increases in productivity” 

(Baumol, 1967: 416). In his model, Baumol abstracts from productivity increases in the 

‘nonprogressive’ sector for simplicity. 

Another simplifying assumption for the model is that labor is the only factor of 

production. Baumol (1967: 417) admits that this assumption is “patently unrealistic”, yet it 

can be seen as a consequence of his basic assumption mentioned before because in the 

simplest version of the model, the ‘nonprogressive’ sector uses no capital. The employment of 

capital in the ‘progressive’ sector Baumol captures – at least over time – by postulating that 

labor productivity in this sector grows at an exogenous rate. 

Next, Baumol assumes that nominal wages in both sectors are related in the long run. He 

simplifies further and assumes that they are equal. His final assumption is that nominal wages 

(in both sectors) rise to the same extent as labor productivity in the ‘progressive’ sector. This 

implies that the price level in the ‘progressive’ sector stays constant, whereas it rises in the 

‘nonprogressive’ sector in order to keep the level of real wages in line with the productivity 

                                                 
4 In the face of the all-round use of medical technology, the relegation of health care to the ‘nonprogressive’ 

sector may seem odd. Baumol points to the fact, however, that health care differs from manufacturing in that 

capital is here normally not used as a substitute for labor. “The bulk of our municipal expenditures”, he writes, 

“is devoted to education which … offers very limited scope for cumulative increases in productivity. The same is 

true of police, of hospitals, of social services, and of a variety of inspection services. Despite the use of the 

computer in medicine …, there is no substitute for the personal attention of a physician …” (Baumol, 1967: 

423). The issue of productivity growth in the health sector is also discussed in Hartwig (2008b). 
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level. The workers, regardless in which sector they work, buy goods and services from both 

sectors so that their respective real wages converge. 

Equations (1) and (2) formally describe the production functions of the two sectors. Labor 

productivity in the ‘nonprogressive’ sector (1) stays constant, whereas it grows in the 

‘progressive’ sector (2) at the constant rate r. Thus, output in the two sectors (Y1 and Y2) at 

time t is given by: 

1 1t tY aL=                (1) 

2 2
rt

t tY bL e=               (2) 

with L1 and L2 as quantities of labor employed in the two sectors and a and b as constants.  

According to one of the assumptions just mentioned, the nominal wage (in both sectors) is 

given by: 

rt
tW We=                (3) 

with W as an arbitrary starting value. 

Equation (3) completes the model of ‘unbalanced growth’ already. This simple model has a 

couple of interesting implications which Baumol draws out. First, the ‘Cost disease’: 

equations (4) and (5) show that costs per unit of output in the ‘nonprogressive’ sector (C1) 

tend towards infinity while they stay constant in the ‘progressive’ sector (C2). 

1 1 1 1 1/ / /rt rt
t t t t tC W L Y We L aL We a= = =            (4) 

2 2 2 2 2/ / /rt rt
t t t t tC W L Y We L bL e W b= = =            (5) 

Relative costs also tend towards infinity (C1 / C2 = bert / a). Under ‘normal’ circumstances – 

that is when prices rise in proportion to costs and when demand is price-elastic – the 

‘nonprogressive’ sector will vanish. Baumol (1967: 421) invokes craftsmanship, fine 

restaurants, and theatres as examples of establishments that have either disappeared or 

retreated to luxury niches as a consequence of customers’ unwillingness to tolerate the price 

increases that would have been necessary to cover rising costs.  

Yet parts of the ‘nonprogressive’ sector produce necessities for which the price elasticity is 

very low. Baumol calls attention to education and health care as prime examples. To show 

what happens in these industries as a consequence of ‘unbalanced growth’, Baumol assumes 

that the relation of real output of the two sectors remains unchanged as in (6): 

 1 2 1 2( / ) / / rtb a Y Y L L e K= = ,            (6) 

with K = const. If L (= L1 + L2) is the labor force, it follows: 

 1 1( ) rtL L L Ke= −  ⇔ 1 /(1 )rt rtL LKe Ke= +          (7) 
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and 2 1 /(1 )rtL L L L Ke= − = +             (8) 

From (7) and (8) we learn that, over the years (t → ∞), L1 tends towards L, and L2 tends 

towards zero.  

Finally, it can be shown what happens to the GDP growth rate under these conditions. Let I 

be an index for real GDP which is calculated as a weighted average of the value added of the 

two sectors: 

 1 1 2 2 1 1 2 2
rtI B Y B Y B aL B bL e= + = +            (9). 

Then, if we insert (7) and (8) into (9) we get: 

 1 2( ) /(1 ) /(1 )rt rt rt rtI L KB a B b e Ke Re Ke= + + = +          (10), 

with 1 2( )R L KB a B b= +              (11). 

Applying the quotient rule leads to: 

 
2 2

2

/ [ (1 ) ] /(1 )

/(1 )

rt rt rt rt

rt rt

dI dt R re Ke Kre Ke

rRe Ke

= + − +
= +

         (12). 

We can calculate the growth rate of real GDP as: 

 ( / ) / /(1 )rtdI dt I r Ke= +             (13). 

It follows that over time (t → ∞) the GDP growth rate drops asymptotically to zero ceteris 

paribus.5  
Since its inception, the model of unbalanced growth has received much attention, both 

from economists working in the theoretical and empirical departments. In a theoretical vein, 

early critics focused on the almost complete neglect of the demand side in the model,6 yet, 

since this is a common feature of growth models in the neoclassical tradition, this line of 

argument was not particularly damaging to Baumol’s model. The supply-side core of the 

model didn’t come under severe attack until Oulton (2001) was able to show that if the 

tertiary sector produces intermediate services instead of services to the final consumer, the 

aggregate productivity (and hence the GDP) growth rate may rise over time rather than fall. 

However, Sasaki (2007) vindicated Baumol’s result of a tendency for the economy to 

stagnate, showing that the GDP growth rate will decline in the long run as long as some 

services are produced for final demand. This result is only subject to the condition that 

productivity growth in the ‘nonprogressive’ sector is indeed smaller than in the ‘progressive’ 

sector, as Baumol assumes.  

