ETH:-zurich Research Collection

eXperimental geometry Zurich
Software for geometric computation

Author(s):
Nievergelt, Jirg

Publication Date:
1991

Permanent Link:
https://doi.org/10.3929/ethz-a-000597280 —>

Rights / License:

In Copyright - Non-Commercial Use Permitted —

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-a-000597280
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Eidgendssische Departement Informatik

Technische Hochschule Institut fir

Ziirich Theoretische Informatik

Jurg Nievergelt eXperimental

Peter Schorn geometrY

Michele De Lorenzi ' Zurich

Christoph Ammann

Adrian Briingger Software for Geometric
Computation

Eidg. Techn. Hachschule Ziirich
lnformahkbibtiathek
ETH-Zentrym
July 1991 CH-8092 Ziirich

163

Authors” address:

Institut fur Theoretische Informatik
ETH-Zentrum

CH-8092 Zurich, Switzerland
e-mail: nievergelt@inf.ethz.ch

© 1991 Departement Informatik, ETH Zirich

eXperimental

Software

geometrY for
Geometric

Zurich - Computation

Contents

Preface
J. Nievergelt

XYZ: A project in experimental geometric computation
J. Nievergelt, P. Schorn, M. De Lorenzi, C. Ammann, A. Briingger

The XYZ GeoBench:

A programming environment for geometric algorithms
P. Schom '

XYZ GeoBench Manual
P. Schorn

24

43

Preface

An increasing number of computer applications in graphics and image
processing, CAD, and geographic information systems, depend critically on a
relatively small kernel of programs that perform geometric computations on
spatial objects. Developing correct, robust, and efficient geometric software is
a formidable endeavor that requires a lot of time and calls for specialized
knowledge in disciplines that are traditionally as disjoint as computational
geometry, numerical analysis, and software engineering.

Computational geometry has made impressive advances since the mid-
seventies, producing a wealth of elegant and efficient algorithms. The goal of
our project XYZ is to make some of these advances available to the
practitioner in the form of a loosely coupled collection of carefully crafted
software packages, in particular:

« The XYZ GeoBench, a programmer’s workbench
* The XYZ Program Library,
an open-ended collection of geometric algorithms
« The XYZ Grid File for managing spatial data on disk.

This report contains two papers that describe the current state of the project,
and the design and implementation of the GeoBench; and a user’s and
programmer’s manual.

The project XYZ has been underway for about 5 years, and this is our first
progress report. We hope the result justifies the time invested into lengthy
design deliberations such as:

* A survey of computational geometry led to the decision to base as many
library programs as possible on sweep algorithms ~ the simplest and most
efficient general class of geometric algorithms known today.

* The notorious difficulties of handling degenerate configurations correctly in
the presence of round-off errors led to the decision to collect common
geometric primitives and a parameterized arithmetic package in a workbench
shared by all library programs.

» The desire to put the software to immediate good use in our courses on

computational geometry led us to combine a programmer’s workbench with
an interactive algorithm animation package.

Software is never finished, and we anticipate continued development over the
next few years. The GeoBench will have to accommodate a growing number
of geometric data types. The Program Library now contains several dozen of
the most basic geometric algorithms; we welcome well-conceived and well-
tested contributions. The Grid File is under development, as are a number of
applications of the XYZ Software.

I owe the realization of this challenging project to a wonderful team. Peter
Schorn is responsible for the lion’s share of the GeoBench and Library;
Christoph Ammann, Michele De Lorenzi, and Adrian Briingger for the
extension into 3 dimensions and applications; Hans Hinterberger and Bjorn
Beeli for the Grid File. Among a dozen students who cut their teeth on various
aspects of this project we acknowledge particularly the contributions of Beat
Fawer, Markus Furter, Peter Lippuner and Peter Skrotzky. This project has
been supported over the years by the US National Science Foundation at the
University of North Carolina and the Swiss National Foundation at ETH
Zurich.

Bugs are found not only in software, but also in text, and here they are even
harder to discover. We are grateful for any comments and corrections to any
part of this report.

J. Nievergelt

The XYZ Software is written in THINK Pascal for Apple Macintosh
computers. Source and object code are distributed for educational use only.
Write to: ‘

XYZ eXperimental geometrY Zurich
Institute for Theoretical Computer Science
Informatik, ETH

CH-8092 Zurich, Switzerland

Fax: +41-1-262-3973 ,
E-mail; “author”@inf.ethz.ch

XYZ:

A project in eXperimental geometric computation

Jurg Nievergelt, Peter Schom, Michele De Lorenzi
Christoph Ammann, Adrian Briingger
Informatik, ETH, CH-8092 Zurich

Abstract

The project XYZ (eXperimental geometrY Zurich) aims to develop practically
useful software for geometric computation, and to test it in a variety of
applications. In pursuing these goals we emphasize the following points, each
of which is described in one section of this paper:

1.

