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presented by

NICOLAS WIDER

MSc ETH Mathematics, ETH Zürich, SWITZERLAND
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Abstract

A particular approach to study complex systems in nature, society and technology is

network theory. In this perspective actors in the system are represented as nodes and

interactions or connections among the actors as links. Although the usual framework is

often sufficient to study complex systems, it neglects additional properties that are not

easily captured. The focus of this thesis is the expansion of classical approaches in network

theory that allow to overcome some of the limitations imposed by oversimplifications. We

provide higher-order models that take into account additional information of complex

systems, in particular the aspects of temporality and interconnectivity.

In the first part we study temporal networks in which the interactions or connections

that occur in the systems are tagged with a time-stamp. This allows to study different

aspect of temporal interaction sequences, such as the duration of interactions or inter-event

times. In this work we focus on the ordering of links, rather than the timing. To study

temporal ordering we develop a framework of higher-order time-aggregated networks, a

generalization of the commonly applied static, time-aggregated representation of temporal

networks. This approach explicitly captures temporal path statistics and therefore is able

to preserves causality structures. With this tool at hand we discuss and analyze different

application scenarios that reveal the need of higher-order models and that highlight the

power of the proposed approach. More precisely, we study path-based centralities and

dynamical processes in respect of temporal ordering.

In the second part we investigate coupled systems that are interconnected, meaning that

a system is not only influenced by the connections among its own nodes but also by

connections to other systems. Recent research has addressed this issue with so-called

multi-layer networks. First, we investigate the lack information one is often confronted

with when analyzing real-world systems. The detailed multi-layer topology can be missing

and only aggregated statistics may be available. We study dynamical processes in different

cases where we rely on limited information of the link topology. Next, we focus on a system

of scholarly publications that combines different types of links and nodes that are connected

to each other. Leveraging on the multi-layer topology we investigate how co-authorships

are correlated with citations and how this affects citation based ranking schemes.

Concluding, this thesis provides a deeper understanding of complex systems and goes

beyond the commonly used static and decoupled network approach. We not only show the

need of an extended perspective but also provide models that overcome the aforementioned

limitations. Validating our models on empirical data sets we contribute new insights and

techniques that can be used in a broad variety of applications.
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Kurzfassung

Netzwerk Theorie ist eine Methode um komplexe Systeme in der Natur, Gesellschaft oder

Technologie zu erforschen. Diese Theorie stellt Akteure eines System als Knoten dar und

Interaktionen oder Verbindungen zwischen ihnen als Links. Obwohl das übliche Frame-

work oft ausreicht um komplexe Systems zu untersuchen, vernachlässigt es weitere Eigen-

schaften, die nicht einfach zu erfassen sind. Der Fokus dieser Arbeit ist die Erweiterung

der klassischen Netzwerk Theroy um Einschränkungen von Vereinfachung zu überwinden.

Wir präsentieren neue Modelle höherer Ordnung, die auch zusätzliche Informationen von

komplexen Systemen berücksichtigen, insbesonders Temporalität und Interkonnektivität.

Im ersten Teil untersuchen wir temporale Netzwerke, in welchen Interaktionen eines System

mit einem Zeitstempel versehen sind. Dies ermöglicht es verschiedene Aspekte, wie die

Dauer oder Wartezeiten, von temporalen Interaktionssequenzen zu untersuchen. Anstatt

auf das Timing fokussieren wir in dieser Arbeit auf die Ordnung von Links. Um die

temporale Ordnung zu untersuchen entwickeln wir ein zeitaggregiertes Netzwerk höherer

Ordnung, eine Verallgemeinerung der üblichen statisch, zeitaggregierten Darstellung eines

temporalen Netzwerks. Diese Methode erfasst temporale Pfadstatistiken und bewahrt

dadurch die Kausalität. Mit Hilfe dieses Werkzeugs diskutieren und analysieren wir ver-

schiedne Anwedungsszenarien, die die Notwendigkeit von Modellen höherer Ordnung und

die Stärke unserer Methode belegen. Im Detail untersuchen wir pfadbasierte Zentralitäts-

masse und dynamische Prozesse bezüglich temporaler Ordnung.

Im zweiten Teil erforschen wir vernetzte Systeme, die von den Verbindungen zu anderen

Systemen beeinflusst werden. Derzeitige Forschung thematisieren diese Problematik mit

sogenannten multi-layer Netzwerken. Zuerst untersuchen wir mangelnde Information, mit

der man oft konfrontiert wird, wenn man reale Systeme analysiert. Die Unkenntnis der

genauen multi-layer Topologie kann dazu führen, dass nur aggregierte Statistiken verfügbar

sind. Wir untersuchen dynamische Prozesse, in denen wir uns situationsbedingt auf man-

gelnde Informationen der Link Topologie verlassen müssen. Als nächstes betrachten wir

ein System wissenschaftlicher Publikationen, dass verschiedene vernetzte Arten von Links

und Knoten kombiniert. Mit Hilfe der multi-layer Topologie untersuchen wir den Zusam-

menhang von Koautoren und Zitationen, und dessen Einfluss auf zitationsbasierte Ratings.

Diese Arbeit liefert ein vertieftes Verständnis komplexer Systeme und übersteigt übliche

Methoden statischer und entkoppelter Netzwerke. Wir demonstrieren nicht nur den Bedarf

einer erweiterten Sichtweise sondern offerieren auch Modelle, die die zuvor genannten Ein-

schränkungen überwinden. Durch die Valdierung unser Methode mit empirischen Daten

erbringen wir neue Einsichten, die in zahlreichen Anwendungen von Bedeutung sind.

vi



Chapter 1

Introduction

“Each piece, or part, of the whole of nature is always merely an approxi-

mation to the complete truth, or the complete truth so far as we know it.

In fact, everything we know is only some kind of approximation, because

we know that we do not know all the laws as yet.”

Richard Feynman

The Feynman Lectures on Physics (1964)

Science is an expression of humans intrinsic urge to understand nature and the fundamen-

tal laws of the world surrounding them. It is driven by acquiring knowledge and trying

to figure out the causes of actions. There are several scientific methods to achieve this

goal and they vary across scientific disciplines. However, even with the most elaborate

methodologies, scientists are not able to fully understand or describe the world as a com-

prehensive entity. To overcome the difficulty to consider all possible causes one usually

focuses on a specific confined system [26].

A system is constrained by specific temporal and spatial boundaries and therefore re-

stricts the information that is considered. Usually a system consists of several elements

or entities which are observable and therefore can be studied. For example, consider a

simple electric circuit consisting of a electrical source such as a battery that is wired to an

electric consumer such as a light bulb. This system consists of three basic elements which

are the battery, the light bulb and the wires. One could study the current in the wires,

the capacity of the battery and the efficiency, resistance or luminosity of the light bulb.

Further, one can also study how these properties influence and depend on each other.

This simple system can be well understood without knowing much about the surrounding

that could affect the circuit. If needed, the influences that come from elements outside
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the system, such as an electromagnetic field, could also be imposed as rules, or can be

neglected without much loss.

One of the first steps to investigate a particular system is collecting observational data.

Analyzing the data allows to explore possible rules and laws that drive the functioning

of the system. Understanding systems confronts us with different kind of challenges and

difficulties. In the case of the electric circuit described above, assuming some rules and

measuring its components is enough to describe what is happening. As another example

consider a car that consists of several parts such as the engine, the steering wheel or the

spark plugs. Even though from an engineering perspective it may be complicated to build

a well performing car, knowing how all of its parts work and how they are assembled is

sufficient to assure that the car is functioning and can be operated following some basic

driving rules.

This kind of understanding is based on an approach called reductionism [42], that assumes

that a system can be understood by knowing all of its components. The properties of

individual elements of a system and their direct interactions with other elements can

be regarded as micro level. Meaning, from a microscopic perspective one gets a good

understanding of individual elements but one does not have a comprehensive knowledge of

the whole system. In contrast to this view one can define the macro level that regards the

system as a whole. Hence, a macroscopic perspective observes the properties of a system

without knowledge about individual elements. For example, observing the behavior of

individual people represents the micro level in comparison to observing the society as a

whole that represents the macro level. For some systems it is enough to have knowledge

about the micro level to also infer properties of the system at the macro level.

However, not all systems can be understood by only analyzing its individual parts or

components. Interactions or relations of the system elements can lead to non-trivial effects

also implicitly affecting elements that were not part of the immediate interaction. Further,

topological structures and hierarchical order between the elements can impose rules that

can not be explained based on the micro level. A system exhibiting such properties can

be regarded as complex and requires more than just collecting data and observations to

fully understand it [5, 74].

In other words complex systems are comprised of strongly related elements that lead to

emergence of new system qualities. By strongly related we mean that the elements can

influence or interact with each other. The term emergence relates to the appearance of new

system properties that can not be reduced or traced back to the properties of individual

elements [75]. To fully understand a complex system the study of both, the micro and

macro level, is needed.
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Note, that the theory of complex systems refers to a particular perspective or way of

understanding a real world system rather then the attempt to classify them. There may

be other approaches to deal with a real world system that do not focus on the emergent

properties or describe a system in a different manner. However, the complex system

approach explicitly focuses on the relationship of micro and macro properties that can not

always be understood with other methods.

As an example of a complex system consider the formation of traffic jams. On the mi-

cro level each car can be observed according to its speed and direction which they can

change according to their surrounding and specified traffic laws. Hence, each car takes a

microscopic perspective and acts in respect to their immediate neighbors, like the car in

front, in the back or next to them. However, a individual car driver can not foresee the

actions of all of the other drivers and therefore can usually only respond to short term

observations. If a particular car brakes it will force the subsequent car to brake as well

which further can affect additional cars following behind. On the macro level, where we

observe the car flow or road capacities, this leads to a traffic jam. It was found that such

simple actions can lead to complex behavior affecting the whole system [108] that can not

be understood from an analysis of individual cars.

Another example of a complex system is the human brain. Nowadays, biologists and

physician know quite well how single neurons work and how they are connected to other

neurons. While they are able to infer how neurons interact with each other and how

chemical reactions can affect certain parts of the brain the macroscopic outcome in terms

of human cognition is still mysterious. The definition and description of consciousness

is not only a philosophical challenge but its existence is considered to be an emergent

manifestation from complex biological and chemical interactions [160].

Analyzing the various aspects of complex systems got a lot of attention in several fields.

Complex systems are present in most scientific disciplines such as physics [113, 142, 146],

chemistry [174] and biology [56, 117, 163] but also in social science [173], finance [150] and

economy [7, 71, 97]. The complexity of most complex systems emerge from the relations of

the system elements. Meaning, that it is not only the property of individual elements that

makes as system complex, but rather their relations and interactions with other system

elements. Understanding how the entirety of these dyadic relations influence the macro

level is therefore often the key to describe and analyze complex systems.

A particular methodology to study complex systems is network theory. This approach

focuses on the relational links between the system elements. Hence, properties of elements

are usually only considered if they result from these links. The links or ties between any

two elements and can represent any kind of interaction or connection which makes network
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theory a strong tool for a lot of applications. From a mathematical perspective the theory

is well described and therefore allows to use precise methods and other mathematical

theories to derive conclusions. Over the years the theory of networks evolved and got

expanded in several directions. However, the basic framework is usually still constrained by

assumptions that limit its direct applicability to real-world systems. Usually, a particular

network only represents one type of interaction between the same or similar types of

system elements. To overcome this issue one often relies on simplifications such that the

well studied tools can be applied in the usual way.

Using the same unaltered methods and models that were already studied for a long time

may be tempting and comfortable, however it hinders progress and the emergence of novel

tools that may be more feasible in particular situations.

1.1 Higher-order network models in complex systems

Even though network theory proved to be a useful tool to analyze complex systems, it also

needs to be adapted to new challenges evolving from applications to real world problems.

Novel technologies and the increasing computation power that is available nowadays comes

along with new opportunities to analyze complex systems [101]. In earlier times it was

sufficient or even desired to restrict the analysis of a certain problem to a well circumscribed

and constrained system. The limited computation power and limited applicability of

particular methods often required comparably small networks to be able to fully analyze

them. Therefore, it was often accepted to acquire approximate results to benefit from the

known methods. This way an appropriate and comprehensive representation of a complex

system was sacrificed in favor of the analytical precision of a constrained perspective.

In line with the quote by Richard Feynman that introduces this chapter, one is aware

that these limitations exist and that they lead to a theory or model that does not agree

perfectly with the real world. However, one should cope with this fact and try to improve

the theory or methodology by incorporating the laws that we do know. Otherwise, we

may be confronted with situations where the simplification of a given problem does not

comply at all with the real world. The constrained perspective may produce nice results

but still misinterpret the real system under investigation. It is not always straightforward

to detect all the issues that come along with a simplified perspective. However, once such

a shortcoming is revealed, one should adjust or modify the theory and tool set one relies

on.

The increasing availability of vast amount of data allows to represent a given system in

much more detail. Incorporating this additional information therefore requires refined
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tools and methods. As an example consider the inclusion of the time dimension. Even

though a fundamental ingredient of natural processes, it was and still is only indirectly

included in network representation of complex systems. Usually, it only serves as boundary

condition to constrain the time-window during which observation and data is considered.

However, the precise moment when a link between elements of a system were established

was only focused on recently [69].

Consider the example of a disease that is spreading in the population by means of human

contacts. From the interaction patterns in the population one can infer an interaction

network and figure out who is very prone to an infection and who is unlikely to be infected.

From this it is possible to approximate how fast and how severe an epidemic could be in the

end. However, the inclusion of time-stamps of interactions would improve estimation of

the disease spread. How long people stay contagious, once infected, and how long it takes

until the disease breaks out are only two factors that influence the spreading. Further, an

individual can only be infected by a person that already got the diseases and therefore the

ordering of interactions is relevant.

Even though in the previous example it may be obvious that a time-independent network

perspective does not capture the system in an accurate way, such simplifications were still

used in several studies [6, 83, 112]. In these models the time-evolution of the process

applied to the network is considered but not the time-dependency of the links forming

the network themselves. Such simplifications are not only applied to time dimensions in

networks but also to other properties that are relevant to analyze real-world phenomena.

Therefore, more elaborate models are needed to incorporate different interactions and

dependencies between the elements of a systems.

To overcome limitation still present in current network approaches, in this thesis we take

up the challenge to provide novel higher-order perspectives to complex systems. The

concepts we explore target particular issues related to network representations and the

general analysis of complex systems. However, our findings can also be of relevance to a

broader scientific audience that is interested in various approaches to understand a given

system. We classify the research presented in this thesis by higher-order network models.

In this sense the term higher-order refers to the general inclusion of additional dimension of

information that is available. In this way we expand the theory and methods of networks

to be able to cope with the challenges induced by incorporating additional knowledge

about a system.

In the following section we give a more detailed description of the exact problems we

approach in this thesis.
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1.2 Focus of the thesis

The focus of this thesis is the development of new models and the provision of novel per-

spectives in network theory that can be used to analyze complex systems. The framework

of network theory is discussed in Chapter 2 and is used as basis for the investigations

in the following chapters. In short, this theory captures interactions or relations, called

links, between any kind of elements, entities or actors, called nodes. The discipline of

networks science originated from mathematical graph theory and statistical physics but is

also used in social sciences. Network theory is a quantitative approach to analyze any kind

of complex systems. Further, properties can be imposed on the node and links to allow to

represent a variety of complex systems as networks. Especially, we take into account addi-

tional dimensions of information that are often neglected in the commonly used network

approach. In particular we investigate the aspect of temporality and interconnectivity

which build the two main parts of the thesis.

Chapter 2 Before we focus on the specialized parts we give a brief introduction to the

network framework and methodology. The definitions provided in this chapter build the

basis for the later two main parts that extend and leverage on the fundamental network

theory. We further introduce the framework of temporal and multi-layer networks as it is

used throughout this thesis. There exist several definitions and notions that vary across

different studies hence we clarify which approaches are used in our context. Additionally,

both sections start with a brief overview of the motivation and advances in the corre-

sponding fields of temporal and multi-layer networks.

In Part I: Temporality we present a model representation of temporal networks that allows

to incorporate the order in which time-stamped links occur. We show that ordering of

links can have high impacts on network measures and dynamic processes. In contrast

to the timing of links the temporal order is often neglected in network studies. This

is unjustified since certain order correlations can have strong implications on temporal

networks. By order correlations we mean that the appearance of a link may depend on

the ordering of appearance of previous links. What these implications are and in which

situations the ordering should be considered is addressed and discussed in this part. We

show that the temporal order of links can have a significant impact on importance measures

and dynamical processes on the network. Comparing the findings of the model to actual

temporal networks we highlight the advantage of our approach in capturing temporal

characteristics.
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Chapter 3 In the first chapter of Part I we introduce the framework of higher-order

aggregate networks in terms of temporal networks. This modeling approach explicitly

incorporates temporal order correlations expressed by path statistics in a network rep-

resentation. We highlight the concept of time-respecting paths that is a fundamental

component to capture the ordering of links. The so called higher-order aggregate networks

explicitly capture path statistics of time-respecting paths and thus respect the ordering

of links. This is a a general tool that can be applied to several kind of temporal systems.

In particular, we investigate six empirical data sets, four of them consist of time-stamped

links while the remaining two are based on path data.

Chapter 4 As a first application to address the impact of the temporal ordering of links

we focus on centrality measures. We analyze three path-based centrality measures that are

commonly used on static networks. We extend the definitions of these measures to develop

temporal versions that can be applied to temporal networks. The temporal centrality

measures consider the statistics of time-respecting paths rather than static aggregated

paths. Additionally, we also define the centrality measures in the framework of higher-

order aggregated networks. We analyze the various centralities on the six previously

introduced data sets. We find that centrality measures based on our higher-order modeling

framework captures better the true temporal centralities than measures based on a static

time-independent approach.

Chapter 5 The temporal ordering of links effects causality of interactions and processes

of temporal networks. By temporal causality we mean that a walk inside a network has

to follow time-respecting paths in order to respect transitivity. Hence, in this chapter we

analyze the influence of temporal order correlations on dynamical processes. In particular

we focus on diffusion dynamics and therefore the spreading across a temporal network.

Temporal causality is related to the ordering temporal links sequences, i.e. the existence

of two links a→ b and b→ c does not necessarily imply the existence of a path a→ b→ c.

Further, this is also related to the non-Markovian property of links sequences, meaning

that the next link that is formed depends on the links that already appeared. So far it was

usually assumed that considering the time-dependency of links slows down a dynamical

process compared to a static analysis on a time-aggregated network. However, we show

that both, a slow-down or speed-up, can result from the pure ordering of links. We quantify

how strong temporal correlations are compared to a static representation and introduce

a measure that allows to predict the change in diffusion speed. Further, we analytically

discuss reasons for temporal order correlations and how reordering of links can slow-down

or speed-up a process in a desired way.
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In Part II: Interconnectivity we investigate model perspectives that comprise multiple

networks that are interconnected. Considering multiple networks at the same time and

considering links between them can have several advantages. It allows to study systems

that are connected to each other or to encode different node and link types and the relation

between them. There are various applications that can be comprised in the framework of

multi-layer networks. To show the versatility of this perspective in this thesis we focus on

two aspects that differ in their approach. On one hand we investigate multiple systems

that are interconnected and the implications for a process running on the whole collection

of systems. On the other hand we focus on a multi-dimensional system that consists of

different types of relations and different types of elements that are connected to each other.

Chapter 6 In a first application we investigate systems where we only have limited

knowledge about the link topology within or between different networks. In real world

systems we often do not have complete knowledge of all of its components or subsystems.

We may know that they are connected but may lack precise knowledge of the detailed link

topology inside single parts. On the other hand we may know the precise link topology in

single systems but may not know how precisely they are connected to each other. In this

chapter we deal with the lack of knowledge in interconnected networks. We analytically

assess how different topologies affect what can be said about a dynamical process in these

situations. We use an ensemble approach to estimate the basic properties of a diffusion

process and discuss in which cases the approximation is good enough and in which cases

further information is needed.

Chapter 7 In a second application we study the impact of social mechanisms on citations

of scholarly publications. The elements of this system are articles, authors and institutions

which are connected by affiliation links. We analyze the citations between articles and how

they translate to citations between scientists. In particular we compare how collaborative

relations between scientists affect their citing behavior. Due to the vast amount of articles

published in recent years we argue that scientist are more aware of their collaborators

works which biases whom they cite. We quantify and measure the strength of this social

effect on citations by analyzing different disciplines of physics journals. We further discuss

how we can take into account the social influence to get new perspectives on scientific

ranking schemes.

Even though, both parts of this thesis focus on two different aspects of complex systems

they both share the feature of extending commonly used network approaches to include

additional dimensions of information that are lost otherwise. In case of temporal networks
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the additional dimension added is the time-dependence of links. The study of intercon-

nected and multi-dimensional systems provides further contributions to the extension of

the multi-layer framework. In the last chapter we summarize our findings and discuss

future applications.

1.3 Contribution

Summarizing, this thesis contributes to network theory and its application to complex

systems. As we outlined above understanding certain systems and deducing appropriate

statements is not always a straightforward task. Hence, sometimes unnecessary restrictions

and constraints are applied to analyze real-world systems with the known techniques and

methods from network theory.

In this thesis we intend to overcome these limitations and discuss approaches to investigate

complex systems in more appropriate manners. More precisely, we provide novel insights

and methods to represent and analyze complex systems in a more comprehensive way.

By focusing on the inclusion of temporal and multi-dimensional properties of networks

and systems we contribute to the emerging fields of temporal networks and multi-layer

networks. The methods and models are therefore a direct contribution to network theory

and its applications.

Furthermore, our research targets real-world problems and provides solutions and insights

to specific topics. In this way we also present results related to research questions from

various fields in respect to particular real-world systems and applications that are not

directly related to network science. Furthermore, the methods and models provided in

this thesis can in general be applied to other systems that can be represented as networks.

Therefore, our findings can be of interest to a broader variety of research topics that go

beyond the mere network and complex systems analysis.
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Chapter 2

Network Theory

Summary

In this chapter we introduce the basic definitions and methods of network theory.
This includes notions and methodologies used throughout the thesis. We give a
brief introduction of random walk processes that are applied to both temporal and
multi-layer networks in later chapters. We further describe the application of statis-
tical ensembles to networks that allow to deal with uncertainty and random graph
models. Finally, in two separate sections we introduce and motivate the framework
of temporal and multi-layer networks and how they are applied in the present work.
We define temporal networks in a formal way and elaborate two alternatives how
they can be represented for illustrative purposes. Multi-layer networks are described
in a general way and the different types are briefly mentioned. The notions may
differ to other works and applications and are therefore specified appropriately to
our framework.

The framework presented in this chapter is based on common knowledge of network theory. The
basic definitions can be found in a lot of works and are shaped for our purpose. The methods of temporal
networks and multi-layer networks are also based on approaches used by other scientists. References are
given for particular notions or definitions that are taken over. However, most of the theory is adjusted to
our purpose and applications. Therefore some extensions are original for the work presented in the later
chapters.
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2.1 Introduction

Network science emerged from a lot of different disciplines [9, 111, 173, 176]. Networks

are a useful representation of systems that consist of interrelated elements. As we have

discussed in the introduction they are especially useful when dealing with complex systems.

However, the theory itself was formally investigated even before it became popular in the

applied sciences.

In mathematics network theory it is known as graph theory and is studied since a long time.

The first contribution to this filed is assumed to be the famous Königsberg bridge problem

that Leonhard Euler investigated in 1736. The question evolved around the seven bridges

that connect Königsberg a city in former Prussia. The bridges crossed the Pregel River

and allowed the citizens to access the different parts of the city. The city spread across

two islands and the northern and southern part of the surrounding mainland splitting the

city in four parts only connected by the aforementioned bridges. See Figure 2.1 for an

illustration. Euler asked himself if it is possible to find a walk through the city that crosses

each of the seven bridges exactly once. Further, it is imposed that there is no other way

to cross the rivers and therefore only the streets of the city can be used to navigate. Since

each of the four parts of the city allow to navigate freely the problem can be reduced

to a simple graph. The four parts of the city can be represented by four nodes and the

seven bridges by links that allow to traverse between the two nodes at its endpoints. The

problems reduces to the task of starting at any node and traversing all seven links exactly

once with the four node serving as access points to choose a bridge. Since one of the

islands is connected with three bridges, a potential traveler would be forced to start or

end his walk on this island. The reason is that the traveler has to use two bridges, one

to leave and one to enter the island, leaving only one bridge to either enter or leave it a

second time. However, the same also holds for the two mainlands of the city which both

are only accessible by three bridges. This leads to an unsolvable problem since the traveler

has to end or start his walk in three distinct parts of the city. Therefore Euler correctly

concluded that there is no walk that crosses each of the seven bridges exactly once.

With his investigations Euler already explored some of the fundamental ingredients of

graph respectively network theory, i.e. the relation of nodes and links and the formation

of paths. The relationship of nodes and links connecting them can be projected to a lot of

different scientific fields and problems. Nodes can represent any type of element or entity

such as molecules, animals, countries, companies, websites and so on, the possibilities

are endless. The same holds for the relations or links between these elements such as

chemical reactions, mating behavior, trade agreements, financial liabilities or hyper-links.
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(a) (b)

Figure 2.1: Königsberg bridge problem (a) Schematic representation of the seven
bridges connecting the northern and southern mainland to the two island in the river.
(b) Network representation where the nodes represent the mainlands, respectively islands,
and the links represent the bridges.

Humans and their interactions with other humans such as friendships are a prominent filed

of study in social network analysis. Some of the first examples of social networks were

investigated by Jacob Moreno in 1934 [105]. Network theory not only allows to represent

any kind of systems it also provides powerful tools to analyze them in a quantitative ways.

Measures and techniques are continuously developed to cope with all the question and

issues concerning networks.

However, not only static network that represent a particular instance of a system are of

interest but also the time varying topology of interactions or processes running on them.

to assume that links persist over time indefinitely is a naive assumption and does not

align with most real world systems. The time-dependency of links can have a huge impact

on several properties an metrics of networks and were and still are often neglected in

network analysis. Further, network links usually only represent one type of interaction

or connection implying the most networks only allow for one-dimensional link analysis.

However, complex systems often exhibit different kind of interactions that can influences

each other and the elements of the system. Such interaction dynamics are lost in standard

networks that only capture a specific type of connection between its nodes.

In this chapter we will first introduce the basic methods and definitions of network theory,

focused on the tools that are used in this thesis. In the following we will address some of

the aforementioned limitations of classical network and provide extended frameworks to

deal with time-dependent and multi-dimensional systems. The frameworks are essential

for the approaches used in the later parts of the thesis that build on them.
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2.2 Definitions

A network is a pair G = (V,E) consisting of a set of nodes V and a set of links E. We

call V = V (G) the node set of G and E = E(G) the link set of. The functions V (·) and

E(·) are in general used to refer to the node and link set of a particular network.

The node set V (G) is an unordered set of elements which comprise the nodes of the

network. The number of elements in V (G) denoted by n = |V (G)| is called the size, order

or dimension of G.

The link set E(G) consist of pairs of nodes. More specifically,

E(G) ⊆ {(a, b)|a, b ∈ V (G)} =

(
V (G)

2

)
. (2.1)

Therefore E(G) is a subset of all possible combinations of two nodes of G. The nodes a

and b of a link e = (a, b) are called endpoints. The nodes that are part of a link e are

incident to e. If a and b are incident to at least one common link they are connected

and they are called neighbors or adjacent to each other. If nodes a and b are adjacent

the relational symbol ∼ can be used, i.e. a ∼ b. The number of links in E(G) is often

abbreviated by m = |E(G)| A particular arrangements of links in a network is usually

called network or link topology.

If the network is undirected the pairs in E(G) are unordered and the links are called

undirected. If the network is directed the pairs in E(G) are ordered and the links are

called directed. For a directed link e = (a, b) we call a the source node and b the target

node. To illustrate the link types a symbolic representation can be used. In case of a

directed link we use a→ b and for an undirected link a− b or a↔ b.

The network density refers to the ratio of the number of links present in the network to

the maximal number of links that are possible. For undirected networks it is equal to
2m

n(n−1) and for directed network it is equal to m
n(n−1) .

The degree of a node v is the number of links incident to v and is denoted by deg(v). In

case of a directed network we differentiate between in-degree and out-degree. The in-degree

of an node is the sum of all links where v is a target node and the out-degree of node is

the sum of all links where v is source node. The total degree of a node is usually the sum

of the in- and out-degrees of the node.

A network is called weighted if links can appear multiple times and therefore E(G) is a

multi set. Otherwise the network is called unweighted. We denote the weight of a link

e = (a, b) by ω(e) = ω((a, b)). In case of weighted networks a weighted degree can be used
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where the weight of links are also considered when calculating the degree.

A path is a ordered sequence of nodes {v1, v2, . . . , vk} such that all consecutive nodes are

part of a link in E(G). More precisely, (vi, vi+1) ∈ E(G) for all i ∈ {1, . . . , k− 1}. In case

of a directed network the links have to be directed in the same way, i.e. vi is the source

node and vi+1 the target node for all the links that are part of the path. The length of a

path is equal to k − 1 which is the number of links that are part of the path.

A shortest path between two nodes a and b is a path of minimal length with a and b at

its endpoints. Note that a shortest path does not have to be unique since there can be

several paths with the same length. The legnth of a shortest path between two nodes a

and b is also called geodesic distance or just distance between a and b. The diameter of a

network is the maximal length of a shortest path between any two nodes, i.e. the maximal

distance that occurs between two nodes.

A network is connected if any two nodes are part of at least one path. Otherwise it is

called disconnected. In case of a directed network and if there exist a path between any

two nodes that goes only in one direction that network is called weakly connected. If

there exists a path in both directions for any two nodes then the network is called strongly

connected.

A subnetwork Gs of G, denoted by Gs ⊆ G, is a pair Gs = (Vs, Es) such that Vs ⊆ V and

Es ⊆ E. The connected subnetworks of a disconnected network are called components of

G. The largest connected component of G is the component of maximal size and therefore

contains the most nodes.

A useful way to represent a network is the adjacency matrix. It is equal to a matrix A of

dimension n that is equal to the number of nodes in the network. As indicated by the name

the adjacency matrix captures which nodes are adjacent to each other. For a unweighted

network the elements Ai,j of A are equal to 1 if there exist a link between the nodes i

and j, otherwise Ai,j is equal to zero. Note, that the adjacency matrix requires that the

nodes are labeled by numbers or ordered in such a manner that they can be attributed to

rows and columns of the matrix. In case of an undirected network A is symmetric and

therefore Ai,j = Aj,i. A weighted adjacency matrix can capture the weights of links such

that Ai,j = ω((i, j)) with ω((i, j)) = 0 if there is no link between i and j.

In mathematics networks are called graphs, the nodes are called vertices and the links are

called edges. The other notions discussed in this sections generally apply to both, network

and graph theory.

15



2.2.1 Random walks

Here we introduce the framework of a random walk process that runs on the topology of

a network. In the following we provide a short summary that highlights the important

properties of this process. Note that these are facts already known from the theory of

random walks [16, 93], but later on we will aplly this framework to temporal and multi-

layer networks.

We assume a discrete time random walk process on a network G that consist of n nodes.

Starting at an arbitrary node, at each step of the process the walker moves to an adjacent

node. For a pair of nodes i, j the probability P (i → j) for a walker to move from node i

to node j is given by the corresponding entry Tij of a transition matrix T. Since we have∑
j P (i→ j) = 1, the transition matrix is row stochastic.

We further consider a vector πt ∈ Rn, whose entries πti indicate the probability of a random

walker to visit node i after t steps of the process. Here, we consider π0 as a given initial

distribution, whose entries π0
i give the probability that the random walker has started at

node i. The change of visitation probabilities πt → πt+1 can then be calculated based on

the transition matrix as follows:

πt+1 = πtT. (2.2)

Since this is an iterative process starting with π0, the visitation probability vector after t

time steps can be calculated as πt = π0Tt, and we can investigate the long-term behavior

of the random walk process for t → ∞. For a visitation probability vector π∗ such that

π∗T = v∗, we can say that the process reaches a stationary distribution π∗, and if the

transition matrix T is primitive, the Perron-Frobenius theorem guarantees that such a

unique stationary distribution π∗ exist.

In order to assess the convergence time of a random walk process, we can study the

total variation distance between visitation probabilities πt after t steps and the stationary

distribution π∗. For two distributions π and π′, the total variation distance is defined

according to Ref. [138] as

∆(π, π′) :=
1

2

∑

i

|πi − π′i| , (2.3)

where πi indicates the i-th entry of π.

As a proxy for diffusion speed, we can now investigate how long it takes until the total

variation distance ∆(πt, π∗) falls below some given threshold value ε. In other words, we

study how many steps t(ε) a random walker needs such that ∆(πt, π∗) ≤ ε for t ≥ t(ε).

The eigenvalues 1 = λ1 ≥ |λ2| ≥ . . . ≥ |λn| of a row-stochastic matrix necessarily have
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absolute values that fall between zero and one, while the largest eigenvalue λ1 is necessarily

one. The number of required time steps t(ε) (and thus the diffusion speed of the random

walk process) can be estimated by means of the the second-largest eigenvalue λ2 of T,

t(ε) ∼ −1

ln(|λ2|)
. (2.4)

For a detailed derivation see Ref. [27]. Eq. (2.4) shows that a second-largest eigenvalue

λ2 close to one implies slow convergence, while λ2 close to zero implies fast convergence.

Therefore in the following we use the second-largest eigenvalue of a transition matrix

λ2(T) as a proxy to measure and quantify the convergence behavior of a random walk on

a network.

2.2.2 Statistical ensemble

In network theory we can roughly distinguish two kind of perspectives, a micro and a macro

perspective. The micro perspective includes everything that is focused on a particular

network. Such as the degree of nodes or more general network measures such as the

diameter, the modularity and other topological indicators.

On the other hand the macro perspective only deals with statistical characterizations.

It provides no exact information about single nodes or particular networks. One rather

relies on stylized facts that comprise empirical findings. Hence, this perspective deals with

network classes.

To analyze classes of networks a stochastic approach is needed that deals with the lack

of knowledge about the microscopic details of a network. First some known properties

or aggregated statistics are considered as fixed. For example, this can be the number of

nodes and links or the degree distribution. Then all possible realizations of networks are

studied that share the same fixed properties. The set of all realizations preserving some

statistical properties is called an ensemble.

Formally, we denote the fixed aggregate statistics or properties of a network ensemble by

the macro state X. Based on stochastic modelM(X) we can generate network realizations

that are consistent with the macro state X. All network realizations that are consistent

with X are part of a sample space Ω(X). This means each network G ∈ Ω(X) represents

a micro state that is consistent with the macro state X. We can define a probability

measure P on the sample space Ω to assign a probability measure to each micro state

G ∈ Ω(X). We denote the ensemble of all realization given a stochastic model M that

are consistent with X by E(M;X) or E(M(X)).
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The goal of this construction is to study expected properties of network ensembles.

A reverse approach is to find an appropriate stochastic model that explains a particular

network in the best way. Assume that we observe an empirical network Ge. Given a

stochastic model M we can compute the likelihood that Ge was generated by M,

L(Ge|M) = L(M) := P (Ge|M) . (2.5)

Hence the likelihood is the conditional probability of Ge given the stochastic modelM. A

model is most plausible to generate Ge if its maximizes its likelihood. Therefore we intend

to find the maximum likelihood estimator M̂,

M̂ = argmaxML(M) . (2.6)

This procedure is equivalent to finding the most likely statistical ensemble for Ge and is

also called statistical inference. The ensemble that maximizes the conditional probability

encodes knowledge about the empirical network Ge.

Erdös-Rényi network A direct application of statistical ensembles to network theory

are random graph models. The most popular one is the Erdös-Rényi model (ER) [37]

usually denoted by G(n,m) or G(n, p). The parameters n and m respectively p represent

the macro state X of the stochastic model. The parameter n denotes the numbers of nodes

that is given. There are two version of the Erdös-Rényi model, one additionally considers

the number of links m the other one the probability p that there is a link between any two

nodes. The G(n,m) model uniformly at random chooses m pair of nodes and generates

a link. The G(n, p) model generates a link with probability p for each pair of nodes. For

n converging to infinity the two version are approximately the same. The ensembles can

be denoted as E(G(n, p)) and E(G(n,m)). All network realization that are part of this

ensemble share the same number of nodes n and the same number of links. Hence the

Erdös-Rényi model can be used to randomly generate network realizations that all share

the same link density.