                                                 
5 Ceteris paribus here especially means that L remains constant. If L grows at the rate m, then m must be added 

at the right hand side of (13).  
6 Cf. Harvey (1998) for a survey of the theoretical debate over Baumol’s model during the first three decades 

after its inception.  
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Whether this assumption is valid has been investigated in a large body of empirical 

studies. Until recently, the empirical evidence was all but unanimously favorable to Baumol’s 

model. Rowthorn and Wells (1987), Rowthorn and Ramaswamy (1997), Scarpetta et al. 

(2000), Wölfl (2003, 2005), and ECB (2006) are just a few examples for comparative multi-

country studies that found productivity growth in manufacturing to be higher than in the 

aggregate of service industries. Fixler and Siegel (1999) confirm this finding in U.S. data. 

However, on the basis of a new dataset for the U.S., Triplett and Bosworth (2003, 2004, 2006) 

have raised doubts whether this ‘stylized fact’ is valid any longer. Taking output data from the 

Bureau of Economic Analysis’ (BEA) industry output and input program and measuring labor 

input with BEA’s series on persons engaged in production (full-time equivalents), Triplett and 

Bosworth (2004, table A−3) compute average annual productivity growth rates of 1.8 percent 

for the ‘goods-producing industries’ and of 2.3 percent for the ‘service-producing industries’ 

over the period 1995−2001. Consequently, they claim that ‘Baumol’s Disease has been cured’ 

(Triplett and Bosworth, 2003, 2006). Still, since neither their ‘goods-producing industries’ 

match Baumol’s ‘progressive sector’ nor their ‘service-producing industries’ match Baumol’s 

‘nonprogressive sector’, Triplett and Bosworth may have been too rash to dismiss ‘Baumol’s 

Disease’, as Hartwig (2006, 2008a) argues. In fact, Bosworth and Triplett (2007) repeat their 

earlier calculations with revised U.S. National Accounts data and find their result of a higher 

productivity growth in the services sector than in the goods sector reversed. 

As was mentioned in the introduction, Pugno (2006) has recently presented a challenge to 

Baumol’s stagnationist outlook for the overall economy that does not rely on the possible 

non-validity of Baumol’s fundamental assumption. Pugno argues that education and health 

care – the two services that Baumol (1967) uses as prime examples for ‘nonprogressive’ 

activities7 – are on the other hand major contributors to the accumulation of human capital. 

Pugno hypothesizes that the growth-stimulating effect of health capital formation could even 

overcompensate the adverse sectoral shift effect when it comes to GDP growth. The next 

section shows that in the face of the existing empirical evidence, Pugno’s optimism might 

seem warranted. 

 

                                                 
7 Even Triplett and Bosworth who are convinced that ‘Baumol’s Disease’ has been cured report very low 

productivity growth for health services (+0.9% per year over the period 1995-2001) and even a negative rate 

(−1.0%) for education (cf. Triplett and Bosworth, 2004, p. 350). There are, however, severe measurement 

difficulties with respect to productivity growth in these industries to which, for instance, Nordhaus (2008) calls 

attention. 
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3. Health capital formation and economic growth – a review of the literature 

As was mentioned in the introduction, the notion of health as a component of human capital 

has been introduced in the early 60s already. In the famous Grossman (1972) model, the 

individual’s desire to invest in his or her (depreciating) health capital stock explains the 

demand for health care. The growth literature has in turn identified investment in human 

capital as a driver of economic growth. So, not surprisingly, a number of studies have tried to 

determine the hypothesized contribution of health capital formation to growth empirically. 

The first problem to solve in this literature is to measure health capital formation 

adequately. As can be seen from Table 1, which summarizes characteristics and results of a 

number of relevant studies in this field in chronological order, there are two main 

approaches.8 Sixty percent of the studies rely on some measure of life expectancy or the adult 

survival rate in order to proxy health capital formation; another third choose health care 

expenditures (HCE) as a measure.9 For the present study, I prefer the HCE approach for two 

reasons. First, health economists commonly trace back the lion’s share of the increase in 

global life expectancy to factors such as economic development, better nutrition, and 

improvements in environmental conditions (where they have occurred) rather than to health 

care utilization (cf. Getzen, 1997: 330, Henderson, 1999: 142, Santerre and Neun, 2000: 69, 

Folland, Goodman and Stano, 2001: 118). Therefore, to proxy health capital formation with 

advances in life expectancy would loosen the link between health capital and health care that 

exists, for instance, in the Grossman model. Secondly, of course, by identifying health capital 

formation with health expenditure it is possible to build a bridge to Baumol’s model of 

unbalanced growth, which predicts expenditure shifts towards the ‘nonprogressive’ sector.  

 

< Insert Table 1 around here > 

 

If we focus on the five studies in Table 1 that use measures of health expenditure as a proxy 

for health capital formation, we notice that all of them find a significantly positive impact of 

health capital formation on economic growth.10 The same is true for the rest of the studies – 

with the exception of Webber (2002)11 – when the full sample of countries is considered, 

although, as has been mentioned in the introduction, results (not shown in Table 1) are 

                                                 
8 For similar compilations, cf. Tompa (2002) and Bloom, Canning and Sevilla (2004). 
9 Plus there is one study that uses calorie intake. 
10 The coefficients in Table 1 are not directly comparable since the models and samples differ. 
11 Weil (2007) doesn’t use regression analysis to arrive at the estimate reported in Table 1. 
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sometimes different for the group of developed economies. Nevertheless, concerning the 

matter of dispute this paper sets out to resolve – whether health care expenditure growth 

through its impact on human capital formation fosters economic growth or, conversely, 

whether it leads to stagnation because it is the result of a ‘Cost disease’ that adversely affects 

the structure of the economy – the existing empirical evidence seems to support the former 

view.  

However, if we take a closer look at the five studies mentioned, it appears that they do not 

yet provide enough evidence to close the case. All these studies use an augmented Solow 

growth modeling framework, which, in a cross-sectional design, does not allow for causal 

inferences. The positive contemporaneous association of GDP and HCE growth may be the 

result of ‘reverse causation’, as it is well known from the broad literature on the determinants 

of health care expenditure growth (recently summarized in Hartwig, 2008b) that GDP – or 

national income, respectively – is a very robust explanatory variable for health care 

expenditure.12 Admittedly, Heshmati (2001) and Rivera and Currais in their various 

publications test for endogeneity using the Hausman (1978) test, yet no clear picture emerges. 