Exploit recent progress in computational geometry through a systematic
study to determine classes of algorithms that lend themselves to robust and
practically efficient programs. Our program library contains many
standard algorithms for.2-d problems, several for restricted 3-d problems,
and a few for d-dimensional geometry.

. Verify and evaluate algorithms experimentally: We study the problem of

consistency in the presence of numerical errors, and emphasize robust
programs that handle all degenerate cases; we often implement and compare
different algorithms for the same problem.

. Use state-of-the-art software engineering techniques in a workbench that

supports the development of a library of production-quality programs: The
XYZ GeoBench (written in Object Pascal for the Macintosh) is a loosely
coupled collection of modules held together by a class hierarchy of
geometric objects and common abstract data types.

. The GeoBench is being used in education as a programming environment

for rapid prototyping and visualization of geometric algorithms. Two other
application projects are underway: Software for terrain modeling, and
interfacing the GeoBench as a “geometry engine” to a spatial data base
system.

Contents

LW O

. Software for geometric computation, and the project XYZ

. Criteria for selection, types of algorithms, and the program library
. Verify and evaluate algorithms experimentally

. The XYZ software packages

. Uses and applications

0. Software for geometric computation,
and the project XYZ

Geometry merged with automatic computation in the late fifties (during the
early days of computer graphics, e.g. Sutherland’s Sketchpad) to create the
discipline of geometric computation. The appearance of computer-aided design
(CAD) systems in the sixties greatly widened its range of applications, and
gave increased importance to the nagging problem of correctly treating
degenerate configurations; whereas a picture can tolerate an occasional error,
an engineering design cannot. Computer scientists with a practical orientation
working on graphics and CAD pushed the field forward. They developed
many interesting algorithms, such as for visibility, and entire classes of related
algorithms, such as scan-line algorithms. They collected experimental evidence
for comparing the efficiency of different algorithms, and discovered the
tantalizing and tough problems of how to compute reliably with degenerate
configurations in the presence of round-off errors. Practitioners laid the
foundation for a discipline of geometric computation.

In the mid seventies, led by Shamos’ pioneering Ph.D. thesis, theoretically:

oriented researchers took over. They brought the finely honed tools of
algorithm design and analysis to bear on geometric algorithms and created a
new theoretical discipline of computational geometry. The well-defined,
conceptually simple algorithmic problems of geometry, and the highly
developed techniques of algorithm analysis, proved to be a perfect match.
Computational geometry has now enjoyed a decade and a half of spectacular
progress. It turned a field characterized by trial-and-error as recently as the
seventies into a discipline where no programmer can work competently in
ignorance of theory.

Today’s research community in computational geometry still focuses most of
its attention on theoretical problems. Research often stops short of
investigating practical issues of implementation, so readers are left wondering
whether a proposed optimal algorithm is useful in practice or not —a question
that rarely has an easy answer. But this question must be answered by the
computational geometry research community, and not be left to the
applications programmer. It has become abundantly clear that the development
of robust and efficient software for geometric computation calls for specialists
with a broad range of experience that ranges from algorithm design and
. analysis to numerics and program optimization.

Even a prototype implementation of just one sophisticated geometric algorithm
is an arduous endeavor if attempted without the right tools, such as: A library
of abstract data types (e.g. dictionary, priority queue) and corresponding data
structures, reliable geometric primitives (e.g. intersection of 2 line segments),
and visualization aids. What the applications programmer needs, but cannot

7

find today, are reliable and efficient reusable software building blocks that
- perform the most common geometric operations. Geometric modelers, the
core of CAD systems, do not address his problems — they are typically
monoliths from which an applications programmer cannot extract any useful
part for his own program.