18



2.3 Temporality

The network perspective provides a useful framework to study structures and dynamics

of complex systems. It is based on connectivity, interactions or other kind of relations

between elements in a system. However, sometimes not all dimensions of knowledge or

information of the system can be represented by the basic framework. In this situations

and extended modeling perspective is need to incorporate the desired properties or relation.

One of the most fundamental additional dimensions that is present in almost all natural

systems and real world data is time. Interactions or connections in a system usually do not

happen all at once and are also not persistent for eternity. To deal with the consequences

of time as an additional dimension an extended perspective is needed. One approach

to address this are temporal networks, a network perspective that includes time as an

additional ingredient in various ways.

The time dimension is present in most real-world data and there are different ways to deal

with it. Usually network studies got rid of the time dependency by aggregating interaction

happening in the system over some period of time. By summing up all interactions that

happen during a particular time-window the data get aggregated to allow for a static

representation. Link weights can be used to indicate how often a link a − b was present

over the time horizon of interest. If the data is spread over a large period of time, multiple

time-windows can be defined that slice the system into several instances. The single time-

slices can then be analyzed separately allowing to study the time evolution of certain

network measures. However, not all aspect of temporal structures, dependencies and

dynamics can be captured in this way.

Consider for example a transportation system that is prone to correct scheduling and rely

on fast delivery of needed goods. Assume that we need to send a shipment from harbor A

to harbor C, given that there is no cargo route from A to C and therefore no direct way to

pass on the delivery. However, assume there is an intermediate harbor B that maintains

shipping routes to harbor A and C. From a static network perspective the problem would

be solved by sending the shipment from A via B to C. However, in reality there are some

crucial issues that have to be considered when planning the execution of the delivery. It is

often important that the fastest way of delivery is chosen since delaying the transportation

can have severe monetary consequences. There may be different routes connecting A to

B and B to C that take different amount of time depending on the vessels that are used

or the amount of stops in between. Further, we have to assure that the delivery arrives

in harbor B before the connecting ship to C leaves it. This implies some waiting time

of the shipment in harbor B before the departure. Therefore, an optimized planing of a
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transport requires more detailed information about the system then what is captured in

a static network [15, 178].

The example shows that the timing and ordering of links can be crucial in a temporal

networks. Transportation systems, such as air transportations [119, 140], are not the only

application the requires the inclusion of time as a crucial dimension. Communication

and contacts between humans are a prominent example that includes several temporal

dimensions that should be considered when studying human interactions [34, 67, 89, 181].

Especially, in spreading of information and disease the temporal component can play an

crucial part [3, 70, 165]. In this thesis will we in particular focus on four interaction systems

and two transportation systems. But there are plenty other applications in biological

systems, such as cell biology and neural networks but also in ecological networks and

population biology. We refer the readers to two review articles by Petter Holme that

capture the diversity of fields dealing with temporal networks [68, 69].

The framework of temporal networks differs for the various works on the topic and are

usually tailored in respect of the property under consideration. In the following section we

introduce the definitions and methods that we use through out the thesis and represents

our perspective on temporal networks.

2.3.1 Temporal networks

In the classical sense networks consist of nodes and links. If needed one can also assign

properties to the nodes and links such as link weights. However, to capture the temporality

of links a richer framework is needed. We start by formally defining what a temporal

network is and how we describe it. We present how they can be visualized and what

means of aggregation can be used to simplify them.

In the following we clarify what we mean by the notion of a temporal network. We define

a temporal network GT = (V,ET ) as a tuple consisting of a set of nodes V and a set

ET ⊆ V × V × [0, T ] of time-stamped links (v, w; t) ∈ ET for an observation period

[0, T ]. The nodes have no temporal component and persist over time, only the links are

considered to be time-dependent. It is important to note that we assume discrete time

stamps t ∈ [0, T ]. This implies that we can not directly assign a duration to a link (v, w).

A time stamped link (v, w; t) indicates only the instantaneous presence of the link (v, w)

at time t. If a link (v, w) is present for some time interval [tstart, tend] we can use a small

unit of discrete time ∆ and add multiple time-stamped links (v, w; t) at time stamps

t = tstart, tstart + ∆t, tstart + 2∆t, . . . , tend. Even though, the discreteness assumption does

not allow for continuous links activity it can naturally be applied to real-world data.
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Figure 2.2: Illustration of temporal networks Time-unfolded and weighted static,
time-aggregated representation of two temporal networks G1 and G2.

Time-stamped data is typically obtained based on some sort of sampling, whose sampling

frequency defines the smallest unit of time ∆t.

2.3.2 Time-unfolded and time-aggregated networks

It can be helpful to visualize a temporal networkGT . To disentangle the temporal structure

that is contained in the link set ET we use the so-called time-unfolded networks. It is a

simple two-dimensional static representation. All nodes are arranged on a horizontal

dimension while time is unfolded to an additional vertical dimension as illustrated in

Figure 2.2. For an observation period [0, . . . , T ] and a given ∆t we can then add temporal

copies of all nodes for all possible time steps k∆t (for k = 0, 1, . . .). For simplicity, in the

following we assume ∆t = 1, which allows us to denote the temporal copies of a node v

as vt, vt+1, vt+2, . . .. The main benefit of this construction is that it allows us to represent

a time-stamped link (v, w; t) by means of a static link (vt, wt+1) connecting the temporal

copies vt and wt+1 of node v and node w respectively. The intuition behind this notation

is that a quantity residing at node v at time t can move to node w via a time-stamped

link (v, w; t), arriving there at the next time step t + 1. Two simple examples for time-

unfolded static representations of two different temporal networks with four nodes and

seven time-stamped links are shown in Figure 2.2a and Figure 2.2b.

Despite the recent development of methods to study temporal networks, the most wide-

spread way to study time-stamped network data is to aggregate all time-stamped links

into a static, time-aggregated network G = (V,E). This means that, given a temporal
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network GT = (V,ET ), two nodes v, w ∈ V are connected in the static network whenever

a time-stamped link exists at any time stamp, i.e., (v, w) ∈ E if and only if (v, w; t) ∈ ET

for any t ∈ [0, T ]. Additional information about the statistics of time-stamped links

in the underlying temporal network can be preserved by considering a weighted time-

aggregated network, in which weights ω(v, w) indicate the number of times time-stamped

links (v, w; t) have been active during the observation period. I.e., we consider a weighted

time-aggregated network with a weight function ω : E → N defined as

ω(v, w) := |{t ∈ [0, T ] |(v, w; t) ∈ ET}|.

Figure 2.2c shows the weighted, time-aggregated networks corresponding to the two tem-

poral networks shown in Figure 2.2a and Figure 2.2b. These simple examples highlight

the important observation that different temporal networks are consistent with the same

weighted, time-aggregated network. This is due to the fact that in the time-aggregated

network we lose all information on both the timing and the ordering of links in the temporal

network.

In Part I of the thesis we will further investigate the relevance ordering in temporal

networks. In Chapter 3 we discuss in more detail how one can navigate inside a temporal

network and how temporal paths can be defined. Nevertheless, the framework presented

so far already allows to capture time-stamped links in a network representation. This

extension only affects the link set ET that considers an additional parameter t for each

link indicating the point in time where the link was present. However, it is important to

emphasize that temporal network framework that we consider in this thesis only considers

discrete time-stamps. Other approaches on temporal networks may use different notations

or frameworks in this respect.

2.4 Interconnectivity

Networks provide as useful tool do represent and analyze a variety of systems. Sometimes

they have to be adjusted or extended to capture all of the relevant system properties

that one is interested in. One particular extension is the inclusion of time which lead to

temporal networks, as discussed in the previous section. Further, systems are often not

independent of their surrounding and can be influenced and therefore be connected to

other systems. This interconnectivity between systems also adds an additional dimension

to the system. The general inclusion of multiple dimensions and different networks in one

framework is referred to as multi-layer networks.
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One of the first examples studied in terms of interconnected or layered systems was a power

grid that revealed the importance of a comprehensive representation of complex system to

prevent cascades of failures [137]. The investigation evolved around an electrical blackout

that occurred in September 2003 in Italy. The blackout was sever and affected all of

the Italian mainland for several hours. The trigger was a cut of a power line, caused by

a storm, that supplied Italy from Switzerland. This disturbance lead to the failure of

other power supply lines from France which were exposed to an increased demand. The

circumstances that lead to the blackout had a technical origin and initially only affected

the northern part of Italy. However, also the communication system SCADA that is used

to manage the electric power grid was affected by the power shortage. As a consequence

the organization maintaining the power grid lost control and could not intervene. This

lead to the failure of further power stations increasing the area of the blackout. The

SCADA system itself is based on several communication servers throughout Italy, so that

the failure of one communication node should not impact the whole systems. However,

the failure of additional power stations also lead to the failure of further communication

servers that relied on them. The dependency between power station and communication

servers used to operate them were constructed in such a way that the blackout cascade

took all over Italy. The failure of a power station lead to the failure of a communication

server that in reverse affect further power stations and so on. This inter-dependency of

the power grid and the communication network was not foreseen. The two systems were

regarded in a independent way even though they crucially were dependent on each other.

The power grid example tells us that an isolated view on a complex systems can lead

to undesired consequences simply by intentionally or unintentionally neglecting the inter-

connectivity between two systems. Cascading effects and interdependency networks are

nowadays a well studied subject [23, 46, 179]. Interacting and interconnected systems are

therefore the focus of several studies [4, 87, 91, 149, 166]. The generalization of intercon-

nected network led to the investigation of network of networks (NON) [29, 31, 45, 94, 122].

In this perspective the interaction and dynamics inside a single network are secondary

rather the iteration between networks are focused on.

Multi-dimensional relations on the same system can also be studied from the perspective

of interconnected networks. Rather then focusing only on one type of interaction or

connection between elements of a systems several type of ties are investigated. Such

kind of studies are especially prominent in social network analysis were one tie between a

pair of individuals is usually not enough to understand and analyze social behavior and

relationships. One of the first investigations in this direction were done by Jacob Moreno

in 1934 [105]. He studied the relationship between members of a cottage family which

he depicted as a network. However, not only the existence of a social tie between family
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members were indicated but also different types such as friendly and refusing ties. This

way he already captured several dimensions in one network representation. Different type

of links are not only useful in social systems but also in other applications [25, 44, 76, 90].

Another approach to study multi-dimensional relations in a network is based on the theory

of hypergraphs [14]. They can be used in various applications [43, 53] and consider that a

single links does not only connect two nodes but a set of nodes. Depending on the real-word

system under investigation this methodology can offer a complementary perspective.

Until recently, the standard approach in the literature considered networks as isolated en-

tities that do not interact with other networks. Today we understand that this assumption

is a rough simplification, since real networks usually have complex patterns of interaction

with other networks. In order to study more realistic systems, network theory extended

its perspective to account for these network to network interactions, and to investigate

their influence on various processes of interest that may use the network topology as sub-

strate [46, 47, 55, 123]. Networks consisting of multiple networks and the connections

between them are called interconnected or multi-layer networks.

2.4.1 Multi-layer networks

In the following section we introduce the definitions and notions of multi-layer networks

and how they are applied in this thesis. Similar frameworks are commonly used nowadays,

see for example Ref. [18, 82].

We define a multi-layer network as a tuple M = (G, EI). The layer set G is a set of L

layers G1, . . . , GL. Each of these layers Gl is a single-layer network Gl = (Vl, El) where

V (Gl) and E(Gl) denote the nodes and links of layer l respectively. We call the links

E(Gl) between nodes within the layers l intra-links. EI is the set of interconnectivity links

between nodes that are part of different layers. We can formalize it as,

EI = {Es,t ⊆ Gs ×Gt|s, t ∈ {1, . . . , L}, s 6= t} , (2.7)

where Es,t contains all links that connect nodes from Gs to nodes in Gt. We call all

links that are part of EI inter -layer links, i.e. all links (u, v) for which u ∈ V (Gs) and

v ∈ V (Gt) for s 6= t. Inter-layer links induce a multipartite network with the independent

sets G1, . . . , GL.

The previous definitions are only a basic notion for a general framework. Depending on

the application the meaning of intra-layer and inter-layer links can vary. For example

in Chapter 6 inter-links and intra-links are only distinguishable in regard to the nodes
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they connect. Links that connect nodes from the same layer are considered intra-links

and links that connect nodes from different layers are considered inter-links. In respect

to their functionality in regard of a process or meaning they do not differ. However, in

Chapter 7 inter-layer links are correspondence links that connect nodes in one layer to

different type of nodes affiliated to them in another layer. On the other hand intra-layer

links are relational links between nodes of the same type.

Already this two examples highlight the huge variety of applications of the multi-layer

network approach. Therfore in each case the meaning of layers, inter- and intra-layer links

and different kind of nodes have to be clarified.

2.4.2 Types of multi-layer networks

As mentioned before the formal definitions presented in the previous section allow for

different interpretations. Depending on the application there are various possibilities to

represent multi-dimensional data in a multi-layer framework. However, some of them

share common properties that allow to classify or categorize them. In the following we

briefly present commonly used notions that specify particular representations of multi-layer

networks.

Network of networks To study interactions between different systems and how their

properties affect each other it is sometimes useful to regard them as networks of networks.

This notion implies that we take the perspective that each single network is regarded as

node in a meta network that connects the single networks. In such cases the network layers

usually share common properties or are of the same type such that the links within layer

have the same meaning. Hence, the focus in networks of networks are the inter-layer links.

The intra-layer topology is usually reduced to aggregate measures that allow to represent

this layer as a single node in a network of networks. Further, also the inter-layer links are

aggregated in such a way that only the layer that get connected are of interest and not

single nodes. Therefore the network of networks perspective is taken to investigate global

mechanisms that act on the whole multi-layer system and where the properties of single

layers are only relevant in regard to their contribution to the whole system. A network

of networks usually loses some of the information that is available in single layers and

therefore is a aggregation of a multi-layer system to a single network. An example of such

a multi-layer aggregation is presented in Chapter 6.
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Multiplex network A common way to represent different kind of relations between

the same set of nodes are so called multiplex networks. They build a subclass of general

multi-layer networks where the set of nodes is the same for all layers. Formally, Vl = V for

all l ∈ {1, . . . , L}. Therefore, a particular node v exists L times in the multiplex networks,

once as copy for each layer v1, . . . vL. The only thing that differs between the layers are the

intra-layer links. The inter-layer links are only considered to be correspondence links that

connect the same node throughout all layers. The set of inter-layer links of a multiplex

network can be defined as follows,

EI = {(vi, vj)|v ∈ V, i, j ∈ {1, . . . , L}, i 6= j} . (2.8)

If the layers are stacked in a specific order it is sometimes implied that only nodes of

consecutive layers are connected such that

EI = {(vi, vi+1)|v ∈ V, i,∈ {1, . . . , L− 1}} . (2.9)

Multiplex networks are well suited for application where different types of links between the

same set of nodes are investigated. An application of a multiplex network representation

is used in Chapter 7.

Multiplex networks can also be aggregated to a single layer which is then called a monoplex

network. The monoplex G = (V,E) consist of the initial node set and the aggregation of

all the intra-layer links

E =
L⋃

l=1

El . (2.10)

The monoplex perspective is therefore the aggregated view that does not allow to distin-

guish layers. It can be used to represent all of the relations between nodes with out taking

into account different types of links.
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“The whole history of science has been the gradual realization that events

do not happen in an arbitrary manner, but that they reflect a certain

underlying order, which may or may not be divinely inspired.”

Stephen Hawking

A Brief History of Time (1988)

Part I

Temporality
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Chapter 3

Temporal Ordering

Summary

Despite recent advances in the study of temporal networks, the analysis of time-
stamped network data is still a fundamental challenge. In particular, recent studies
have shown that correlations in the ordering of links crucially alter causal topologies
of temporal networks, thus invalidating analyses based on static, time-aggregated
representations of time-stamped data. These findings not only highlight an impor-
tant dimension of complexity in temporal networks, but also call for new network-
analytical methods suitable to analyze complex systems with time-varying topolo-
gies. Here we introduce a modeling framework that allows to capture the ordering of
links in temporal networks. Our approach demonstrates that higher-order aggregate
networks constitute a powerful abstraction, with broad perspectives for the design of
new, computationally efficient data mining techniques for time-stamped relational
data.

Based on the framework of higher-order aggregate networks introduced in Scholtes, I., Wider, N.,
Pfitzner, R., Garas, A., Tessone, C.J. and Schweitzer, F. Causality-driven slow-down and speed-up of
diffusion in non-Markovian temporal networks, Nature Communications, vol. 5, number 5024, 2014. and
Scholtes, I., Wider, N., Garas, A. and Schweitzer, F. Higher-Order Aggregate Networks in the Analysis of
Temporal Networks: Path structures and centralities , Eur. Phys. J. B 89 (3) 61, 2016. NW contributed
to the development, refinement and application of the methodology. Further, NW analyzed the data in
perspective of the higher-order approach.
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3.1 Introduction

The network perspective has provided valuable insights into the structure and dynamics of

numerous complex systems in nature, society and technology. However, most of the com-

plex systems studied from this perspective are not static, but rather exhibit time-varying

interaction topologies in which elements are only linked to each other at specific times

or during particular time intervals. The increasing availability of high-resolution data on

time-stamped or time-ordered interactions from a variety of complex systems has fostered

research on how different aspects of the temporal dynamics of networks influence their

properties. While the topological characteristics resulting from which elements are linked

to which other elements have been studied extensively, the importance of the additional

temporal dimension resulting from when these links occur has become clear only recently.

Despite an increasing volume of research, its full impact on the properties of complex sys-

tems and on the evolution of dynamical processes still eludes our understanding [68, 69].

Addressing this open issue, different strands of research have focused on the question how

different types of temporal characteristics of complex networks – such as the activation

times of nodes, the inter-event times between links, the duration and/or concurrency of

interactions, or the order in which these interactions occur – affect the properties of tem-

poral networks as well as dynamical processes evolving on them. Assuming that network

topologies change in response to the dynamical process running on top of them, another

line of research has studied adaptive networks, again highlighting that network dynamics

have important consequences for dynamical processes [59, 60].

Apart from the timing of interactions, the order in which these interactions occur is

another important characteristic of temporal networks. Compared to the rich literature

on node activities, a relatively smaller number of studies empirically investigated effects

of causality in temporal networks [80, 84, 85, 86, 88, 127, 135, 139]. Not only does the

ordering of interactions crucially affect causality in temporal networks, it has also been

shown to dramatically shift the evolution of dynamical processes compared to what we

would expect based on a static, time-aggregated perspective [86, 88, 127, 140, 144, 158].

Some of these works have further taken a modeling perspective, highlighting that real-

world temporal network data exhibit non-Markovian characteristics in the sequence of

links which are not in line with the Markovianity assumption that is (implicitly) made

when studying static representations of time-varying complex networks. Neglecting these

non-Markovian characteristics not only leads to wrong results about dynamical processes,

it also leads to wrong centrality-based rankings of nodes, as well as misleading results

about community structures [86, 115, 140, 144].
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The main reason why an analysis of static, time-aggregated networks yields misleading

results about the properties of temporal networks is that the ordering of links can alter

path structures in temporal networks compared to what we would expect based on their

static topology. Precisely, in static networks the presence of two links (a, b) and (b, c)

connecting nodes a to b and b to c necessarily implies that a path from a via b to c exists.

However in a temporal network, for a to be able to influence c the link (a, b) must occur

before the link (b, c) and thus the presence of a path depends on the ordering of links. The

so-called time-respecting paths respect causality, i.e. a time-respecting path only exists if

link (a, b) occurs before link (b, c) [69, 80]. In order to additionally consider the timing

of interactions, it is common practice to impose the additional constraint that links (a, b)

and (b, c) must occur within a certain time window, thus imposing a limit on the time a

particular process can wait in node b. As such, both the order and timing of interactions

affect time-respecting paths - and thus causality - in temporal networks. This simple

example highlights that the mere ordering of links in temporal networks can introduce

an additional temporal-topological dimension that can neither be understood from the

analysis of static, time-aggregated representations, nor from the analysis of inter-event

times or node activity distributions [127].

The remainder of this chapter is structured as follows: In section 3.2 we first introduce basic

concepts of time-respecting paths with maximum time differences between consecutive

links. In section 3.3 we introduce the framework of higher-order time-aggregated networks,

a simple abstraction of temporal networks that takes into account the statistics of time-

respecting paths up to a given length. In section 3.4 we present six empirical data that

exhibit temporal path structures and are analyzed by our framework in the following

chapters. This chapter introduces the fundamental concept and framework that will be

applied to several issues and real-world systems in Chapter 4 and Chapter 5

3.2 Time-respecting paths

The ordering of time-stamped links plays a crucial role in respect of causality of temporal

interactions. In this section we further investigate the concept of paths that respect the

ordering of links.

Recall the definition of a temporal network given in section 2.3.1. A temporal network

GT = (V,ET ) is a tuple consisting of a set of nodes and a set of time-stamped links for a

observation period [0, T ]. Also recall that in our framework a time-stamped link (v, w : t)

exists instantaneously at a discrete time step t.

Importantly, both the timing and the ordering of links influence path structures in tem-
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Figure 3.1: Illustrative examples Time-unfolded and weighted static, time-aggre-
gated representation of two temporal networks G1 and G2

poral networks. In particular, in the context of temporal networks we must consider

time-respecting paths, an extension of the concept of paths in static network topologies

which additionally respects the timing and ordering of time-stamped links [69, 79, 119].

In this thesis we define a time-respecting path between a source node v and a target node

w to be any sequence of time-stamped links

(v0, v1; t1), (v1, v2; t2) . . . , (vl−1, vl; tl)

such that v0 = v, vl = w and the sequence of time-stamps is increasing, i.e. t1 < t2 . . . < tl.

The latter condition on the ordering of links is particularly important since it is a necessary

condition for causality. This means that for any temporal network a node a is able to

influence node c based on two time-stamped links (a, b) and (b, c) only if link (a, b) has

occurred before link (b, c). A simple example for a time-respecting path (a, c; 1), (c, d; 5)

can be seen in Figure 3.1a, where the time-unfolded representation of the temporal network

G1 is illustrated.

At this point, it is important to note that, different from the usual notion of paths in

static networks, the question whether a time-respecting path exists between two nodes

requires to specify a start time t0 ≤ t1. In the example of Figure 3.1a we observe a time-

respecting path (a, c; t1 = 1), (c, d; t2 = 5) between node a and d, which can only be taken

if we consider paths starting at node a at time t0 = 1. If instead we were to ask for a

time-respecting path between a and d starting at node a at time t0 = 5, our only choice
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would be the path (a, c; 10), (c, d; 11).

3.2.1 Maximum time difference

In the definition of a time-respecting path above, we have required that the sequence of

time stamps of the links constituting the path must be increasing. Clearly, this condition is

rather weak since it makes no assumptions whatsoever about the time difference between

two consecutive time-stamped links on a time-respecting path. As such, for the mere

existence of a time-respecting path in a temporal network evolving over a period of years,

it is actually not important whether the time difference between two consecutive links is

a few seconds or a few years.

However, we typically study time-respecting path structures because they constitute the

substrate for the evolution of dynamical processes which have intrinsic time scales that are

much smaller than the period during which we observe a temporal network. In the study

of time-respecting paths, it is thus often reasonable to impose a maximum time difference

δ, i.e. we limit the temporal gap between two consecutive time-stamped links that are

considered to contribute to a time-respecting path to a maximum of δ [69, 119]. In this

case, rather than requiring a mere increasing sequence of time-stamps, we demand that

the condition 0 < ti+1−ti ≤ δ must be fulfilled for all i = 1, . . . , l−1. For a maximum time

difference of δ = 1, we thus limit ourselves to the study of time-respecting paths for which

all time-stamped links occur at immediately consecutive time stamps. As another limiting

case, we can consider δ = ∞, which means that we impose no further condition apart

from the requirement that the sequence of time stamps of links on a time-respecting path

is increasing. Revisiting the example of Figure 3.1a, we observe that the time-respecting

path (a, c; 1), (c, d; 5) only exists if we allow for a maximum time difference δ = 4, while for

all δ < 4 the only time-respecting path between the nodes a and d is (a, c; 10), (c, d; 11).

3.2.2 Shortest and fastest time-respecting paths

Let us now formally define the length of time-respecting paths in a temporal network,

which will allow us to define the notion of shortest time-respecting paths used throughout

our work. Due to the additional temporal dimension, the length of a time-respecting path

(v0, v1; t1), . . . , (vl−1, vl; tl)

can be studied both from a topological and a temporal perspective. Following the usual

terminology, we call the number l of time-stamped links on a time-respecting path the
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(topological) length of the path. We further call the time difference tl−t1+1 the duration of

the path. Here the increment by one accounts for the duration of the final link (vl−1, vl; tl),

i.e. for the fact that any process starting at node v0 at time t1 will only reach node vl at

time tl+1.

Having defined both, the length and duration of time-respecting paths, it is now triv-

ial to define the shortest time-respecting path between two nodes v and w as the time-

respecting path with the smallest (topological) length. In analogy, we define the fastest

time-respecting path as the time-respecting path with the smallest (temporal) duration.

Following our previous comment about the necessity to define a start time t0 for a time-

respecting path, it is clear that the shortest or fastest time-respecting path can only be

found unambiguously with respect to a given start time t0, i.e. at different times during

the evolution of a temporal network the same pair of nodes can be connected by different

shortest or fastest time-respecting paths.

3.2.3 Transitivity of paths in static and temporal networks

Let us conclude this preliminary section by highlighting important differences between

paths in static networks compared to time-respecting paths in temporal networks, that

result from the ordering and timing of links. Let us first highlight that paths in static net-

works are transitive. This means that from the presence of two paths (v0, v1), . . . , (vk−1, vk)

and (vk, vk+1), . . . , (vl−1, vl) between v0 and vk and between vk and vl respectively, we can

conclude that a path (v0, v1), . . . , (vl−1, vvl) between nodes v0 and vl necessarily exists1.

This transitivity has the important mathematical consequence that the entries in the k-th

power Ak of the adjacency matrix A of a static network topology count all possible paths

of length k between all possible pairs of nodes. Furthermore, transitivity of paths is the

basis for a wealth of algebraic network-analytic methods such as spectral partitioning, the

analysis of dynamical processes based on eigenvectors and eigenvalues, or the computation

of centrality measures that are based on eigenvalue problems.

Notably, the property of transitivity of paths in static networks does not extend to time-

respecting paths in temporal networks. Here, two time-respecting paths

(v0, v1; t1), . . . , (vk−1, vk; tk) and (vk, vk+1; tk+1), . . . , (vl−1, vl; tl) only translate into a time-

respecting path between v0 and vl if tk < tk+1 and, assuming that we impose a maximum

time difference δ, if 0 < tk+1 − tk ≤ δ.

The simple observation that transitivity of paths holds in static networks, while it does not

necessarily hold in temporal networks implies that by an analysis of static, time-aggregated

1Note though that this transitive path may or may not be the shortest path between the two nodes.
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networks, we may overestimate transitivity in temporal networks. We can again illustrate

this using our simple example of Figure 3.1, which shows two temporal networks G1 and

G2 that are both consistent with the same (weighted) time-aggregated network shown in

Figure 3.1c. Here, judging from the presence of a path (a, c), (c, d) in the time-aggregated

network, we may think that a time-respecting path connecting node a to d exists in the

underlying temporal network. Looking at the two temporal networks G1 and G2 shown

in Figure 3.1a and Figure 3.1b respectively, we see that at least for small values for the

maximum time difference δ (such as δ = 1) a corresponding time-respecting path only

exists in the temporal network G1, while it is absent in G2.

3.3 Higher-order aggregate networks

In the previous section we have seen that for large maximum time differences δ we expect

the shortest time-respecting paths to be rather similar to the shortest path in a static, time-

aggregated representation. This is an intuitive result since by using large maximum time

differences δ, we apply an implicit “aggregation” of time stamps which may nevertheless

be far apart in the temporal dimension. At the same time, we observe that for small values

of δ the temporal characteristics of the network result in time-respecting path structures

that are markedly different from those in the static, time-aggregated network. As argued

above, this implies that dynamical processes which evolve at time scales similar to that

of the temporal network will be significantly affected by these path structures. It further

questions the usefulness of path-based centrality measures that are computed based on

the commonly used time-aggregated representation of temporal networks.

In this section, we introduce higher-order time-aggregated networks, a simple yet powerful

abstraction of temporal networks which can be used to address some of the aforementioned

problems. It can be seen as a simple generalization of the usual first-order time-aggregated

representation introduced in Section 2.3.2.

3.3.1 k-th order aggregate networks

The key idea behind this abstraction is that the commonly used time-aggregated network

is the simplest possible time-aggregated representation whose weighted links captures the

frequencies of time-stamped links. Considering that each time-stamped link is a time-

respecting path of length one, it is easy to generalize this abstraction to higher-order

time-aggregate networks in which weighted links capture the frequencies of longer time-

respecting paths. For a temporal network GT = (V,ET ) we thus formally define a k-th
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order time-aggregated (or simply aggregate) network as a tuple G(k) = (V (k), E(k)) where

V (k) ⊆ V k is a set of node k-tuples and E(k) ⊆ V (k)× V (k) is a set of links. For simplicity,

we call each of the k-tuples v = v1 − v2 − . . . − vk (v ∈ V (k), vi ∈ V ) a k-th order node,

while each link e ∈ E(k) is called a k-th order link. We further assume that a k-th order

link (v, w) between two k-th order nodes v = v1− v2− . . .− vk and w = w1−w2− . . .−wk
exists if they overlap in exactly k−1 elements such that vi+1 = wi for i = 1, . . . , k−1. The

basic idea behind this construction is that each k-th order link (v, w) represents a possible

time-respecting path of length k in the underlying temporal network, which connects node

v1 to node wk via k time-stamped links Resembling so-called De Bruijn graphs [22], the

basic idea behind this construction is that each k-th order link (v, w) represents a possible

time-respecting path of length k in the underlying temporal network, which connects node

v1 to node wk via k time-stamped links

(v1, v2 = w1; t1), . . . , (vk = wk−1, wk; tk) (3.1)

In analogy to the weights in a usual (first-order) aggregate representation, we further define

the weights of such k-th order links by the frequency of the underlying time-respecting

paths in the temporal network. Considering a maximum time difference δ and two k-th

order nodes v = v1 − v2 − . . .− vk and w = w1 − w2 − . . .− wk we thus define

ω(v, w) := |P (v, w, δ)| (3.2)

where

P = {(v1, v2 = w1; t1), . . . , (vk = wk−1, wk; tk) : 0 < ti+1 − ti ≤ δ} (3.3)

is the set of all time-respecting paths in the temporal network that i) consist of the sequence

of links indicated in Eq. 3.1, and ii) are consistent with a given maximum time difference

of δ.

The higher-order aggregate network construction introduced above has a number of ad-

vantages. First and foremost, it provides a simple static abstraction of a temporal network

which can be studied by means of standard methods from (static) network analysis. Each

static path of length l in a k-th order aggregate network can be mapped to a time-respecting

path of length k+l−1 in the original network. Importantly, and different from a first-order

representation, k-th order aggregate networks allow to capture non-Markovian character-

istics of temporal networks. In particular, they allow to represent temporal networks in

which the k-th time-stamped link (vk = wk−1, wk) on a time-respecting path depends on

the k − 1 previous time-stamped links on this path. With this, we obtain a simple static

network topology that contains information both on the presence of time-stamped links
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in the underlying temporal network, as well as on the ordering in which sequences of k of

these time-stamped links occur.

3.3.2 Second-order aggregate networks

In the following, we illustrate our approach by constructing second-order aggregate repre-

sentations of the two temporal networks G1 and G2 shown in Figure 3.1. Both G1 and G2

are consistent with the same first-order time-aggregated network. We can easily generate

second-order time-aggregated networks of the two temporal networks by extracting all

time-respecting paths of length two (and assuming a given maximum time difference δ).

For simplicity, in the following we limit our study to δ = 1. For the temporal network

G1 shown in Figure 3.1a, we observe the following four different time-respecting paths of

length two:

(a, c; 1), (c, e; 2)

(b, c; 4), (c, d; 5)

(b, c; 7), (c, e; 8)

(a, c; 10), (c, d; 11)

Based on the definition of links and link weights outlined above, we thus obtain the

following four weighted second-order links:

ω(a− c, c− e) = 1

ω(b− c, c− d) = 1

ω(b− c, c− e) = 1

ω(a− c, c− d) = 1

The resulting second-order network is depicted in Figure 3.2a Applying the same method-

ology to the temporal network G2 shown in Figure 3.1b we obtain the following four

time-respecting paths of length two

(a, c; 1), (c, e; 2)

(b, c; 4), (c, d; 5)

(b, c; 7), (c, d; 8)

(a, c; 10), (c, e; 11)
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from which we obtain the following two weighted second-order links:

ω(a− c, c− e) = 2

ω(b− c, c− d) = 2

The resulting second-order aggregate network is shown in Figure 3.2b. Here we observe

(a) Temporal network G1 (b) Temporal network G2

Figure 3.2: Higher-order representation Second-order aggregate networks G(2)

corresponding to the two temporal networks shown in Figure 3.1.

that, even though the two temporal networks G1 and G2 only differ in the order of two

time-stamped links, the resulting second-order aggregate network is markedly different.

The second-order network of G1 indicates time-respecting paths connecting node a to

both nodes e and d (both paths passing via node c). In particular, this corresponds to

the connectivity that we would expect based on the transitivity of static paths in the

first-order aggregate network shown in Figure 3.1c. The second-order network shown in

Figure 3.2b reveals that the transitive path (a, c), (c, d) in the first-order aggregate network

does not translate to a time-respecting path in the temporal network G2.

Clearly, the second-order aggregate networks illustrated above are only a special, par-

ticularly simple type of general, higher-order aggregate networks. Nevertheless, in the

following chapters we will demonstrate that it contains important information about the

causal topology of temporal networks which can help us in the analysis of temporal net-

works. In what follows, we will thus provide an in-depth study of second-order aggregate

representations of six empirical data sets that will be introduced in the following section.
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3.4 Data Sets

In our studies we investigate six empirical data sets representing different types of temporal

networks. Some of them are time-stamped while others only consists of paths statistics.

A summary of the data sets can be found in table 3.1. In the following we provide

a brief description for each of the six data sets. Most of the data already comes in

suitable format of time-stamped links,i.e. (v, w; t), that directly can be transformed into

a temporal network. In the subsequent sections we discuss how time-aggregate network

can be constructed from the data and how a maximum time difference can be chosen.

Ants (AN) The ants data is the only system we consider that is not based on human

interactions or movements. It covers time-stamped antenna-antenna interactions inferred

from a filming of ants in an ant colony. The interactions are between individual pairs

of ants that are part of the colony. We used the largest data set provided by Blonder

and Dornhaus [17]. More specifically the first filming of colony 1 with a total of 1911

antenna-body interactions between 89 ants recorded over a period of 1438 seconds. The

data comes already in time-stamped link format, e.g. GBGW WBYG 1093 where the

number indicate the time in terms of seconds when the interaction was recorded.

E-Mail (EM) This data set covers E-Mail exchanges inside a company [102]. The

data was recorded over a period of nine months between 167 employees of a medium-size

manufacturing company. We used a subset covering close to 11, 000 E-mail exchanges

occurring during the first month of the observation period. The data comes in format

of a link list from sender to recipient followed by the time-stamp e.g. 17;37;2010-01-02

17:40:10. Messages with multiple recipients are recorded as separate links.

Hospital (HO) The hospital data consists of time-stamped contacts between 46 health-

care workers and 29 patients in a hospital in Lyon [164]. Contacts have been recorded

via proximity sensing badges in the week from Dec. 6 to Dec. 10 2010. For our analysis,

we used a subset of more than 15, 000 contacts occurring within the first 48 hours of

the observation period. The data comes with a time-stamp followed by the id’s of the

interacting people. Additionally, the data also contains the profession of the person that

we don’t consider in our study, e.g. 6240 1152 1193 MED NUR.

Reality Mining (RM) Another human interaction network we consider is based on

the reality mining project, a contact network of students and academic staff members at
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a university campus. The data uses time-stamped proximity data recorded via Bluetooth-

enabled phones at a university campus over a period of more than six months [34]. In our

study we extracted a subset covering the week from September 8th to 15th 2004, which

comprises a total of 26 260 time-stamped interactions between 64 individuals. If two

individuals are in the range of 5-10m to each other it is recorded as interaction. The data

provides a list like format of the corresponding MAC address of phones in close enough

range from which we extract the interactions as links, e.g. 61961025059 61961024891 21.