While Heshmati (2001) and Rivera and Currais (2004) cannot reject the hypothesis of 

exogeneity for health care expenditure, Rivera and Currais (1999a, 1999b, 2003) do find 

evidence for endogeneity and account for that by using instrumental variables in their 

estimations. It is unclear, however, whether the variables they propose as instruments are 

indeed appropriate since – as was just mentioned – the literature offers very little guidance as 

to the determinants of HCE growth (other than GDP growth). Also, Rivera and Currais’ 

instrumental variables (IV) estimations are based on a cross-section of 24 OECD countries 

hence the number of observations is very limited.13 At any rate, there still seems to be room 

for further research into the nexus between health care expenditure and economic growth. The 

present study aims at providing new evidence on the causal links between these two variables. 

In comparison to the earlier studies, more observations and a different methodology will be 

used. The next section will introduce the data as well as this different methodology, which is 

the (dynamic) panel Granger causality testing approach. 

 

                                                 
12 Hoffmeyer and McCarthy (1994: 67) and Roberts (1999: 459) even suggest that GDP is the only robust 

determinant of health care expenditure that health economists have been able to uncover. 
13 Heshmati’s (2001) data cover the period 1970-1992. He calculates four five-year averages and one three-year 

average, and he has 22 OECD countries in his panel. His database thus consists of 110 observations. Rivera and 

Currais (2004) also use a panel approach with five five-year averages over the period 1973-1993. For the 17 

Spanish regions they look at, this yields 85 observations. 
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4. Methodology and data 

Baumol’s model of unbalanced growth predicts that structural change will cause the GDP 

growth rate to decline over time. Periods of strong increases in health care expenditure (HCE) 

are seen as episodes in which both employment and expenditures shift to a sector – or, insofar 

as HCE growth is symptomatic for an all-round ‘Cost disease’ – to sectors with low 

productivity growth. Later periods should then be characterized by lower GDP growth.  

Otherwise, if Pugno (2006) was right, health expenditure forms human capital which, with 

a time-lag, should increase economic growth. In order to test which of these two hypotheses 

has an empirical grounding, we need a methodology that keeps track of the time-lags involved 

and that ascertains that causes, if we can identify them, precede effects. Both these aspects 

suggest choosing the methodology of Granger causality testing for the empirical part of this 

paper.  

Granger’s (1969) definition of causality has in the meantime become a standard analytical 

tool in applied econometrics. According to this definition, a stationary time series Yt is said to 

‘cause’ another stationary time series Xt if – under the assumption that all other information is 

irrelevant – the inclusion of past values of Yt significantly reduces the predictive error 

variance of Xt. In econometric practice, whether Yt Granger-causes Xt is typically tested by 

regressing Xt on its own lags and on lags of Yt. If the lags of Yt are found to be jointly 

statistically significant, then the hypothesis that Yt Granger-causes Xt cannot be rejected. 

(Granger causality running from Xt to Yt can be tested in the same way.) 

More recently, the notion of Granger causality has found its way into panel econometrics. 

Most of the papers that have employed a panel Granger causality framework since around the 

beginning of the new millennium have investigated the causal nexus between certain variables 

and economic growth. For instance, there are papers that focus on ‘investment and growth’ 

(Attanasio, Picci and Scorcu, 2000, Podrecca and Carmeci, 2001) or, more narrowly, on 

‘foreign direct investment and growth’ (Nair-Reichert and Weinhold, 2001, Laaksonen-Craig, 

2004, Hsiao and Hsiao, 2006). The panel Granger causality approach has also been used to 

study the relationship between exports and growth (Chao and Buongiorno, 2002, Kόnya, 

2006), agriculture and growth (Tiffin and Irz, 2006), social security and growth (Lee and 

Chang, 2006) and financial development and growth (Hurlin and Venet, 2004, Miyakoshi and 

Tsukuda, 2004, Al-Awad and Harb, 2005). As far as I see, the present paper is the first to 

apply the panel Granger causality methodology to the field of ‘health and growth’. 

Since the methodology of panel Granger causality testing is not implemented identically 

in the literature just reviewed – for instance, not all papers impose the restriction that the 
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coefficients of the lagged Xt and Yt variables are the same for all cross-section members – a 

few more words are necessary about how the method will be implemented here. First, as is 

quite standard in the literature just reviewed as well as in the broader literature on economic 

growth, the HCE and GDP level data will be transformed into five-year average annual 

growth rates (geometrical means) in order to eliminate the cyclical component. As the 

Granger causality tests require the data to be stationary, the resulting time series will be tested 

for the presence of unit roots, applying a battery of now standard panel unit root tests. When 

these tests fail to detect unit roots, the panel estimation models can be set up, for which the 

restriction of identical coefficients of the lagged Xit and Yit variables will be imposed. Thus, I 

will estimate a time-stationary VAR model adapted to a panel context (as in Holtz-Eakin, 

Newey and Rosen, 1988) of the form: 

0
1 1

m m

it l it l l it l i it
l l

X X Y uα α δ µ− −
= =

= + + + +∑ ∑      (14).  

X it and Yit are the five-year averages of the growth rates of per-capita GDP and HCE, 

respectively. N countries (indexed by i) are observed over T periods (indexed by t). I allow 

for country-specific effects µi. The disturbances uit are assumed to be independently 

distributed across countries with a zero mean. They may display heteroscedasticity across 

time and countries, though. 

It is common in Granger causality studies to test whether causation runs in both 

directions. So although the main focus of this paper is on testing whether HCE growth 

Granger-causes GDP growth – and if so, with which sign – I will also estimate the equation: 

0
1 1

m m

it l it l l it l i it
l l

Y X Y vβ β γ η− −
= =

= + + + +∑ ∑                (15).14  

It will be interesting to see whether the panel Granger causality methodology confirms health 

economists’ ‘stylized fact’ that GDP is a significant explanatory variable for health care 

expenditure.15  

                                                 
14 The assumptions are the same as for equation (14). 
15 As far as I see, the only two studies in this field of research that have used the Granger causality approach so 

far are the papers by Devlin and Hansen (2001) and Erdil and Yetkiner (2008). Devlin and Hansen find Granger 

causality running from GDP to HCE for 8 OECD countries out of 20 (only) in a sample of annual data that 

covers the period 1960−1987. Granger-causality running from HCE to GDP is also found for 8 countries. Erdil 

and Yetkiner’s (annual) data cover a sample of 75 high to low income countries over the 90s. Their study finds 

bi-directional Granger-causality for 46 countries, Granger-causality running only from GDP to HCE for 12 

countries and Granger-causality running only from HCE to GDP for 10 countries. Neither Devlin and Hansen 

nor Erdil and Yetkiner report the signs of their estimated coefficients. 
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Estimating equations (14) and (15) with pooled OLS presents an endogeneity problem 

since if the dummy variables (country-specific effects) affect GDP growth in (14) and HCE 

growth in (15) in one period, they presumably affected them in the previous period also (cf. 