We are aware of few projects whose main aim is to alleviate the problems
faced by implementors of geometric algorithms. The most visible ones are the
program library LEDA [MN 89] and the Workbench for Computational
Geometry WOCG [ES 90]; both exhibit some similarities and some differences
with our project XYZ. The goal common to all three projects is to develop
practically useful software for geometric computation that is accessible to a
wide range of applications programmers. Differences include: The systems
software and programming language chosen as a basis of implementation, the
scope of services and functions provided by the system, and range of
algorithms and data structures included. ‘

The project XYZ (eXperimental geometrY Zurich) presented here and in the
companion paper [Sch 91a] aims at a broad range of goals all of which are
essential for turning geometric computation from a specialty into a widely-
practiced discipline:

1. Technology transfer: Exploit recent progress in computational geometry
through a systematic study to determine classes of algorithms that lend
themselves to robust and practically efficient programs.

2. Verify and evaluate algorithms experimentally: We study the problem of
consistency in the presence of numerical errors, and emphasize robust
programs that handle all degenerate cases; we implement and compare
different algorithms for the same problem, and execute them using
different number systems.

3, Use state-of-the-art software engineering techniques in a workbench that
supports the development of a library of production-quality programs: The
XYZ GeoBench (written in Object Pascal for the Macintosh) is a loosely
coupled collection of modules held together by a class hierarchy of
geometric objects and common abstract data types.

4. Test the software developed by exposing it to the rigors of a number of
applications. The GeoBench is being used in education as a programming
environment for rapid prototyping and visualization of geometric
algorithms. Two other application projects are underway: Software for
terrain modeling, and interfacing the GeoBench as a “geometry engine” to a
spatial data base system.

This paper is an overview of the entire project, with examples of activities and
results in each of these four categories, and particular emphasis on
experimentation. [Sch 91a] describes the GeoBench in more detail.

1. Criteria for selection, types of algorithms,
and the program library

There is no shortage of algorithms for inclusion in a program library for
geometric computation. The problem is one of selection, whereby we
emphasize the following criteria.

Robustness. A library routine must yield meaningful results for any
geometric configuration, including highly degenerate ones. Unlike random
data where degenerate configurations are rare, many practical applications
generate a lot of highly degenerate configurations — degeneracy comes from
the regularity that is inherent in man-made artifacts. The effort to guarantee
correct results under all circumstances accounts for the lion’s share of
programmer time.

Practical efficiency. We strive for programs that are efficient in practice,
that is, outperform competing programs on realistic input data. Example: An
optimal algorithm can often be modified to run faster on a battery of test data,
even though worst-case optimality is no longer guaranteed. This may occur,
for example, by replacing a balanced tree implementation of a dictionary by an
array implementation. The XYZ library leaves such choices of data structure
to the user.

Standard problems of geometric computation. A program library is
never comprehensive enough to solve most users’ problems directly. We limit
ourselves to basic problems that serve as building blocks for advanced
geometric programs.

Well understood and elegant algorithms. We select algorithms that stand
out by virtue of their elegant simplicity and can be implemented in a
straightforward manner. Even if they are not asymptotically optimal, these
tend to do better than their complicated counterparts with respect to robustness
and practical efficiency. Some “optimal” algorithms are just too complicated
for a reliable, robust implementation.

Start with 2-d geometry. The difficulties posed by 2-d problems must be
solved completely before venturing into higher dimensions, so we have
concentrated on accumulating a sufficient number of representative 2-d
algorithms. We approach 3-d geometry by first studying restricted 3-d
problems using layered objects (see also section 4). Just to show that the
structure of the GeoBench is not restricted to low-dimensional space we have
implemented an algorithm that computes the minimal area disk enclosing a set
of points in d-space.

Types of algorithms

As a guide to selection, and in order to benefit from any similarities that might
be found, we attempt to classify the multitude of published algorithms. The
majority we have investigated fall into one of the following categories:
 Incremental algorithms

- sweeps (mostly in the plane, occasionally through space)

- in random order .
« Boundary traversal
» Recursive data partitioning, i.e. divide and conquer.

These classes of algorithms differ significantly with respect to their data access

patterns. Whether this access pattern is irregular, or simple and predictable,

has an effect on efficiency, in particular if data is processed off disk (see also
section 4). Some observations:

» Randomized incremental algorithms play an important role in theory because
the assumption of randomly ordered data is favorable for average case
analysis. In practice they do not appear to be superior to sweeps.

« Sweeps, on the other hand, require (lexicographically) sorted data; this
orderly access pattern leads naturally to efficient implementations with
simple data structures. .

o Algorithms that follow boundaries (e.g. of a convex polygon) exhibit a
spatial locality principle. They can be implemented efficiently in central
memory using list structures, but are less efficient for data stored on disk.

» Algorithms that partition their data in recursively gemerate the most
irregular access patterns. In section 2 we demonstrate experimentally that
divide-and-conquer algorithms are typically less efficient than their plane
sweep counterparts.