Flights (FL) The airline transportation networks represents multi-segment itineraries

of airline passengers on domestic flights in the United States. The data has been extracted

from the freely available RITA TranStats Airline Origin and Destination Survey (DB1B)

database [2], which contains 10 % samples of all airline tickets sold in the United States

for each quarter since 1993. For our study we extracted 230 000 multi-segment flights

ticketed by American Airlines in the fourth quarter of 2001, which connect a total of 116

airports in the United States. There are no time-stamps in this data set but only pathways

of flight tickets. Hence it is not a ”real” temporal network but rather a topological one.

For each ticket number i, an itinerary consists of a time-ordered sequence of multiple flight

segments between airports indicated by their three-letter IATA code. An example for a

time-ordered itinerary with ticket number i is given in the following:

i, CLT,ORF

i,ORF,LGA

i, LGA,ORF

i,ORF,CLT

While no precise time stamps are known for individual segments, their ordering allows

to directly construct time-respecting flight paths taken by individual passengers. For the

example above, a time-respecting path

(CLT,ORF ; 1)→ (ORF,LGA; 2)→ (LGA,ORF ; 3)→ (ORF,CLT ; 4)

can be constructed. Here time-respecting paths necessarily consist of interactions which

immediately follow each other in subsequent time steps, since otherwise a spurious flight

path (CLT,ORF ; 1) → (ORF,CLT ; 4) would be inferred for the example above. Fur-

thermore, a time-respecting path is only inferred if the ticket number of consecutive flight

segments is identical.
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London Tube (LT) This data set captures passenger journeys in the London under-

ground transportation network. The data has been extracted from the freely available

Rolling Origin & Destination Survey (RODS) database [92] provided by the London Un-

derground. The RODS database covers a 5 % sample of all journeys made by passengers

who used the Oyster electronic ticketing card during a period of one week. This amounts

to a total of more than four million passenger flows between 309 London Underground

stations. The flow data comes without precise time-stamps but allows a topological con-

struction of the passenger movements. A flow from A to B contains of the total of all

passengers that entered the London Underground at station A and left it at station B, i.e.

Acton Town;Alperton;325. To get the full path from A to B we map those passenger flows

to a network representation of the London Underground. The shortest path between A

and B on the network provides us with detailed itinerary data. We then computed time-

respecting paths based on directly consecutive travel segments like A→ S1 → S2 → . . . B.

3.4.1 Higher-order time-aggregated networks from data

Extracting time-respecting paths in the six data sets allows us to construct higher-order

time-aggregated representations of the underlying temporal interaction sequences. We

apply our approach to the the six data sets described in section 3.4. A temporal network

GT consists of directed time-stamped links (v, w; t) for nodes v and w and discrete time

stamps t. A first-order time-aggregated network G(1) can then be defined, where a directed

link (v, w) between nodes v and w exists whenever a time-stamped link (v, w; t) exists in

GT for some time stamp t. In addition, link weights w(1) (v, w) can be defined as the

(relative) number of link occurrences in the temporal network. Considering that links

can be thought of as time-respecting paths of length one, we can similarly construct

a second-order time-aggregated network by considering time-respecting paths of length

two. For this, we define a second-order time-aggregated network G(2) as tuple (V (2), E(2))

consisting of second-order nodes V (2) and second-order links E(2). Second-order nodes

e ∈ V (2) represent links in the first-order aggregate network G(1). Second-order links E(2)

represent all possible time-respecting paths of length two in G(1). Based on the definition

of time-respecting paths with a maximum time difference δ, second-order link weights

w(2)(e1, e2) can be defined based on the frequency of two-paths, i.e. the frequency of time-

respecting paths (a, b; t1) → (b, c; t2) of length two in GT (for 1 ≤ t2 − t1 ≤ δ). Since

multiple two-paths (a′, b; t) → (b, c′; t′) can pass through node b at the same time, it is

necessary to proportionally correct second-order link weights for all multiple occurrences.
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For the simple case δ = 1, one can define second-order link weights as

w(2) (e1, e2) :=
∑

t

δ(a,b;t−1)δ(b,c;t)∑
a′,c′∈V δ(a′,b;t−1)δ(b,c′;t)

, (3.4)

where δ(a,b;t) = 1 if linke (a, b; t) exists in the temporal networkGT and δ(a,b;t) = 0 otherwise.

Following the arguments above, it is simple to generalize weights to capture two-paths

(a, b; t1)− (b, c; t2) for 1 ≤ t2 − t1 ≤ δ.

3.4.2 Choice of a maximum time difference

Regarding the choice of a reasonable maximum time difference δ for the notion of shortest

time-respecting paths as discussed in section 3.2.1, we emphasize that the choice of this

parameter needs to be adapted to the inherent time scale of the network evolution in

each of the six data sets individually. In general, such a choice is non-trivial as it heavily

influences i) whether or not pairs of nodes can reach each other, and ii) to what extent

temporal characteristics influence the structures of time-respecting paths. In particular,

for too small choices of δ the definition of time-respecting paths is likely to be too restrictive

and almost no paths will be found [69, 119]. Contrariwise, the choice of a too large value

for δ results in the fact that we effectively “aggregate” the time-stamped sequence of links,

thus discarding information about the detailed ordering and timing of links. In general,

we have chosen the maximum time difference δ as the smallest possible value such that

the set of nodes that can mutually influence each other via time-respecting paths (i.e.

the strongly connected component) represents a sizable fraction of the network. For the

(AN) data, a maximum time difference δ of six seconds was applied, which gives rise to

a subset of 61 nodes that can reach each other via time-respecting paths. For the (EM)

data set, we used a maximum time difference δ of 60 minutes, resulting in a subset of 96

employees mutually connected via time-respecting paths. For the (HO) and (RM) data

sets, we used a maximum time difference δ of five minutes, which resulted in a subset of

53 and 58 individuals respectively who can mutually reach each other via time-respecting

paths. While the condition of maximum time difference δ is crucial for the (AN), (RM),

(HO) and (EM) data sets, for the (FL) and the (LT) data set we can use a strict definition

of a time-respecting path and only consider consecutive travel segments. For the (FL)

data set, the strongly connected component comprises 116 airports, while it comprises 132

underground stations in the (LT) data set.

In general, the optimum choice of δ depends on i) temporal characteristics of the temporal

network under investigation, and ii) the time scale of the dynamical processes one is
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Data Sets Nodes Links δ Type
Ants (AN) 61 300 6 sec Animal interaction
E-Mail (EM) 96 701 60 min Messaging
Hospital (HO) 53 928 5 min Human interaction
RealityMining (RM) 58 899 5 min Human interaction
Flights (FL) 116 1316 itineraries Transportation
London Tube (LT) 132 334 itineraries Transportation

Table 3.1: Summary of the six data sets used for the temporal networks study
While AN, EM, HO and RM are based on time-stamped data, FL and LT are merely based
on itineraries.

interested in. In this study, we have used a rather simple and heuristic method, defining δ

as the smallest value that still renders the system strongly connected in a temporal sense.

In general a more principled approach which, e.g., inherently couples the choice of δ to a

characterization of inter-event time statistics would be desirable.

3.5 Conclusion

In this chapter we introduced the framework of higher-order aggregate networks. This is

an abstraction of temporal networks that relies on the statistics of time-respecting paths.

The concept of time-respecting paths requires time-stamped links and the fixation of a

maximum time-difference δ. All links that happen within the period δ are considered to

be consecutive hence allowing the formation of a network path. Higher-order aggregate

network explicitly account for the causality present in time-respecting paths up to a given

length k. Therefore higher-order aggregate networks include additional information about

the ordering of links that is not possible in terms of time-aggregated first-order networks

Further we have shown how we can extract higher-order aggregate networks from real-

world data sets. Since, the framework explicitly focus on path structures we can also

analyze data sets where no time-stamps are available but we instead have a given ordering

of links. In the following two chapters we show how the presented framework can be used

to approach the analysis of properties of temporal systems and how it compares to the

classical time-aggregated perspective.
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Chapter 4

Temporal Centralities

Summary

Addressing temporal ordering, we introduce a novel framework for the study of
path-based centralities in temporal networks. Focusing on betweenness, closeness
and reach centrality, we first show that an application of these measures to time-
aggregated, static representations of temporal networks yields misleading results
about the actual importance of nodes. To overcome this problem, we define path-
based centralities in higher-order aggregate networks, a previously introduced gener-
alization of the commonly used static representation of time-stamped data. Using
data on six empirical temporal networks, we show that the resulting higher-order
measures better capture the true, temporal centralities of nodes. This results high-
light that higher-order aggregate networks are a powerful tool to incorporate path-
based statistics in temporal networks.

Based on Scholtes, I., Wider, N. and Garas. A. Higher-Order Aggregate Networks in the Analysis of
Temporal Networks: Path structures and centralities , Eur. Phys. J. B 89 (3) 61, 2016. NW contributed to
the concept of the temporal centrality measures, implemented the reach centrality, analyzed the data and
discussed the results. NW also contributed to the development of the higher-order aggregate networks.
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4.1 Introduction

Understanding and analyzing complex systems bears a variety of challenges. Interaction

between elements of a systems not only influence the directly involved actors but can also

lead to emergent effects on the systemic level. To investigate such dynamics it is not only

important to know the immediate interactions of an individual but also its importance in

respect to the whole system. In network theory this question is addressed with centrality

measures.

Some of the first studies that addressed the centrality of individuals originated from social

science. It was investigated how central positions and leadership increases the group

efficiency in solving problems [12, 13, 147]. Different communication patterns between

group members were analyzed and it was found that better connected groups increase

their performance. Further, leaders among initially equal group members often emerged in

central positions of the communication. All lot of similar studies and experiments followed

to entangled the effects of different centrality measures. The results varied across different

research leading to sometimes confusing and contradicting conclusions [24]. The concept of

centrality is tied to the contextual application and therefore has to be interpreted carefully.

What kind of positions inside a system are regarded central varies according to its defi-

nition. In a social network a person with a lot of friends may be in a good position to

spread his ideas. On the other hand a lot of social contacts makes the person also more

prone to get influenced. Also in technical [64, 172], economical [128] and financial [11]

systems centrality is an important issue. Banks that have a lot of liabilities are at higher

risk during a financial crisis. In power grids it is important to know how to prevent black-

outs by securing or supporting crucial connectors in the network. In trade networks not

necessarily the amount of trade relations is most important but rather a unique position in

connecting different parts of the systems such that distant trade relationship are channeled

through the one node. The context is important in all this examples to asses what kind

of centrality is relevant for the intended study.

The framework of centrality measures plays an important role in network analysis. New

and refined measures are developed all the time to keep up with specific needs. Even

though, more elaborate tools get available this measures are normally only applied to

static networks. Temporal data is usually aggregated over certain time-windows before it

analyzed with casual measures. However, the temporal structure of time-respecting path

gets destroyed in this process. A static centrality analysis can lead to misleading results

about the importance of nodes in respect to time-respecting processes or topologies [114,

155, 157]. Centralities that are based on paths connecting distant nodes are directly
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affected.

Highlighting the important consequences introduced by the specific ordering of links in

real-world temporal networks, in this chapter we study how this ordering affects path-based

centrality measures in temporal networks. Building on the concept of time-respecting

paths with a maximum time difference between consecutive links as previously discussed in

Chapter 3 and Refs. [69, 119], we introduce three different notions of path-based temporal

node centralities which emphasize the additional temporal-topological dimension that is

introduced due to the ordering of links in temporal networks. We generalize usual static

network centralities and take into account the temporal ordering that preserves time-

respecting paths. In particular, we formally define temporal variations of betweenness,

closeness and reach centrality and demonstrate how they can be computed based on the

topology of shortest time-respecting paths emerging in temporal networks. Calculating

these temporal centrality measures for six empirical data sets, we quantify to what extent a

ranking of nodes based on temporal centralities coincides with a ranking of nodes based on

the same measures, however calculated based on the corresponding static, time-aggregated

networks. From our results we conclude that a static analysis of node centralities yields

misleading results about the importance of nodes with respect to time-respecting paths.

Generalizing the usual time-aggregated static perspective on temporal networks, we further

develop the second-order time-aggregated representations introduced in Chapter 3, ob-

taining higher-order time-aggregated representations which can be conveniently analyzed

using standard network-analytic methods. Notably, despite being static representations

of temporal networks, we show that these higher-order representations allow to incorpo-

rate those order correlations that have been shown to influence the causal topologies of

temporal networks. We finally define generalizations of static betweenness, closeness and

reach centrality based on a second-order aggregate representation of temporal networks.

Using six data sets on temporal networks, we show that these second-order generaliza-

tions of centralities constitute highly accurate approximations for the centrality of nodes

calculated based on the detailed time-respecting path structures in temporal networks.

The remainder of this chapter is structured as follows: In Section 4.2 we define three

temporal centrality measure which account for the temporal-topological characteristics in-

troduced by the shortest time-respecting path structures in real-world temporal networks.

Comparing the importance of nodes according to i) temporal centralities, ii) centrali-

ties calculated based on a commonly used static, time-aggregated representation, and iii)

second-order centralities calculated based on a static, second-order time-aggregated repre-

sentation, we show that higher-order aggregate networks provide interesting perspectives

for the analysis of temporal networks.
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4.2 Temporal node centralities

We will focus our analysis on three widely adopted path-based notions of centrality, namely

i) betweenness, ii) closeness and iii) reach centrality. The rationale behind this choice is

that all of these three measures can easily be computed based on paths in time-aggregated

networks, while they additionally facilitate a straight-forward extension to temporal net-

works based on the notion of shortest time-respecting paths (c.f. similar extensions studied

in [69, 81, 154]). In the following, we first formally define the temporal betweenness, close-

ness and reach centrality of nodes. We then compute the resulting measures for all nodes

based on the actual shortest time-respecting paths in the time-stamped link sequences in

our six data sets (and using the individually determined maximum time difference δ). The

resulting centrality scores are considered as the ground-truth against which we then com-

pare the centrality scores resulting from the application of the same centrality measures to

i) the commonly used (first-order) time-aggregated representation, and ii) a second-order

aggregate network representation of the corresponding temporal network.

4.2.1 Temporal betweenness centrality

We first address the question to what extent the temporal betweenness centrality of nodes

in a temporal network can be approximated by means of static betweenness centralities

calculated based on static, time-aggregated representations. To this end, we first formally

define the temporal betweenness centrality of a node in a temporal network. According to

the common definition, the (unnormalized) betweenness centrality of a node v is simply

calculated as the total number of shortest paths passing through node v [40]. Highlighting

the fact that we can directly apply this measure to first-order time-aggregated networks,

we thus define the first-order betweenness centrality BC(1)(v) of a node v as

BC(1)(v) :=
∑

u6=v 6=w

|P (1)(u,w; v)| (4.1)

where P (1)(u,w; v) denotes the set of those shortest paths from node u to w in a static

network that pass through node v.

Applying this idea to temporal networks, a straight-forward way to define the temporal be-

tweenness centrality of a node is to count all shortest time-respecting paths passing through

it. However, and as mentioned in Section 3.2, temporal networks introduce the compli-

cation that, in order to unambiguously define shortest time-respecting paths, we need to

include a start time t0 starting from which time-respecting paths are to be considered. For
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each pair of nodes u, v and each start time t0 we can thus directly define an instantaneous

distance function for a temporal network as

disttemp(u, v, t0) := len(p), p ∈ P temp(u, v, t0) (4.2)

where P temp(u, v, t0) denotes the set of shortest

time-respecting paths from u to v that start at time t0 (and which are consistent with

a given maximum time difference δ). Based on this instantaneous definition of shortest

time-respecting paths, we can further define a distance function that gives the minimum

distance across any start time as follows:

disttemp(u, v) := min
t0

disttemp(u, v, t0) (4.3)

With this we can further define the set of shortest time-respecting paths across all start

times as

P temp(u, v) :=
⋃

t0

{p ∈ P temp(u, v, t0)|len(p) = disttemp(u, v)} (4.4)

i.e. we only consider those (instantaneous) shortest time-respecting paths whose lengths

correspond to the minimum shortest time-respecting length across all possible start times.

We can now define the temporal betweenness centrality BCtemp(v) of a node v in analogy

to Eq. 4.1 as

BCtemp(v) :=
∑

u6=v 6=w

|P temp(u,w; v)| (4.5)

where P temp(u,w; v) denotes the set of those shortest time-respecting paths across all start

times which connect node u to w and which pass through node v.

Let us illustrate this definition using the temporal networks shown in Figure 3.1a and

Figure 3.1b. Applying the static betweenness centrality as defined in Eq. 4.1 to the first-

order aggregate network shown in Figure 3.1c, we find that for node c we have BC(1)(c) = 4,

while for all other nodes we have a betweenness centrality of zero. Again assuming δ = 1,

for the temporal betweenness centrality of node c in network G1 shown in Figure 3.1a,

we find that indeed four shortest time-respecting paths pass through node c, i.e. we have

BCtemp(c) = 4 while we again have a zero temporal betweenness centrality for all other

nodes. Notably, in this particular case the temporal betweenness centralities of nodes

correspond to the betweenness centralities of nodes calculated based on the first-order

time-aggregated network. This happens because all paths in the first-order aggregate
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network have a counterpart in terms of a shortest time-respecting path.

However, in Section 3.2 we have seen that, in general, shortest time-respecting paths

in temporal networks may not coincide with shortest paths in the (first-order) time-

aggregated network. As a consequence, the temporal betweenness centralities of nodes

may differ from the first-order betweenness centralities calculated from a static, first-order

aggregate representation. This can be seen for the temporal network G2 shown in Fig-

ure 3.1b. Based on the temporal sequence of time-stamped links, here we find only two

different shortest time-respecting paths passing through node c, namely one connecting

node a via c to e and a second one connecting node b via c to d. The two additional

shortest time-respecting paths found in G1 are absent in G2, therefore in G2 node c has a

temporal betweenness centrality BCtemp(c) = 2, thus being, at least from the perspective

of temporal betweenness centrality, less important than in G1.

In the following we study the question to what extent first-order betweenness centralities

can be used as a proxy for the temporal betweenness centralities of nodes in our six data

sets of real-world temporal networks introduced in Section 3.4. In particular, we study

this question in the following way: For each node v in the six data sets we calculate i) the

first-order betweenness centrality BC(1)(v) based on the first-order aggregate network, as

well as ii) the (ground truth) temporal betweenness centrality BCtemp(v) based on actual

shortest time-respecting paths in the temporal network. We then assess the correlation

between both measures by computing the Pearson correlation coefficient (as well as the

corresponding p-value) for the sequence of paired values (BC(1)(i),BCtemp(i)) for all nodes

i ∈ V .

Since centrality scores of nodes in networks are often used and interpreted in a relative

fashion, we further perform an additional analysis that accounts for variations in the actual

centrality values, which however may not affect the relative importance of nodes. For this,

we first rank nodes according to their temporal and first-order betweenness centralities

respectively. We then calculate the Kendall-Tau rank correlation coefficient in order to

quantitatively assess to what extent nodes are ranked similarly according to both notions

of centrality (even though the actual centrality values for these nodes may differ).

The results of this analysis are shown in the left column of Table 4.1, in which we report

both the Pearson as well as the Kendall-Tau rank correlation coefficients between the

temporal and the first-order betweenness centralities of nodes for each of the six data sets

introduced before. Here, a first interesting result is that both the Pearson and the Kendall-

Tau rank correlation coefficients exhibit a large variation between 0.80 and 0.99, as well

as 0.62 and 0.81 respectively. The results indicate that, depending on the characteristics

of the underlying temporal network, temporal betweenness centralities can be reasonably
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BCtemp ∼ BC(1) BCtemp ∼ BC(2)

Pearson Kendall-Tau Pearson Kendall-Tau
Ants (AN) 0.82 (3.49e-16) 0.64 (2.05e-13) 0.80 (1.96e-14) 0.59 (1.94e-11)
E-Mail (EM) 0.80 (3.29e-22) 0.73 (8.36e-26) 0.97 (7.52e-60) 0.74 (1.11e-26)
Hospital (HO) 0.93 (2.39e-23) 0.81 (1.18e-17) 0.96 (2.36e-30) 0.87 (5.55e-20)
RealityMining (RM) 0.95 (2.83e-30) 0.62 (7.28e-12) 0.93 (3.74e-26) 0.75 (1.12e-16)
Flights (FL) 0.99 (6.91e-108) 0.66 (9.09e-26) 0.99 (2.66e-98) 0.65 (4.25e-25)
London Tube (LT) 0.85 (2.58e-37) 0.66 (1.22e-29) 0.87 (3.28e-42) 0.71 (9.32e-34)

Table 4.1: Pearson and Kendall-Tau rank correlation coefficients between temporal
betweenness centrality (ground truth) and betweenness centrality calculated based on the
first-order aggregate network and the second-order aggregate network. Values in paren-
theses indicate the p-value.

well approximated by first-order betweenness centrality for some data sets (e.g., for (FL),

(HO), (RM)) while such an approximation should be taken with caution for other data

sets.

Based on these results it is reasonable to ask if we can better approximate temporal cen-

trality, especially for those data sets where the correlation between the first-order and the

temporal betweenness centrality is comparably weak. In Section 3.3 we have argued that

the generalization of higher-order aggregate networks allows to construct static represen-

tations of temporal networks that capture both temporal and topological characteristics

that emerge from the ordering of links and the statistics of time-respecting paths. Fo-

cusing on a second-order representation, in the remainder of this section we will study to

what extent second-order aggregate networks can be used in the analysis of temporal node

centralities.

Importantly, such an analysis is facilitated by the fact that second-order aggregate net-

works are static networks, which allows for a straight-forward application of standard

centrality measures to the second-order topology. In the case of second-order aggregate

networks, applying standard centrality measures we obtain centrality values for higher-

order nodes (v, w), each of the higher-order nodes being a k-tuple of nodes in the first-order

network. In order to arrive at a centrality measure for the original (first-order) nodes, we

thus must project this measure to the level of nodes in the first-order network.

Luckily, this can be done in a simple way which we outline in the following: For a second-

order network G(2) =
(
V (2), E(2)

)
, let us first define a second-order distance function

dist(2)(v, w) which, for each pair of first-order nodes v, w ∈ V (1), gives the length of a
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Figure 4.1: Simple example for a second-order aggregate network

shortest path based on the topology of the second-order aggregate network as

dist(2)(v, w) := min
x,y∈V (2)

x=v−∗
y=∗−w

L(2)(x, y) + 1 (4.6)

where L(2)(x, y) denotes the length of a shortest path between the second-order nodes

x, y ∈ V (2). The rationale behind this definition is that in the second-order aggregate

network, we can have multiple shortest paths with different lengths between different

second-order nodes, which nevertheless map to paths between a single pair of first-order

nodes. As an example, consider the two first-order nodes a and d in the simple second-order

network shown in Figure 4.1. Here we observe that, from the perspective of second-order

nodes, both (a− b, b− d) as well as (a− b, b− c), (b− c, c− d) are shortest paths (between

different pairs of nodes) in the second-order network with lengths L(2)(a − b, b − d) = 1

and L(2)(a− b, c− d) = 2 respectively. However, from the perspective of first-order nodes

both of these second-order paths connect node a to node d (via paths of length 2 and 3

respectively). Using the definition from Eq. 4.6 thus allows us to correctly calculate the

second-order distance between a and d as dist(2)(a, d) = L(2)(a− b, b− d) + 1 = 2.

The above definition of a second-order distance function now allows us to define a second-

order betweenness centrality BC(2)(v) of a node v based on Eq. 4.1. For this, we simply

count all second-order shortest paths between two nodes u and w which i) pass through

node v, and ii) whose length corresponds to the second-order distance dist(2)(u, v). For-
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mally, we define

BC(2)(v) :=
∑

x 6=y∈V
u−x∈V (2)

y−w∈V (2)

|{p ∈ P (2)(u− x, y − w; v) : len(p) = dist(2)(u,w)}| (4.7)

where, in analogy to P (1)(u,w; v) above, P (2)(u−x, y−w; v) denotes the set of all shortest

paths in the second-order network that connect node u−x to y−w and that pass through

a first-order node v.

With this, we have defined a second-order betweenness centrality which allows to calcu-

late node centralities in a way that incorporates the causal topology as captured by the

second-order aggregate network. Let us again illustrate this approach using the simple ex-

amples shown in Figure 3.1. For the temporal network G1 we can compute a second-order

betweenness centrality based on the second-order network shown in Figure 3.2a. Here we

observe a total of four shortest paths between pairs of nodes in the second-order network,

namely:

(a− c, c− e)
(a− c, c− d)

(b− c, c− d)

(b− c, c− e)

For each node in the first-order network, we can now count the number of second-order

shortest paths that they are on, obtaining B(2)(c) = 4 while B(2)(x) = 0 for all nodes x 6= c.

In this particular case, the second-order betweenness centrality values exactly correspond

both to the temporal as well as the first-order betweenness centralities. Again, this is

different for the temporal network G2 shown in Figure 3.1b. Considering the second-order

aggregate network shown in Figure 3.2b, we only find the following two shortest paths in

the second-order aggregate network

(b− c, c− d)

(a− c, c− e)

thus obtaining BC(2)(c) = 2. Here, we find that while the second-order betweenness

centralities in G2 corresponds to the temporal betweenness centralities, they differ from

those calculated from the first-order aggregate network. The reason for this is that in the

example G2 shortest time-respecting paths of length two differ from what we would expect
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based on the first-order network.

We emphasize that the exact correspondence between the second-order and the temporal

betweenness centralities in the examples discussed above is because we have no shortest

time-respecting paths of length three or longer, whose presence could differ from what we

expect based on the second-order network. To what extent this affects the applicability

of second-order aggregate networks in real-world scenarios is not clear and thus requires

a further investigation. In the following, we thus study to what extent second-order be-

tweenness centrality can be used to approximate the temporal betweenness centralities of

nodes in the six real-world data sets studied above. For this, we first construct a second-

order aggregate network as introduced in Section 3.3. We then calculate the betweenness

centrality values BC(2)(v) of all nodes v as described above, comparing the resulting cen-

tralities with the (ground-truth) temporal betweenness centralities BCtemp(v).

The results of this analysis are shown in the right column of Table 4.1. Here we find that

for most of the data sets, second-order betweenness centralities are correlated with the

true, temporal betweenness centralities in a stronger way than the corresponding first-

order approximation of betweenness centrality. For the (EM) data sets capturing E-Mail

exchanges between employees in a manufacturing company, we observe an increase of the

Pearson correlation coefficient ρ from 0.80 to 0.97, while the associated Kendall-Tau rank

correlation coefficient τ increases rather mildly from 0.73 to 0.74. We attribute this to

the fact that the second-order aggregate network better captures the structures of time-

respecting paths in the temporal network compared to the first-order network. For the

two data sets (HO) and (LT) we observe a similar increase both in the Pearson and the

Kendall-Tau rank correlation coefficients, while the values remain largely unchanged for the

(FL) data set. In particular, for the latter data set the first-order betweenness centrality

already exhibits a correlation coefficient of 0.99 which indicates that in this particular case

temporal characteristics do not significantly alter the structure of shortest time-respecting

paths. For the two data sets (AN) and (RM) we observe a small decrease in the Pearson

correlation values for the second-order approximation. Notably, for (RM) the decrease

from 0.97 to 0.95 is accompanied by an increase of the Kendall-Tau coefficient from 0.62

to 0.75. This indicates that, even though the actual values of second-order betweenness

centralities may be less correlated with temporal betweenness centralities than the first-

order betweenness centralities, the second-order betweenness centralities provides us with

a significantly better perspective on the relative importance of nodes.

Finally, for the (AN) data set we note that both the Pearson and the Kendall-Tau rank

correlation coefficients are worse for the second-order betweenness centralities. While the

interesting question in what respect the temporal characteristics of (AN) differ from those
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of the other temporal networks remains to be investigated in more detail, we expect this

result to be related to non-stationary properties. We particularly observe that some of

the nodes (i.e. ants) are only active during certain phases of the observation period. This

imposes a natural ordering of interactions which particularly prevents nodes which are

only active during an early phase to be reachable from nodes which are only active at a

later phase.

4.2.2 Temporal closeness centrality

Let us now turn our attention to closeness centrality, which captures a node’s average

distance to all other nodes in a network. For a directed, static (first-order aggregate)

network the closeness centrality of a node v is commonly defined as

ClC(1)(v) =
∑

u6=v

1

dist(1)(u, v)
(4.8)

where the distance function dist(1)(u, v) denotes the distance, i.e. the length of a shortest

path, from node u to v in the first-order aggregate network.

We can easily define a temporal version of closeness centrality based on the temporal

distance function disttemp(u, v) which we have defined in Eq. 4.3 in the context of temporal

betweenness centrality. Here, we remind the reader that the function disttemp(u, v) captures

the minimum length of a shortest time-respecting path across all possible start times t0.

Using this temporal distance function, we can apply the standard definition in Eq. 4.8 and

define the temporal closeness centrality of a node v in a temporal network as

ClCtemp(v) =
∑

u6=v

1

disttemp(u, v)
(4.9)

Let us again illustrate this definition using the temporal networks shown in Figure 3.1.

Node e in the temporal network G1 shown in Figure 3.1a can be reached from nodes a

and b via two shortest time-respecting paths of length two, as well as from node c via a

shortest time-respecting path of length one. For the temporal closeness centrality, we thus

find ClCtemp(e) = 2. It is easy to confirm that this corresponds to the first-order closeness

centrality of node e. Again a mere reordering of links can change the closeness centralities

of nodes, as can be seen in the temporal network G2 shown in Figure 3.1b. Here, we see

that node e can only be reached from node a via a shortest time-respecting path of length

two, as well as from node c via a shortest time-respecting path of length one. For node e
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ClCtemp ∼ ClC(1) ClCtemp ∼ ClC(2)

Pearson Kendall-Tau Pearson Kendall-Tau
Ants (AN) 0.91 (1.67e-24) 0.75 (1.54e-17) 0.96 (2.05e-35) 0.83 (4.80e-21)
E-Mail (EM) 0.93 (4.74e-44) 0.79 (4.96e-30) 0.98 (2.52e-71) 0.92 (1.54e-40)
Hospital (HO) 0.96 (2.09e-29) 0.83 (1.88e-18) 0.99 (1.46e-40) 0.90 (1.76e-21)
RealityMining (RM) 0.96 (1.03e-33) 0.77 (1.99e-17) 0.99 (1.64e-51) 0.89 (5.30e-17)
Flights (FL) 0.91 (3.35e-46) 0.81 (1.88e-18) 0.97 (4.57e-75) 0.93 (9.57e-50)
London Tube (LT) 0.98 (1.33e-91) 0.87 (2.57e-49) 0.98 (3.26e-92) 0.87 (1.07e-49)

Table 4.2: Pearson and Kendall-Tau rank correlation coefficients between tempo-
ral closeness centrality (ground truth) and closeness centrality calculated based on the
first-order aggregate network and the second order aggregate network. Values in paren-
theses indicate the p-value.

in the temporal network G2 we thus find a temporal closeness centrality ClCtemp(e) = 1.5,

highlighting that it is, at least from the perspective of closeness centrality, less “important”

than in the temporal network G1.

Considering the example above we see that, due to the ordering and timing of links, first-

order closeness centralities can be a misleading proxy for the temporal closeness centralities

of nodes in temporal networks. In the following we thus again empirically study this

question using our six data sets on temporal networks. We again use the temporal closeness

centralities ClCtemp(v) of nodes as the ground truth, then studying whether temporal

closeness centralities can reasonably be approximated by first-order closeness centralities

ClC(1)(v). The results of this analysis are shown in the left column of Table 4.2, which

reports the observed Pearson and Kendall-Tau rank correlation coefficients for each of the

six data sets.

We observe again that the answer to the question of how well temporal closeness centralities

can be approximated by first-order static closeness centralities depends on the actual data

set. The lowest Pearson correlation coefficient of 0.91 is obtained for the (FL) and the (AN)

data sets, while the highest Pearson correlation coefficient of 0.98 is obtained for (LT).

The lowest Kendall-Tau rank correlation coefficient is 0.75 for (AN), while the highest

value of 0.87 is achieved for (LT). We further observe that, compared to betweenness

centralities, we generally obtain conceivably larger correlation values between temporal and

first-order closeness centralities. This can intuitively be explained by the fact that, while

temporal betweenness centralities are influenced by the actual structure of shortest time-

respecting paths, temporal closeness centralities are merely influenced by their lengths. We

thus expect temporal closeness centrality to be insensitive to characteristics of temporal

networks that change the structure of paths but not their lengths, hence explaining the

larger correlation coefficients.
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Let us now study whether we can better approximate temporal closeness centralities using

a generalization which is calculated based on the static, second-order aggregate represen-

tation of a temporal network. For this we first introduce how closeness centralities of

nodes can be calculated based on a second-order aggregate network. We recall that in

Eq. 4.6 we have defined a second-order distance function dist(2)(v, w) which provides us

with the distance between (first-order) nodes based on shortest paths in a second-order

aggregate network. This distance function allows us to directly define a second-order

closeness centrality ClC(2)(v) as

ClC(2)(v) =
∑

u6=v

1

dist(2)(u, v)
(4.10)

i.e. for each node v in a network, we simply sum the inverse of the distances to all nodes

according to the topology of the second-order aggregate network.

Again, we illustrate the notion of second-order closeness centrality using the two illustrative

examples of temporal networks shown in Figure3.1. Figure 3.2a shows the second-order

aggregate network corresponding to the temporal network G1 shown in Figure 3.1a. Here

we find that the second-order node c− e can be reached via two shortest paths

(b− c), (c− e)
(a− c), (c− e)

of length one from the second-order nodes b − c and a − c. Furthermore, we have an

additional second-order “path” of length zero from node c− e to itself. Using the second-

order distance function as defined in Eq. 4.6, we thus infer the following values:

dist(2)(b, e) = 2

dist(2)(a, e) = 2

dist(2)(c, e) = 1

from which we calculate the second-order closeness centrality of node e as ClC(2)(c) = 2.

Again, in this particular example the second-order closeness centrality corresponds both to

the temporal and the first-order closeness centrality. This is different in the second-order

network shown in Figure 3.2b, which corresponds to the temporal network G2 shown in

Figure 3.1b. Here, we find that the second-order node c − e can only be reached via a

single shortest path (a − c), (c − e) as well as via an additional second-order “path” of

57



length zero from e− c to itself. From this, we can calculate the second-order distances

dist(2)(a, e) = 2

dist(2)(c, e) = 1

and for the second-order closeness centrality of node e we thus obtain ClC(2)(c) = 1.5,

which coincides with the temporal closeness of node e in the underlying temporal network

G2.

Using the the second-order closeness centrality introduced above, let us now study the

correlations between the temporal and the second-order closeness centralities of nodes in

our six data sets. The results of this analysis are shown in the right column of Table 4.2.

For five of the six data sets we observe significantly larger correlation coefficients than

those reported for the first-order closeness centrality in Table 4.2. The largest increase

of the Pearson correlation coefficient from 0.91 to 0.97 is achieved for the (FL) data set,

while we observe no improvement of the (already large) Pearson correlation coefficient of

0.98 for (LT). We further observe significant increases in the Kendall-Tau rank correlation

coefficients for all of the studied data sets, except for (LT) for which it remains the same.

For the ranking of nodes in (EM), we find that a ranking based on second-order closeness

centralities increases the Kendall-Tau rank correlation with the ground truth temporal

centralities from 0.79 to 0.92, thus better representing the relative importance of nodes in

the temporal network.