Nickell, 1981). The first step into the direction of correcting this endogeneity problem in 

dynamic panels is to take the first difference of all variables and to thereby eliminate the 

individual effects. Still, there remains a correlation between the lagged dependent variable, 

which is now in differences, and the error term. Arellano and Bond (1991) have shown that 

the best way around this problem is to use lags of the dependent variable from at least two 

periods earlier (in levels) as well as lags of the right-hand side variables as instruments in a 

Generalized Method of Moments (GMM) estimator. Arellano and Bover (1995) and Blundell 

and Bond (1998) suggest to difference the instruments instead of the regressors in order to 

make them exogenous to the fixed effects. This leads from the ‘difference’ GMM to the 

‘system’ GMM estimator (cf. Roodman, 2006). In the next section, I will present results using 

the OLS, Arellano-Bond one-step system GMM, and Arellano-Bond two-step system GMM 

estimators. For the latter, the finite sample correction recently proposed by Windmeijer 

(2005) will be applied.  

Based on the estimation results, a conclusion on causality will be reached by running 

Wald tests on the coefficients of the lagged Yt’s to check whether they are jointly statistically 

different from zero.16 

Data on health care expenditure are taken from the OECD Health database (in the version 

of October, 26, 2007). This database also contains demographic and economic entries so that 

all data needed for the purpose of the present paper can be gathered from this source. 

Data on per-capita health care expenditure with a frequency of at least five years and a 

starting point around 1970 are available for 21 countries from the OECD Health database. 

These 21 countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, 

Germany, Iceland, Ireland, Japan, Luxembourg, Netherlands, New Zealand, Norway, 

Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the United States.17 All series 

end in 2005. From these data it is therefore possible to construct a balanced panel with 21 

cross-sections and a time dimension of seven five-year-average growth rates. The panel thus 

consists of 147 observations (which is a clear improvement over the earlier empirical ‘health 

and growth’ literature that was discussed in section 3).  

                                                 
16 Podrecca and Carmeci (2001) follow a similar approach to estimation and causality testing.  
17 The Danish series starts in 1971, the Dutch in 1972. 
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 Data on real per-capita GDP (growth) are available for the same group of countries and 

period of time. In addition, I need data for the GDP deflator (which are also available from 

the OECD Health database) in order to deflate HCE – prior to calculating per-capita values 

and averaging growth rates, of course. Deflating nominal HCE with the GDP deflator is 

necessary to eliminate the upward trend in HCE that is due to purely monetary factors, or 

general inflation, respectively. If Baumol (1967) was right, then nominal HCE should grow 

more than nominal GDP – or HCE deflated by the GDP deflator should grow faster than real 

GDP – leading to a rise in the share of HCE in nominal GDP. This is precisely the ‘Cost 

disease’ point of view.18 The next section will go on to present the results of the causality 

analysis, including results of some robustness checks. 

 

5. Empirical results 

A reasonable first step in empirical analysis is a visual inspection of the data. Figures 1 and 2 

show the histograms of the per-capita GDP and per-capita HCE growth rates – both deflated 

by the GDP deflator – for my sample of 21 OECD countries. Obviously, health care 

expenditure has outgrown GDP. The median growth rate of real per-capita HCE is 3.6 

percent, whereas the median growth rate of real per-capita GDP is only 2.2 percent.  

 

< Insert Figures 1 and 2 around here > 

 

Both per-capita GDP and HCE growth exhibit one large positive outlier. Ireland’s per-capita 

GDP has grown by an amazing 8 ½ percent per year on average over the period 1995-2000. 

Even more extreme is Portugal’s health expenditure growth between 1970 and 1975, a period 

in which real per-capita HCE more than doubled in this country. Outliers like these suggest 

that, as a robustness check, equations (14) and (15) should not only be estimated for the full 

sample of countries, but also by dropping each of the 21 countries in turn. Results of this 

robustness test will be presented below. 

In order to test for Granger causality between GDP and health care expenditure, it is 

necessary that the two time series are stationary. Unfortunately, the available panel unit root 

tests are mainly designed for panels where both the time dimension and the cross section 

                                                 
18 Health economists have indeed identified an ‘excess health care price/cost inflation’ (Huber, 1999), albeit 

without tracing it back to Baumol’s model of unbalanced growth. This has only recently been done by Hartwig 

(2008b). 
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dimension are relatively large.19 In panels such as mine with a time dimension of only 7 

observations, the analysis can proceed only under restrictive assumptions like, for instance, 

dynamic homogeneity. This has to be kept in mind when interpreting the results of panel unit 

root tests reported in Table 2.20 As the table shows, the tests reject the null hypothesis of non-

stationarity for both variables. For what they are worth, these test results at least do not speak 

against proceeding to the Granger causality tests.  

Since Granger causality test results are sensitive to the choice of lag length m in the time-

stationary VAR model given by equation (14), it is important to specify the lag structure 

appropriately. I follow Miyakoshi and Tsukuda (2004) in estimating equation (14) with OLS 

and basing the choice of the optimal lag length on the Schwarz Information Criterion (SIC). 

Table 3 shows that – based on this criterion – the optimal lag length is two.  

 

< Insert Table 3 around here > 

 

Table 4 shows the results for estimating the VAR model (14) with OLS, with the Arellano-

Bond one-step system GMM estimator and with the Arellano-Bond two-step system GMM 

estimator, respectively.21 The OLS specification includes country-specific fixed effects 

(random effects were rejected by the Hausman test for correlated random effects.) The GMM 

specifications include period-specific effects. Lags of the dependent variable from at least two 

periods earlier as well as lags of the per-capita HCE growth variables serve as GMM-style 

instruments.22 For the two-step estimator, the small sample correction proposed by 

Windmeijer (2005) has been implemented.  