In conclusion, we favor plane-sweep algorithms as a simple and efficient
general purpose skeleton for most 2-d geometric problems.

The 2-d algorithms currently in the library include:

» Convex hull (Graham’s scan, divide and conquer)

« Diameter and intersection of convex polygons

» Tangents common to two convex polygons

= Boolean operations (union, intersection, difference) on polygons

« Contour of a set of rectangles

» Winding number

« Intersection of line segments (sweep line for the first intersection and for
reporting all intersections, sweep line for the special case of horizontal and
vertical line segments) '

¢ Closest pair (sweep line, simplified sweep line, probabilistic) '

« All nearest neighbors (sweep line, simplified sweep line, extraction from
Voronoi diagram)

10

« All nearest neighbors in a sector

= Voronoi diagram (sweep line, divide and conquer)

* Euclidean minimum spanning tree (EMST)

* Traveling salesman heuristics (nearest neighbor, EMST, convex hull, tour
optimizer)

The presence of distinct algorithms for solving the same problem reflects our
concern for experimental assessment and comparison, as discussed in the next
section.

2. Verify and evaluate algorithms experimentally

Efficiency is at the heart of algorithm design, but it is neither easy to define
nor measure. Algorithm analysis typically interprets the term ‘efficiency”’ as

. asymptotic complexity, in the worst case or as an average over some data

space. Although useful for mathematical analysis, this approach neglects many
practical considerations such as: Simplicity and robustness of the
implementation, constant factors, and whether data encountered in practice is
well modeled by the randomness assumptions that go into the theory (it is
usually not). For practical applications, the most promising algorithms must be
implemented in a variety of ways and evaluated experimentally. We describe
some of the experiments and results obtained. Time is measured in seconds as
executed on a Macintosh IIfx.

Efficiency measurements. The GeoBench facilitates experimental
verification and evaluation, e.g. by timing and displaying on demand each
operation executed. Executing all programs on a common platform has the
advantage that geometric primitives are implemented the same way in both
programs, making time measurements more meaningful. For example, most
algorithms for computing the convex hull are likely to use some means for
detecting a ‘left turn’. There are many ways to implement this primitive, and
they result in different running times, but the peculiarities of this
implementation is an issue of program optimization more than of algorithm
design. The GeoBench provides about 20 geometric primitives such as ‘left
turn’, and the library programs all use them to the greatest extent possible. -

Example: Sweeps and other incremental algorithms vs.
divide-and-conquer. '

Fortune’s sweep [Fo 87] for computing the Voronoi diagram is much easier to
implement than the standard divide-and-conquer algorithm (e.g. [PS 85]). It
uses memory more efficiently, enabling us to compute larger Voronoi
diagrams, and is about three times faster, as the following measurements on
random point sets show. This and other experiments have convinced us that the
divide-and-conquer Voronoi algorithm is not competitive and does not belong
in a program library.

11

1005 E n Sweep D& I

64 .733 1.767

128 1.533 4.317

256 3.2 10.85

3‘10; : 512 6.733 25.383

23 E 1024 14.35 54.933

g [2048 30.283 114.133
= O Sweep L 4096 63.85
14 aopa&l 8192 142.183

nto | oo 10000

Figure 1: Efficiency comparison of two Voronoi diagram algorithms
As a second example we consider the computation of the convex hull of a set
of points in the plane. The Graham scan [Gr 7], an incremental algorithm, is
about twice as fast as Preparata and Hong’s [PH 77] divide-and-conquer. The

divide-and-conquer code is 60% longer than the Graham scan implementation,
which reflects the fact that degenerate cases are more difficult to handle.

Ak

10 1 LA X
] s n Scan D &I
] 64 .033 .05
1 128 .067 .1
T 3 256 .117 .217
8 3 512 .233 .433
g] 1024 .533 .883
= 2048 1.067 1.867
"3 E 4096 2.25 3.817
O Grahamscan | 8192 4.8 7.7
D&l [
n 100 1000 10000

Figure 2: Efficiency comparison of two convex hull algorithms

We conclude that incremental algorithms, in particular sweeps, are usually
superior to divide and conquer algorithms. One reason is that most divide and
conquer algorithms compute much information that is not part of the final
solution, whereas incremental algorithms tend to compute only information
that is part of the final solution. A second problem: Divide-and-conquer
algorithms tend to use more memory, especially during the last merge where
two large objects are combined into the final solution, an operation that can
rarely be done in place.