4.2.3 Temporal reach centrality

Concluding this section we finally study reach centrality, another notion of path-based

centrality that captures the number of nodes that can be reached from a node via paths

up to given maximum length s [19]. For static networks, such as a first-order aggregate

network, we define the first-order reach centrality of a node v as

RC(1)(v, s) :=
∑

w∈V

Θ(s− dist(1)(v, w)) (4.11)

where Θ(·) is the Heaviside function, dist(1)(v, u) is the length of a shortest path from

node v to u in the static, first-order network, and s is a parameter specifying up to which

length paths should be considered. Clearly, the reach centrality RC(1)(v, s = 1) of a node

v is equal to its out-degree while RC(1)(v, s =∞) is equal to the subset of nodes to which

v is connected via directed paths of any length.
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A temporal reach centrality can again easily be defined based on the notion of shortest

time-respecting paths, as well as the temporal distance function disttemp(v, w) defined in

Eq. 4.3. Here, for a given maximum time difference δ and a given value s, we are interested

in how many different nodes can be reached via shortest time-respecting paths which have

at most length s. In analogy to Eq. 4.11, we can thus define the temporal reach centrality

RCtemp(v) of a node v as:

RCtemp(v, s) :=
∑

w∈V

Θ(s− disttemp(v, w)). (4.12)

We want to highlight that with this definition of reach centrality, we focus on the temporal-

topological characteristics introduced by the ordering of links, which is why base our

definition on the shortest rather than the fastest time-respecting paths.

It is finally easy to see that a second-order reach centrality can be defined in analogy to

second-order closeness centrality. For this, all we have to do is to replace the distance func-

tion in Eq. 4.11 by our previously defined second-order distance function, thus obtaining

the following definition:

RC(2)(v, s) :=
∑

w∈V

Θ(s− dist(2)(v, w)) . (4.13)

Using a value of s = 2, we again exemplify these definitions using our two illustrative

examples. Let us first calculate the first-order reach centrality of node a based on the

first-order aggregate network shown in Figure 3.1c. Here we find that there are paths of

at most length s = 2 from node a to the three nodes c, d and e, from which we conclude

RC(1)(a, s = 2) = 3. For the temporal reach centrality of node a in the temporal network

G1 shown in Figure 3.1a, we observe that there are time-respecting paths of at most length

s = 2 from node a to the three nodes c, e and d. We hence conclude RCtemp(a, s = 2) = 3,

finding that for G1 the temporal reach centrality again corresponds to the first-order reach

centrality. Again, this is not the case for the temporal network G2 shown in Figure 3.1b.

Here, node a is only connected to the nodes c and e via time-respecting paths of up to

length two, which means that we have RCtemp(a, s = 2) = 2.

For the second-order reach centrality of node a in the temporal network G1 let us now

consider the second-order aggregate network shown in Figure 3.2a. Based on the shortest

paths in the second-order network, we first find that the node a − c is connected to two

nodes c− d and c− e via shortest paths of length one. Furthermore, we find an additional

shortest path of length zero which connects the second-order node a− c to itself. Again,
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using our second-order distance function dist(2) here we find the distances

dist(2)(a, c) = 1

dist(2)(a, e) = 2

dist(2)(a, d) = 2

from which we conclude that three nodes c, e and d can be reached via paths of length

at most two. From this we calculate the second-order reach centrality of node a in G1 as

RC(2)(a, s = 2) = 3. Applying the same arguments to the example network G2 and the

corresponding second-order aggregate network shown in Figure 3.2b, for the same three

nodes we find the following second-order distances:

dist(2)(a, c) = 1

dist(2)(a, e) = 2

dist(2)(a, d) =∞

We thus obtain a second-order reach centrality of RC(2)(a, s = 2) = 2 which corresponds

to the temporal reach centrality of node a in G2.

In the following, we use the temporal reach centrality defined above as ground truth, while

studying how well it can be approximated by first-order and second-order reach centralities

calculated from the first- and second-order time-aggregated networks respectively. Differ-

ent from the analyses for betweenness and closeness centralities, here we must additionally

account for the fact that the reach centrality can be calculated for different values of the

maximum path length s. This implies that the Pearson correlation coefficient ρ and the

Kendall-Tau rank correlation coefficient τ must be calculated for each value of s individu-

ally. The results of this analysis are shown in Figure 4.2, which shows the obtained values

for ρ and τ for the correlations between i) the temporal and the first-order reach centralities

(black lines), and ii) the temporal and the second-order reach centralities (orange lines)

for each of the six data sets introduced above. Thanks to our choice of the maximum time

difference δ, for all of our data sets both the underlying first- and second-order networks

are strongly connected. Assuming that D is the diameter of the corresponding aggregate

network, for all s ≥ D we thus necessarily arrive at a situation where the reach centralities

of all nodes are identical. For the results in Figure 4.2 this implies that for any s > D the

correlation values are undefined since the first- (or second-)order centralities of all nodes

are the same. We thus only plot the correlation coefficients τ and ρ for s < D, in which

case they are well-defined.
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Figure 4.2: Correlation results for the reach centrality Pearson ρ and Kendall τ
correlation coefficients between the temporal and the first-order reach centralities (black
lines) and the temporal and the second-order reach centralities (orange lines) for (a) the
Ants data set (AN), (b) the E-Mail data set (EM), (c) the Hospital data set (HO), (d)
the Reality Mining dataset (RM), (e) the Flights data set (FL), and (f) the London Tube
data set (LT). Inset: zoom to the area where there is a small deviation between values for
the case of the London Tube data set.

For s = 1, the only time-respecting paths considered consist of single links, and thus

the temporal reach centralities by definition exactly correspond to the reach centralities

calculated from the first- and second-order topologies. Consequently, for s = 1 we have

τ = 1 and ρ = 1 both for the first- and the second-order reach centrality. For s = 2 there

is, again by definition, no difference between the temporal and the second-order reach

centralities however the correlation values for the first-order reach centrality decreases

since the first-order aggregate network does not accurately represent the structure of time-

respecting paths of length two. For values s > 2, ρ and τ decrease both for the first and

the second-order centralities since neither representation can accurately represent time-

respecting paths with lengths s > 2. However the results also highlight the important fact

that second-order reach centralities better approximate temporal reach centralities for all

values of s > 2.

We conclude this section by providing detailed results for the specific value of s = 3

shown in in Table 4.3. The choice of a parameter s > 2 means that for the second-

order reach centrality we will not trivially obtain correlation values of 1 because we would

only consider time-respecting paths of length two which are captured in the second-order

aggregate network. However, since the diameter of the first-order aggregate network for

two of our systems (RM and HO) is equal to three, we can only report results on the

correlations between the temporal and the first-order reach centralities for four data sets.
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RCtemp ∼ RC(1) RCtemp ∼ RC(2)

Pearson Kendall-Tau Pearson Kendall-Tau
Ants (AN) 0.72 (8.23e-11) 0.59 (1.38e-11) 0.96 (9.50e-36) 0.86 (6.40e-23)
E-Mail (EM) 0.61 (3.17e-11) 0.60 (3.55e-18) 0.94 (2.74e-44) 0.81 (1.52e-31)
Hospital (HO) NA NA 0.80 (7.95e-13) 0.74 (7.23e-15)
RealityMining (RM) NA NA 0.68 (3.76e-09) 0.66 (2.78e-13)
Flights (FL) 0.41 (4.68e-06) 0.27 (1.46e-05) 0.62 (1.44e-13) 0.73 (6.53e-31)
London Tube (LT) 1.00 (4.65e-168) 1.00 (9.32e-64) 1.00 (1.92e-173) 1.00 (7.00e-64)

Table 4.3: Pearson and Kendall-Tau rank correlation coefficients between temporal reach
centrality (ground truth) and reach centrality for s = 3 calculated based on the first–order
aggregate network and the second-order aggregate network. Values in parentheses indicate
the p-value.

Remarkably, for the (LT) data sets we observe a perfect correlation with the temporal

reach centrality, which means that for this data set reach centralities are seemingly not

affected by the temporal characteristics of the system. This is different for (FL), for

which we observe a small Pearson correlation of ρ = 0.41, with an associated τ = 0.27.

These results show that, for the (FL) data set, temporal characteristics of the data do not

allow temporal reach centralities to be approximated based on the first-order aggregate

network. For the second-order reach centralities shown in the right columns of Table 4.3,

we observe a significant increase in both the Pearson and the Kendall-Tau correlation

coefficients for all of the data sets, except for (LT). The largest increase of the Pearson

correlation coefficient is again obtained for (EM), increasing from 0.61 to 0.94 with an

associated increase of the Kendall-Tau correlation coefficient from 0.60 to 0.81. We thus

conclude that again, second-order reach centralities better capture the true (temporal)

importance of nodes than a simple first-order approximation.

4.3 Conclusion

In summary, we have introduced a framework for the analysis of path-based notions of

node centralities in temporal networks. In particular, we defined temporal versions of three

path-based centrality measures which highlight the influence of the temporal-topological

dimension introduced by the specific timing and ordering of time-stamped links in tem-

poral networks. Using six data sets on real-world temporal networks, we have studied to

what extent static notions of betweenness, closeness and reach centrality differ from their

temporal counterparts. While for some data sets node centralities in the (first-order) time-
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aggregated, static network can be used as reasonable proxies for temporal centralities, our

results show that for other data sets this is not the case. Here we found that an analysis

of time-aggregated static networks that neglect the time dimensions can yield misleading

results about the importance of nodes.

In order to overcome these limitations, we have further used the framework of higher-order

aggregate networks introduced in Chapter 3. The basic idea of this construction is that a k-

th order aggregate network captures the statistics of time-respecting paths of length k, thus

facilitating a higher-order analysis that incorporates both the topology and the ordering

of links in temporal networks. We demonstrate the power of this framework through the

definition of second-order centralities which can easily be calculated based on shortest

paths in a second-order aggregate network. Despite the fact that these centralities can

easily be calculated based on a simple static network structure, we find that the resulting

second-order centrality measures capture better the centralities of nodes in the underlying

temporal networks.

Closing, we would like to highlight a number of open issues which have to be considered

in future works. First and foremost, all of our results have been obtained based on simple

unweighted notions of centralities, even though in principle both the first-and second-order

aggregate networks allow for the definition of link weights. Hence, our results have been

obtained based on a rather simple perspective which does not incorporate the full infor-

mation about path statistics preserved by our higher-order aggregate network abstraction.

We thus expect a future extension to weighted higher-order aggregate networks to capture

the true temporal centralities of nodes even more closely.

Moreover, while we can in principle define higher-order networks of any order k, in our work

we have focused on second-order representations and the corresponding generalizations of

path-based centralities. The choice to limit our study to k = 2 is mainly due to available

data which, for the six temporal networks studied in this work, are not guaranteed to

provide meaningful statistics for time-respecting paths with larger lengths k that are the

basis for a k-th order aggregate network. Under what conditions higher-order aggregate

networks with orders of k > 2 can help us to obtain even better approximations for

temporal centralities is thus an open question that should be studied in the future.

Despite these open issues, we consider the fact that the simple second-order centrality

measures introduced in our work already yield good approximations of the underlying

temporal centralities which is a promising aspect of our framework. In this respect, second-

order time-aggregated representations of temporal networks can be considered a simple,

yet powerful abstraction for the higher-order analysis of time-stamped network data.
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Finally, an important general question that arises in the analysis of time-stamped network

data addresses the question under which conditions a time-aggregated analysis is sufficient,

as opposed to a detailed analysis of time-stamped links and time-respecting paths. Thanks

to their simplicity, computational efficiency, and the availability of software tools, time-

aggregated analyses of static node centralities are popular and widely used throughout

different disciplines. However, the results of our analysis, as well as of similar studies on

dynamical processes, community structures and node centralities [88, 127, 140, 144] show

that order correlations in real-world temporal networks crucially influence causality, thus

potentially rendering such static analyses invalid. Through a calculation of temporal node

centralities these temporal correlations can be included in the analysis of time-stamped

data. However, especially for larger values of the maximum time difference δ, the ex-

traction of all shortest time-respecting paths imposes computational costs that can be

prohibitive for large data sets. A particular benefit of our approach is that the calculation

of second-order centrality measures is computationally efficient as it merely requires i)

the extraction of time-respecting paths of length two in the time-stamped data, and ii)

the calculation of shortest paths in a static second-order network. Therefore, we argue

that our approach is a simple and efficient (static) approximation of temporal centralities

which, compared to a calculation of first-order centralities, nevertheless provides signifi-

cant additional insights into the temporal dimension of complex systems.
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Chapter 5

Temporal Causality:

Slow-down or Speed-up

Summary

Recent research has highlighted limitations of studying complex systems with time-

varying topologies from the perspective of static, time-aggregated networks. Non-

Markovian characteristics resulting from the ordering of interactions in temporal

networks were identified as one important mechanism that alters causality, and af-

fects dynamical processes. So far, an analytical explanation for this phenomenon and

for the significant variations observed across different systems is missing. Here we

introduce a methodology that allows to analytically predict causality-driven changes

of diffusion speed in non-Markovian temporal networks. Validating our predictions

in six data sets, we show that - compared to the time-aggregated network - non-

Markovian characteristics can lead to both a slow-down, or speed-up of diffusion

which can even outweigh the decelerating effect of community and geodesic struc-

tures in the static topology. Thus, non-Markovian properties of temporal networks

constitute an important additional dimension of complexity in time-varying complex

systems.

Based on Scholtes, I., Wider, N., Pfitzner, R., Garas. A., Tessone, C.J. and Schweitzer, F. Causality-
driven slow-down and speed-up of diffusion in non-Markovian temporal networks, Nature Communications,
vol. 5, number 5024, 2014. All authors conceived and designed the research and wrote the article. I.S.
and N.W. analyzed the data, performed the simulations and provided the analytical results. Section 5.4.2
includes additional results by NW not part of the mentioned publication.
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5.1 Introduction

The non-stationarity of the time-varying network topologies influences several aspects of

complex systems. As shown in Section 4.2 properties that are directly related to the

topology such as centrality can differ regarding a temporal or time-aggregated perspec-

tive. Several works have shown that compared to systems where, similar to static networks,

most or all links are available concurrently, dynamical processes like epidemic spreading

or diffusion are slowed down by the continuously switching topologies of temporal net-

works [100, 106, 133]. Other works show that the dynamics of network topologies can

introduce noise which fosters certain types of consensus processes [8, 159].

Considering interactions in dynamic networks as a time series of events, a number of recent

works focused on the question of whether observed inter-event times are consistent with

the Poissonian distribution expected from a memoryless stochastic process. For a number

of dynamic social systems, it has been shown that inter-event times follow non-Poissonian,

heavy-tail distributions, and that the resulting bursty interaction patterns influence the

speed of dynamical processes like spreading and diffusion [66, 70, 73, 77, 78, 125, 126,

134, 136, 151, 153]. More precisely, it was shown that such dynamical processes can be

significantly slowed down with respect to their static representations. While all of these

works highlight the importance of temporal information in the study of networks, there

are a number of questions that have not been answered satisfactorily. Most empirical

studies of dynamical processes in temporal networks focus on the influence of heavy-

tail inter-event time distributions in dynamic social networks, which likely result from

human task-execution mechanisms [49, 58, 72]. However, inter-event time distributions

cannot explain temporality effects in other types of dynamic complex systems in which

interactions are distributed homogeneously in time. Furthermore, this approach requires

that sufficiently precise time stamps can be assigned to interactions, thus excluding path-

based data where merely the ordering of interactions can be inferred. Recent works have

shown that order correlations in temporal networks lead to causality structures which

significantly deviate from what is expected based on paths in the corresponding time-

aggregated networks [88, 127, 139].

Studying time-respecting paths a → b → c from the perspective of a contact sequence

a, b, c passing through node b, it was shown that the next contact c not only depends

on the current contact b, but also on the previous one [86, 127, 139, 152, 156]. As a

consequence, contact sequences in real-world temporal networks exhibit non-Markovian

characteristics that are in conflict with the Markovian assumption implicitly made when

studying temporal networks from the perspective of time-aggregated networks, and which
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can neither be attributed to inter-event time distributions, nor to the concurrency or dura-

tion of interactions [86, 88, 127, 139]. Furthermore, it was shown that causality structures

resulting from non-Markovian contact sequences influence both the speed of and the paths

taken by dynamical processes [127, 139]. These works not only question the applicability of

the static network paradigm when modeling dynamic complex systems, they also highlight

a temporal-topological dimension of temporal networks which is ignored when exclusively

focusing on time distributions of events and associated changes in the duration of dynam-

ical processes. In line with the general lack of analytical approaches to understand and

predict the effects of network dynamics on dynamical processes [100, 129], an analytical

explanation for the influence of causality structures in real-world complex systems, as well

as for the significant variations observed across different systems, is currently missing.

To fill these gaps, in this chapter we introduce an analytical approach that allows to

study dynamical processes in non-Markovian temporal networks. In particular, we use

higher-order time-aggregated representations of temporal networks to preserve causality,

and use them to define Markov models for non-Markovian interaction sequences. We show

that the eigenvalue spectrum of the associated transition matrices explains the slow-down

and speed-up of diffusion processes in temporal networks compared to time-aggregated

networks. We derive an analytical prediction for direction and magnitude of the change

in a temporal network, validate it against six empirical data sets, and show that order

correlations can both slow-down or speed-up diffusion even in systems with the same

static topology. Our results highlight that non-Markovian characteristics of temporal

networks can either enforce or mitigate the influence of topological properties on dynamical

processes. As such, they constitute an important additional dimension of complexity that

needs to be taken into account when studying time-varying network topologies.

5.2 Higher-order Markov models for temporal net-

works

In this section we focus on the causality nature of time-respecting paths. As it was

pointed out in Section 3.3 higher-order aggregated networks are able to capture some

of the causality inherent in temporal sequences. We especially focus on time-respecting

paths of length two and refer to them as two-paths. Representing the shortest possible

time-ordered interaction sequence, two-paths are the simplest possible extension of links

(which can be viewed as “one-paths”) that capture causality in temporal networks. As

such two-paths are a particularly simple abstraction that allows to study causality in

temporal networks [127, 140].
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Our approach utilises a state space expansion to obtain a higher-order Markovian repre-

sentation of non-Markovian temporal networks [109]. This means that a non-Markovian

sequence of interactions in which the next interaction only depends on the previous one

(i.e. one-step memory), can be modeled by a Markovian stochastic process that generates

a sequence of two-paths.

5.2.1 Causality-preserving time-aggregated networks

a

b

c

d

a

b

c

d

t1 2 3 4 5 6 7 8 9101112131415161718192021222324252627

a b c d

a b

c d

12

12
6

6
6

6
c−a

a−b b−c

d−bb−d

d−a

3

3

3

3

3 3

3

3

c−a

a−b b−c

d−bb−d

d−a

2

3

3

4

3 3

2

1

3

~

~

Figure 5.1: Two temporal networks with the same first-order, but different
second-order time-aggregated networks (a) Time-aggregated network G(1), whose
link weights capture the number of times each link occurred in a temporal network. The
time-aggregated network is consistent with both temporal networks shown in (b). (b)
Time-unfolded representations of two temporal networks, each consisting of four nodes
and 27 time steps, both consistent with G(1). Differences in their causality structures are
highlighted by the corresponding second-order aggregate networks shown in (c) and (d).
Both second-order aggregate networks are consistent with G(1).

It is important to use a causality preserving model when dealing with temporal networks.

Figure 5.1 (b) shows time-unfolded representations of two different temporal networks GT

and G̃T consisting of four nodes and 27 time steps. While both examples correspond to

the same weighted time-aggregated network shown in Figure 5.1 (a), the two temporal

networks differ in terms of the ordering of interactions. As a consequence, assuming a

maximum time difference of δ = 1, the time-unfolded representations reveal that a time-

respecting path d → b → c only exists in the temporal network G̃T , while it is absent

in GT . This simple example illustrates how the mere ordering of interactions influences

causality in temporal networks. In the following we present in detail how we use second-

order time-aggregated networks as proxy for a causality-preserving approach.

Analogous to a first-order time-aggregated network G(1) consisting of (first-order) nodes

V (1) and (first-order) links E(1), a second-order time-aggregated network G(2) consists of

second-order nodes V (2) and second-order links E(2). Similar to a directed line graph

construction [61], each second-order node represents a link in the first-order aggregate
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network. As second-order link, we define all possible paths of length two in the first-order

aggregate network, i.e. the set of all pairs (e1, e2) for links e1 = (a, b) and e2 = (b, c) in

G(1). As outlined in Section 3.3 second-order link weights w(2)(e1, e2) can be defined as the

relative frequency of time-respecting paths (a, b; t1)→ (b, c; t2) of length two in a temporal

network.

This approach allows us to generate a second-order network representation where each

second-order node represents an link in the underlying temporal network, each second-

order link represents a time-respecting path of length two, and weights w(2) capture the

statistics of two-paths in the temporal network. An interesting aspect of this construction

is that it allows to easily define second-order Markov models generating contact sequences

which exhibit “one-step memory” and which thus correctly reproduce the statistics of

time-respecting paths of length two in the original temporal network.

5.2.2 Transition matrices

In the following sections we will investigate a dynamical process based on a random walk.

A random walker can start at any node of a network and moves to another node in every

time step. The walker can usually only move to adjacent nodes in the direction of a

link. The decision where the walker moves is random according to some given transition

probabilities between the nodes. Recall Section 2.2.1 for more details. Given the relative

frequencies of links in a temporal sequence one such transition probability can be defined in

an empirical way. Considering a starting node b we can compute the empirical probability

of any next link that is formed including b as source node. From a first-order perspective

the probability for b to form a link with any other node c is equal to,

P (b→ c) = w(1)(b, c)


 ∑

c′∈V (1)

w(1) (b, c′)



−1

. (5.1)

Hence, the transition probabilities from a first-order perspective is the same for all neigh-

bors of b and 0 for all other nodes that were never connected to b in the temporal sequence.

However, considering the causality stored in time-respecting paths the probability of a link

b→ c may dependent on a link a→ b that occurred before b→ c. In a temporal network

it does not necessarily hold that,

P (b→ c|a→ b) = P (b→ c|a′ → b) , (5.2)
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thus violating the Markovian assumption of first-order time-aggregated networks. In other

words the probability of a link b → c is not necessarily the same for different preceding

links, such as a → b and a′ → b. A second-order perspective takes into account previous

links and therefore allows to define second-order transitions,

P (b→ c|a→ b) = w(2) (a→ b, b→ c)


 ∑

c′∈V (2)

w(2) (a→ b, b→ c′)



−1

. (5.3)

A convenient way to store transition probabilities are so-called transition matrices denoted

by T. Similar to the adjacency matrix of a directed weighted network that stores the link

weights for any link ω(a, b), the transition matrix stores the transition probability P (a→ b)

between nodes. In the following we apply this framework to second-order networks.

Using the second-order time-aggregated network G(2) and second-order link weights w(2)

defined above, for all time-respecting paths e1 → e2 of length two, with e1 = a → b and

e2 = b → c we define the entries of the second-order transition matrix T(2) for a random

walk in the weighted network G(2) as

T (2)
e1e2

:= w(2) (e1, e2)


 ∑

e′∈V (2)

w(2) (e1, e
′)



−1

. (5.4)

In line with the standard way of defining random walks on weighted networks [116], tran-

sition rates between nodes e1 and e2 are defined to be proportional to link weights and

are normalised by the cumulative weight of all links (e1, e
′) emanating from node e1. If

the transition matrix T(2) is primitive, the Perron-Frobenius theorem guarantees that a

unique leading eigenvector π of T(2) exists. Note that T(2) can always be made primitive

by restricting it to the largest strongly connected component of G(2) and adding small

positive diagonal entries.

While the transition matrix T(2) captures the statistics of two-paths in a given temporal

network, we can additionally define a maximum entropy transition matrix T̃(2) which

captures the two-path statistics one would expect based on the relative link weights in

the first-order time-aggregated network. For e1 = (a, b) and e2 = (b, c), the entries T̃
(2)
e1e2

corresponding to a two-path e1 → e2 are given as

T̃ (2)
e1e2

:= w(1) (b, c)


 ∑

c′∈V (1)

w(1) (b, c′)



−1

. (5.5)
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This second-order Markov model preserves the weights w(1) of links in G(1) and creates

“Markovian” temporal networks in which consecutive links are independent from each

other.

5.2.3 Entropy growth rate

The entropy of a second-order Markov model for a particular temporal network can be

quantified in terms of the entropy growth rate of a transition matrix T(2). This notion

of entropy quantifies the amount of information that is lost about the current state of a

Markov process based on a given transition matrix. We define the entropy growth rate of

a second-order transition matrix as

H(T(2)) := −
∑

e∈E(1)

(π)e
∑

e′∈E(1)

T
(2)
ee′ log2

(
T

(2)
ee′

)
. (5.6)

For a transition matrix which only consists of deterministic transitions with probability

1, the entropy growth rate is zero, while it reaches a (size-dependent) maximum for a

transition matrix where every state can be reached with equal probability in every step.

From the perspective of statistical ensembles, which is commonly applied in the study

of complex networks, each second-order transition matrix whose leading eigenvector π

satisfies (π)e = w(1)(a, b) (∀ links e = (a, b)) defines a statistical ensemble of temporal

networks constrained by a weighted time-aggregated network G(1) and a given two-path

statistics. The entropy H(T(2)) of this ensemble can be defined as the entropy growth rate

of the Markov chain described by the corresponding transition matrix [28]. Different from

entropy measures previously applied to dynamic networks [180], this measure quantifies to

what extent the next step in a contact sequence is determined by the previous one. For a

specific second-order transition matrix T(2) and a corresponding maximum entropy model

T̃(2), we define the entropy growth rate ratio as

ΛH(T(2)) := H(T(2))/H(T̃(2)). (5.7)

This ratio ranges between a minimum of zero for transition matrices corresponding to

contact sequences that are completely deterministic, and a maximum of one for transition

matrices corresponding to Markovian temporal networks. In general, an entropy growth

rate ratio smaller than one highlights that the statistics of two-paths - and thus causality in

the temporal network - deviates from what is expected based on the first-order aggregate

network. As such, ΛH is a simple measure that quantifies the importance of non-Markovian

properties in temporal networks.
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5.2.4 Example

To summarize this section, we illustrate our approach using the two temporal networks

shown in Figure 5.1. Panels (c) and (d) show two second-order time-aggregated networks

G(2) and G̃(2) corresponding to the temporal networks GT and G̃T respectively. In partic-

ular, the absence of a time-respecting path d → b → c in GT is captured by the absence

of the second-order link between the second-order nodes e1 = (d, b) and e2 = (b, c). Fur-

ther differences between the causality structures of GT and G̃T are captured by different

second-order link weights. Notably, this example highlights that temporal networks giv-

ing rise to different second-order time-aggregated networks can still be consistent with the

same first-order time-aggregated network.

In the following, we illustrate the construction of second-order transition matrices using

the examples in Figure 5.1. For the second-order aggregate network G(2) shown in panel

(c), corresponding to the temporal network GT , the transition matrix T(2) (rows/columns

ordered as indicated) is

T(2) =

(a, b)

(b, c)

(b, d)

(c, a)

(d, a)

(d, b)




0 1/2 1/2 0 0 0

0 0 0 1 0 0

0 0 0 0 1/2 1/2

1 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0




.

The leading eigenvector of a stochastic matrix captures the stationary distribution of the

associated Markov chain. As such, the leading eigenvector π of the second-order tran-

sition matrix captures the stationary activation frequencies of links in contact sequences

generated by the corresponding second-order Markov model. For the example above, we

obtain a normalised leading eigenvector π =
(
1
4
, 1
8
, 1
4
, 1
8
, 1
8
, 1
8

)
, which reproduces the relative

weights of links in the first-order aggregate network shown in Figure 1 (a). In summary,

interpreting T(2) as transition matrix of a random walker in the second-order aggregate

network, we obtain a second-order Markov model generating contact sequences that pre-

serve the relative weights in the first-order aggregate network, as well as the statistics of

two-paths. In line with recent observations that one-step memory is often sufficient to

characterise time-respecting paths in empirical temporal networks [140], in the remain-

der of this chapter we focus on such second-order models. However, our findings can be

generalised to n-th order networks G(k) and matrices T(k) that capture the statistics of

time-respecting paths of any length k. From this perspective, the weighted first-order ag-

gregate network can be seen as a first-order approximation where weights only capture the
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statistics of links, i.e. time-respecting paths of length one. Contact sequences generated

by a random walk in the first-order time-aggregated network with transition probabilities

proportional to link weights preserve the statistics of links but destroy the statistics of

time-respecting paths. As such, a random walker in the first-order time-aggregate net-

work must be interpreted as null model that destroys causality, and which can thus not

be used to gain analytical insights about dynamical processes in non-Markovian temporal

networks [10]. A second-order representation of the same null model can be constructed

using a maximum entropy second-order transition matrix T̃(2). For two links e1 = (a, b)

and e2 = (b, c), the transition probability T̃
(2)
e1e2 simply corresponds to the transition rate

of a random walk across the weighted link (b, c) in the first-order aggregate network. This

definition ensures that the corresponding random walker generates Markovian temporal

networks which are consistent with a given weighted time-aggregated network, and which

exhibit a two-path statistic as expected based on paths in the first-order aggregate net-

work. We again illustrate our approach using the first-order time-aggregated network G(1)

shown in the left panel of Figure 5.1. For this example, the transition matrix corresponding

to a “Markovian” temporal network is given as

T̃(2) =

(a, b)

(b, c)

(b, d)

(c, a)

(d, a)

(d, b)




0 1/3 2/3 0 0 0

0 0 0 1 0 0

0 0 0 0 1/2 1/2

1 0 0 0 0 0

1 0 0 0 0 0

0 1/3 2/3 0 0 0




.

Again, as leading eigenvector we obtain π =
(
1
4
, 1
8
, 1
4
, 1
8
, 1
8
, 1
8

)
, confirming that the sta-

tionary activation frequencies of links correspond to the relative weights of links in the

first-order time-aggregated network.

To quantify the importance of non-Markovian properties we apply the entropy growth rate

ratio ΛH to the example introduced in Figure 5.1. For the second-order transition matrices

T(2) and T̃(2) we obtain ΛH(T(2)) = 0.84 and thus ΛH(T(2)) < 1. This confirms that

T(2) corresponds to a non-Markovian temporal network, and that the statistics of time-

respecting paths in GT deviates from what one could expect based on link frequencies in

the first-order aggregate network. Considering the temporal network G̃T , one easily verifies

that link weights in the corresponding second-order aggregate network G̃(2) coincide with

the transition matrix T̃(2). The resulting entropy growth rate ratio of 1 for G̃T verifies that

this temporal network does not exhibit non-Markovian characteristics and that two-path

statistics do not deviate from what is expected based on the first-order aggregate network.
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5.3 Causality-driven changes of diffusive behaviour

In the following, we highlight the relevance of causality in real-world systems by studying

diffusion dynamics. We illustrate our results on the six empirical temporal network data

sets described in Section 3.4. For each system, we study causality-driven changes of

diffusion speed. In particular, we utilise a random walk process and study the time needed

until node visitation probabilities converge to a stationary state [16, 93]. (See Section 2.2.1

for more details on random walks.) This convergence behaviour of a random walk is a

simple proxy that captures the influence of both the topology and dynamics of temporal

networks on general diffusive processes [116]. For a given convergence threshold ε, we

compute a slow-down factor S(ε) which captures the slow-down of diffusive behaviour

between the weighted aggregated network and a temporal network model derived from

the empirical contact sequence respectively. In order to exclude effects related to node

activities and inter-event time distributions and to exclusively focus on effects of causality

observed in the real data sets, this model only preserves the weighted aggregate network

as well as the statistics of two-paths in the data.

5.3.1 Diffusion dynamics in empirical temporal networks

We study causality-driven changes of diffusive behaviour in the six temporal network

data sets (AN), (RM), (FL), (EM), (HO), (FL) and (LT) described above. We use the

convergence behaviour of a random walk process as a proxy that captures the influence of

both the topology and dynamics of temporal networks on general diffusive processes. For

this, we first consider a random walk process in the weighted, time-aggregated network

and study the time needed until node visitation probabilities converge to a stationary

state. Starting from a randomly chosen node, in each step of the random walk the next

step is chosen with probabilities proportional to the weights of incident links. A standard

approach to assess the convergence time of random walks is to study the evolution of the

total variation distance between observed node visitation probabilities and the stationary

distribution [138]. For a distribution πk of visitation probabilities (πk)v of nodes v after

k steps of a random walk and a stationary distribution π, the total variation distance is

defined as

∆(πk,π) :=
1

2

∑

v

| (π)v − (πk)v |.

For a given threshold distance ε, we define the convergence time tagg(ε) as the minimum

number of steps k after which ∆(πk,π) < ε. The random walk itineraries produced by
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this simple random walk model correctly reproduce link weights in the time-aggregated

network and the use of random walk itineraries as a model for temporal networks has

been proposed before [10]. However, random walk itineraries do not preserve statistics of

longer time-respecting paths and thus alter causality. In order to derive a causality-driven

slow-down factor, we thus contrast the convergence time tagg(ε) with the convergence time

ttemp(ε) of a second model that additionally preserves the statistics of time-respecting

paths of length two in the real data sets (see Section 3.4 for details on how we define time-

respecting paths in the different data sets). Again starting with a random node, this model

randomly chooses two-paths according to their relative frequencies in the data set, thus

corresponding to a walk process which is advanced by two steps at a time. The random

itineraries generated by this model correctly reproduce link weights in the time-aggregated

network, and - different from a random walk in the time-aggregated network - the statistics

of time-respecting paths of length two. For a given threshold distance ε, we again define

the convergence time ttemp(ε) as the minimum number of steps k after which ∆(πk,π) < ε.

For a convergence threshold ε, this allows us to define a causality-driven slow-down factor

S(ε) := ttemp(ε)/tagg(ε) that is due to the temporal-topological characteristics of time-

respecting paths, while ruling out effects of inter-event time distributions or bursty node

activities.

Figure 5.2 shows the causality-driven slow-down factor for the six empirical networks

and different convergence thresholds ε. Even though the networks are of comparable size,

deviations from the corresponding aggregate networks in the limit of small ε (i.e. the long-

term behaviour) are markedly different. The values for the empirical slow-down factor are

listed in table 5.1. The first four data sets signify a slow-down of diffusion, but for (FL)

and (LT) we obtain a speed-up of diffusion by a factor of 1.04 and 4 respectively. It is

not surprising that the travel patterns in (FL) and (LT) are “optimised” in such a way

that diffusion is more efficient than in temporal networks generated by contacts between

humans (RM, EM and HO) or ants (AN). However, an analytical explanation for the

direction and magnitude of this phenomenon, as well as for the variations across systems,

is a unsolved problem that we address in this chapter.

5.3.2 Predicting causality-driven changes of diffusion speed

A particularly interesting aspect of the second-order network representation introduced

above is that temporal transitivity is preserved, i.e. the existence of two second-order

links (e1, e2) and (e2, e3) implies that a time-respecting path e1 → e2 → e3 exists in the

underlying temporal network. Notably, the same is not true for first-order aggregate net-

works, which do not necessarily preserve temporal transitivity in terms of time-respecting
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FIG. 2. Causality-driven changes of diffusion speed We investigate the causality-driven changes of diffusive behavior by
an empirical study of the convergence time of random walks. For a given convergence threshold ε, we compute a slow-down
factor S(ε) which captures the slow-down of diffusion in (i) the weighted aggregated network and (ii) a temporal network model
that only preserves the weighted aggregate network as well as the statistics of time-respecting paths of length two in the data.
The six panels show the ε-dependent slow-down factor for (a) the (AN) data set covering interactions between 89 ants, (b)
the (RM) data on proximity relations between 64 academic staff members and students, (c) the (FL) data on flight itineraries
connecting 116 airports, (d) the (EM) data covering E-Mail exchanges between 167 employees in a company, (e) the (HO) data
on contacts between 75 patients and health-care workers in a hospital, and (f) the (LT) data on passenger journeys between
309 London Tube stations. Each result is the mean of random walks starting at every node, error bars indicate the s.e.m. The
predicted S∗ value (see Eq. 2) is shown by the horizontal dashed line.

path of length two, and (iii) weights w(2) capture the
statistics of two-paths in the temporal network. An inter-
esting aspect of this construction is that it allows to eas-
ily define second-order Markov models generating contact
sequences which exhibit “one-step memory” and which
thus correctly reproduce the statistics of time-respecting
paths of length two in the original temporal network.
For this, one can define a second-order transition matrix
T(2) where transition rates between second-order nodes
are proportional to second-order edge weights (see de-
tails in Methods section). In the following, we illustrate
the construction of second-order transition matrices us-
ing the examples in Fig. 1. For the second-order ag-
gregate network G(2) shown in panel (c), corresponding
to the temporal network GT , the transition matrix T(2)

(rows/columns ordered as indicated) is

T(2) =

(a, b)
(b, c)
(b, d)
(c, a)
(d, a)
(d, b)




0 1/2 1/2 0 0 0
0 0 0 1 0 0
0 0 0 0 1/2 1/2
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0



.