 

< Insert Table 4 around here > 

 

The bottom of the table reports specification test results for the GMM estimations. The 

Sargan test is a test on whether the instruments are uncorrelated with the error term uit (which 

they must be in order to be valid instruments). Table 4 shows that the null hypothesis is 

                                                 
19 For a detailed account of panel unit root tests, cf. Breitung and Pesaran (2008). 
20 The table reports results for the panel unit root tests available in EViews. The estimations for this paper were 

done either with EViews (v. 6) or with Stata (v. 9).  
21 The Arellano-Bond one-step estimator uses the identity matrix as a weighting matrix. The two-step estimator 

weighs the instruments asymptotically efficient using one-step estimates. 
22 Roodman’s ‘xtabond2’ command was used in Stata (v. 9) for the GMM estimations; and Roodman’s (2006) 

examples geared my handling of the syntax.   
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accepted.23 Note, however, that it is necessary to ‘collapse’ the set of instruments in order to 

achieve that the Sargan test accepts the over-identifying restrictions in the GMM estimations. 

While in the standard instrument matrix each instrumenting variable generates one column for 

each time period and lag available to that time period, Roodman (2006) proposes to ‘collapse’ 

the instrument set into a single column to limit the instrument count. This option is available 

in Stata (v. 9) and has been used here. The Arellano-Bond test accepts the hypothesis of no 

second-order autocorrelation in the disturbances of the first differenced equation. 

The estimations consistently find negative coefficients for lagged per-capita health care 

expenditure. The second lag is always statistically significant. In the (OLS and) Arellano-

Bond one-step estimation(s), the Wald test rejects the hypothesis that the coefficients of 

lagged per-capita HCE are jointly equal to zero. If they aren’t, then growth in real per-capita 

health care expenditure Granger-causes real GDP growth with a negative impact.  

There are at least two ways of interpreting this result. First, it could be seen as providing 

evidence against the model of endogenous growth that Pugno (2006) defends. In the standard 

neoclassical (exogenous) growth model, negative coefficients for the human capital variable 

are perfectly plausible within a Granger-causality framework. Starting from a steady state, a 

positive shock to health capital formation should boost GDP growth in the same time period. 

Later periods should then be characterized by lower growth as the growth rate falls back to its 

steady state level. Of course, while in the standard Solow model technological progress 

ensures that the steady state growth rate can remain positive, Baumol shows that when we 

assume ‘unbalanced growth’ in a two-sectoral model, the per-capita GDP growth rate will 

drop to zero despite technological progress (in the ‘progressive’ sector). 

If we choose to stick to the endogenous growth model, however, then the finding of 

negative Granger-causality running from per-capita HCE to per-capita GDP growth 

undermines Pugno’s (2006) conjecture that health capital formation might have cured the 

‘Cost disease’ through its growth-stimulating effect (which overcompensates the adverse 

sectoral shift effect). This statement carries over to the Arellano-Bond two-step estimation 

which, although it does not find negative Granger-causality running from HCE to GDP 

growth at conventional significance levels, does not find any positive Granger-causality that 

would support Pugno’s claim. Based on the evidence Table 4 reports, the research question 

                                                 
23 The Sargan statistic, which is the minimized value of the one-step GMM criterion function, is not robust to 

heteroskedasticity or autocorrelation. The Hansen statistic (which is the minimized value of the two-step GMM 

criterion function) is robust. 
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that motivated this paper, namely whether health capital formation has cured ‘Baumol’s 

Disease’, has to be answered in the negative. 

Skeptics might object to the methodology employed to derive this result that it rests on the 

assumption that all information not included in the stationary VAR model is irrelevant. 

However, this assumption could be defended here on the grounds that the list of robust 

determinants of economic growth is not very long. Sturm and de Haan (2005), for instance, 

find only real capital formation and a couple of regional dummies (that are not relevant for 

my sample of OECD countries) to be significant and robust explanatory variables for GDP 

growth. To account for their findings, I added lagged per-capita growth in fixed investment to 

model (14) as a control variable. This didn’t change the coefficients and Wald test results for 

HCE growth qualitatively. 

Yet, there is still the possibility that the results Table 4 presents are driven by outliers. To 

check the robustness of these results, I therefore re-estimate equation (14) dropping each of 

the 21 countries in turn. Table 5 shows that the results are indeed to some extent sensitive to 

the exclusion of Portugal and Ireland. The Wald test nevertheless rejects the hypothesis that 

the coefficients of lagged per-capita HCE are jointly equal to zero at the 5 percent level. 

 

< Insert Table 5 around here > 

 

To conclude the empirical analysis, I test for Granger-causality running from GDP to HCE. 

As has been mentioned before, GDP – or national income, respectively – has been identified 

as the most important and robust explanatory variable for health care expenditure by health 

economists. Table 6 shows the results for estimating the VAR model (15).24 As in the 

previous estimations, the GMM specifications include period-specific effects; and lags of the 

dependent variable from at least two periods earlier as well as lags of the per-capita GDP 

growth variables serve as GMM-style instruments. Again, the set of instruments was 

‘collapsed’. Still, the Sargan test does not accept the over-identifying restrictions at the 5 

percent level. The Hansen test, however, does. The Arellano-Bond test clearly accepts the null 

of no second-order autocorrelation in the differenced residuals. 

As can be seen from Table 6, the coefficients of lagged per-capita GDP are always 

positive and significant. The Wald test rejects the hypothesis that they are jointly equal to zero 

at conventional significance levels. Hence we can conclude that per-capita GDP growth 

Granger-causes per-capita HCE growth with a positive sign. This finding – which is robust to 

                                                 
24 The Schwarz Information Criterion again suggests lag length two. 
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the exclusion of countries from the sample (cf. Table 7) – supports the existing literature on 

the determinants of health care expenditure growth. 

 

< Insert Tables 6 and 7 around here > 

 

6. Conclusion 

The research question this paper poses – whether health capital formation has cured 

‘Baumol’s (Cost) Disease’ – can clearly be answered in the negative. No evidence was found 

that health capital formation through health care expenditure – that is the mechanism 

highlighted by the famous Grossman (1972) model – Granger-causes per-capita GDP growth 

with a positive sign in OECD countries. On the contrary, when per-capita GDP growth is 

regressed on its own lags and on the lags of per-capita health care expenditure in a panel 

Granger-causality testing framework, the coefficients for the lagged HCE growth are 

consistently negative. The statistical significance of the negative coefficients is not robust to 

the choice of the estimator (Arellano-Bond two-step vs. Arellano- Bond one-step system 

GMM), however. 