Parametrized arithmetic. Executing a program repeatedly on the same data
using different arithmetic is an effective experiment for assessing the
robustness of an implementation. The GeoBench contains a floating point
arithmetic package where the user specifies, at run time, radix and precision.
Low precision, say 2 decimal digits in the mantissa, brings any numerical

12

problems quickly to the observer’s attention. The program source code is
independent of the choice of arithmetic.

Example: Robustness of a sweep algorithm
The figure below shows the results of executing the all-nearest-neighbors-to-
the-left-sweep of [HNS 90] in a low-precision floating point arithmetic (radix
10, two-digit mantissa, equivalent to about 6 bits) and in a 32-bit floating point
system. The rightmost window shows the two results superposed using XOR
graphics, thus canceling the common part and showing where they differ. The
comparison shows that when low precision arithmetic identifies a wrong
neighbor, the distances are nevertheless close.

& File Edit Objects Arithmetic Animation Windows
12 rioat pt fINN Tloat ANN reai float+real
Rl o Y WY aY
° [+ °° o » e
oo z/f B
T e, B[y — B X 7
F o |F = Z| A
O, o IO 0 O
(] |] -
O O O O
.d Od .d .d

Figure 3: The effect of using different arithmetic systems

Different implementations of abstract data types, and

. instrumentation

R-Queue Y-Table

Bata Structure Bata Structure

Q Hesp ® AL Tree

@ Dictionary Q sorted List
@ BUL Tree O sorted Array
Q Sorted List
O sorted Rrray

X statistics O statistics

Figure 4: Dialog box for choosing the implementation of abstract data

Structures

13

As we may postpone the choice of arithmetic until run time, we may also
explore the influence of different implementations of the same abstract data
type on the performance of a given algorithm. The dialog box in figure 4
shows how a sweep can be tuned to use various data structures for a dictionary
and priority queue. When the user selects ‘Statistics’, without changing a single
line of source code, GeoBench records the maximal number of elements in the
data structures and the number of insertions and deletions performed.

Example: Data structures in the all-nearest-neighbors sweep

Figures 5 and 6 show the influence of different implementations of the
X-priority-queue and the Y-dictionary in the all-nearest-neighbors sweep [HNS
90]. The experiment involved sets of 8192 and 64 random points uniformly
distributed in a square. For 8192 points, the choice of X-queue and Y-table
implementations are independent: A heap is best for the X-queue, a balanced
tree for the Y-table. It is perhaps surprising that the best and worst time differ
by only a factor of 2. For 64 points we have a more complex picture, but the
combination heap + balanced tree is still best.

60
551 i X AVL List Array
504 [Beap 30.917 40.317 46.617
7 AVL 35.200 45.000 50.183
B 454 List 40.633 50.250 55.267
” Array 42.833 52.533 58.650
E 40
= 4 L
35 O YAVL Max Insert Delete
oyLst [X 53 13587 13587
304 A YAray | Y 105 8192 8108
Heap AVL List Array X-queue)

Figure 5: Efficiency comparison of different data structures (n = 8192)

175

174

1os W AVL List Array

. Heap .142 .157 .145
g 161 [AVL .167 .165 .17
& e List .17 .168 .173
g " O Y AVL b Array .148 .158 .16
E 54 0 Y List

145 A Y Array Max Insert Delete

E b X 6 51 51
14 Y 16 64 52
Heap AVL List Array X-queue

Figure 6: Efficiency comparison of different data structures (n = 64)

Test data generation. GeoBench generates two main types of test data,
random and degenerate. ‘

Random configurations: Random configurations consist of basic geometric

data types such as [d-]dimensional point, line segment, polyline, polygon,
convex polygon, circle and rectangle. The user specifies the number of objects

14

(for points, line segments, circles and rectangles) or the number of vertices
(for poly lines, polygons and convex polygons). d-dimensional points can be
uniformly distributed in a d-dimensional square or in a d-dimensional circle.

Degenerate configurations: Degenerate configurations include: More than
two collinear points, more than three points on a circle, more than two line
segments with a common intersection point, horizontal and vertical segments,
point sets that lie on a rectangular grid, point sets with equal x- or y-
coordinate, coinciding objects. With integer arithmetic most of these
degeneracies are exact, that is, the corresponding test polynomials evaluate to
zero. In the case of floating point arithmetic the test polynomials either
evaluate to zero or to a value close to zero, corresponding to nearly degenerate
configurations. Both cases are useful for debugging and testing.