The leading eigenvector of a stochastic matrix captures
the stationary distribution of the associated Markov

chain. As such, the leading eigenvector π of the second-
order transition matrix captures the stationary activa-
tion frequencies of edges in contact sequences gener-
ated by the corresponding second-order Markov model.
For the example above, we obtain a normalised lead-
ing eigenvector π =

(
1
4 ,

1
8 ,

1
4 ,

1
8 ,

1
8 ,

1
8

)
, which reproduces

the relative weights of edges in the first-order aggre-
gate network shown in Fig. 1 (a). In summary, inter-
preting T(2) as transition matrix of a random walker in
the second-order aggregate network, we obtain a second-
order Markov model generating contact sequences that
preserve (i) the relative weights in the first-order aggre-
gate network, and (ii) the statistics of two-paths. In line
with recent observations that one-step memory is often
sufficient to characterise time-respecting paths in empir-
ical temporal networks29, in the remainder of this arti-
cle we focus on such second-order models. However, our
findings can be generalised to n-th order networks G(n)

and matrices T(n) that capture the statistics of time-
respecting paths of any length n. From this perspective,
the weighted first-order aggregate network can be seen
as a first-order approximation where weights only cap-
ture the statistics of edges, i.e. time-respecting paths
of length one. Contact sequences generated by a ran-
dom walk in the first-order time-aggregated network with

Figure 5.2: Causality-driven changes of diffusion speed We investigate the causal-
ity-driven changes of diffusive behaviour by an empirical study of the convergence time of
random walks. For a given convergence threshold ε, we compute a slow-down factor S(ε)
which captures the slow-down of diffusion in a temporal network model that preserves the
weighted aggregate network as well as the statistics of time-respecting paths of length two
in the data, compared to diffusion in the weighted aggregate network. The six panels show
the ε-dependent slow-down factor for (a) the (AN) data set covering interactions between
89 ants, (b) the (RM) data on proximity relations between 64 academic staff members
and students, (c) the (FL) data on flight itineraries connecting 116 airports, (d) the (EM)
data covering E-Mail exchanges between 167 employees in a company, (e) the (HO) data
on contacts between 75 patients and health-care workers in a hospital, and (f) the (LT)
data on passenger journeys between 309 London Tube stations. Each result is the mean
of random walks starting at every node, error bars indicate the s.e.m. (standard error of
the mean). The predicted S∗ value (see Eq. 5.8) is shown by the horizontal dashed line.

paths; i.e. the existence of two first-order links (a, b) and (b, c) does not imply that a

time-respecting path a→ b→ c exists. Transitivity of paths is a precondition for the use

of algebraic methods in the study of dynamical processes. As such, it is possible to study

diffusion dynamics in temporal networks based on the spectral properties of the matrix

T(2), while the same is not true for a transition matrix defined based on link weights in

the first-order aggregate network. In particular, the convergence time of a random walk

process (and thus diffusion speed) can be related to the second largest eigenvalue of its

transition matrix [27]. For a primitive stochastic matrix with (not necessarily real) eigen-

values 1 = λ1 > |λ2| > |λ3| ≥ . . . ≥ |λn|, one can show that the number of steps k after

which the total variation distance ∆(πk,π) between the visitation probabilities πk and
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Data Sets S(ε) change ΛH(T(2)) S∗(T(2))
Ants (AN) ≈ 2.11± 0.02, ε = 10−5 slow-down ≈ 0.42 ≈ 2.05
E-Mail (EM) ≈ 2.93± 0.005, ε = 10−10 slow-down ≈ 0.62 ≈ 3.01
Hospital (HO) ≈ 5.63± 0.019, ε = 10−10 slow-down ≈ 0.71 ≈ 5.75
RealityMining (RM) ≈ 7.68± 0.01, ε = 10−5 slow-down ≈ 0.40 ≈ 7.77
Flights (FL) ≈ 0.957± 0.002, ε = 10−5 speed-up ≈ 0.82 ≈ 0.93
London Tube (LT) ≈ 0.25± 0.001, ε = 10−5 speed-up ≈ 0.30 ≈ 0.23

Table 5.1: Entropy growth rate ration ΛH , slow down factor S(ε) and the analytical
prediction of the slow-down factor S∗ for the six empirical data sets that were investigated.

the stationary distribution π of a random walk falls below ε is proportional to 1/ ln(|λ2|)
(see Supplementary Note 1 for a detailed derivation). For a matrix T(2) capturing the

statistics of two-paths in an empirical temporal network, and a matrix T̃(2) corresponding

to the “Markovian” null model derived from the first-order aggregate network, an analyt-

ical prediction S∗ for causality-driven changes of convergence speed can thus be derived

as (see Section A.1 for more details)

S∗(T(2)) := ln(|λ̃2|)/ ln(|λ2|), (5.8)

where λ2 and λ̃2 denote the second largest eigenvalue of T(2) and T̃(2) respectively. De-

pending on the eigenvalues λ2 and λ̃2, both a slow-down (S∗(T(2)) > 1) or speed-up

(S∗(T(2)) < 1) of diffusion can occur.

This approach allows us to analytically study the effect of non-Markovian characteristics

in the empirical data sets introduced in Section 3.4. For each data set we construct

matrices T(2) and T̃(2) (see Eqs. 5.4 and 5.5), and compute the entropy growth rate ratio

ΛH for the corresponding statistical ensembles. The ratio indicates that the topologies

of time-respecting paths in all six cases differ from what is expected from the first-order

time-aggregated networks. The impact of these differences on diffusion can be quantified

by means of the analytical prediction S∗(T(2)). The obtained results can be found in

Table 5.1.

All six predictions are consistent with the diffusion behaviour observed in numerical sim-

ulations in the limit of small ε (see Figure 5.2). As argued above, the significantly smaller

magnitude of the slow-down effect in (AN) compared to (RM) can neither be attributed

to differences in system size nor inter-event time distributions. A spectral analysis of T(2)

can explain the smaller slow-down of (AN) compared to (RM) by a “better connected”

causal topology indicated by a smaller S∗. Similarly, the large slow-down observed in

(HO) can be related to a “badly connected” causal topology indicated by a large value

of S∗. For (FL), the analytical prediction S∗(T(2)) ≈ 0.93 is consistent with the asymp-

77



totic empirical speed-up observed in Figure 5.2. Similarly, the prediction S∗(T(2)) ≈ 0.23

for (LT) is in line with the speed-up observed in Figure 5.2. Here, the small value of

S∗(T(2)) highlights that the empirical second-order aggregate network is much better con-

nected that one would expect from a Markovian temporal network, thus explaining the

large speed-up by a factor of four. The non-linear behaviour of S(ε) can be understood

by recalling that Eq. 5.8 makes the simplifying assumption that only λ2 contributes to

the convergence time, which holds in the limit of small ε. As ε increases, an increasing

number of eigenvalues and eigenvectors have non-negligible contributions to the empirical

slow-down S.

5.4 Causality structures: slow-down or speed-up

Above, we showed that non-Markovian characteristics alter the causal topology of time-

varying complex systems, and that the dynamics of diffusion in such systems can be ex-

plained by the resulting changes in the eigenvalue spectrum of higher-order aggregate net-

works, compared to the first-order aggregate network. We further analytically found that,

depending on the system under study, non-Markovian characteristics can both slow-down

or speed-up diffusion dynamics. In the following, we further investigate the mechanism

behind the speed-up and slow-down by a model in which order-correlations can mitigate

or enforce topology-driven limitations of diffusion speed.

5.4.1 Community structures

The model generates non-Markovian temporal networks consistent with a uniformly weighted

aggregate network with two interconnected communities, each consisting of a random 4-

regular graph with 50 nodes. A parameter σ ∈ (−1, 1) controls whether time-respecting

paths between nodes in different communities are - compared to a “Markovian” realisa-

tion - over- (σ > 0) or under-represented (σ < 0). The Markovian case coincides with

σ = 0. An important aspect of this model is that realisations generated for any parameter

σ are consistent with the same weighted aggregate network. The parameter σ exclusively

influences the temporal ordering of interactions, but neither their frequency, topology nor

their temporal distribution (see Section A.2 for model details and mathematical proofs).

Figure 5.3 (a) shows the effect of σ on the entropy growth rate ratio ΛH (blue, dashed

line) and the predicted slow-down S∗ (black, solid line). All non-Markovian realisations

of the model (i.e. σ 6= 0) exhibit an entropy growth rate ratio ΛH < 1 (blue dashed line)

which signifies the presence of order correlations. Whether these correlations result in a
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FIG. 3. Slow-down and speed-up regimes in a temporal network model We analytically study a model of non-
Markovian temporal networks consistent with a weighted first-order aggregate network with n = 100 nodes that has two pro-
nounced communities with 50 nodes each. A parameter σ controls whether two-paths across communities are over-represented
(σ > 0, turquoise) or under-represented (σ < 0, magenta) compared to the Markovian case (σ = 0). Realisations for different
parameters only differ in the ordering of interactions and thus their second-order aggregate networks. Weighted first-order
time-aggregated networks are the same for all parameters σ. (a) Entropy growth rate ratio ΛH (blue, dashed line) and slow-
down factor S∗ (black, solid line) for different parameters σ. (b) Algebraic connectivity λ2(L) of the weighted second-order
aggregate network for different parameters σ of non-Markovian temporal networks. Insets show the Fiedler vector for two
points σ = −0.75 (magenta) and σ = 0.75 (turquoise) in the model’s parameter space corresponding to cases where two-paths
across communities are inhibited and enforced respectively.

erties that limit diffusion speed. In our simple model,
temporal correlations can accelerate diffusion speed by
as much as 40%, compared to what is expected from the
first-order time-aggregated network. These findings high-
light that the causal topologies of time-varying complex
systems constitutes an important additional temporal di-
mension of complexity, which can reinforce, mitigate and
even outweigh effects that are due to topological features
like, e.g., community structures.

Different from studies exclusively considering how in-
teractions are distributed in time, in our study we focus
on how their ordering influences causality structures in
temporal networks. The finding that causality structures
can lead to both a speed-up and a slow-down of diffusion
highlights that, in order to understand the influence of
the temporal dynamics of networks, effects of both ac-
tivity patterns and causality must be taken into account.
Considering temporal networks in which interactions are
homogeneously distributed in time, our approach further
provides a novel explanation for changes in dynamical
processes that cannot be explained in terms of bursty
node activity patterns. An additional benefit of our ap-
proach is that it can be used for the network-based study
of systems for which causal relations between different
links can be inferred even though links cannot be assigned
absolute time stamps. The flight path data analysed in
our article is an example for such a system where only the
ordering of links is known. Our approach of constructing
higher-order Markov models that preserve the statistics
of time-respecting paths allows to study the temporal-
topological dimension of time-varying complex systems

- a dimension that is often ignored when exclusively fo-
cusing on changes in the duration of dynamical processes.
The higher-order time-aggregated networks introduced in
this article are simple static representations of temporal
networks which - compared to first-order aggregate net-
works - better preserve causality. This approach provides
interesting perspectives not only for analytical studies of
further classes of dynamical processes in complex sys-
tems with time-varying interaction topologies. It is also
a promising approach for the development of novel tem-
poral community detection algorithms using, e.g., spec-
tral clustering or random walk based methods as well as
for the design of refined eigenvector-based centrality mea-
sures taking into account the ordering of links in dynamic
networks. Finally, we foresee applications in the devel-
opment of novel temporal network visualisation methods,
such as layout algorithms that make use of both the first-
and the second-order time-aggregated networks.

METHODS

Details on empirical data sets

In our article, we study diffusion dynamics in temporal net-
works constructed from three different empirical data sets:
(AN) captures pairwise interactions between individuals in
an ant colony, (RM) is based on contact networks of students
and academic staff members at a university campus, and (FL)
represents multi-segment itineraries of airline passengers in
the United States. For the (AN) data set, we used the largest

Figure 5.3: Slow-down and speed-up regimes in a temporal network model We
analytically study a model of non-Markovian temporal networks consistent with a weighted
first-order aggregate network with n = 100 nodes that has two pronounced communities
with 50 nodes each. A parameter σ controls whether two-paths across communities are
over-represented (σ > 0, turquoise) or under-represented (σ < 0, magenta) compared to
the Markovian case (σ = 0). Realisations for different parameters only differ in the order-
ing of interactions and thus their second-order aggregate networks. Weighted first-order
time-aggregated networks are the same for all parameters σ. (a) Entropy growth rate ratio
ΛH (blue, dashed line) and slow-down factor S∗ (black, solid line) for different parame-
ters σ. (b) Algebraic connectivity λ2(L) of the weighted second-order aggregate network
for different parameters σ of non-Markovian temporal networks. Insets show the Fiedler
vector for two points σ = −0.75 (magenta) and σ = 0.75 (turquoise) in the model’s pa-
rameter space corresponding to cases where two-paths across communities are inhibited
and enforced respectively.

speed-up (S∗ < 1) or slow-down (S∗ > 1) depends on how order correlations are aligned

with community structures. For σ < 0, time-respecting paths across communities are

inhibited and diffusion slows down compared to the time-aggregated network (S∗ > 1).

For σ > 0, non-Markovian properties enforce time-respecting paths across communities

and thus mitigate the decelerating effect of community structures on diffusion dynamics

(S∗ < 1) [141]. We analytically substantiate this intuitive interpretation by means of a

spectral analysis provided in Figure 5.3 (b). For each σ, we compute the algebraic connec-

tivity of the causal topology, i.e. the second-smallest eigenvalue λ2(L) of the normalised

Laplacian matrix L = In −T(2) corresponding to the second-order aggregate network (In
being the n-dimensional identity matrix). Larger values λ2(L) indicate “better-connected”

topologies that do not exhibit small cuts [38, 177]. The effect of non-Markovian charac-

teristics on λ2(L) validates that the speed-up and slow-down is due to the “connectivity”

of the causal topology. In addition, the insets in Figure 5.3 (b) show entries (v2)i of the

Fiedler vector, i.e. the eigenvector v2(L) corresponding to eigenvalue λ2(L). The dis-
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tribution of entries of v2(L) is related to community structures and is frequently used

for divisive spectral partitioning of networks [130]. For σ = −0.75, the strong community

structure in the causal topology shows up as two separate value ranges with different signs,

while the two entries close to zero represent links that interconnect communities. Apart

from the larger algebraic connectivity, the distribution of entries in the Fiedler vector for

σ = 0.75 shows that the separation between communities is less pronounced. This high-

lights that non-Markovian properties can effectively outweigh the decelerating effect of

community structures in the time-aggregated network, and that the associated changes in

the causality structures can be understood by an analysis of the spectrum of higher-order

time-aggregated networks.

5.4.2 Geodesic structures

Another way to alter the diffusion speed in terms of ”reordering” temporal links targets

the geodesic structures of the network topology. The geodesic distance between two nodes

a and b is equal to the length of the shortest path that connects them. In terms of a

random walk it is the minimal amount of steps needed to reach b if the walker starts in a.

The path mitigating and enforcing used to bridge communities in the model described in

the previous section can in general be utilized to alter time-respecting paths in the desired

way.

We start with a simple example of a 5 node network that is depicted in the top left in

Figure 5.4. The node b has two incoming links from a and d and two outgoing links to c and

e. The node b is the connecting node in this setup and each quantity coming from either a

or d can travel to c or e. Let us consider that this network is the first-order aggregation of

a temporal network. In this model we assume that that all links occur as often as needed

but with the same frequency to assure that equal weights in the aggregation.

Let us consider that the initial temporal sequence is Markovian and therefore all paths

have the same frequency. The second-order network contains four nodes a− b, b− c, d− b
and b− e as depicted in the bottom left of Figure 5.4. The question arises how the links

in the temporal sequence have to be reordered to change the frequency of second-orders

link in a desired way. As an example let us assume that we want to increase the frequency

of the two-path a → b → c by some quantity q. This two-path consist of the links a − b
and b − c that we have to acquire to build q new two-paths a → b → c. However, since

the temporal sequence is assumed to be Markovian the only way to acquire additional

links is to take them from another two-path. The only other two-path including a − b

is a → b → e and the only other two-path including b − c is d → b → c. Hence, if we
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(b) Temporal sequence, original (left), reordered (right)

Figure 5.4: Concept of altering time-respecting path by reordering links
Enforced paths (turquoise) get an increased frequency of q, while the frequency of other
paths (magenta) have to be mitigated by the same amount. (a) First-order aggregate
network on the top and second-order aggregate network on the bottom. (b) Time-unfolded
representations of the original and reordered temporal network, both corresponding to the
aggregated network shown in (a) top.

build q new two-paths a → b → c the frequency of the aforementioned two-paths has to

be decreased by q. On the other hand we also acquire q links b − e and d − b that are

not anymore part of a two-path and can also be reused to build q additional two-paths

d→ b→ e.

The reordering process is illustrated with a time-unfolded representation on the right in

Figure 5.4. To summarized, through a reordering process that enforced the two-path

a → b → c by q we had to mitigate the two-paths a → b → e and d → b → c but also

could enforce d→ b→ e by the same quantity. The following link weights, corresponding

to reordering links, preserve the first-order aggregate network and therefore the frequency

of single links in the temporal sequence but alter the statistics of time-respecting paths,

w(a→ b→ c) + q

w(a→ b→ e)− q
w(d→ b→ c)− q
w(d→ b→ e) + q .

(5.9)

Even though we used a simple example the concept itself can be applied to any kind of

network. It just has to be assured that the total frequency of single links is preserved.
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Therefore, enforcing a path also means that another path has to be mitigated to assure

that the first-order time-aggregated remains unchanged.

A direct way to improve the diffusion speed in the network is to increase the flow between

distant nodes. Recall that the algebraic connectivity λ2(L) is a proxy for the convergence

rate of a random walk and therefore the diffusion speed inside a network. It was shown

by Bojan Mohar [104] that,

λ2(L) ≥ 4

n · diam(G)
, (5.10)

where n is the amount of nodes and diam(G) is the diameter of the network G. The

relation to network size and diameter imposes a lower bound on the algebraic connectivity.

Lowering the diameter of the network increases the bound and therefore the potential for a

fast convergence of the diffusion process. With temporal reordering of the network we are

not able to alter the diameter of the first-order aggregated network. However, we still can

alter the time-respecting paths and therefore the topology of the second-order networks.

In specific cases we usually deal with directed links that are weighted. We can not apply

Eqn. 5.10 directly to this framework but improving the flow between distant nodes will

still increase the connectivity.

A simple way to improve the flow can be achieved by mitigating returning two-paths.

By this we mean paths of the form a → b → a. In case of a random walk process such

paths obviously slow down the spreading inside the network. Consider the simplest path

a↔ b↔ c that is connected in both direction and represents the basic component of any

bidirectional path. We can apply equation 5.9 to enforce a → b → c and c → b → a

and at the same time mitigating the returning two-paths a → b → a and c → b → c.

The returning two-paths can lead to significant slow-downs was also investigated in other

studies [140].

Applying this procedure and therefore mitigating return steps of all two-paths in a bidi-

rectional network can significantly speed-up the random walk process. We apply this idea

to the six empirical data sets presented in Section 3.4. For each temporal sequence we first

perform a second-order aggregation and detect all returning two-paths , i.e. paths of the

form a → b → a. Considering equation 5.9 we randomly search for alternative two-paths

such that the returning paths are mitigated and paths connecting three different nodes

are enforced. The particular paths are chosen uniformly at random with no optimization

criterion in mind. Therefore, there may occur situations where it is not possible to reorder

returning two-paths in a desired way. In such cases we randomly choose another two-path

that can be altered. We apply this reordering to all returning two-paths an perform the

procedure multiple times on the same network and just report the best values that were
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achieved. These are usually the cases where most returning paths could be reordered.

For each reordering we construct a second-order transition matrix T̂(2) and compute a

slow-down factor in respect to the second-order aggregate network,

S#(T̂(2)) := ln(|λ2|)/ ln(|λ̂2|) . (5.11)

The reordering is not compared to the ”Markovian” null model, since we are interested in

the change of the convergence rate compared to the actual two-path statistics. For (AN)

we obtain S# = 0.49, for (EM) we obtain S# = 0.62, for (HO) we obtain S# = 0.37 and for

(RM) we obtain S# = 0.31. Hence, for the 4 interaction data sets we observe significant

speed-ups by mitigating returning paths compared to the actual path statistics. This

implies that there are a lot of immediate repeated interaction between individuals in these

data sets.

However, for the transportation data sets we obtain S# = 1 for both (LT) and (FL). This

is due to very few immediate returning steps in the networks. Both the London Tube

and Flight data sets represent travel statistics where people navigate between distant

places. They tend to travel across several nodes before they return. This effect is nicely

capture in the London Tube flows illustrated in Figure 5.5. The figure shows the second-

order aggregate network of the London Tube. Each node represent a link between two

stations and each link a two-path. For each two-path we compute the frequency from a

second-order aggregate perspective and a first-order aggregate perspective. The difference

between the frequencies of the path is showed as a color scale between turquoise and

magenta. Two-paths that are more frequent in the temporal sequence than assumed from

an time-aggregate perspective are shown in turquoise. Two-paths that are less frequent

in the temporal sequence than assumed from an time-aggregate perspective are shown in

magenta. Interesting is the ”rail” like structure in the network, highlighted by the inset

of Figure 5.5. The turquoise links represent two-path connecting three different stations,

while the magenta links represent returning two-paths. Hence, the nodes spanning the

”rails” are reversed links as for example a → b and b → a. The relation of such pairs

propagate along the Tube lines and therefore highlight the efficiency of passenger flows in

regard of traveling across distant parts of the network.

The method of enforcing and mitigating paths summarized in equation 5.9 is a general

tool that can be applied in more elaborate ways. Here we only showed the impact on

returning two-path therefore focusing on localized optimization of network flows. However,

incorporating other parameters such as centrality measure, shortest paths or spanning

trees should allow for even better techniques to alter the diffusion speed in temporal

networks. Optimization methods should be applied in regard of particular applications

83



Figure 5.5: Second-order aggregated network of the London Tube (LT) Nodes
represent links between London Tube stations, while links represent a two-paths between
stations. Link colors indicate the difference in path statistics from the second-order ag-
gregate network compared to a first-order aggregate network. Turquoise links are more
frequent and magenta links less frequent in the temporal sequence than expect from an
aggregate perspective. The inset shows, that the flows between distant nodes are more
prominent then immediate returning itineraries.

to decide which properties are most significant for improving or hampering the diffusion

in temporal system. Hence, the framework of higher-order aggregate networks is a useful

tool that helps to design systems in such a way that the ordering of interactions and

connections alters the diffusion speed in a desired way.

5.5 Conclusion

The abstraction of higher-order aggregate representations allows to define Markov models

generating statistical ensembles of temporal networks that preserve the weighted aggre-

gate network as well as the statistics of time-respecting paths. Focusing on second-order

Markov models, we showed how transition matrices for such models can be computed based

on empirical contact sequences. The ratio of entropy growth rates (see Eq. 5.7) between

this transition matrix and that of a null model, which can easily be constructed from the
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first-order aggregate network, allows to assess the importance of non-Markovian properties

in a particular temporal network. Considering six different empirical data sets, we showed

that spectral properties of the transition matrices capture the connectivity of the causal

topology of real-world temporal networks. We demonstrate that this approach allows to

analytically predict whether non-Markovian properties slow-down or speed-up diffusive

processes as well as the magnitude of this change (see Eq. 5.8). With this, we provide

the first analytical explanation for both the direction and magnitude of causality-driven

changes in diffusive dynamics observed in empirical systems. Focusing on the finding that

non-Markovian characteristics of temporal networks can both slow-down or speed-up dif-

fusion processes, we finally introduce a simple model that allows to analytically investigate

the underlying mechanisms. Our results show that the mere ordering of interactions can

either mitigate or enforce topological properties that limit diffusion speed. Both our em-

pirical and analytical studies confirm that causality structures in real-world systems have

large and significant effects, slowing down diffusion by a factor of more than seven in one

system, while other systems experience a speed-up by a factor of four compared to what

is expected from the first-order time-aggregated network. These findings highlight that

the causal topologies of time-varying complex systems constitute an important additional

temporal dimension of complexity, which can reinforce, mitigate and even outweigh effects

that are due to topological features like, e.g., community and geodesic structures.

Different from studies exclusively considering how interactions are distributed in time,

in our study we focus on how their ordering influences causality structures in temporal

networks. The finding that causality structures alone can lead to both a speed-up or a

slow-down of diffusion highlights that, in order to understand the influence of the tem-

poral dynamics in real-world systems, effects of both activity patterns and causality must

be taken into account. Considering temporal networks in which interactions are homoge-

neously distributed in time, our approach further provides a novel explanation for changes

in dynamical processes that cannot be explained in terms of bursty node activity patterns.

An additional benefit of our approach is that it can be used for the network-based study

of systems for which causal relations between different links can be inferred even though

links cannot be assigned absolute time stamps. The data on airline and subway passenger

itineraries that we analysed are two examples for such systems where only the ordering of

links is known.

Our approach of constructing higher-order Markov models that preserve the statistics of

time-respecting paths allows to study the temporal-topological dimension of time-varying

complex systems - a dimension that is often ignored when exclusively focusing on changes

in the duration of dynamical processes. The higher-order time-aggregated networks in-

troduced in Chapter 3 are simple static representations of temporal networks which -
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compared to first-order aggregate networks - better preserve causality. This approach

provides interesting perspectives not only for analytical studies of further classes of dy-

namical processes in complex systems with time-varying interaction topologies. It is also a

promising approach for the development of novel temporal community detection algorithms

using, e.g., spectral clustering or random walk based methods as well as for the design of

refined eigenvector-based centrality measures taking into account the ordering of links in

dynamic networks. Finally, we foresee applications in the development of novel temporal

network visualization methods, such as layout algorithms that make use of both the first-

and the second-order time-aggregated networks.
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“The only simple truth is that there is nothing simple in this complex

universe. Everything relates. Everything connects.”

Johnny Rich

The Human Script

Part II

Interconnectivity
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Chapter 6

Lack of Information in

Multi-layer Networks

Summary

We study properties of multi-layered, interconnected networks from an ensemble
perspective, i.e. we analyze ensembles of multi-layer networks that share similar
aggregate characteristics. Using a diffusive process that evolves on a multi-layer
network, we analyze how the speed of diffusion depends on the aggregate charac-
teristics of both intra- and inter-layer connectivity. Through a block-matrix model
representing the distinct layers, we construct transition matrices of random walkers
on multi-layer networks, and estimate expected properties of multi-layer networks
using a mean-field approach. In addition, we quantify and explore conditions on
the link topology that allow to estimate the ensemble average by only considering
aggregate statistics of the layers. Our approach can be used when only partial in-
formation is available, like it is usually the case for real-world multi-layer complex
systems.

Based on Wider, N., Garas, A., Scholtes, I. and Schweitzer, F. Ensemble perspective on multi-layer
networks a chapter in Interconnected Networks, pp 37-59, Springer, 2016. NW conceived the study and
wrote the article together with the other authors. Additionally, NW performed the simulations and
provided the analytical results.

89



6.1 Introduction

In a multi-layered network each individual layer contains a network that is different from

the networks contained in other layers, and the layer interconnectivity refers to the fact that

nodes in different layers can be connected to each other. Nevertheless, it is often possible

to extend and apply methods developed for single-layer (isolated) networks to multi-layer

networks, assuming that all layers and the connections between them are known precisely.

Unfortunately, when creating networks using relational data on real-world systems we

are often confronted with situations where we lack information about the details of their

multi-layer structure. In such situations, ensemble-based approaches allow us to reason

about the expected properties of such networks, provided that we have access to aggregate

statistics which can be used to define a statistical ensemble.

For instance, there are situations in which we are able to precisely map the topology

within each layer individually, but we may not be able to obtain the detailed topology

of connections across different layers. As an example, we may consider the topology

of connections between users in different online social networks (OSNs). Such a system

can be represented as a multi-layer network, where each layer represents the network of

connections between users within one OSN. In addition, cross-layer connections are due to

users which are members of multiple OSNs at the same time, and which can thus drive the

dissemination of information across OSNs. Data on the network topology within particular

OSNs are often readily available, however it is in general very difficult to identify accounts

of the same user in different OSNs.

Contrary to the situation described above, we may also consider situations in which de-

tailed information on the topology of cross-layer links is available, while the detailed

topology of connections within layers is not known. For example, there may be a rather

small number of static links across layers, while the topology of links within layers is too

large and too dynamic to allow for a detailed mapping. Again, in such a situation we may

still have access to partial, aggregate information on the inter-layer connectivity (such as

the number of nodes or the density of links) which we can use in order to reason about a

multi-layer complex system.

Both the above situations lead to multi-layer networks, and both require us to reason about

a system with incomplete information. This problem can be addressed from a macroscopic

perspective using statistical ensembles, and in this work we extend the ensemble perspec-

tive to multi-layer networks, where we have access to mere aggregate statistics either on

links within or across layers. Combining both detailed and aggregate information on the

links in a multi-layer network, we first define a statistical ensemble, i.e. a probability
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space containing all network realizations that are consistent with available information.

Secondly, we assume a probability mass function which assigns a probability to each possi-

ble realization in the ensemble. And finally, using either analytical or numerical techniques,

we use the resulting probability space to reason about the expected properties of a network

given that it is drawn from the ensemble.

The rest of the chapter is structured as follows. In Section 6.2 we present our method-

ological approach to model ensembles of multi-layer networks, we formally introduce the

diffusion process that is assumed to run on the multi-layer network, and we introduce a

method that allows to aggregate the statistics of links inside layers and across layers. In

Section 6.3 we introduce a mean-field approach to approximate ensemble averages, and we

investigate under which conditions it can be used to argue about diffusion in multi-layer

networks. In particular we discuss three distinct cases according to different levels of in-

formation that we may have about the topology of links across the layers or inside the

layers.

6.2 Methods and definitions

In our analysis we investigate a diffusion process that evolves on a static multi-layer net-

work. More precisely we focus on diffusion dynamics modeled by a random walk process.

Recall the definitions of a discrete random walk process introduced in Section 2.2.1, that

we briefly summarize in the following.

A random walker can start at an arbitrary node in the network and in each time step

moves to an adjacent node. Given a network G we can define a transition matrix T

that contains the transition probabilities. The transition probability indicates with which

likelihood a certain link is chosen. The position of the walker can be tracked in each

step which results in a probability distribution πt to find the walker at a particular node

after t time steps. If the network is G strongly-connected and aperiodic, for t → ∞ the

probability distribution πt converges to a stationary state π∗. The amount of time steps

needed until πt converges to π∗ given some threshold ε can be estimated by second-largest

eigenvalue λ2 of T. Therefore in the following we use λ2(T) as a proxy to measure and

quantify the convergence behavior of a random walker on a network. An eigenvalue λ2
close to one implies slow convergence, while λ2 close to zero implies fast convergence.

In this chapter we will investigate a random walk process on a multi-layer network and

analyze its convergence speed depending on the multi-layer topology.
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6.2.1 Multi-layer network

The purpose of our study is to investigate diffusion processes on ensembles of networks

with multiple interconnected layers. Thus, in the following we briefly recall the notion of

multi-layer networks used in this chapter and introduced in Section 2.4. Let us consider

a multi-layer network denoted by G that consist of L non-overlapping layers G1, . . . , GL.

Each of these layers Gl is a single-layer network Gl = (Vl, El) where V (Gl) and E(Gl)

denote the nodes and links of layer l respectively. We call the links E(Gl) between nodes

within the layers l intra-links. The multi-layer network G consist in total of n nodes, where

n =
∑L

l=1 |V (Gl)|. In addition, we assume a set EI(G) of inter-layer links which connect

nodes across layers, i.e. for each link (u, v) ∈ EI we have u ∈ V (Gi) and v ∈ V (Gj)

for i 6= j. Inter-layer links induce a multipartite network with the independent sets

G1, . . . , GL.

In our study we consider undirected and unweighted networks, however some of our results

may hold even for directed or weighted networks. Furthermore, from the perspective of

a random walk process, we assume that inter- and intra-layer links are indistinguishable,

i.e. transitions are made purely randomly irrespective of the type of link. As such, the

multi-layer network can also be viewed as a huge single network consisting of subnetworks

G1, . . . , GL.

As mentioned above diffusion dynamics on networks can be studied analytically using

transition matrices of random walkers [33, 93]. The multi-layer structure of a network

can explicitly be incorporated in a random walk model by constructing a so-called supra-

transition matrix [55, 148] similar to the supra-adjacency matrix used in [32, 33, 82]. The

supra-adjacency matrix of a multi-layer network G can be defined in a block-matrix form

as

A =




A1 . . . A1t . . . A1L

...
. . .

...
. . .

...

As1 . . . Ast . . . AsL

...
. . .

...
. . .

...

AL1 . . . ALt . . . AL



. (6.1)

On the diagonal we have the adjacency matrices A1, . . . ,AL corresponding to the layers

G1, . . . , GL, thus entries of these block matrices represent the intra-layer links of the

multi-layer network. Off-diagonal matrices Aij for i, j ∈ {1, . . . , L} with i 6= j represent

inter-layer links that connect nodes in layer Gi to nodes in layer Gj. Since we consider

undirected networks we have A>ij = Aji.

Based on a supra-adjacency matrix A we can easily define a supra-transition matrix T of
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a random walker on a multi-layer network G. In block-matrix form such a matrix can be

written as:

T =




T1 . . . T1t . . . T1L

...
. . .

...
. . .

...

Ts1 . . . Tst . . . TsL

...
. . .

...
. . .

...

TL1 . . . TLt . . . TL



. (6.2)

Here, each entry Tij is defined as:

Tij =
aij∑n
k=1 aik

, (6.3)

where aij are the corresponding entries of the supra-adjacency matrix A. Note that, due

the presence of inter-layer links, block matrices Tij are in general not equal to the row-

normalized version of block matrices Aij. The supra transition matrix defined above can

be used to model a random walk process on a multi-layer network.

From an analytical perspective the supra-transition matrix can be treated in the same

way as the transition matrix of a single layer as explained above. In the case of undi-

rected networks the eigenvalues of a transition matrix are related to the eigenvalues of the

normalized Laplacian matrix. In our case we study the second-largest eigenvalue of the

supra-transition matrix and use it as a proxy for the efficiency of a network with respect

to a diffusion process as pointed out above.

Using T we are able to model a diffusion process on a multi-layer network. Since we espe-

cially want to emphasize the relevance of the inter-links, in the next section we introduce a

transition matrix that only considers transitions across layers and not between individual

nodes. As we will see later, this aggregated transition matrix is useful to distinguish the

influence of inter-layer and intra-layer links on the convergence behavior of a random walk

process.

6.2.2 Multi-layer aggregation

The supra-transition matrix T introduced previously contains transition probabilities for

any pair of nodes in the multi-layer network. In this sense T could also be the transition

matrix of a large network, which is not divided in separate layers. In order to understand

the effects of a layered structure, in this section we focus explicitly on transitions across

layers. To do this we aggregate the statistics of inter-links and the intra-links of all sin-

gle layers, i.e. we only consider the number of links inside an between layers. Thus, we
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homogenize all individual nodes that belong to the same layer, since there no distinguish-

able from an aggregate perspective. This way we reduce the supra-transition matrix T of

dimension n to an aggregated transition matrix T of dimension L. We call this process

multi-layer aggregation and the matrix T the layer-aggregated or just aggregated transition

matrix. Later on we will provide a relation between the eigenvalues of T and T, which

will allow us to decompose the spectrum of T. This is important since the convergence

behavior of a random walk process depends on the second largest eigenvalues of T.

Let us begin by discussing the construction process of the layer-aggregated transition ma-

trix. Our goal is to define transition probabilities across any two layers Gs and Gt by

averaging the transitions between any two nodes of Gs and Gt. Under certain condi-

tions which will be specified in the following, these average transition probabilities can be

representative for all nodes of the different layers.

Let G be a multi-layer network that consists of L layers G1, . . . , GL. The transition

probability to go from node vi to any node vj in G is defined as

P (vi → vj) =
ω(vi, vj)∑
k ω(vi, vk)

(6.4)

where ω(vi, vj) is the weight of a link connecting vi with vj. This is a general formalism,

but since we only consider unweighted networks we have ω(vi, vj) = 1 if and only if there

is a link between the nodes vi and vj.