When the other direction of Granger-causality – that is Granger-causality running from 

per-capita GDP growth to per-capita HCE growth – is tested, the results support health 

economists’ long-standing ‘stylized fact’ that GDP determines HCE with a positive sign. My 

findings thus support the idea of some kind of self-stabilizing control cycle between GDP and 

health care expenditure. According to this idea, the strong HCE growth that occurred during 

the 50s and 60s in many OECD countries subsequently led to a decline in GDP growth 

because of the adverse structural change effect highlighted by Baumol’s model. Declining 

GDP growth in turn attenuated HCE growth, and, as a consequence, GDP growth could 

rebound. This mechanism might help to understand why HCE growth in OECD countries 

declined temporarily in the 80s − a fact that Barros’ (1998) model was unable to explain.  

So how are my results related to the conventional wisdom that health is generally a good 

thing for economic growth?25 First, it has to be remembered that my sample of countries 

consists of OECD countries only. Earlier studies (mentioned in the introduction to this paper) 

have occasionally also been unable to determine any positive influence of health on economic 

growth in rich countries. This does not mean that my results necessarily carry over to poor 

countries for which ‘Baumol’s Disease’ will not become acute for a long time yet. Secondly, 

                                                 
25 Weil (2007: 1266) quotes the World Health Organization’s Commission on Macroeconomics and Health 

which sees ‘powerful linkages’ between health and long-term economic growth.  
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most studies that found a positive impact of health on economic growth used the aggregate 

production function approach and proxied health capital with some measure of the 

population’s health status such as life expectancy at birth. Yet the health status can be 

improved in many ways; and indeed other determinants such as nutrition are generally 

regarded as more important for increasing life expectancy than health care utilization. My 

results point to a negative Granger-causality between health capital formation through health 

care expenditure and GDP growth. They do not preclude that increases in life expectancy 

through, say, better nutrition would stimulate economic growth.  

Still, my results do present a challenge for the way the empirical growth literature 

generally proceeds, that is, by estimating an aggregate production function. If the output level 

is modeled to be a function of certain levels of input (such as health) then it is not surprising 

that increasing the input levels will raise output. Effects such as those highlighted by 

Baumol’s model of unbalanced growth, namely that the process of raising certain input levels 

(such as health and education) can imply structural change that is unfavorable for overall 

economic growth might vanish in the estimates of total factor productivity growth.26 For 

example, it might be the case that the health variable (life expectancy) has a positive sign in 

an estimated production function, but that a positive shock to health expenditure – even if it 

improves life expectancy – lowers total factor productivity to an extent that overcompensates 

the effect of the rise in health status on growth. Nevertheless, the positive sign of the health 

variable may mislead policymakers. To preclude this possibility, future research should find 

ways to cross-validate the conclusions of cross-country growth studies based on the aggregate 

production function approach. 
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Table 1: Macroeconomic growth studies with a focus on health 

Study Growth measure Health measure Countries 
and time 
period 

Coefficient 

Barro and Sala-i-
Martin (1995) 

Growth rate of per-capita 
GDP 

Log of life 
expectancy at birth 

87-97 
countries 

1965-85 

0.064* 

 

Knowles and 
Owen (1995) 

Log difference of GDP 
per employed person 
between 1985 and 1960 

Log of (80 years 
minus life 
expectancy at birth) 

84 countries 

1960-85 

0.381* 

Knowles and 
Owen (1997) 

Log difference of GDP 
per employed person 
between 1985 and 1960 

Log of (80 years 
minus life 
expectancy at birth) 

77 countries 

1960-85 

0.582* – 
0.797* 

Rivera and Currais 
(1999a) 

Log difference of GDP 
per employed person 
between 1990 und 1960 

Log of the share of 
health expenditure 
in GDP 

OECD- 
countries 

1960-90 

0.22* – 0.33* 

Rivera and Currais 
(1999b) 

Log difference of GDP 
per employed person 
between 1990 und 1960 

Log of the share of 
health expenditure 
in GDP 

OECD- 
countries 

1960-90 

0.21* – 0.22* 

Bloom, Canning 
and Sevilla (2001) 

Growth rate of per-capita 
GDP 

Log of life 
expectancy at birth 

104 countries 

1960-90 

0.04* 

Bhargava et al. 
(2001) 

Growth rate of per-capita 
GDP 

Log of the adult 
survival rate 

73-92 
countries 

1965-90 

0.181* – 
0.358* 

Heshmati (2001) Log difference of GDP 
per employed person  
between 1990 und 1970 

Log of per-capita 
health expenditure 

OECD- 
countries 

1970-92 

0.175* 

Webber (2002) Growth rate of GDP per 
employed person  

Calorie intake per 
capita  

46 countries 

1960-1990 

0.08 – 0.22 

McDonald and 
Roberts (2002) 

Log of GDP per 
employed person 

Log of (80 years 
minus life 
expectancy at birth) 

77 countries 

1960-89 

0.12* 

Rivera and Currais 
(2003) 

Log difference of GDP 
per employed person 
between 2000 und 1960 

Log of the share of 
health expenditure 
in GDP 

OECD- 
countries 

1960-2000 

0.18* – 0.26* 

Rivera and Currais 
(2004) 

Growth rate of GDP per 
employed person 

Public health 
expenditure 

17 Spanish 
regions 

1973-93 

0.13* 

Bloom, Canning 
and Sevilla (2004) 

Growth rate of per-capita 
GDP 

Log of life 
expectancy at birth 

104 countries 

1960-90 

0.04* 

Jamison, Lau and 
Wang (2005) 

Log of per- capita GDP Log of the adult 
survival rate 

53 countries 

1965-90 

0.50* 

Weil (2007) (Proportional reduction in 
variance of) log of GDP 
per capita 

Adult survival rate 
(among others) 

92 countries 

NA 

0.099 

* statistically significant at the 5% level 
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Figure 1: Histogram of real per-capita GDP growth 

rates of 21 OECD countries (five-year averages, 1970-

2005) 
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Figure 2: Histogram of real per-capita HCE growth 

rates of 21 OECD countries (five-year averages, 1970-

2005) 

 

Ireland 
1995-2000 

Portugal 
1970-75 



 26 

Table 2: Panel unit root test results (21 OECD countries, 1970-2005) 

 GDPRPC HCERPC 

H0: Unit root in level Stat. Prob. Obs. Stat. Prob. Obs. 