For each node vi in layer Gs we require that the transition probabilities P (vi → ∗) to

nodes in another layer Gt fulfill the following equation

αss
∑

vj∈V (Gs)

P (vi → vj) = αst
∑

vk∈V (Gt)

P (vi → vk) ∀vi ∈ V (Gs) , (6.5)

where αst is a factor that only depends on the layers Gs and Gt. The factor αss is used

to normalize the transitions, such that
∑

t αst = 1 is satisfied. In other words Eq.(6.5)

implies that the probability for a random walker at node i to stay inside layer Gs is a

multiple of the probability to switch to layer Gt.

We can see that αst isx independent of i, and therefore Tst = αstRst where Rst is a row

stochastic matrix. This means that Tst resembles a scaled transition matrix, and αst
represents the weighted fraction of all links starting in Gs that end up in Gt. Thus, we
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can define the aggregation of a supra-adjacency matrix satisfying Eq.(6.5) as

T =




α11 . . . α1t . . . α1L

...
. . .

...
. . .

...

αs1 . . . αst . . . αsL
...

. . .
...

. . .
...

αL1 . . . αLt . . . αLL



. (6.6)

If a multi-layer network G satisfies Eq.(6.5) we can follow that the spectrum of the aggre-

gated matrix T = {αst}st is

Spec(T) = {1, λ2, . . . , λL} , (6.7)

and it holds that λ2, . . . , λL ∈ Spec(T) (see Prop. 1 in the Appendix B.1).

This relation implies that the aggregated matrix T preserves L eigenvalues of the supra-

transition matrix T, where L is the amount of layers. In other words, under the condition

that Eq.(6.5) holds, we are able to make statements about the spectrum of the transition

matrix T only using the layer-aggregated transition matrix T.

Similar to the Fiedler vector, i.e. the eigenvector corresponding to the second smallest

eigenvalue of the Laplacian matrix, here we may use the eigenvector v2 corresponding

to the second largest eigenvalue λ2 of the transition matrix T. The vector v2 contains

negative and positive entries and sums up to zero. If all individual nodes that belong

to the same layer correspond to entries of v2 with the same sign, we consider the layers

of G partitioned according to v2, which is also called spectral partitioning or spectral

bisection [38, 39]. In this case, according to Cor. 1 in the Appendix B.1, it holds that

λ2(T ) = λ2(T).

We note that the multi-layer aggregation, performed according to a spectral partitioning,

has similarities to spectral coarse-graining [52]. The multi-layer aggregation presented

here decreases the state space as well, but still preserves parts of the spectrum.

The spectral properties introduced in this section are important for our ensemble esti-

mations that follows, since we characterize the diffusion process by its convergence ef-

ficiency measured through the second-largest eigenvalue λ2(T) of the supra-transition

matrix. However, as outlined before, if Eq.(6.5) holds then this eigenvalue is equal to

the second-largest eigenvalue λ2(T) of the aggregated transition matrix T. Considering

that for the construction of T we only used aggregated statistics on the network and not

the detailed topologies of the inter-links or any of the intra-links of all single layers, this

already provides a hint how we can treat a system in the case of limited information.
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6.3 Mean-field approximation of ensemble properties

With the layer aggregation introduced in the previous section, we are now able to deal with

multi-layer network ensembles in case of limited information. In our case, this informa-

tion concerns knowledge either of the inter-link topology between layers or the intra-link

topologies of all single layers. For our purpose we define ensembles based on the inter-link

densities and intra-link densities of all single layers, more precisely, by using the amount

of nodes, the amount of inter-links across any two layers, and the amount of intra-links of

all single layers. The number of nodes in individual layers are represented by the vector

~n = {n1, . . . , nL} and the number of links between layers by a matrix M with entries mst

where s gives the source layer and t the target layer. Intra-layer links have both of their

ends in the same layer and therefore we assume that the diagonal elements mss are equal

to the amount of desired intra-links multiplied by two. We denote the ensemble defined

by these two quantities E(~n,M).

A single random realization of this ensemble satisfies the aggregated statistics given by

M and ~n. We assume a random uniform distribution of links and therefore each realiza-

tion of E(~n,M) has the same probability. However, instead of single realizations we are

rather interested in the average values of all possible realizations. For each multi-layer

network realization G of E(~n,M) we build the supra-transition matrix T, which defines

a random walk process that is different for every realization. As discussed above, a proxy

of the convergence quality of these random walk processes is given by the second-largest

eigenvalue λ2(T). Our goal is to estimate the average λ2 of the ensemble E(~n,M), and

we do this using a mean-field approach on the supra-transition matrix T that is similar

to Refs. [57, 99].

Hereafter we will provide a mean-field approach for the general case, i.e. when the exact

topology of inter-links and intra-links of all single layers are unknown. Next, building on

this approach, we will discuss the case for which we have full knowledge of the intra-link

topology but we do not know the inter-link topology, and the case for which we have full

knowledge of the inter-link topology but we do not know the intra-link topology.

6.3.1 Case I: unknown inter- and intra-connectivity

For this case we only assume knowledge of the ensemble parameters M and ~n. We define a

mean-field adjacency matrix Â with a block structure similar to Eq.(6.1), and for each Âst

we are only given the amount of links equal to mst. Since we do not know how these links

are assigned to the entries Ast, without loss of generality we assume a uniform distribution.
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Thus, for the blocks of Â we have

Âst =

{
mst

nsnt

}

ij

, i ∈ {1, . . . , ns}, j ∈ {1, . . . , nt} . (6.8)

Following the discussion of Section 6.2, based on the mean-field adjacency matrix we de-

fine a mean-field transition matrix T̂. The transition probability between any two nodes

i, j ∈ Gs for a fixed layer s is the same since according to the available information indi-

vidual nodes cannot be distinguished based on their connectivity. Further, the transition

probabilities between any two nodes i ∈ Gs and j ∈ Gt are the same for any two fixed

layers s and t. Therefore, all block transition matrices T̂st contain the same value at each

entry. Hence we have

T̂st =

{
mst

nt (
∑

kmsk)

}

ij

, i ∈ {1, . . . , ns}, j ∈ {1, . . . , nt} . (6.9)

Now, using Eq.(6.5) we can construct an aggregated supra-transition matrix T with entries

αst =
mst∑
kmsk

. (6.10)

The aggregated supra-transition matrix T describes the macro behavior of the multi-layer

network ignoring the detailed topology of the inter-links and the intra-links of all single

layers. Since T depends on a mean-field approach it only captures probabilistic assump-

tions of the ensemble E(~n,M). Thus, the spectrum of the mean-field supra-transition

matrix T̂ can be calculated by

Spec(T̂) = Spec(T) ∪

(
L⋃

s=1

∪ns−1
i=1 {0}

)
. (6.11)

To clarify the situation, let us briefly discuss the simple case of a network G that contains

only two layers G1 and G2, for which we get

T =

(
1− α12 α12

α21 1− α21

)
. (6.12)

Hence, for the mean-field matrix of a two-layered network we obtain

Spec(T̂) = {1, 1− α12 − α21, 0, . . . , 0︸ ︷︷ ︸
|n|−2 times

} . (6.13)
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These results are remarkable, since the layer-aggregated transition matrix captures the

same relevant eigenvalues as the mean-field transition matrix. So, for the case of a diffusion

process in two layers the eigenvalue of interest is λ2(T̂) = 1− α12 − α21. However, so far

we only considered the general case where we can only use the densities of inter-links and

intra-links of all single layers. In the following two sections we will investigate cases where

we may have some additional information about either the inter-link topology between all

single layers or the intra-link topology of all single layers. For simplicity, we will restrict

ourselves to the two layer case but, as shown in the appendix, our results can be generalized

to multiple layers.

6.3.2 Case II: unknown inter-connectivity

For this case we assume full knowledge of the intra-link topology, i.e. we know exactly

which nodes are connected in all of the single layers. But while we know the number of

links between the layers we do not know how the layers are connected, i.e. we do not

know the inter-link topology. With respect to the general case discussed previously, here

we have more information which is expected to improve the estimates of the ensemble

average.

More precisely, we consider a two-layer network with unknown inter-link structure denoted

by EI(G), but with a given amount of m interconnecting links which connect the networks

G1 and G2. This means that the diagonal blocks A1 and A2 of the supra-adjacency

matrix are given, but the off-diagonal blocks A12 and A21 can take any form such that

they have exactly m entries different from zero. Since there are no further constraints on

the ensemble, any random link configuration that consists of m inter-links has the same

probability to occur. Therefore, we define the mean-field supra-adjacency blocks that

correspond to the inter-links, Â12 and Â21, to have the same value m
n1n2

in each entry.

For the supra-transition matrix we have to row-normalize A1 with Â12 and Â21 with A2.

The row sums of Â12 are all equal to m/n1 and the row sums of Â21 are all equal to m/n2,

while the row sums of A1 and A2 correspond to the individual degrees of the nodes in

G1 and G2 respectively. Thus, we use the mean degree d̂1 of G1 and d̂2 of G2 in order to

obtain the row-normalized transition matrix T̂, and to define the following factors

α1 =
n1d̂1

n1d̂1 +m
, α2 =

n2d̂2

n2d̂2 +m
, α12 =

m

n1d̂1 +m
, α21 =

m

n2d̂2 +m
. (6.14)

Note that α1 + α12 = 1 and α2 + α21 = 1.
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Accordingly we define the mean transition blocks of T12 and T21.

T̂12 =

{
m

n2(n1d̂1 +m)

}

ij

for i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2} (6.15)

T̂21 =

{
m

n1(n2d̂2 +m)

}

ij

for i ∈ {1, . . . , n2}, j ∈ {1, . . . , n1} . (6.16)

This means that each of the off-diagonal block matrices that correspond to the mean-field

inter-link structures have the same value at each matrix element, and the diagonal blocks

are just rescaled transition matrices of A1 and A2,

T̂1 = (1− α12)T (A1), T̂2 = (1− α21)T (A2) , (6.17)

where T (M) is the row-normalized version of matrix M. We denote the supra-transition

matrix with the blocks constructed as described before by T̂,

T̂ =

(
T̂1 T̂12

T̂21 T̂2

)
. (6.18)

This mean-field matrix has some special properties. First of all, the eigenvalues of T̂1 and

T̂2 are also eigenvalues of T̂. Further, the multi-layer aggregation of T̂ is given by

T =

(
α1 α12

α21 α2

)
=

(
1− α12 α12

α21 1− α21

)
, (6.19)

so, the second-largest eigenvalue of T is given by λ2 = 1− α12 − α21.

The second-largest eigenvalues of T̂1 is equal to (1−α12)λ
1
2 and of T̂2 is equal to (1−α21)λ

2
2,

where λ12 = λ2(T (A1)) and λ22 = λ2(T (A2)). Therefore the second largest eigenvalue of

T̂, denoted by λ2(T̂), fulfills the following condition (See Prop. 2 in the Appendix B.1 for

more details)

λ2(T̂) = max
(
1− α12 − α21, (1− α12)λ

1
2, (1− α21)λ

2
2

)
. (6.20)

We would like to remind the reader that an eigenvalue λ2 close to one implies slow con-

vergence and λ2 close to zero fast convergence. From the above equation we can see that

as long as λ2 = 1 − α12 − α21 is maximal the inter-links are the limiting factor of the

convergence in the multi-layer network. This means that due to the inter-link topology

the random walk diffusion is slowed down, and the influence of the intra-layer topologies

99



is marginal to the process.

When either the term of λ12 or λ22 is maximal then the diffusion is limited by the single layer

G1 or G2, and the additional information provided by the intra-layer topologies becomes

relevant as it affects the diffusion process. Note that the change between λ2 and either λ12
or λ22 being maximal is related to the transitions pointed out in Ref. [55, 131].

This behavior is shown in Figure 6.1 for the mean-field matrix of two interconnected net-

works. The figure shows the second largest eigenvalues of T̂,T and the sparsest layer T1

for different amount of inter-links. When only a few inter-links are present the intercon-

nectivity between layers slows the process down, as it is expected. When we increase the

amount of inter-links, we can reach the convergence rate of single layers, which is the point

where the single layers slow down the process. However, with an increasing amount of

inter-links the single layers lose their importance and the process is again slowed down by

the inter-links. This happens because a very large amount of inter-links force the random

walker to switch between layers with increasing probability, thus, preventing diffusion to

reach the whole layer. To conclude, the mean-field transition matrix T̂ is a better es-

timation than T in intermediate numbers of inter-links, which for our systems is in the

region of approximately 550 to 1800 inter-links. Otherwise, the information about the link

densities as captured in T is enough to approximate the second-largest eigenvalue of T̂,

and thus the speed of diffusion.

In general the spectrum of a mean-field matrix T̂ with unknown inter-link topology is

given by

Spec(T̂) = {1, λ2, . . . , λn} ∪

(
n⋃

s=1

Spec(T̂s) \ λ1(T̂s)

)
, (6.21)

or

Spec(T̂) = Spec(T) ∪

(
n⋃

s=1

Spec(T̂s) \ λ1(T̂s)

)
, (6.22)

where T is the multi-layer aggregation of T̂ as described before (for details see Prop. 2 in

the Appendix B.1). This decomposition of eigenvalues can also be useful for other network

properties that depend on eigenvalues.

So far we provided an estimation based on the eigenvalues of a mean-field transition

matrix T̂ that intends to approximate the ensemble average. In reality however, ensemble

realizations of multi-layer networks that contain layer G1 and G2 can deviate from the

mean-field estimation. This is shown in Figure 6.2 (a) where we plot the second-largest

eigenvalues of T̂, T, and ensemble averages over 100 realizations of T against the number

of inter-links between G1 and G2. As we can see, the magenta colored dashed line showing
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Figure 6.1: Eigenvalues of a mean-field approach of a two-layered network
Layer 1 consists of an Erdös-Rényi network of 100 nodes and 500 links and Layer 2 consists
of an Erdös-Rényi network of 100 nodes and 750 links. The x-axis indicates the amount
of inter-links randomly added across the layers. The lines indicate the second-largest
eigenvalue of: black dashed: the mean-field supra-transition matrix λ2(T̂), violet: the
layer-aggregated matrix λ2(T), turquoise: the larger single layer eigenvalues of λ2(T1) and
λ2(T2).

the mean-field approximation of T is a good proxy for the diffusion dynamics in the region

when inter-links dominate, which is the case for either sparse or very dense inter-link

topologies. However, as shown by the cyan colored line, we can actually improve this

approximation if we additionally consider the intra-links of all single layers.

There is a peak where the difference between the estimation and the ensemble averages

∆λ2 = λ2(T) − λ2(T̂) reaches high values up to 0.225, as shown in Figure 6.2 (b). This

happens, on one hand, due to the large degree of freedom that comes from the absence of

intra-connectivity informations within the layers. On the other hand, the mean-field ma-

trix assumes “full-connectivity” across layers, and even though this implies small weights

for each single inter-link, it leads to a systematic bias towards overestimating the diffusion

speed. Nevertheless, we would like to highlight that the multi-layer aggregation provides

a quite accurate estimation of the diffusion speed in the regimes where inter-links limit

diffusion.
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Figure 6.2: Mean-field approach of a two-layered network Layer 1 and 2 both
consist of an Erdös-Rényi network of 50 nodes and 100 links but with different topologies.
a) Eigenvalues of the multi-layer network. The x-axis indicates the amount of random
inter-links added across layers. The lines indicate the second-largest eigenvalues of: black
line: ensemble averages, turquoise line: mean-field estimate including intra-link topology,
violet dashed line: mean-field only considering densities. b) Eigenvalue difference between
ensemble average and mean-field estimation ∆λ2 = λ2(T)− λ2(T̂).

6.3.3 Case III: unknown intra-connectivity

For this case we assume full knowledge of the inter-link topology, i.e. we know exactly how

the layers are connected, but the intra-link topologies, i.e. how the nodes are connected

within the single layers, are unknown. More precisely, we consider two interconnected

layers G1 and G2 of a multi-layer network, and we fix the inter-links EI(G) in a bipartite

network structure that connects nodes of G1 to nodes of G2. Since we have no information

about the intra-link topologies of G1 and G2, we assume random connectivities within the

layers, so that we only know the average degrees d̂1 and d̂2 of G1 and G2 respectively. This

means that the off-diagonal blocks A>12 = A21 of the supra-adjacency matrix are given,

but the diagonal blocks A1 and A2 are unknown.

Because we only know the average degrees d̂1 and d̂2 of the layers, we can define mean-field

versions of the adjacency matrices such that

Â1 =

{
d̂1
n1

}

ij

and Â2 =

{
d̂2
n2

}

ij

.

However, even though we know the topology of the inter-links, we do not know which nodes

exactly are connected to each other. Hence we use the same approach as in Case II with
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m equal to the amount of inter-links and the factors defined as in Eq.(6.14). Therefore we

get the mean-field transition matrix T̂ consisting of the following block matrices,

T̂1 =

{
d̂1

n1d̂1 +m

}

ij

for i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2} (6.23)

T̂2 =

{
d̂2

n2d̂1 +m

}

ij

for i ∈ {1, . . . , n2}, j ∈ {1, . . . , n1} . (6.24)

The off-diagonal blocks are just rescaled transition matrices of A12 and A21,

T̂12 = α12T (A12), T̂21 = α21T (A21) . (6.25)

However, this time we are not able to compute exactly the single layer eigenvalues λ11 and

λ22, as it was the case in Case II. In particular, depending on the ensemble constraints we

could only compute an average eigenvalue λ̂2 for a single layer. Therefore, we can use the

following maximization term

λ2(T̂) = max
(

1− α12 − α21, (1− α12)λ̂12, (1− α21)λ̂22

)
, (6.26)

which is has the same form as in Case II (see Eq.(6.20)). Here again, as long as λ2 =

1 − α12 − α21 is maximal the inter-links are the limiting factor of diffusion in the multi-

layer network, which means that due to the inter-link topology the random walk diffusion

is slowed down, and the influence of the intra-layer topologies is marginal to the process.

On the other hand, when either the average term of λ̂12 or λ̂22 is maximal then the diffusion

is limited by the single layer G1 or G2, and the additional information provided by the

intra-layer topologies becomes relevant as it affects the diffusion process.

In Figure 6.3(a), starting with initially empty intra-networks1, we plot the second largest

eigenvalues of T, T̂, and the ensemble average of 100 realizations of T against the number

of intra-links that are simultaneously and randomly added in both layers. We observe that

the general behavior is similar to Figure 6.2. Thus, the multi-layer aggregation plotted in

magenta approximates well the regions where the inter-links are the relevant factor, which

is for very sparse and increasingly dense intra-links densities. The difference between the

mean-field and the ensemble average ∆λ2 = λ2(T)− λ2(T̂) as seen in Figure 6.3(b) again

rises up to a peak of about 0.225.

Our analysis shows that there is some form of symmetry in knowing the degree of the

1Note that even though the intra-layer networks are empty initially, there is a number of inter-layer
links which provide connectivity across the layers, similar to a bipartite network.
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Figure 6.3: Mean-field approach of a two-layered network a) Eigenvalues of a
two-layered network with 250 inter-links. Layer 1 and 2 both consist of 50 nodes but
no links. The x-axis indicates the amount of links intra-links that are simultaneously
added to both layers. The lines indicate the second-largest eigenvalue of: black line:
ensemble averages, turquoise line: mean-field estimate including inter-links, dashed violet
line: mean-field only considering link densities. b) Eigenvalue Difference between ensemble
average and mean-field approach ∆λ2 = λ2(T)− λ2(T̂).

nodes in the single layers, but not knowing how they are connected to nodes in other

layers and to knowing the inter-links between layers, but not the degree of their adjacent

nodes. Even though the ensembles generated from these two constraints can be much

different, the relevance of inter-links or intra-links of all single layers to a diffusive process

is comparable for both cases.

6.4 Conclusion

In this chapter, we showed how an ensemble perspective can be applied to multi-layer

networks in order to address realistic scenarios when only limited information is available.

More precisely, we focused on a diffusion process that runs on the multi-layer network

and its relation to the spectrum of the supra-transition matrix. We have shown that

the convergence rate of the diffusion process is limited by either the inter-links or intra-

links of the single layers and we identified for which relation of inter-link compared to

intra-link densities it is sufficient to only consider transitions across layers, instead of

the full information on all individual nodes. This implies that we do not always need

perfect information to make statements about a multi-layer network because, under certain

conditions, we are still able to make analytical statements about the network only using
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partial information. In realistic situations data can be an issue either due to constraints or

due to their vast amounts. In such cases, even though an exact analysis is impossible, we

may still derive useful conclusions about processes that depend on the network spectrum

(like diffusion and synchronization) using only aggregated statistics.

For our study we assumed the simplest case of random networks, therefore exploring other

ways to couple the network layers or including link-weights and directed links and testing

their influence on our results is up to future investigation.
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Chapter 7

Scientometrics:

Social Influence on Citations

Summary

In this chapter we investigate how citations of scientific publications are influenced by
social contacts among scientist. We use a multi-layer perspective to distinguish two
relations between authors of scientific articles. On the one hand we use co-authorship
as proxy of social contacts and citations as representation of the acknowledgment
of particular works. We measure for how many citations we can find a previous co-
authorship involving authors of the citing and cited article. Using this measure we
quantify how strong the social bias is for particular subfields in physics. The preva-
lence of this bias is an indication of a social filtering mechanism that could hamper
the scientific knowledge transfer. Incorporating the social bias of co-authorships
we further provide a generative model for citations. Comparing the expected ci-
tations to the actual data we discuss citation based ranking schemes. Finally, we
provide an indicator that allows to asses how strongly citations are correlated with
co-authorships. Our analysis provides a multi-layer perspective on a real complex
system and it allows to disentangle multiple effects that influence the formation of
citation links.

The work presented in this chapter is based on a research project conceived by NW, IS, AG and FS.
The results are planned to be published in the field of scientometrics. NW analyzed the data, designed
the model, coded the algorithms, performed the simulations, did the plots and figures and wrote the main
text.
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7.1 Introduction

The interaction and relations between scientist and there publications create a complex

system and the amount of knowledge produced is increasing every moment. It is not

possible anymore for an individual scientist to be aware of all works that are part of their

discipline. Hence, it gets harder to filter the huge amount of information for the content

that is relevant for a particular scientist. In this sense, relevance is attributed to works

that provide the most impact in the scientific community and therefore are most likely of

higher quality. To deal with the filtering problem it is needed that scientific publications

can be quantified in such a manner that allows to indicate the most qualitative results or

findings.

A first attempt to capture the relation of scientific works was done by Eugen Garfield

who created the Science Citation Index (SCI) [50]. The idea of this index is to create a

bibliographic database that lists the citations between scientific publications of academic

journals. This allows to identify the time when a work was published and to which

other publications it refers to. The relational data of publications based on citations

gives rise to a system that can be analyzed by network metrics and measures. One of

them is the citation count of each publication which expresses how many other works

acknowledge the findings. Also more elaborate measures can be applied to study the

relations between scientific publications. Several studies were concerned with implications

and interpretations of these measures and therefore laid the foundation of a new research

field.

The quantitative aspects of the science of science is commonly abbreviated by scientomet-

rics. This new discipline became popular in 1978 when a overview work [36] presented

this novel perspective. In the same year the journal Scientometrics was launched that

fostered such research. The field today is not only based on quantitative science but also

has broad relations to philosophy and sociology.

A lot of attention is paid to indicators that allow to classify or rank scientific works accord-

ing to several criteria. A straightforward indicator is the mere amount of citations that an

article or scientist receives. The idea behind the citation count is the fact that works that

are acknowledged a lot should also contain more significant content that was of importance

for a lot of works. This measure is often aggregated to individual scientist by summing

up all of the citations that their papers received. However, usually a lot of properties

affecting the citation count of scientists like the amount of articles they published or their

seniority are neglected. To deal with some of these issues, more advanced measure such

as the h-index [65] were introduced and are still being explored and refined [35]. There
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are various indicators that are used to measure importance or quality of publications, but

it is not always clear what exactly they capture [168].

However, there can be several reasons why an author decides to cite a particular publi-

cation. The motivation can, but does not have to, be relevance or scientific quality. The

various reasons for a citation were studied extensively [20, 21, 95, 96, 167]. One aspect that

was found to have significant impact is the collaboration between scientists [41, 120, 169].

There are several reasons why collaborations can influence the citation behavior. One of

them is the issue mentioned above, that there are increasingly more works and it is not pos-

sible to know all of them. Nevertheless, scientists are normally more aware of the works of

their collaborators and therefore also more likely to cite them. In particular, it was found

that scientific success in terms of citations is correlated with co-authorships [98, 103, 143].

Co-authorships represent a possible way of collaboration and usually require a social in-

teraction between the authors.

In this chapter we focus on the social effect of collaborations respectively co-authorships

onto citations. We hypothesize that due to the increasing amount of publications over

time, scientists rely more and more on their social network. This is related to the so-called

filter bubble [121] that describes the effect of personified recommender schemes employed by

Google and Facebook. This personalization leads to an individual filtering of information

content since users get prominently confronted with things that are in line with their

previous online history and therefore new content is suppressed. The same effect likely is

present in the scientific landscape. Due to the huge amount of publications scientists are

more exposed to works by previous collaborators, therefore diverting the attention from

possibly relevant works done by unknown people.

In the following we first focus on social effects in citation behavior and use the acquired in-

sights to discuss ranking schemes. More precisely, we analyze for each citation if there was

previously a co-authorship between any author of the citing publication and any author of

the cited publication. We interpret a common co-authorship as an act of collaboration and

therefore a social interaction between the authors which makes them more aware of each

other’s work. Showing that there is a significant overlap of citations and collaborations,

we use this correlation to create a random citation model. Based on this model, we can

then estimate which amount of citations we would expect at random.

Our study is based on a bibliographic dataset that we analyze from a multi-layer per-

spective. Here, the multi-layer network will on one hand contain layers with different

node types, and on the other hand, span multi-dimensional relations between the same

type of nodes. More precisely, we combine the layer of citations between articles with the

layer of co-authorships between scientists. By further connecting these layers with links
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between publications and their corresponding authors we are able to project and correlate

the properties of single layers across the whole network. The cross layer relations will be

crucial in assessing correlations in the data that would not be possible from a single layer

perspective.

7.2 Multi-layer perspective

Before we present our investigations, we first introduce the methodology used throughout

this chapter. To analyze the citation topology between scientists according to additional

parameters we have to represent them in an appropriate way. Citations indicate a directed

relation between scientists and therefore give rise to a citation network. We want to

investigate the influence of collaboration on citations. Collaborations, or more precisely co-

authorships, can be interpreted as social relations between scientists. Hence, we naturally

deal with different link types in the network of scientists, which calls for a representation

as a multi-layer network.

In this section we discuss how we can apply the multi-layer network approach to a data

set of scientific publications. Chapter 6 dealt with multi-layer networks that in respect to

a diffusion process consisted of the same type of links and nodes. However, here we inves-

tigate a multi-layer network that includes different link types. An extended representation

of the data set also consists of different types of nodes. Therefore the perspective that we

take in this chapter is a complex multi-layer network comprising multiple dimensions of

information.

7.2.1 Bibliographic data set

We base our analysis on a bibliographic data set. From this data set all needed information

about citations and collaborations of scientist is extracted. Therefore, we do not use any

additional knowledge and deal with a clearly circumscribed system.

In the following we describe the application of a multi-layer network approach to a data

set of scientific publications. The data that we investigate is provided by the American

Physical Society (APS) [1]. It contains bibliographic information on over 450, 000 articles

published in APS journals between 1893 and the end of 2009. The data consist of citing

article pairs and meta information on all articles. For our analysis we use the DOI, authors,

affiliations, PACS number and the printing date.
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PACS The Physics and Astronomy Classification Scheme R© (PACS) was developed by

the American Institute of Physics (AIP) and is used since 1975 to identify fields and

subfields in physics. According to it subjects, each article can be tagged by one or several

PACS numbers that it belongs to. As of 2010 there are 10 main fields that cover the

following topics:

00 General

10 The Physics of Elementary Particles and Fields

20 Nuclear Physics

30 Atomic and Molecular Physics

40 Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid

Dynamics

50 Physics of Gases, Plasmas, and Electric Discharges

60 Condensed Matter: Structural, Mechanical and Thermal Properties

70 Condensed Matter: Electronic Structure, Electrical, Magnetic, and Optical Proper-

ties

80 Interdisciplinary Physics and Related Areas of Science and Technology

90 Geophysics, Astronomy, and Astrophysics

We use the PACS classification scheme to divide the data set in to subfields. By this, we

avoid part of the heterogeneity present in different fields that is due to different citation

or collaboration behavior. Further, by only comparing publications belonging to the same

PACS class we assure that they are more similar and relevant to each other than two

randomly chosen publications from the whole spectrum of the APS journals.

Article citation network The publications of any APS journals are called articles. If

an article wants to acknowledge the findings of other articles it can list them as reference.

Such a reference leads to a citation between two articles and by this naturally forms a

citation link. Each citation link is directed from the citing article to the cited article.

The citation gets time-stamped with the printing date of the citing article. In general,

citations between articles are directed and unweighted. I.e., articles can not mutually cite

each other and there is only one citation counted between any pair of articles independent

on how many times the cited article is referenced to in the citing article. All citation links

together form the article citation network. Since the network is directed and the links are

time-stamped the network contains no loops. The DOI is used as a unique identifier to

label the nodes in the article network.
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7.2.2 Projection and aggregation to article meta information

Using the meta information of each article allows to build projected networks. The meta

information we primarily use are the authors and affiliations. The authors represent

scientist that published in one of the APS journals and the affiliations correspond to the

institutions or universities which are attributed to a specific author. To represent the

correspondence of each author or affiliation to a certain article we form a link between

them. These links are considered to be correspondence links and connect (i.e. indicate a

realtion between) different kind of nodes. The correspondence links are undirected and

unweighted and play the role of inter-layer links. This way, article nodes are connected

with author nodes and affiliation nodes. Additionally, we can also build correspondence

links between author nodes and affiliation nodes if needed. However, for our purpose it is

enough to be able to link an article to all of its authors and affiliations.

Author co-authorship network We consider the author list of each article as un-

ordered and do not distinguish ”first-authors” or any other hierarchy of contribution. We

regard the co-authoring of an article as a social mechanism. Therefore we link each pair

of co-authors of an article by a co-authorship link. This implies that each article gives

rise to a clique of authors that are all linked to each other. See Figure 7.1 (a) for a il-

lustration. Since the authors are considered to collaborate mutually with each other the

links are undirected. We assign each co-authorship link a time-stamp that is equal to the

printing date of the corresponding article. Authors of multiple articles are part of multiple

co-authorship cliques. All these cliques together create the author co-authorship network.

Even though multiple co-authorships of the same authors on different articles could be

counted, here we consider an unweighted network,

Author citation network Since each article is linked to all of its authors, each article

citation gives rise to author citations. To obtain citations between authors, we project

article citation to the author layer such that each author of the citing article will cite each

author of the cited article. This yields a complete bipartite network with the independent

set composed of authors from either the citing or cited article. See Figure 7.1 (b) for

illustration. Through this process an author from the cited article can receive multiple

citations from authors of the same citing article. Depending on the situation it is therefore

advisable to use fractional counting for the author citation links. Hence the weights of

the incoming author citation links are divided by the amount of authors that worked on

the citing article. This implies that an author receives author citations that sum up to at

most one for a single article citation that is projected to the author layer. Performing such
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a projection for all article citation links results in a weighted and directed author citation

network.

(a) (b)

Figure 7.1: Author Collaboration and Citation Network (a) Construction of the
author co-authorship network from the author article correspondence. All authors of an
article are linked to each other with an unweighted co-authorship link. (b) Construction
of the author citations network from article citations. All authors of the citing article
form an out-going citation link to all authors of the cited article. In case of fractional link
counting, each author citation link in this case would have a weight equal to 1/3.

Affiliation co-authorship and citation network Each author in the data set can be

associated with an affiliation. This allows to attribute each article to the affiliations of its

authors. Note however, that we do not track movements of authors between affiliations

and therefore only their most recent affiliation is considered. Therefore, there may be

inaccurate links between articles and affiliations when the actual credit of an article should

belong to an institution in which an author previously worked. Nevertheless, we regard this

inaccuracy as negligible from a macro perspective. Therefore we can construct affiliation

citation and co-authorship networks in the same way as the author networks. The citations

and co-authorships between affiliations are just an aggregation of the corresponding nodes

and links in the author networks. However, also in case of affiliations a fractional counting

is applied such that a single article citation only accounts for incoming affiliation citations

that sum up to 1.

7.2.3 Multiplex network of citations and co-authorships

The co-authorships and citation layers of authors and affiliations allow to construct a

multiplex network, see Figure 7.2 (a). In both layers we have the same kind of nodes,

which are either authors or affiliations. This way we can compare two types of links:
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citation links and co-authorship links. There is already a lot of information included in this

multiplex. However, one should be aware of some technical details before interpreting the

link topologies. While citations are directed from citing to cited nodes the co-authorship

links are undirected. This means that we should differentiate in- and out-degrees when

investigating properties of nodes. Further, one has to consider whether the weights of

links that were projected from the article citation network are normalized or not. The

weight of incoming citations can be adjusted by the amount of authors that worked on the

same article. The same can also be done for co-authorships which can also be re-weighted

according to the amount of authors that worked on the same article.

To get a first impression on how co-authorships and citations among authors are related,

we first focus on distinct relations. By the amount of distinct co-authorships we mean with

how many different authors a given scientist collaborated without considering how many

times a collaboration took place with a particular co-author. This can easily be analyzed

based on the degree in an unweighted author co-authorship network. In the same way

we define the amount of distinct author citations that is equal to the amount of different

authors that cite any article for a given scientist. This quantity can be derived from the

in-degree of an unweighted author citation network.

As an example, we investigate articles classified by PACS 20 for an observation period

of 10 years from 2000 to 2010. For all scientists that published an article during this

period, we evaluate the amount of distinct co-authors they worked with and the amount

of distinct authors that cited at least one of their articles. We represent the result in a

scatter plot shown in Figure 7.2 (b). Note that the plot has a logarithmic scale. We can

see that there is a tendency for scientists with a lot of co-authors to also receive a lot of

citations whereas for low citation and co-author counts there is larger dispersion. In other

word more citations come along with more co-authorships and vice versa. The correlation

of citation and co-author counts can be due to many reasons. One is the pure amount of

publications that were published by a single scientist. A scientist with a high co-author

count usually also published a lot of articles. Each article has a chance to receive citations

therefore also increasing the total citation count of the scientist publishing them. The data

reveals also some outliers. On the one hand there some scientists that only collaborated

with a few scientists but still have a high citation count, on the other hand there a some

scientists that worked with a lot of co-authors but receive comparably few citations. Here,

we only showed PACS class 20 for a certain time period as an example, however also the

other PACS classes and time windows exhibit similar correlations.

With this brief investigation we just wanted to illustrate how co-authorships and citations

between authors are correlated. We do not intend to argue why a particular author has
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Figure 7.2: Scientometric Multi-Layer Network (a) Top: article citation network,
middle: author co-authorship network, bottom: author citation network. Gray solid lines
indicate correspondence links, gray dashed lines connect the same node in a multiplex
layer. (b) Scatter plot where each point represent a scientist that is placed according to
amount of distinct co-authors he worked with and the amount of distinct authors that
cited one of his articles. The data is based on articles classified by PACS 20 for a time
period from 2000 to 2010.

a certain co-authorship and citation count. There can by many reasons for this and

we would need to analyze in detail each author individually. However, the multiplex

perspective allows to put these different types of relation in perspective. Knowing how

the the multi-layer network is composed we next focus on identifying the social influence

on citation behavior.

7.3 Social influence on citations

As presented in the previous section, all the bibliographic information of citations and

collaborations can be comprised into a multi-layer network. Further, we have seen that the

amount of distinct citations and co-authorship is correlated. In this section we investigate

the relationship between citation and co-authorship in more detail. By showing that co-

authorships alter the citation behavior of scientist in a significant way, we intend to verify

that there is indeed a social bias that affects citations.

As argued in the introduction we hypothesize that scientists are forced to apply filtering
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mechanisms to keep track of works that are relevant to them. One strategy could be to

rely more on the publications of collaborators that provide a source of information that

can be more easily evaluated. Citations serve as indication of knowledge transfer from

a certain publication, thus indicating that the citing authors acknowledged the work of

the cited authors. To identify if such a citation could have been influenced by previous

social contacts we need a measure that allows to relate them to each other. In this section

we provide a global measure that tells how frequent citations are which can be related to

social contacts. By comparing the real world data to an expectation based on a generative

model we further assess how significant the findings are.

7.3.1 Citations matched by co-authorships

To study the potential social mechanism behind citations we need to link them to co-

authorships. We intend to identify citations between articles where at least one author

of the cited article previously collaborated with at least one author of the citing article.

As discussed before each article can be linked to all of its authors. Let us define the set

of authors Auth(p) for any article p. It implies that there exists an article-author link

between p and all authors ai ∈ Auth(p). Consider an article citation citart : p1 → p2
where p1 is the citing article and p2 the cited article. For convenience we denote the set of

all article citation links by Citart and the set of all author co-authorship links by Coauth,

hence citart ∈ Citart. For articles p1 and p2 we can create the set of authors Auth(p1) and

Auth(p2) and further construct the set of matched author collaborations,

MatchedAuth(citart = (p1, p2)) = {(ai, aj) ∈ Coauth|ai ∈ Auth(p1), aj ∈ Auth(p2)} .
(7.1)

Hence, MatchedAuth(citart) contains all co-authorships links that connect authors from

p1 and p2. However, to derive any social influence or causality we have to consider the

time-stamps of the co-authorship links between authors and the citation links of articles.

Consider the function t(·) that returns the time-stamp of any citation or co-authorship

link. Given an article citation citart, we only consider two matched authors if they had at

least one co-authorship link that happened before the printing date of the citing article.

Summarizing, we define the boolean function matched(·) from an article citations to either

0 or 1 as follows,

matched(citart) = H(|{coauth ∈MatchedAuth(citart)|t(coauth) < t(citart)}|) , (7.2)

where H(·) is the Heaviside function, i.e. H(x) = 1 for x > 0 and otherwise H(x) = 0.

Note that in our analysis we do not consider how many matched author pairs exist for a
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given citation. Therefore, we apply the Heaviside function to constraint weights to either

0 or 1. However, the framework could be extended to weighted links by also counting the

number of co-authorships.

Based on this function we construct the matched article network. We evaluate matched(·)
for each possible citation link in the article network and if it returns 1 we include the link

in the matched article network. Note that citations are only possible if the cited article

was printed before the citing article. By construction the matched article network is a

multiplex layer to the article citation network, see the illustration in Figure 7.3. It serves

as a reference to check for all the matched citations that are possible. For each citation

that is present in the article citation layer we can check if the corresponding link in the

matched article layer is present as well. If the citation link is present in both layers it is

considered to be a matched citation.

co-authorships (authors)
a1

a2

a3

a4

a5

a6

citations (articles)
p1

p2

p3

p4

p5

matched citations (articles)
p1

p2

p3

p4

p5

Figure 7.3: Concept of matched citations Top: matched article citation network,
middle: article citation network, bottom: author co-authorship network. Gray solid lines
indicate correspondence links, gray dashed lines connect the same node in a multiplex
layer. There is one matched citation between p4 and p3 that is due to the co-authorship
of a1 and a2.

The example illustrated in Figure 7.3 contains only one matched citation (p4, p3). Article

p3 is affiliated to authors a1 and a4 and article p4 is affiliated to authors a2 and a5. Hence,

we have that Auth(p3) = {a1, a4} and Auth(p4) = {a2, a5}. Further, we can see that article

p1 is affiliated to the authors a1 and a2 which implies Auth(p1) = {a1, a2}. Even though,

the time-stamps are omitted in the figure, we can infer that p1 was published before p4 by

the directionality of the citation links. Therefore, we conclude that matched((p4, p3)) = 1
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which implies that (p4, p3) is a matched citation.

Give an article citation network Artcit, we can compute the fraction of matched article

citations. I.e. the number of citations in the article layer, that is also present in the

matched article layer, compared to all citations in the article layer. We denote this measure

by FMC(·),

FMC(Artcit) =

∑
e∈Citart matched(e)

|Citart|
. (7.3)

The fraction of matched citation measure FMC tells us how many citations are based

on previous co-authorships of the involved authors. We analyze this fraction throughout

different data sets and time-windows over 20 years. To assure that the considered articles

are more or less comparable we restrict our investigation to a 5 years time-window. A

period of 5 years was used in previous works on scientometric data as a suitable time

span that is representative for the acquired citations [110, 143]. This means that we only

take into account the articles that were published during this time-window. We also only

consider citations among this subset of articles. However, to identify if a given citation is

matched or unmatched we consider the whole past of co-authorships ranging back until the

start year of the data set. As mentioned before self-citation are neglected to not interfere

with our analysis. To have more coherent groups according to the topic we investigate

each of the main PACS classes individually. In Figure 7.4 the fraction of matched citations

FCM is recorded on the y-axis for starting years on the x-axis. Each year indicates the

starting point of a time-window that spans over the 5 following years.

We can observe that there is in general an upwards trend in the fraction of matched

citations. However, the absolute size of FMC differs significantly for different PACS.

We reach values even exceeding 20% for PACS class 20 and 50, while most of the other

PACS classes reach about 10% of matched citations for the last time-window. Further

plots showing the amount of articles published, the amount of publishing authors and the

amount of total citations can be found in the Appendix B.2. We can summarize that all

of these quantities do also show a general upwards trend.

The bottom line from this investigation is that matched citations got increasingly more

frequent during the last two decades, even though the amount of articles and authors that

are active increased as well which should allow for more diversity. There could be several

reasons for the increase of matched citations. For example one could argue that a citation

between the same pair of authors a1 and a2 in 2005 is more likely to be a matched citation

as it was in 1990. Mainly due to the fact that we consider the full past of collaborations

and therefore until 2005 there could be plenty of time to establish a co-authorship on a

common article. However, there are of course also new authors entering the systems and
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Figure 7.4: Fraction of matched citations FMC in the article citation net-
work for sliding time-windows of 5 years The x-axis indicates the starting year of
a time-window of 5 years. Only articles published during this period are considered for
the analysis. The main PACS classes are represented by different colors. The solid lines
represent the value of FMC for the actual data and the dashed line represent an average
FMC value based on 100 simulations of the stochastic generative model M.

older ones drop out. The FMC measure is a global quantity over all article citations and

therefore does not directly account for such kind of changes in the topology or collaboration

behavior. Hence, to interpret the results of FMC in respect of other effects due to changes

in pure statistics like article, author or citation counts, we need a baseline to which we

can compare the data. To acquire such a baseline in the following section we propose a

modeling approach that takes into account the previously mentioned quantities.

7.3.2 Simulating article citations

We have seen that the fraction of matched citations varies for different PACS classes

and different time windows. To be able to assess if the values of the FMC measure are

significant or could be expected at random due to the given statistics of links and nodes

we need a comparable baseline. This baseline or null model should consider all of the

statistics and properties given by the data except the one we are focused on, which is

the amount of matched citations. A common approach to such problems is an ensemble

analysis that can be constraint by some desired parameters and allows to explore others
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not included in the conditions.

However, to create the ensemble we first have to construct a feasible statistical model that

describes the formation of links. The main effect on which we focus is the fraction of

matched links. Therefore we fix all other properties of the network. In particular we keep

the amount of in-coming and out-going citations for each article node. Further, we only

allow citations between any two articles that preserve causality and therefore the cited

article has to be published before the citing article. By fixing the in- and out-degree of all

article nodes we also fix the amount of total citations in the network. The only freedom

that remains in this model is exactly which nodes are connected to each other.

We denote the model that generates random realizations for given in- and out-degree

sequences and preserving causality by M. The pseudocode for this generative model is

listed in Algorithm 1 and works as follows: We start with an empty network containing all

article nodes that are present in a given time-window. First we choose a citing article node

p1 randomly with probability equal to its out-degree. Next we select a cited node p2 with

probability according to its in-degree from the subset of all articles that were published

before p1. We create the citation link (p1, p2) and lower the out-degree and in-degree of

p1 and p2 by 1. We repeat this process until the out- and in-degree of all article nodes is

equal to zero. During this process it can happen that we end up in a situation where we

chose a citing article for which we can not find anymore a cited article that was published

earlier. In this case we choose another cited article at random, thus violating the causality.

However, we argue that only a few links will be affected and this will not alter the global

topology significantly. In the end the algorithm returns a list of citations among the given

articles nodes that preserve all of the initially fixed statistics.
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Input : articles with their in- and out degree and publication date

Output: article citation links

begin

Generate link set;

Cit←− ∅;
Generate degree multi-sets;

Out←− ∅;
In←− ∅;
for a ∈ articles do

for i = 0 to degout(a) do
Out.append(a)

end

for j = 0 to degin(a) do
In.append(a)

end

end

while Out 6= ∅ do

choose random citing from Out;

choose random cited from In with t(cited) < t(citing);

add link (citing, cited) to Cit;

Out.remove(citing);

In.remove(cited);

end

return Cit
end

Algorithm 1:M: In- and out-degree preserving article citation network

The generation of articles takes all network statistics into account except exactly which

articles cite each other. The citation in- and out-degree, the total amount of citations, the

amount of articles and the causality of links remains unaltered. However, the particular

pair of articles that is connected influences if a citation links is matched or unmatched

and therefore effects the total fraction of matched citation FMC. We run the model M
multiple times and compute the value of FMC for each realization. In Figure 7.4 we plot

the average value of FMC as dashed lines over 100 simulations. A plot scaled to the

simulation results solely can be found in Appendix B.2.

Strikingly, the average values of FMC for all the PACS classes are significantly smaller

than the real FMC values. The simulated values of FMC reach at most 5% whereas

the real values of FMC are all larger than 5%, except for PACS 80. We see that the
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differences between the PACS classes are similar in the simulations and the real data.

This is most likely due to topological features or network statistics. For example PACS 50

has the highest FMC values expected by the simulations and also the highest real FMC

values. In cases of PACS 50 this can be explained by the comparably small amount of

authors that are more densely connected to each other from a collaborative perspective.

Due to the few authors there are also less articles published which makes it more likely for

a article citation to be matched by a previous co-authorship. However, also in this case

the real FMC is significantly larger than would be expected from random citations.

Since the modelM preserves the degrees for each node individually the only reason for this

can be the citation behavior. Such high amount of matched links could not be expected

at random which implies that the social ties implied by previous co-authorships alters the

probability of a citation in favor of a previous collaborator. Again, the absolute values

of FMC vary for different PACS, but the average of random realizations is in all cases

smaller than the real FMC values. From this we conclude that co-authorships can directly

effect the amount of citations an article receives. This is in line with previous findings

of the correlation of citation and co-authorships [98, 103, 143]. To analyze the citation

behavior in scientific communities with comparably large FMC this social influence should

be considered.

Further, the increasing FMC values can be interpreted as a signal of increased filtering

and clustering of the scientific landscape. In terms of scientific knowledge transfer this

means that there is a bias towards collaborators which makes it harder for scientist that

have no or only few social ties to be recognized.

7.4 Multi-layer perspective on ranking schemes

Ranking schemes play an important role in estimating scientific quality. For hiring and

funding committees it is important to have tools at hand that allow to identify outstanding

scientist or research institutions. However, a generally accepted and objective measure of

quality is still not available. Usual attempts in this direction either rely on bibliographic

data, surveys or both of them. Even though very elaborate measures and indicators are

developed, the weighting of different aspects is often crucial for the final ranks. There is

no ground truth that allows to judge if a given ranking is meaningful or just some number

crunching. Therefore simple indicators are often widely applied, taking the risk of inaccu-

rate results, but avoiding the hassle to provide reasonable but complicated justifications.

As an example, rankings of universities gained a lot of attention in past years [62]. Espe-

cially, global rankings try to measure excellence of different research institutions. Among

122



the most famous ones are the Times Higher Education (THE) and the Academic Ranking

of World Universities (ARWU). Not only gain these rankings a lot of interest from the

public but also governments and policy makers keep track of the results [132, 161].

However, these rankings are often confronted with criticism in respect of their design

and impact of different factors. The lack of precise methods and generalized statistics

as well as the interpretations are criticized [162]. In the two aforementioned rankings

also opinions and survey among staff and students are included together with bibliometric

data. However the mixture of this factors and the weighting can lead to arbitrary results.

A different approach takes the Leiden ranking [170]. It focuses exclusively on biblio-

metric indicators of the publications affiliated with a university. This way they intend

to emphasize research performance rather than reputation. Special attention is given

to renormalization of citation data according to different research fields and publication

types. Counting and normalization methods are another important concern that can alter

ranking quite significantly [51, 171].

Also in the Leiden ranking and other quantitative approaches it is unclear what the actual

implications of different ranking positions are [107]. It is suggested that confidence inter-

vals for the uncertainty that underly different approaches should be considered instead of

aggregated values [54]. To streamline the various research on theses topics 10 principles

were established [63] that intend to assure correct use of research metrics and the accurate

application to data.

Here, we critically discuss ranking schemes based on bibliometric data that use the pure

amount of citations as the main indicator. We use the multi-layer perspective to point out

the influence of co-authorships. Further, we investigate how the aggregation of article data

to the layer of authors and affiliations leads to a loss of the article topology. To analyze this

relationship we introduce a generative model that incorporates the information available

from the multi-layer perspective.

In the previous section we discussed how co-authorships can influence later citations be-

tween collaborators. We found that a significant fraction of citations preferably happen

between articles published by authors which collaborated before on a common article. No-

tably, this can not be expected at random even when correcting for the in- and out-degrees

of all articles. Leveraging on this findings in a next step we intend to incorporate the social

influence to develop a model for generating article citations. This model should take into

account all effects that we can measure and that are not necessarily bound to scientific

quality of an article. Using such a model as baseline gives us the opportunity to identify

outliers that significantly deviate from the model prediction.
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7.4.1 Article citation model

An appropriate model to generate article citations should preserve the measurable statistics

of the data and allow freedom for the properties one wants to investigate. The main focus

of our generative model is the amount of incoming citations of an article. We want to

know how many citations a certain article can expect to receive at random considering

some boundary conditions. These boundary conditions should include all statistics of the

citation network that can be measured based on the data. These statistics are usually

not related to scientific quality and therefore should already be included as a factor that

influences the formation of citations.

One of the ingredients of the model should be the publication date of an article. This

accounts for the fact that older publication are more likely to be cited by the plenty

amount of new publications. Further we preserve the amount of references of each article.

This means that the out-degrees of all citations remains unaltered. However, to which

articles this citations go are up to the model randomization. Since, we learned from the

previous section that co-authorships influence citation behavior we also include this bias

in our model. More precisely, for each article in the data we first identify how many out-

going citations are matched and how many are unmatched. Hence, we also preserve the

absolute values of matched and unmatched out-going citations for each article individually.

Therefore this model not only reproduces the fraction of matched citations in the whole

article citation network, but also the citation composition of each single article. This

means, that each article in the model will cite the same amount of articles as in the data

and also the fraction of matched citations will be the same.

We denote the stochastic model generating an article network in the previously described

way by CM. The pseudocode is listed in Algorithm 2 and goes as follows: First we

generate the matched article network Gmatched that contains all matched citations that

are possible. For each article node a we observe the amount of matched citations in

the data. Then we randomly choose the same amount of articles from the neighbors

that a has in Gmatched, thus assuring that we only choose cited articles that lead to

matched citations. Next we compute the difference of the out-degree of a and the amount

of matched citations of a. This number gives us the amount or remaining articles to

be chosen such that no matched citation is created. In the end the algorithm returns

citations among the initial set of article nodes that preserve the desired statistics.
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Input : articles with out-degree, matched citations and publication date

Output: article citation links

begin

Cit←− ∅;
Gmatched ←− matched article network;

for a ∈ articles do

for i = 0 to MatchedCount(a) do

choose random neighbor b of a in Gmatched;

add link (a, b) to Cit

end

for j = 0 to (degout(a)−MatchedCount(a)) do

choose random article b that is not a neighbor of a in Gmatched;

add link (a, b) to Cit

end

end

return Cit
end

Algorithm 2: Stochastic article citation model CM that preserves the out-degree and

fraction of outgoing matched citation for each article.

All networks that are generated by CM preserve the citation statistics extracted from the

data. More precisely, this comprises the out-degrees, matched citation count per node

and publication date. The stochastic model CM gives rise to an ensemble. By running

the model multiple times we can empirically compute the average citation count an article

receives at random under the constraints of CM. We denote the average citation in-degree

of an article node a by
〈
citCMin (a)

〉
.

The generative model CM allows to estimated the amount of citations an articles receives

at random also considering the social bias. The difference of the actual citations an articles

receives to the expected citation based on CM allows to measure outstanding articles.

This leads to a measure of quality that is adjusted for the measurable statistics of links

and inter-layer correlations we acquired from the multi-layer perspective. Based on the

generative model CM we will discuss citation based rankings in the following section.

To evaluate if the inclusion of matched citations is relevant we compare the results of

CM to a so-called null model CM0. The null model works in the same way as CM with

the only difference that it does not distinguish matched from unmatched citations and

therefore does not include any social bias implied by co-authorships.
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7.4.2 Ranking schemes

Considering the article citation model described in the previous section we have a method

available to estimate the citations of articles. Most rankings nowadays are still based on

the amount of citations a scientist or university receives. Even though other indicators are

included as well, citations still play an important role. Hence, we compare the citations

based on the generative model CM to the actual citations in the data. We apply the

commonly used Pearson and Kendall-Tau rank correlation measures to identify how well

the estimations of CM coincides with the actual data. While the Parson measure gives the

linear correlation of the values themselves, the Kendall-Tau measure focus on the ranking

of the values rather than the actual size. Both measure range between −1 implying

anticorrealtion, to 1 implying complete agreement, whereas 0 implies that the values are

uncorrelated.

Our analysis is based on each PACS class individually. We focus on the last time-window

in our data that spans from 2005 to 2010. Note that we still do not consider self-citations

and therefore neglect all citations where there is an overlap of authors of the citing and

cited article. The simulations are done on the article layer, however we project the article

citation links to the author and affiliations layer. This means that for the author layer we

evaluate the amount of author citations they receive based on the data or the generative

model CM. The same is done for the affiliation layer, where we evaluate the citations

between affiliations. We apply a fractional counting to the projected citation links to

account for the fact that one article citation link results in several author and affiliation

citation links. The difference between the layers is due to an aggregation of the article layer

topology. By this we mean that an author can publish several articles and all the citations

these articles receive are aggregated to one author. For affiliations the aggregation is even

stronger since all articles of all authors of an affiliation are aggregated to one affiliation

node. The results are listed in Table 7.1. The values are given separately for each PACS

class and each layer, articles, authors or affiliations. Finally, we also include the results

for the null-model CM0 to identify the sole impact of the co-authorship bias.

First, we can observe that there are differences between the various PACS classes but that

the values are nevertheless comparable. Focusing on the article layer we observe that the

Pearson correlation ranges from 0.22 up to 0.33 and the Kendall-Tau correlation ranges

from 0.30 up to 0.36. This values are not that high, implying that in the real citation

network there are biases included that are not captured by the CM model. We would

also expect this, since the generative model only considers the publishing date, the total

citation count and the social bias. Everything else such as scientific quality or impact

of the articles is not covered by our approach. However, a minor but significant part
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PACS: 00 10 20 30 40 50 60 70 80 90

Model CM:
Articles
Pearson 0.27 0.29 0.30 0.30 0.26 0.33 0.26 0.25 0.22 0.31
Kendall-Tau 0.36 0.33 0.34 0.32 0.36 0.30 0.31 0.36 0.33 0.33
Authors
Pearson 0.68 0.64 0.70 0.64 0.66 0.63 0.61 0.73 0.58 0.67
Kendall-Tau 0.53 0.55 0.50 0.47 0.49 0.42 0.42 0.53 0.43 0.53
Affiliations
Pearson 0.92 0.92 0.95 0.92 0.92 0.90 0.95 0.95 0.88 0.89
Kendall-Tau 0.75 0.72 0.69 0.69 0.72 0.59 0.72 0.77 0.69 0.70
Null Model CM0:
Articles
Pearson 0.11 0.12 0.13 0.13 0.11 0.13 0.12 0.11 0.10 0.13
Kendall-Tau 0.17 0.15 0.16 0.17 0.17 0.14 0.15 0.17 0.16 0.16
Authors
Pearson 0.64 0.56 0.64 0.61 0.62 0.54 0.59 0.70 0.55 0.65
Kendall-Tau 0.52 0.52 0.48 0.47 0.48 0.38 0.41 0.52 0.42 0.51
Affiliations
Pearson 0.91 0.90 0.95 0.91 0.91 0.87 0.95 0.94 0.87 0.88
Kendall-Tau 0.74 0.71 0.67 0.68 0.71 0.57 0.72 0.77 0.69 0.69

Table 7.1: Correlation results Pearson and Kendall-Tau rank correctional of citation
in-degrees of the data compared to simulations based on the model CM and the null
model CM0. The correlations are shown for the article, author and affiliation layer. The
evaluation is based on articles published between 2005 and 2010. The values represent
averages over 100 simulations.

of the citations could still be expected at random and therefore are not relevant for the

identification of outstanding articles.

If we compare the correlations values of the articles layer based on CM to the null model

CM0 we see that the social bias implied by co-authorships is significant. For the null model

the Pearson correlation ranges between 0.10 up to 0.13 and the Kendall-Tau correlation

ranges from 0.14 up to 0.17. Hence, the agreement of the null model with the actual data

is much worse than the agreement of CM with the data. Since the only difference of the

two generative models is the inclusion of the co-authorship bias this implies that matched

citations are indeed relevant for the formation of article citations.

Let us look now at the differences of the correlation values of the article layer to the author

and affiliation layer. We can see that the values significantly increase for the author layer

and become larger for the affiliation layer, for all of the PACS classes. Recall that the
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author and affiliation layers are both constructed based on the article layer an there is

no additional information included considering the citation statistic. The only difference

comes from the information which authors were involved in which articles. From the

perspective of random citations, authors that published a lot of articles are more likely

to receive citations. The same happens for affiliations to which a lot of articles can be

attributed. Hence, the mere amount of articles that correspond to one affiliation increase

the probability of citations that could be expected at random. This is a so-called size effect.

Based on the construction it can be expected that the size effect is present in the generative

model. However, the higher correlation values, especially for the affiliations, indicate that

the size effect is also very prominent in the real world citation network. The size effect

almost makes the social effect induced by co-authorships negligible. Nevertheless, the

correlation values of CM are still equal or higher than the correlation values of CM0 even

for the author and affiliation layer.

Summarizing, we can conclude that the citation count of authors or affiliations is heavenly

influenced by the size in terms of articles attributed to them. This means that if we

measure the amount of citations an affiliation receives we are merely measuring the amount

of articles that are published by this affiliation. However, the amount of articles is not

necessarily an indication for scientific quality. Therefore one should in general be very

careful when citation counts of affiliations are used as ranking criterion.

7.4.3 Surprise factor

Even though the citation bias implied by co-authorships is mitigated on the author and

affiliation layer it is significant for the article layer. Hence, for each article node p we can

calculate the difference of the citation in-degree of the simulation results
〈
citCMin (p)

〉
to

the actual citation in-degree citin(p) of the data. We call this difference surprise factor

denoted by SF(p) = citin(p)−
〈
citCMin (p)

〉
. Since the stochastic model CM actually results

in a distribution of different citation in-degrees values for each article, we can also consider

the significance of the simulation results in respect to the data. A measure that can be

used in such cases is the z-score, z = x−µ
σ

, that evaluates the difference of the true value

x to the sample mean µ in respect of the standard deviation σ. The z-score is based on

normal distributed samples, however, it can also be adjusted to other distributions. In

our case the citation for individual nodes are not exactly normal distributed but similar.

Since we only want to provide an idea how the surprise factor can be applied we do not

give a technical justification. Therefore, an adjusted surprise factor that also accounts for
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the variability of the simulations could be defined as follows,

SF(p) =
citin(p)−

〈
citCMin (p)

〉

Std(citCMin (p))
. (7.4)

Independent of which definition we use for the surprise factor, it tells us how unexpected

the real citation count of an article is compared to the generative model CM. A positive

SF value for an article indicates that it received more citations than we would expected

at random and therefore is possibly an outstanding article. On the other side if SF value

is negative for an article it indicates that it received less cations that one would expect at

random.

Hence, the surprise factor could serve as indicator that highlights articles that deviate in

terms of citations from what would be expected at random considering the co-authorship

bias. Of course the surprise factor should not be applied as standalone measure but could

be considered as an additional source of information in combination with other indicators.

Especially, it is not suitable to build a ranking just based on the score of SF(·). However,

in case of dyadic comparison it could be insightful. Consider two articles p1 and p2 with

the same citation counts, i.e. citin(p1) = citin(p2), but with different surprise factors

SF(p1) > SF(p2). This would imply that articles p1 received more unexpected citations

than p2. If both articles were published on the same date this is due to the fact that

p2 received more matched citations, meaning that more citations came from previous

collaborators. This information could be helpful in evaluating if an article was qualitative

enough to also receive acknowledgment from scientists which had no previous contact with

the authors of the article.

As with most indicators one has to be careful with the interpretations and be aware what

exactly the surprise factor captures. One should especially be cautious since scientists that

maintain a huge network of collaborators could have a disadvantage from this measure.

Therefore, we do not claim that a high surprise factor is either good or bad, but just offers

an additional perspective on the relation of co-authorships and citations.

7.5 Conclusion

In this chapter we have investigated the social influence of collaborations between scientists

on their citations. We hypothesized that due to the vast amount of scientific publications

that become available, scientists can not track anymore all of the relevant works. Hence,

they rely on some filtering mechanism to simplify the selection process. We consider

the social contacts to other scientist as such a filter strategy. To test our assumption
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we analyzed how collaborations, which indicate social contacts, influence citations, which

represent the acknowledgement of other works. Our study is based on articles published

in APS journals.

More precisely, using a multi-layer approach we analyzed how co-authorships influence

the occurrence of citations between authors. We distinguished two types of relations, co-

authorship and citation links. Using correspondence links that connect articles to their

authors and affiliations, we were able to project co-authorships that happen between

authors to the layer of articles and affiliations. In this way we identified matched citations

between articles that imply that at least one author of the citing article previously co-

authored an article with at least one author of the cited article. We introduced a measure

denoted by FMC that quantifies the fraction of matched citations in a topical constrained

subfield of articles. Hence, FMC indicates how many citations are possibly due to social

contacts that some authors of the citing and cited article maintained. To evaluate if

FMC can be interpreted as a measure for a social bias or could be expected at random,

we compared it to a random generative model. This stochastic model took all bibliometric

statistics of the data into account to rule out any random effects which could be expected.

However, we found that the amount of matched citations was significantly higher than

could be expected at random in all topical fields that we investigated.

This finding verifies our initial hypothesis and shows that there is a social bias that in-

fluences citations. Furthermore, the value of FMC increased over the past two decades

which implies that this bias becomes more and more pronounced. Potentially, this leads to

a filtering of the scientific awareness, meaning that acknowledgments are tailored towards

the works done by scientists that know each other. To quantify this effect we provided a

simple measure that allows to further study how knowledge transfer is affected.

Considering the social influence of co-authorship onto citations we discussed citation based

ranking schemes. We suggested a generative model for article citations that consider the

impact of co-authorships. Using the average citations generated by this model as a baseline

we evaluated the agreement with the real data. We found that to some extend the model

is able to explain the real amount of citations an article receives. Nevertheless, there is

still a lot of topological structure in the citation network that can not be explained by

random citations. Hence, we used the deviation from the data to the model expectations

to define a surprise factor that serves as estimation of the quality of an article.

However, we found that projections of citations of articles to their corresponding authors

or affiliations lead to much higher correlations with the data. This is due to a size effect,

which means that a single author or affiliation can be connected to several articles, which

in return increase the probability to receive a citation at random. In other words this
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means that citations merely capture the number of publication associated with authors

or affiliations. While it is feasible that the size effect is present in the generative model,

the agreement with the real data implies that the mere amount of articles of an author

or affiliation is also the driving factor of real citation counts. Especially for affiliations we

conclude that a ranking based on citations is not feasible to make statements of quality.

However, for the citations of articles the surprise factor can be used to assess the influence

of co-authorships. In particular we can distinguish two articles that exhibit the same

citation count but different surprise factors. Meaning, that we can evaluate if citations are

matched by previous collaborations or come from socially unrelated authors. The surprise

factor should not be used on its own but provides an additional perspective on citation

based indicators and ranking schemes.

Concluding, in this chapter we provided several indicators to measure the social influence

of co-authorship onto citations. Our analysis was based on a multi-layer perspective that

allows to combine multi-dimensional relations. Only observing each layer as a separate

network would not have allowed to reveal the hidden correlations that are present in the

data. The methodology presented in this chapter can also be applied to other aspects

of scientometric investigations. Considering interrelated aspects is in general a promising

approach and provides new quantification tools for the science of science.
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Chapter 8

Conclusions

8.1 Summary and Discussions

The goal of this thesis was to explore and develop new methods in network theory that

go beyond the standard approach to study complex systems. In particular we intended

to build an extended framework that overcomes some of the limitations imposed by basic

static one-dimensional network representations. More precisely, we investigated the inclu-

sion of time with temporal networks and analyzed interconnected and multi-dimensional

systems with multi-layer networks. We focused on specific aspects of the aforementioned

topics to provide further insights and suggest new approaches to some open issues. We

provided novel higher-order network models that capture properties of complex systems

that are neglect by standard network approaches.

8.1.1 Part I: Temporality

In Part I we focused on temporal ordering of links in temporal networks. Temporal

networks include a time-stamp for each link therefore indicating at which points in time

a link was present. In this framework we studied the order in which interactions occurred

or links were traversed. The ordering can have a crucial impact on the topology and path

structures of temporal networks. It can be based on time-stamped links or path statistics

gathered from the data. Casual methods usually aggregate time-stamped links for given

time windows thus neglecting any kind of time dependency. Such networks are called first-

order aggregate networks or static networks. To overcome this simplification in Chapter 3

we first introduced a framework to capture path statistics that explicitly consider the order

of links. The so called k-order aggregate networks capture the correct occurrences of paths
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of length k in the temporal network. These higher-order networks are also aggregations

of the real temporal sequence but with the addition that path statistics get captured as

well. To highlight the importance of a correct representation of time-dependent paths we

focused on two applications of our framework.

In Chapter 4 we investigated path-based centrality measures. Since time-respecting paths

may not get captured accurately by a time-aggregated perspective this also influences the

position of nodes in respect to their neighbors. Centrality measures on static networks im-

plicitly assume that all paths that exist in the static time-aggregated network also exist in

the temporal sequence. Since this is not true in general we first defined temporal versions

of the commonly known betweenness, closeness and reach centrality. The temporal cen-

tralities explicitly preserve the link ordering of all paths in the temporal sequence. Next,

we defined centrality measures based on the higher-order aggregated networks. We com-

pared the centrality measured based on second-order and first-order aggregate networks

to the temporal version. We found that higher-order aggregate networks better capture

the true temporal centralities than assumed by static time-independent representations.

In Chapter 5 we focused on the impact of ordering on dynamical processes running on

temporal networks. We highlighted the relation of the link ordering to temporal causality

and how the non-Markovian property of consecutive links in temporal sequences compare

to a first-order time-aggregated perspective. This means that in the empirical temporal

sequence the occurrence of a link b→ c with the source b does also depend on a previous

links a → b with target b. Such dependencies between sequences of links influence how

one can navigate in a temporal network and therefore how something spreads through

the network. In particular we focused on a random walk process that models diffusion

dynamics and can be used as a proxy for several spreading processes in networks. In terms

of temporal causality we focused on second-order networks that capture paths of length

two and therefore the dependency of links on one previous link. This can also be considered

as one-step memory of a random walker. To estimate the amount of non-Markovian two-

paths in the temporal sequence we used an entropy measure that indicates how much

freedom a walker has in choosing his next step. We empirically investigated how fast a

random walk converges on a second-order aggregate network compared to a first-order

aggregate network. We found that the inclusion of time-respecting paths can either slow-

down or speed-up the random walk process compared to a static time-aggregated network.

Further, we provided an analytical measure, called slow-down factor, which accurately

predicts the change in diffusion speed from a second-order to a first-order perspective. We

finally analyzed some topological properties such as community and geodesic structures

in the network which allow to explain some aspects that alter the diffusion speed in a

temporal network compared to a static representation. We also briefly described methods
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to reorder time-stamped links in a temporal sequence to either slow-down or speed-up a

diffusion process in a temporal network.

Conclusively, in Part I we showed that the methodology of higher-order aggregate network

is a powerful tool to analyze the ordering of links in temporal networks. Note that there are

some crucial conditions that have to be considered in our framework. First of all we only

consider temporal networks composed of discrete time-steps. Hence, the results derived

here may not directly translate to continuous processes. However, temporal networks

based on real data are usually also gathered from discrete observations which makes our

approach a natural application to real world data sets.

Another crucial aspect in the construction of higher-order aggregate networks is the choice

of an appropriate and suitable maximal time difference δ that defines the time-span in

which consecutive paths are considered. While a too large δ aggregates the time-stamped

links therefore losing some of the order correlations, a too small δ renders the temporal

network disconnected and only allows few paths to exist. In our analysis we argued for

an intermediate δ related to a strongly-connected network perspective where all nodes

have the possibility to influence each other by a time-respecting path. In general an

appropriate δ should be chosen according to temporal characteristics of the underlying

real world system, that is represented by a temporal network, and the time scale of the

dynamical process. However, the exact choice of a maximum time difference δ may be a

difficult and ambiguous task in particular cases.

The construction of higher-order aggregate networks and their analytical investigation

may be computationally expensive for large temporal networks. The amount of nodes in

k-order aggregate network scales with the amount of paths of length k in the temporal

network. For example, the size of a second-order time-aggregated network scales with

the amount of links and the amount of second-order links with the amount of two-paths.

However, we argue that real world temporal data is often sparse and therefore not all

possible paths have to be considered. Further, the use of higher-order aggregate network

is still more efficient than considering the whole temporal sequence of links and therefore

is a viable proxy for the real temporal order correlations.

We conclude that our analysis of temporality of complex systems provided new insight

that go beyond the standard network perspective. Our framework to study the ordering

of temporal links provided a novel approach that includes causality and correlations effects

that were widely neglected before. Finally, we provide measures that allow to identify and

quantify the effect of temporal ordering in any given data set, thus providing valuable

methods for a lot of applications.

135



8.1.2 Part II: Interconnectivity

In Part II we focused on interconnected and multi-dimensional systems. We used the

multi-layer framework to represent networks with certain topological properties that are

connected to each other, and interconnected networks that combine multiple node and link

types. Since the possible applications of multi-layer networks are very broad we focused

on particular subjects that highlight the aforementioned aspects.

In Chapter 6 we theoretically investigated the lack of knowledge in interconnected net-

works. If the topology of the whole network is available there would be no difference to a

single layer network that is composed of several components. However, here we assumed

situations where we lack knowledge of either the intra-link topology of single layers or

the inter-link topology between layers. These situations are motivated by real world sys-

tems, for example by online social networks, where the exact knowledge on how different

systems are connected is not available and one has to rely on some aggregate statistics.

To deal with this lack of knowledge we used an ensemble approach to estimate average

properties of several realizations of a multi-layer networks that either coincide with the

inter- or intra-link topology. Our approach had the purpose to estimate the properties of

a dynamical process. In particular we focused on a random walk process that runs on a

multi-layer network. We analyzed how the convergence speed of this random walk process

relates to either knowing the intra- or inter-link topology of the multi-layer network. By

varying the density of intra- and inter-links we identified cases where the aggregate statis-

tics are enough to precisely estimate the convergence of a random walker. In some cases

it is even enough to consider a multi-layer aggregation that only considers the densities of

both, inter- and intra links.

In this chapter we mainly derived theoretical results for randomly generated networks.

Layers that contain Erdös-Rényi and regular networks exhibit link topologies that are

well suited to differentiate the situations where the ensemble predictions work best. Ran-

dom walks on network layers the exhibit scale free link topologies need usually quite long

to converge to a stationary state resulting in relatively small difference between the ap-

proaches. Nevertheless, the methodology works in general and could be applied to any

kind of network as as long we have a suitable stochastic model underlying it.

In Chapter 7 we analyzed a real multi-relational data set of scientific publications. We

intended to investigate the correlation of citations and co-authorships between scientists.