Levin, Lin & Chu t* –13.200 0.000 126 –17.128 0.000 126 

Im, Pesaran & Shin W-stat –5.007 0.000 126 –5.717 0.000 126 

ADF – Fisher  Chi-square 110.494 0.000 126 115.991 0.000 126 

PP – Fisher Chi-square 129.068 0.000 126 168.481 0.000 126 

GDPRPC = real per-capita GDP growth rates (five-year averages), HCERPC = real per-capita health care 

expenditure growth rates (five-year averages) 

Note: Individual intercepts are included as exogenous variables in the test equations. For the first three tests 

listed in the table, maximum lags are automatically selected based on the Schwarz Information Criterion. The 

remaining test uses the Bartlett kernel for the Newey-West bandwidth selection. The probabilities for the Fisher 

tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality. 
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Table 3: Optimal lag length for equation (14) 

Lag 1 2 3 

SIC 4.088 4.078 4.192 

SIC = Schwarz Information Criterion 
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Table 4: Estimation results for equation (14) 

GDPRPC 

 (1) (2) (3) 

 OLS Arellano-Bond 
one-step GMM 

Arellano-Bond 
two-step GMM 

GDPRPC(−1) −0.327*** 
        (0.113) 

0.346*** 
        (0.125) 

0.283** 
        (0.111) 

GDPRPC(−2) 0.241** 
        (0.116) 

0.484*** 
        (0.139) 

0.477 
        (0.317) 

HCERPC(−1) −0.074 
         (0.075) 

−0.210** 
 (0.083) 

−0.124 
  (0.112) 

HCERPC(−2) −0.107** 
        (0.047) 

−0.179*** 
(0.057) 

−0.140* 
 (0.068) 

Number of obs. 105 105 105 
Wald test (p-level) 0.061 0.002 0.149 
Sargan test (p-level) − 0.524 0.524 
Hansen test (p-level) − − 0.458 
AB test (p-level) − 0.710 0.951 

GDPRPC = real per-capita GDP growth rates (five-year averages), HCERPC = real per-capita health care 

expenditure growth rates (five-year averages) 

Standard errors are in parenthesis. *, ** and *** denote significance at the 10, 5 and 1 percent level, 

respectively. Estimates for constant terms not shown. AB test = Arellano-Bond test for AR(2) in first 

differences. 
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Table 5: Robustness test – Cross-national stability of parameters of model (14): excluded countries 

GDPRPC 

 Australia Austria Belgium Canada Denmark Finland France Germany Iceland Ireland Japan 

GDPRPC(−1) 0.350*** 
    (0.122) 

0.372*** 
    (0.131) 

0.347*** 
    (0.128) 

0.351*** 
  (0.130) 

0.325*** 
(0.121) 

0.358*** 
  (0.125) 

0.345*** 
  (0.128) 

0.335*** 
 (0.129) 

0.316** 
  (0.124) 

0.070 
  (0.133) 

0.397*** 
  (0.124) 

GDPRPC(-2) 0.472*** 
    (0.139) 

0.520*** 
   (0.147) 

0.487*** 
     (0.142) 

0.504*** 
  (0.145) 

0.434*** 
(0.136) 

0.490*** 
  (0.140) 

0.487*** 
  (0.142) 

0.498*** 
(0.143) 

0.509*** 
  (0.144) 

0.242* 
  (0.127) 

0.584*** 
  (0.134) 

HCERPC(-1) −0.201** 
     (0.083) 

−0.249*** 
    (0.094) 

−0.208** 
     (0.084) 

−0.207** 
  (0.088) 

−0.179** 
  (0.080) 

−0.181** 
  (0.087) 

−0.215** 
  (0.087) 

−0.232*** 
    (0.084) 

−0.189** 
  (0.084) 

−0.165** 
  (0.078) 

−0.235*** 
   (0.084) 

HCERPC(-2) −0.191*** 
    (0.057) 

−0.185*** 
   (0.060) 

−0.179*** 
    (0.058) 

−0.199*** 
    (0.061) 

−0.162*** 
  (0.056) 

−0.168*** 
   (0.058) 

−0.186*** 
   (0.058) 

−0.185*** 
   (0.057) 

−0.152*** 
   (0.056) 

−0.134** 
  (0.052) 

−0.211*** 
   (0.056) 

Number of obs. 100 100 100 100 100 100 100 100 100 100 100 

Wald test 
(p-level) 

0.001 0.002 0.003 0.002 0.005 0.007 0.002 0.001 0.008 0.017 0.000 

 Luxembourg Netherlands New Zealand Norway Portugal Spain Sweden Switzerland U.K. U.S. 

GDPRPC(−1) 0.309** 
(0.132) 

0.343*** 
 (0.127) 

0.355*** 
(0.124) 

0.403*** 
(0.122) 

0.355*** 
(0.129) 

0.345*** 
(0.127) 

0.355*** 
(0.129) 

0.326*** 
 (0.122) 

0.348*** 
 (0.128) 

0.353*** 
(0.128) 

GDPRPC(-2) 0.516*** 
(0.149) 

0.505*** 
(0.141) 

0.294** 
(0.137) 

0.500*** 
(0.137) 

0.439*** 
(0.147) 

0.535*** 
(0.144) 

0.497*** 
(0.143) 

0.471*** 
(0.137) 

0.487*** 
(0.142) 

0.491*** 
(0.143) 

HCERPC(-1) −0.206** 
     (0.083) 

−0.237*** 
    (0.084) 

−0.211** 
     (0.087) 

−0.245*** 
   (0.082) 

−0.157* 
   (0.080) 

−0.216** 
  (0.085) 

−0.224*** 
   (0.086) 

−0.204** 
    (0.083) 

−0.207** 
   (0.085) 

−0.218** 
  (0.087) 

HCERPC(-2) −0.195*** 
     (0.055) 

−0.204*** 
   (0.058) 

−0.188*** 
     (0.057) 

−0.166*** 
   (0.056) 

−0.136** 
   (0.066) 

−0.182*** 
  (0.057) 

−0.175*** 
   (0.058) 

−0.176*** 
    (0.057) 

−0.178*** 
   (0.058) 

−0.181*** 
   (0.060) 

Number of obs. 100 100 100 100 100 100 100 100 100 100 

Wald test 
(p-level) 

0.001 0.000 0.002 0.001 0.045 0.002 0.002 0.003 0.003 0.003 

GDPRPC = real per-capita GDP growth rates (five-year averages), HCERPC = real per-capita health care expenditure growth rates (five-year averages) 

The Arellano-Bond one-step GMM estimator was applied. Standard errors are in parenthesis. *, ** and *** denote significance at the 10, 5 and 1 percent level, respectively. 
Estimates for constant terms not shown. 
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Table 6: Estimation results for equation (15) 

HCERPC 

 (1) (2) (3) 

 OLS Arellano-Bond 
one-step GMM 

Arellano-Bond 
two-step GMM 

HCERPC(−1) −0.244** 
        (0.099) 

−0.189* 
        (0.102) 

−0.139 
         (0.106) 

HCERPC(−2) −0.382*** 
        (0.062) 

−0.336*** 
        (0.069) 

−0.326** 
        (0.118) 

GDPRPC(−1) 0.438*** 
        (0.149) 

0.493*** 
        (0.153) 

0.568*** 
        (0.163) 

GDPRPC(−2) 0.332** 
        (0.153) 

0.116 
        (0.171) 

0.190 
        (0.168) 

Number of obs. 105 105 105 
Wald test (p-level) 0.010 0.004 0.006 
Sargan test (p-level) − 0.035 0.035 
Hansen test (p-level) − − 0.183 
AB test (p-level) − 0.801 0.781 

GDPRPC = real per-capita GDP growth rates (five-year averages), HCERPC = real per-capita health care 

expenditure growth rates (five-year averages) 

Standard errors are in parenthesis. *, ** and *** denote significance at the 10, 5 and 1 percent level, 

respectively. Estimates for constant terms not shown. AB test = Arellano-Bond test for AR(2) in first 

differences. 
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Table 7: Robustness test – Cross-national stability of parameters of model (15): excluded countries 

HCERPC 

 Australia Austria Belgium Canada Denmark Finland France Germany Iceland Ireland Japan 

HCERPC(-1) −0.177* 
    (0.102) 

−0.202* 
    (0.108) 

−0.201** 
     (0.103) 

−0.185* 
   (0.108) 

−0.188* 
 (0.101) 

−0.184* 
   (0.106) 

−0.190* 
   (0.103) 

−0.179* 
 (0.104) 

−0.175* 
   (0.099) 

−0.239** 
   (0.108) 

−0.189* 
   (0.106) 

HCERPC(-2) −0.352*** 
    (0.070) 

−0.278*** 
    (0.069) 

−0.357*** 
     (0.071) 

−0.327*** 
   (0.076) 

−0.346*** 
(0.071) 

−0.301*** 
    (0.070) 

−0.344*** 
   (0.070) 

−0.335*** 
(0.071) 

−0.340*** 
   (0.067) 

−0.318*** 
   (0.073) 

−0.338*** 
   (0.071) 

GDPRPC(−1) 0.502*** 
    (0.152) 

0.532*** 
   (0.151) 

0.501*** 
    (0.156) 

0.492*** 
   (0.160) 

0.539*** 
  (0.154) 

0.528*** 
  (0.152) 

0.501*** 
   (0.155) 

0.465*** 
    (0.160) 

0.528*** 
   (0.147) 

0.478*** 
  (0.185) 

0.489*** 
   (0.157) 

GDPRPC(-2) 0.134 
    (0.172) 

0.125 
    (0.168) 

0.129 
     (0.173) 

0.105 
   (0.178) 

0.123 
   (0.172) 

0.122 
   (0.170) 

0.134 
   (0.172) 

0.113 
    (0.178) 

0.087 
   (0.170) 

0.143 
   (0.176) 

0.146 
   (0.169) 

Number of obs. 100 100 100 100 100 100 100 100 100 100 100 

Wald test 
(p-level) 

0.003 0.001 0.004 0.005 0.002 0.002 0.004 0.011 0.001 0.026 0.007 

 Luxembourg Netherlands New Zealand Norway Portugal Spain Sweden Switzerland U.K. U.S. 

HCERPC(-1) −0.166* 
(0.101) 

−0.199** 
 (0.102) 

−0.203* 
 (0.112) 

−0.191* 
 (0.106) 

−0.145 
  (0.101) 

−0.183* 
 (0.102) 

−0.194* 
 (0.103) 

−0.198* 
 (0.104) 

−0.183* 
 (0.103) 

−0.221** 
 (0.105) 

HCERPC(-2) −0.342*** 
(0.067) 

−0.370*** 
(0.070) 

−0.322*** 
(0.074) 

−0.339*** 
 (0.072) 

−0.367*** 
(0.082) 

−0.341*** 
(0.068) 

−0.342*** 
(0.070) 

−0.341*** 
(0.071) 

−0.342*** 
(0.071) 

−0.332*** 
(0.072) 

GDPRPC(−1) 0.477*** 
    (0.161) 

0.485*** 
    (0.153) 

0.436*** 
    (0.160) 

0.516*** 
  (0.158) 

0.390** 
   (0.160) 

0.554*** 
   (0.153) 

0.499*** 
  (0.155) 

0.527*** 
    (0.153) 

0.489*** 
   (0.155) 

0.493*** 
   (0.154) 

GDPRPC(-2) 0.091 
    (0.182) 

0.121 
    (0.171) 

0.066 
     (0.177) 

0.132 
   (0.178) 

0.058 
   (0.183) 

0.229 
   (0.173) 

0.130 
   (0.173) 

0.146 
    (0.171) 

0.104 
   (0.173) 

0.110 
   (0.172) 

Number of obs. 100 100 100 100 100 100 100 100 100 100 

Wald test 
(p-level) 

0.006 0.005 0.020 0.004 0.041 0.001 0.004 0.002 0.005 0.004 

GDPRPC = real per-capita GDP growth rates (five-year averages), HCERPC = real per-capita health care expenditure growth rates (five-year averages) 

The Arellano-Bond one-step GMM estimator was applied. Standard errors are in parenthesis. *, ** and *** denote significance at the 10, 5 and 1 percent level, respectively. 
Estimates for constant terms not shown. 