We hypothesized that due to the increasing amount of publications over the last decades,

scientist more often rely on the social contacts to filter the relevant information. To test

this hypothesis we interpreted co-authorships as social contacts of collaborations and ci-
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tations as acknowledgement of relevant work. The relation of articles to their authors and

affiliations allowed to build a multi-layer network interconnected by their correspondence.

The intra-links represent either citations or co-authorships. We developed a random cita-

tion model that allowed to find the average citation an article receives at random while

preserving publication dates as well as in- and out degrees of article nodes. We defined

the term of matched citations indicating that at least one author of the citing article

previously collaborated with at least one author of the cited article. Analyzing subfields

based on APS we found that the fraction of matched citations is much higher than would

be expected at random, thus verifying our assumption. Knowing that co-authorships can

alter citation behavior we constructed an article citation model to estimate the amount

of citations an article receives incorporating the collaboration topology of authors. Our

model had a good correlation with the actual citations but still allowed us to identify

articles respectively authors and affiliations that perform better than expected. Building

on this we provided an new perspective on ranking schemes that take into account the

correlation between citation and co-authorships.

In both parts we established new methods to tackle various issues in the analysis of complex

systems. The findings are therefore relevant for various scientific fields.

8.2 Scientific contribution

Her we briefly discuss how our findings are of relevance to particular research fields. All

of our results are contributions to network science and the general analysis of complex

systems. The framework of higher-order aggregate networks, to deal with causality in

time-stamped data, is a general approach that can be applied to any kind of ordered

data. This also applies to the centrality measure and slow-down factor that we developed

in this respect. The results on the diffusion of interconnected networks are theoretical

and therefore applicable to any kind of interconnected network where the link type is the

same across and within the network. The methodology used to analyze data on scientific

citations and collaborations were tailored for this particular investigation, however, the

idea of constructing an ensemble that considers a multi-layered structure can also be of

use to other applications that include multi-dimensional relations.

So far, three publications cover some parts of the research presented in this thesis and make

the results available to the scientific community. The methodology of higher-order aggre-

gate networks was published in Nature Communications [144] and EPJ-B [145]. Nature

Communications is an interdisciplinary journal that publishes research from all areas of

the natural sciences that represent important advances of significance within specific dis-
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ciplines. EPJ-B is part of the European Physical Journal specialized on condensed matter

and complex systems. Both these publications highlight the importance of the presented

higher-order approach for various scientific fields that go beyond network science. The

ensemble approach to study diffusion in interconnected networks was included in a chap-

ter [175] of a joint book on multi-layer networks called Interconnected Networks [48]. This

book is part of the dissemination of the European project MULTIPLEX dealing with the

various topics of multi-level complex systems. The research on the correlation citations

and co-authorships has yet to be published and is planned to target the research field of

scientometrics.

More specific contributions are briefly outlined in the following:

Data Mining Data mining is a branch of computer science that deals with processing

and analyzing large data sets. This field is constantly interested in efficient represen-

tations and tools to analyze huge amount of data. In terms of analyzing time-stamped

data, higher-order aggregate network provide a balanced compromise. They capture the

causality of consecutive links but still do not require to keep track of the detailed temporal

sequence. It also allows for stochastic investigation and delivers path statistics that are in

line with the real data. For larger networks the computational cost may increase but are

still far better than considering the detailed temporal data. Also taking into account the

slow-down factor and entropy growth rate ration, our framework provides an efficient and

analytical substantiated approach to analyze large amount of temporal data.

Biological Pathways The network perspective has proved to be useful for the analysis

of drug actions and disease complexity as well as drug design [30]. How molecules interact

with each other or how genes are activated is crucial in understanding disease and providing

appropriate treatment. Correct ordering and causality is of special interest for biological

pathways. Exact pathways of biological interaction are essential to understand metabolism

and the regulation of gene expressions. Due to the complex structure common approaches

still aggregate the biological pathways over time to receive statistics of molecule and gene

activations but losing the exact ordering. Therefore, a higher-order aggregate network

approach could deliver a more detailed analysis that considers the exact sequences of

activations an therefore allows to represent real biological pathways more accurately.

Ranking Schemes The ranking method presented in Chapter 7 provides a alternative

perspective on citations based rankings. Our method can be applied to ranking articles,

scientist or institutions. Especially, university ranking got a lot of attention in recent
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years [62]. They consider a lot of different indicators to measure excellence of researchers.

Even if they consider citations and co-authorships in their ranking schemes they often

treat them as separate parameters. However, the assumption of independence is not

feasible in general. Further, we have seen that due to the size effect citations based

ranking have to be carefully evaluated on higher aggregation levels. To partially overcome

this issue, our approach highlights that investigation and models of citations should be

based on links between articles. Aggregations to scientist or institutions should only be

done as projection of the result acquired from the articles. To rule out other statistical

properties, which should not be considered for scientific quality, the surprise factor offers an

additional indicator to identify outperforming works. Summarizing, our methods provide

an alternative perspective on rankings and allow to incorporate correlations with indicators

based on stochastic modeling.

8.3 Outlook

In this thesis we investigated methods and models based on network science to target

issues in the analysis of complex systems. Due to the vastness of this field we could only

focus on few particular topics. We provided new insights and some general methodology

that can be used in various applications. However, there are several potential extensions

to the methods and findings discussed in respect to temporal and multi-layer networks.

In regard of temporal networks the right choice of a maximum time difference δ is still

an open issue. Recall that δ is the maximal amount of time that can pass between two

links until they are not considered to be part of a time-respecting path anymore. The right

choice of such a time window is not only of relevance of the higher-order aggregate network

presented in this thesis but also to the analysis of dynamical processes in general. The

particular choice of δ in our research was based on strongly-connected networks to allow

a feasible analysis of time-respecting paths. However, future research should investigate

in more detail how an appropriate δ should be chosen depending on the dynamics and

system of interest.

In regard of temporal centrality measures there are several opportunities for expansion and

development of new methods. First of all, in our investigation we focused on three path-

based centrality measures that did not consider link weights. However, the inclusion of

links weights and the expansion to other centrality measure could lead to promising results.

More complex measures like temporal eigenvector centralities or temporal PageRank [118]

could provide more accurate representation of navigation patterns in temporal networks.

The results on temporal dynamics and the presented slow-down factor where based on a
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random walk process. However, the causality of temporal ordering is also of significance to

other dynamical processes. In general it is still a popular opinion that temporal dynamics

slow down a process, therefore further investigation should focus on potential speed-up

occurring for other dynamical processes. Additionally, the methodology of temporal re-

ordering of links to slow-down or speed-up a process could be applied to a real-world

system that can be designed in an appropriate way.

Even thou we presented the framework of k-order aggregate networks we merely focused

on the inclusion a second-order links. For some application this makes scenes since it can

be regraded as one-step memory, that is somehow natural in social interaction processes.

However, it is up to further investigations how the consideration of longer path lengths

and combination of them influence or improve our results.

The ensemble approach to study the lack of knowledge in multi-layer networks was based

on a theoretical analysis and simulation results. Nevertheless, we foresee potential of an

actual application to real-world scenarios that exhibit the particular topologies considered

by our framework. Adjustments of the ensemble approach may further allow to study

other processes that are based on an analytical framework.

Our results and elaborations on the multi-layer perspective of citation and co-authorship

between scientist call for more detailed research. The multi-layered perspective allows

to disentangle the correlations of various citing behaviors. Even though we discussed

how rankings are influenced by mere citations and co-authorships we did not provide a

conclusive answer how one should deal with this. Therefore, further research for multi-

layer ranking mechanism could offer a promising extension of classic oversimplified ranking

schemes.

Finally, the development of novel higher-order network models to study complex systems

is a never ending process. The increasing availability of large and more detailed data sets

creates new challenges, which require an extend framework. Therefore, this thesis could

only provided some starting points for further explorations of the network approach.

140



Appendices

141





Appendix A

Temporality

A.1 Derivation of slow-down factor

In chapter 5, we argue that changes of diffusion dynamics in temporal networks as com-

pared to their static counterparts, are due to the change of connectedness, or conductance,

of the corresponding second-order aggregate network. We further show that these changes

are captured by a slow-down factor which can be computed based on the second-order

aggregate networks corresponding to a particular non-Markovian temporal network and

its Markovian counterpart. In the following, we substantiate our approach by analytical

arguments, highlighting the conditions under which our prediction is accurate.

For a second-order aggregate network G(2) with a weight function w(2), let us consider a

transition matrix T(2) as defined in Eq. 2 of our article. The influence of the eigenvalues of

T(2) on the convergence behavior of a random walk can then be studied as follows. For a

sequence of eigenvalues 1 = λ1 ≥ |λ2| ≥ . . . ≥ |λn| of T(2) with corresponding eigenvectors

v1, . . . ,vn, we define the eigenmatrix U := (vi)i=1,...,n. We further define a stochastic

row vector x = π0 = (p1, . . . , pn) which we assume contains the initial node visitation

probabilities before the random walk starts. Since U is not necessarily regular (n.b. that

G(2) is directed) we use a Moore-Penrose pseudoinverse [124] U−1 of U as well as diagonal

matrix D = diag(λ1, . . . , λn) to obtain an eigendecomposition of T(2) as

T(2) = U−1DU. (A.1)

We can then transform the vector x into an eigenspace representation of T(2) and obtain

a = xU−1 such that x =
∑n

i=1 aivi. With this, the node visitation probability vector πk
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after k steps can be expressed as

πk = xTk =
n∑

i=1

aiviT
k

where Tk is the k-th power of the transition matrix T and ai is the i-th entry of vector a.

Repeated substitution according to the eigenvalue equation viT = λivi yields

πk =
n∑

i=1

λki aivi.

Assuming that T(2) is primitive, for the Perron-Frobenius eigenvalue λ1 we obtain 1 =

λ1 > |λ2| and the normalised first eigenvector a1v1 corresponds to the unique stationary

distribution π = πk of the Markov chain given by T(2). For the first term in the sum

above, we thus obtain λk1a1v1 = 1 · π = π. With

πk = π +
n∑

i=2

λki aivi (A.2)

a difference vector δ(k) whose components δj(k) capture the difference between node

visitation probabilities (πk)j after k steps of the random walk and the stationary visitation

probability (π)j for each node j can be defined as

δ(k) = πk − π =
n∑

i=2

λki aivi. (A.3)

The total variation distance

∆(πk,π) :=
1

2

n∑

j=1

| (π)j − (πk)j |

after k steps can then be given as

∆(πk,π) =
1

2

n∑

j=1

|δj(k)|

=
1

2

n∑

j=1

|λk2a2 (v2)j + λk3a3 (v3)j

+ . . .+ λknan (vn)j |
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where (vi)j denotes the j-th component of the i-th eigenvector vi. Under the condition

that |λ2| is not degenerate (i.e. |λ2| > |λ3|) and using the fact that |λi| < 1 for i ≥ 2 (n.b.

that T(2) is primitive and thus G(2) is necessarily strongly connected) for k sufficiently

large one can make the following approximation:

∆(πk,π) ≈ 1

2

n∑

j=1

|λk2a2 (v2)j |.

For a sufficiently small convergence threshold ε > 0, the convergence time k after which

the total variation distance falls below ε can then be calculated as follows:

∆(πk,π) ≈ 1

2

n∑

j=1

|λk2a2 (v2)j | ≤ ε⇔

k · ln(|λ2|) + ln

(
1

2

n∑

j=1

|a2 (v2)j |

)
≤ ln(ε)⇔

k ≥ 1

ln(|λ2|)
·

(
ln(ε)− ln

(
1

2

n∑

j=1

|a2 (v2)j |

))

Here, we utilise the fact that, since |λ2| > |λ3|, both λ2 and a2v2 are necessarily real and

thus |λk2a2 (v2)j | = |λk2| · |a2 (v2)j | = |λ2|k · |a2 (v2)j |. Based on the result above, the

convergence time t(ε) after which total variation falls below ε (i.e. ∀k ≥ t(ε) : ∆(πk,π) ≤
ε) is than given as

t(ε) =
1

ln(|λ2|)
·

(
ln(ε)− ln

(
1

2

n∑

j=1

|a2 (v2)j |

))
.

We now consider the null model T̃(2) corresponding to a Markovian temporal network

model derived from G(2) (and thus to a random walk running on the weighted aggregate

network) according to Eq. 3 in our main article. Based on the sequence of eigenvalues 1 =

λ̃1 ≥ |λ̃2| ≥ . . . ≥ |λ̃n| of T̃(2) with corresponding eigenvectors ṽ1, . . . , ṽn, a convergence

time t̃(ε) after which total variation distance falls below ε can then be derived analogously

as:

t̃(ε) =
1

ln(|λ̃2|)
·

(
ln(ε)− ln

(
1

2

n∑

j=1

|ã2 (ṽ2)j |

))

A fraction S∗(T(2), ε) that captures the slow-down (or speed-up) of convergence that is

145



due to non-Markovian properties can then be defined based on t(ε)/t̃(ε):

S∗(T(2), ε) :=
ln(|λ̃2|)
ln(|λ2|)

·
ln(ε)− ln

(
1
2

∑n
j=1 |a2 (v2)j |

)

ln(ε)− ln
(

1
2

∑n
j=1 |ã2 (ṽ2)j |

)

We then define the proportional slow-down S∗(T(2)) in the limit of small ε (or large k) as

S∗(T(2)) := lim
ε→0

(
S∗(T(2), ε)

)
=

ln(|λ̃2|)
ln(|λ2|)

. (A.4)

We remark, that this slow-down is due to the difference in the spectral gap 1 − |λ2| of

T(2) as compared to the null-model T̃(2) derived from the weighted aggregate network

corresponding to both T(2) and T̃(2). The prediction S∗(T(2)) holds for sufficiently large

k or - equivalently - for a sufficiently small total variation distance ε. Furthermore, we

assumed that T̃(2) is primitive and that λ2 is non-degenerate.

If the gap 1− |λ̃2| of the second-order network corresponding to the Markovian temporal

network is larger than the gap 1−|λ2| corresponding to a non-Markovian case, S∗(T(2)) >

1. In this case, the conductance of G̃(2) is larger than that of G(2) and the non-Markovian

properties slow down random walk convergence. If - on the other hand - the gap 1− |λ̃2|
is smaller than the gap 1 − |λ2|, the conductance of G̃(2) is smaller than that of G(2). In

this case S∗(T(2)) < 1, meaning that the non-Markovian properties of a temporal network

speed up random walk convergence.

We finally note that for |λ2| = |λ3|, a similar slow-down ratio can be derived for the chi-

square distance based on the upper bounds on the second-largest eigenvalues for general

directed networks with arbitrary eigenvalue spectra following the arguments put forth

in [27]. Based on this approach the prediction would look like

S∗χ(T(2)) =
ln
(

1
2
(1 + Re(λ̃2))

)

ln
(
1
2
(1 + Re(λ2))

) ,

with the eigenvalue sequence of the transition matrix sorted by their real parts, i.e.

Re(λ1) ≥ Re(λ2) ≥ . . . ≥ Re(λn). The prediction S∗χ(T(2)) isa equal to S∗(1
2
(In + T(2)))

where n is the dimension of T(2) and In is the corresponding identity matrix. This is equal

to applying the prediction S∗ to a transition matrix of a lazy random walk with self-loop

probability 1/2. This approach can alleviate periodicity and assure that |λ2| > |λ3| at

least for the transition matrix of a lazy random walk.
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A.2 Details of model for non-markovian temporal net-

works

A particularly important finding in our article is the fact that non-Markovian characteris-

tics can give rise both to a slow-down and speed-up of diffusion dynamics when compared

to their static aggregated counterparts. To illustrate this fact, we introduce a simple toy

model for temporal networks in which non-Markovian properties can either inhibit or en-

force time-respecting paths across two pronounced communities that are present in the

static aggregate network. In our article we argue that the presence of order correlations

which enforce time-respecting paths across communities is a particularly simple mechanism

by which non-Markovian properties in temporal networks can speed up diffusion dynamics.

With this we further highlight one possible mechanism by which non-Markovian proper-

ties can effectively mitigate the decelerating effect of community structures on diffusion

dynamics.

In the following, we formally define our toy model and substantiate our interpretations

in the article by means of a spectral analysis of the second-order aggregate networks

corresponding to different points in the model’s parameter space. The model is based on

a directed, weighted aggregate network G(1) with two communities, each consisting of a

random k-regular graph with n nodes. To interconnect the two communities, we randomly

draw links e = (v1, v2) and e′ = (v′1, v
′
2) from the two communities respectively, remove e

and e′ and instead add links (v1, v
′
1) and (v2, v

′
2) thus maintaining a k-regular aggregate

network. We further assign uniform weights ω1 to all links, thus obtaining a network as

shown in the schematic illustration in panel (a) of Supplementary Figure A.1. For the

simulations in the article, we use k = 4 and n = 50, thus obtaining a network with 100

nodes and 400 directed links.

For this first-order network G(1), we construct a second-order network G(2) corresponding

to Markovian link activations as shown in panel (b) of Supplementary Figure A.1. Since

G(1) has 400 links, G(2) has 400 nodes, each corresponding to a directed link in the first-

order network. As weights in the second-order network G(2), we consider a uniform con-

stant ω2 which corresponds to a Markovian case in which consecutive link activations are

independently drawn. We use the following simple strategy to introduce non-Markovian

properties. We first identify all links (x, y) that interconnect the two communities, i.e.

where x is a node in community 1 and y is a node in community 2. For these links, we

then identify two nodes a, b such that a is a node in community 1 adjacent to x and b is

a node in community 2 adjacent to node y. The basic idea of the model is to change the

weights of those two-paths that involve links (a, x), (x, y), (y, x) and (x, a). The statistics
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a b

Figure A.1: Schematic representation of our model for non-Markovian tem-
poral networks (a) The first-order aggregate network G(1) consists of two pronounced
communities connected by directed inter-community links (x, y) and (y, x). (b) Weights in
the corresponding second-order aggregate network G(2) are changed by means of a param-
eter σ. Positive values for σ enforce two-paths across communities (turquoise) and inhibit
two-paths within communities (magenta).

of these two-paths is captured by the weights of links connecting nodes (a, x), (x, y), (x, a),

(a, x) in the second-order network (see panel (b) in Supplementary Figure A.1).

Based on a parameter σ ∈ (−1, 1), the weights of the second-order links (a, x)→ (x, y) and

(y, x)→ (x, a) are set to ω2(1 + σ), while the weights of second-order links (a, x)→ (x, a)

and (y, x)→ (x, y) are set to ω2(1−σ). Weights of second-order links including the nodes
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b and y are adjusted analogously (see panel (b) in Supplementary Figure A.1). By this

means, positive values for σ increase the weights of two-paths across communities at the

expense of two-paths within communities. Negative values for σ increase the weights of

two-paths within communities at the expense of two-paths across communities. A value

of σ = 0 yields a second-order aggregate network with uniform weights ω2 which - by

construction - corresponds to a Markovian case.

For σ 6= 0, the above procedure leads to transition matrices T(2) 6= T̃(2) which are however

consistent with the same weighted aggregate network G(1). This can be confirmed by

checking that for all σ ∈ (−1, 1), the stationary activation frequencies of links captured

by the leading eigenvector π of T(2) are the same. The change of second-order weights by

our model imply

T
(2)
(a,x)(x,y) = ω2(1 + σ), T

(2)
(y,x)(x,a) = ω2(1 + σ) ,

T
(2)
(a,x)(x,a) = ω2(1− σ), T

(2)
(y,x)(x,y) = ω2(1− σ) .

Since the j-th component of the stationary distribution of the second-order network is

given by (π)j =
∑

i (π)i T
(2)
ij the changes above only influence entries (π)(x,a) and (π)(x,y)

in the leading eigenvector of T(2). Let π̃ = π̃T̃(2) and π = πT(2). Then for an entry

(π)(x,a) we can write

(π)(x,a) =
∑

i

(π)(i,x) T
(2)
(i,x)(x,a)

=
∑

i 6=a,y

(
(π)(i,x) T

(2)
(i,x)(x,a)

)

+ (π)(a,x) T
(2)
(a,x)(x,a) + (π)(y,x) T

(2)
(y,x)(x,a) .

Recall that our transformations only change the entries for (x, a) and (x, y) therefore it

holds that (π)(i,x) = (π̃)(i,x) for all i. This yields

(π)(x,a) =
∑

i 6=a,y

(
(π̃)(i,x) T

(2)
(i,x)(x,a)

)

+ (π̃)(a,x) T
(2)
(a,x)(x,a) + (π̃)(y,x) T

(2)
(y,x)(x,a) .

Furthermore, we can plug in the definitions for T(2) from above and also use that T
(2)
(i,x)(x,a) =
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T̃
(2)
(i,x)(x,a) for all i /∈ {a, y}.

(π)(x,a) =
∑

i 6=a,y

(
(π̃)(i,x) T̃

(2)
(i,x)(x,a)

)
+ (π̃)(a,x) ω2(1− σ)

+ (π̃)(y,x) ω2(1 + σ)

=
∑

i 6=a,y

(
(π̃)(i,x) T̃

(2)
(i,x)(x,a)

)

+ (π̃)(a,x) ω2 − (π̃)(a,x) ω2σ

+ (π̃)(y,x) ω2 + (π̃)(y,x) ω2σ .

Since T̃(2) is built from a regular graph it holds that ω2 = T̃
(2)
(i,x)(x,a) for all i. Hence,

(π)(x,a) =
∑

i 6=a,y

(
(π̃)(i,x) T̃

(2)
(i,x)(x,a)

)
+ (π̃)(a,x) T̃

(2)
(a,x)(x,a)

− (π̃)(a,x) ω2σ + (π̃)(y,x) T̃
(2)
(y,x)(x,a) + (π̃)(y,x) ω2σ

=
∑

i

(
(π̃)(i,x) T̃

(2)
(i,x)(x,a)

)

− (π̃)(a,x) ω2σ + (π̃)(y,x) ω2σ

= (π̃)(x,a) − (π̃)(a,x) ω2σ + (π̃)(y,x) ω2σ

= (π̃)(x,a) .

In the last step we use that the stationary distribution π̃ is uniform and thus (π̃)(a,x) =

(π̃)(y,x). From an analogous argumentation, we can derive (π)(x,y) = (π̃)(x,y). We thus

confirm that π = π̃ and the stationary distribution is preserved for σ ∈ (−1, 1). We

finally refer the reader to a related model for non-Markovian temporal networks, which

has been introduced very recently, during the revision of our manuscript [86]. Different

from our approach, the model introduced in this recent work generates realisations that

do not preserve a given weighted aggregate network, which however is the particular focus

of our approach.
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Appendix B

Interconnectivity

B.1 Proofs and derivations

Note: Unless stated otherwise, here vectors are considered to be row-vectors and multi-

plication of vectors with matrices are left multiplications.

We assume a multi-layer network G consisting of L layers G1, . . . , GL and n nodes. A

single layer Gs contains ns nodes and therefore
∑L

s=1 ns = n. For a multi-layer network G

we define the supra-transition matrix that can be represented in block structure according

to the layers:

T =




T1 . . . T1t . . . TsL

...
. . .

...
. . .

...

Ts1 . . . Tst . . . TsL

...
. . .

...
. . .

...

TL1 . . . TLt . . . TL



.

Each Tst contains all the transition probabilities from nodes in Gs to nodes in Gt. As-

suming Eq.(6.5) it follows that Tst = αstRst where Rst is a row stochastic matrix. This

means that all Tst are scaled transition matrices. The factor αst represents the weighted

fraction of all links starting in Gs that end up in Gt.
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In this respect we define the aggregated transition matrix T of dimension L,

T =




α11 . . . α1t . . . αsL
...

. . .
...

. . .
...

αs1 . . . αst . . . αsL
...

. . .
...

. . .
...

αL1 . . . αLt . . . αL



. (B.1)

Each vector v of dimension n can be split according to the layer-separation given by G,

v =
(
v(1), . . . , v(k), . . . , v(L)

)
.

Each component v(k) has exactly dimension nk. We define the layer-aggregated vector

v = (v1, . . . , vL) of dimension L as follows

∀k ∈ {1, . . . , L} vk =

nk∑

i=1

[
v(k)
]
i
.

We use the bracket notation [v]i to represent the i-th entry of the vector v. Analogously, by

[vM]i we mean the i-th entry wi that represents the multiplication of v with a matrix M,

i.e. w = vM. Further, by |v| we indicate the sum of the entries of v, |v| =
∑

i vi =
∑

i[v]i.

Theorem 1. For a multi-layer network G consisting of L layers we assume the supra-

transition matrix T to consist of block matrices Tst such that for all s, t ∈ {1, . . . , L},
Tst = αstRst where αst ∈ Q and Rst is a row stochastic transition matrix. The multi-layer

aggregation is defined by T = {αst}st. If an eigenvalue λ of the matrix T corresponds to

an eigenvector v with a layer-aggregation v that satisfies v 6= 0 then λ is also an eigenvalue

of T.

Proof. Assume v is a left eigenvector of T corresponding to the eigenvalue λ. Therefore,

it holds that vT = λv. Let v(k) be the k-th part of v that corresponds to the layer Gk.

We can write the matrix multiplication in block structure.

(
v(1), . . . , v(k), . . . , v(L)

)
T =

(∑

l

v(l)Tl1, . . . ,
∑

l

v(l)Tlk, . . . ,
∑

l

v(l)TlL

)
.

Each v(k) is a row vector which length is equal to the amount of nodes nk in Gk. The

transformation
∑

l v
(l)Tlk is also a row vector with the same length as v(k). According to
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the eigenvalue equation it holds that for all k ∈ {1, . . . , L}

λv(k) = (vT)(k) =
∑

l

v(l)Tlk .

Now let us denote the sum of the vector entries of v(k) as

vk =
∑

i

[
v(k)
]
i
.

Further, we define layer-aggregated vector consisting of this sums by v = (v1, . . . , vn).

Note that for a general row stochastic matrix M and its multiplication with any vector v

tit holds that
∑

j[v]j =
∑

j[vM]j. For the components after multiplication with T we can

deduce

∑

i

[
(vT)(k)

]
i

=
∑

i

[∑

l

v(l)Tlk

]

i

=
∑

i

[∑

l

αlkv
(l)Rlk

]

i

=
∑

l

αlk
∑

i

[
v(l)Rlk

]
i

=
∑

l

αlk
∑

i

[
v(l)
]
i

=
∑

l

αlkvl .

If we multiply v with T and look at a single entry of vT we get

[vT]k =
∑

l

vlTlk =
∑

l

vlαlk .

Hence it holds that

[vT]k =
∑

i

[
(vT)(k)

]
i
,

and therefore

vT =

(∑

i

[
(vT)(1)

]
i
, . . . ,

∑

i

[
(vT)(L)

]
i

)
.

Finally since T is row stochastic and λv = vT we have that

λv = λ (v1, . . . , vn)

= λ

(∑

i

[v(1)]i, . . . ,
∑

i

[v(L)]i

)

=

(∑

i

[
(vT)(1)

]
i
, . . . ,

∑

i

[
(vT)(L)

]
i

)

= vT .
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Therefore, λ is also an eigenvalue of T to the eigenvector v defined as before. It is important

to note that this only holds if v 6= 0.

The procedure used in the proof of the previous theorem applies to several eigenvalues of

T but at most L of them. Next we give a proposition for the reversed statement of Thm 1.

Proposition 1. Let G be a multi-layer network that consists of L layers and fulfills all of

the conditions of Thm 1. Let T = {αst}st be the multi-layer aggregation of T. If λ is an

eigenvalue of T then λ is also an eigenvalue of T.

Proof. Assume that λ is an eigenvalue of T. For each matrix there exist a left and right

eigenvector that correspond to the same eigenvalue λ. Assume the w is the right eigen-

vector and therefore a column vector. Hence Tw = λw and

Tw =

(∑

j

α1jwj, . . . ,
∑

j

αkjwj, . . . ,
∑

j

αLjwj

)>
= λw . (B.2)

Now we generate a column vector w of dimension n such that for all the layer components

w(k) it holds that

w(k) = (wk, . . . ,wk)
> . (B.3)

Next we perform a right multiplication of w with T,

Tw =

(∑

l

T1lw
(l), . . . ,

∑

l

Tklw
(l), . . . ,

∑

l

TLlw
(l)

)>

=

(∑

l

α1lR1lw
(l), . . . ,

∑

l

αklRklw
(l), . . . ,

∑

l

αLlRLlw
(l)

)>
.

Since all Rst are row stochastic matrices and w(l) contains only the value wl for each entry

we get Rstw
(l) = w(l). It follows that

Tw =

(∑

l

α1lw
(l), . . . ,

∑

l

αklw
(l), . . . ,

∑

l

αLlw
(l)

)>

=
(
λw(1), . . . , λw(k), . . . , λw(L)

)>

= λw .

And therefore λ is also an eigenvalue of T.
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In the case of a diffusion process we are especially interested in the second-largest eigen-

value of T, denoted by λ2(T), which is related to algebraic connectivity of T. In this

perspective the following corollary is useful:

Corollary 1. Let G be a multi-layer network consisting of L layers that fulfill all of

the conditions of Thm 1. Further assume that G is partitioned according to a spectral

partitioning, i.e. according to the eigenvector corresponding to λ2(T), then λ2(T) = λ2(T).

Proof. In general all the eigenvectors of a transition matrix, except the eigenvector corre-

sponding to the largest eigenvalue that is equal to one, sum up to zero. However, these

eigenvectors consist of positive and negative entries that allow for a spectral partitioning.

Especially the eigenvector v2 that corresponds to the second-largest eigenvalue λ2(T), can

be used for the partitioning of the network. This eigenvector is related to the Fiedler vector

that is also used for spectral bisection [38]. Therefore if the layer-partition of G coincides

with this spectral partitioning we assure that the layer-aggregated vector of v2 satisfies

v2 6= 0. Considering this and Prop 1 the corollary follows directly from Thm 1.

Given Eq.(6.5) we can fully describe the spectrum of T based on the intra-layers transition

blocks Ti for i ∈ {1, . . . , n} and the spectrum of T. Note that with uniform columns of a

matrix M we mean that each column of M contains the same value in each entry. However,

this value can be different for different columns.

Proposition 2. Let T be the supra-transition matrix of a multi-layer network G that

consist of L layers and satisfies Eq.(6.5). If T has off-diagonal block matrices Tst, for

s, t ∈ {1, . . . , n} and s 6= t, that all have uniform columns, then the spectrum of T can be

decomposed as

Spec(T) = {1, λ2, . . . , λL} ∪

(
L⋃

s=1

Spec(Ts) \ {λ1(Ts)}

)
, (B.4)

where Ts are the block matrices of T corresponding to the single layers Gs and λ1(Ts) the

largest eigenvalue of Ts. The eigenvalues λ2, . . . , λL are attributed to the interconnectivity

of layers.

Proof. To prove this statement we just have to show that all eigenvalues (except the largest

one) of Ts for s ∈ {1, . . . , L} are also eigenvalues of T. We assume that λ is any eigenvalue

corresponding to the eigenvector u of some block matrix Tr, i.e. λu = uTr. We define a

row vector v that is zero everywhere except at the position where it corresponds to Tr.
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The vector v looks like v = (0, . . . , 0, u, 0, . . . , 0). Now we investigate what happens if we

multiply this vector with the transition matrix T.

vT =
(
v(1), . . . , v(k), . . . , v(L)

)
T =

(∑

l

v(l)Tl1, . . . ,
∑

l

v(l)Tlk, . . . ,
∑

l

v(l)TlL

)
.

Let us take a look at the effect of the matrix multiplication on an arbitrary component

v(k) with k 6= r and recall that v(k) is equal to a zero vector 0 for k 6= r.

(vT)(k) =
∑

l

v(l)Tlk =
∑

l,l 6=r

0Tlk + uTrk = uTrk .

Note that all eigenvectors u of a transition matrix that are not related to the largest

eigenvalue sum up to zero. Therefore it holds that uTrk = 0 since Trk has uniform

columns and therefore uTrk yields in a vector where each entry is equal to some multiple

of |u|. In case of k = r it holds that v(k) = u and we get

(vT)(r) =
∑

l

v(l)Tlr =
∑

l,l 6=r

0Tlk + uTrr = uTr = λr .

Hence, it holds that vT = λv, which means that λ is also an eigenvalue of T. This way

we get n− L eigenvalues of T apart from the largest eigenvalue that is equal to one. The

remaining eigenvalues denoted by λ2, . . . , λL are not attributed to any block matrix of T.

Therefore they are considered to be the interconnectivity eigenvalues.

Corollary 2. Let G be a multi-layer network consisting of L layers that satisfies Eq.(6.5)

and the conditions of Prop 2. Then the aggregated matrix T = {αst}st has spectrum

Spec(T) = {1, λ2, . . . , λL} ,

and it holds that λ2, . . . , λL ∈ Spec(T).

Proof. Note that every eigenvalue λ 6= 1 of some block matrix Tr with λu = uTr is

by Prop 2 also an eigenvalue of T. Furthermore, λ is attributed to the eigenvector v =

(0, . . . , 0, u, 0, . . . , 0) of T. However |v| = 0 since u is an eigenvector of a transition matrix,

not related to the largest eigenvalue, and therefore sums up to zero. Hence all eigenvalues

fulfilling this condition are by Thm 1 not eigenvalues of T. Since T contains at least L

eigenvalues that by Prop 1 also correspond to eigenvalues of T, the remaining eigenvalues

λ2, . . . , λL have to also be eigenvalues of T.

In the following we provide a useful proposition for the eigenvalues arising from the inter-
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links in case of two layers. Note that by the function T (·) applied to matrix M we indicate

that T (M) is the row-normalization of M.

Proposition 3. Let G be a multi-layer network that satisfies Eq.(6.5), consisting of two

networks G1 and G2 in separate layers. Assume that the supra-transition matrix T has

the form

T =

(
T1 T12

T21 T2

)
=

(
βT (A1) (1− β)TI

12

(1− β)TI
21 βT (A2)

)
,

where TI is the transition matrix of the layer G that only consists of the inter-layer links

and β ∈ Q is a constant. Furthermore, assume that T1 and T2 have uniform columns.

Then for λ ∈ Spec(TI) and λ 6= 1,−1 it holds that (1− β)λ ∈ Spec(T).

Proof. If v is an eigenvector to the eigenvalue λ 6= 1,−1 of TI it holds that vTI = λv.

Hence,

vTI =
(
v(1), v(2)

)
TI =

(
v(2)TI

21, v
(1)TI

12,
)

= λ
(
v(1), v(2)

)
.

Because λv(2) = v(1)TI
12, we get λ2v(1) = v(1)TI

12T
I
21. Therefore, v(1) is also an eigenvector

of the transition matrix TI
12T

I
21 to the eigenvalue λ2. Note that λ 6= 1,−1 hence λ2 <

1 which implies that v(1) does not correspond to the largest eigenvalue and therefore

its entries sum up to zero. The same holds for v(2) and the matrix TI
21T

I
12. For the

multiplication of v with T we deduce that

vT =
(
v(1), v(2)

)
T =

(
v(1)T1 + (1− β)v(2)TI

21, (1− β)v(1)TI
12 + v(2)T2,

)
.

Since T1 and T2 have uniform columns we get v(1)T1 = 0 and v(2)T2 = 0. And therefore

vT = (1− β)λv and (1− β)λ ∈ Spec(T).

Proposition 3 can be extended to multiple layers, however the proof is more involved and

will be omitted.

B.2 Scientometric data

Here we provide additional plots corresponding to the multi-layer analysis performed in

Chapter 7. The observations are based on the APS data set [1] during time periods

of 5 year with starting years ranging from 1990 to 2005. In Figure B.1 we depict the

time evolution several properties of the article citation network. The expected amount of

matched citations in Figure B.1 (a) was already discussed in the corresponding chapter.

However, in the presented scale we can see that expected FMC values follow similar trends
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than the real FMC values. Therefore, the difference between PACS classes are most likely

due to network statistics.
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Figure B.1: Time evolution of several network properties The y-axis shows
the values of several network proeprties for sliding time-windows of 5 years. The x-axis
indicate the starting year of a time-window of 5 years. Only articles published during this
period are considered for the analysis. The main PACS classes are represented by different
colors.

Further, we can see that the relative time-evolution of published articles and amount of

authors involved in these articles are quite similar an increase over time. The amount of

total citations depict in Figure B.1 (d) also correlate with the size of the system according

to articles and authors. PACS classes 00, 20 and 50 are the smallest systems but exhibit

the largest expected value of matched citations. Hence, smaller system size seems to foster

more co-authorships in comparison to the amount of citations.
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