Example: Approximate genneralized Voronoi diagrams
GeoBench provides the facility to cover objects consisting of straight lines
(e.g. line segments, polygons) or circles with evenly spaced points. This

feature can be used in two ways: To create degenerate ‘configurations as -

explained above, or to approximate linear objects by a sequence of points, as
the following example illustrates. '

Figure 7 shows, from left to right, line segments, their point covers, and a
Voronoi diagram of these points. By omitting the many parallel lines in this
diagram we obtain an approximate generalized Voronoi diagram of the
original set of line segments.

€ File Edit Dbjects Arithmetic Animation Windows
Line Segments Point Cover Uoronol Diagram

~
|
/

Figure 7: Approximation of the Voronoi diagram of a set of line segments

[=JOIONNS{ N - [2
[=JOIONMIS[N - {2
ezaessaesd
o°
°°°°
Re NS N

15

i}
|
]
!

3. The XYZ software packages

The main goal of the project XYZ is to make available to the practitioner a
loosely coupled collection of carefully crafted software packages, in particular:
« The XYZ GeoBench, a programmer’s workbench
« The XYZ Program Library,

an open-ended collection of geometric algorithms]
« The XYZ Grid File, a package for managing spatial data on disk.

The relationship among these three packages and the class hierarchy that
defines all common object types is shown in the figure below, where an arrow
indicates the relationship “is_based_on”.

User Universal Abstract Geometric Parametric
Interface Operations § Data Types { Primitives Arithmetic

B | 88 | >

Class Hierarchy

Figure 8: The relationship among the XYZ software packages

The GeoBench ([Sch 91a] and [Sch 91b]) is the programmer’s workbench and
run-time environment that holds all the library programs and the disk storage
grid file package together, keeping them data-compatible. Its components serve
the following functions. The user interface manages windows for interactive
data generation and algorithm animation, as illustrated in several pictures
above. A collection of the most important geometric primitives and abstract
data types, and various implementations thereof, saves the programmer a lot of
time-consuming detail work. A parametrized arithmetic package supports
experimental program validation by providing floating point arithmetic of
varying precision and base.

16

The library is an open-ended collection of geometric algorithms that work in
central memory, and of disk access procedures that pack geometric objects into
grid files and perform queries on them. The grid file disk management
package provides multidimensional data access for an arbitrary number of
dimensions, each of which is individually measured by one of the types
integer, long-integer, or real.

graphEdge

Figure 9: Class hierarchy of the XYZ GeoBench

The backbone of all this software is a class hierarchy that defines the common
data types and serves as interface between all software components. The figure
above shows the tree of the most important classes currently in the GeoBench

17

and describes the “is_a” relationships among the classes. All algorithms are
methods associated with the class on which they operate. For example, the
Voronoi algorithm is a method in the class ‘pointVector’ that. yields an object
of type ‘voronoiDiagram’. The principle of inheritance msures that all
methods for a given class are also available for their descendants. Thus the
‘method’ Voronoi diagram is also applicable to ‘polyLine’, ‘polygon’, and
‘ convexPolygon’, for each of which it may have its own implementation.

4, Uses and applications

During its entire period of development, the XYZ GeoBench and program
library have served as a useful demonstration package and tool for algorithm
‘nimation in various courses on algorithms and data structures. Now that the
JeoBench is essentially complete, we are also using it as a programming
snvironment for term projects and in a course on computational geometry.
Work on realistic applications started only recently; we briefly describe two
ongoing projects.

Layered objects and triangulated surfaces for terrain modeling.

Layered objects are an attempt to reconcile two conflicting facts of geometric
computation: On the one hand, it is well known that 2-dimensional geometric
algorithms are usually a lot simpler and more efficient (often O(n log n)) than
their 3-d counterparts (usually O(n?) or higher); on the other hand, most
applications call for 3-d geometry. Fortunately, the objects to be processed in
any one application are often subject to restrictions that make it profitable to
define various restricted classes of 3-d objects with special properties that yield
to simpler algorithms than unrestricted 3-d objects.

Layered objects are a striking example of the benefits and limitations of this
approach: A 3-d object is represented or approximated as a vector of layers
(parallel slices orthogonal to the z-axis), where each layer is defined by its
thickness and a 2-d contour. Important classes of real-world objects are
naturally modeled as layered objects, such as terrain (using contour lines),
certain semiconductor devices (perhaps using projections and cross-sections),
and, in general, objects whose shape is defined by one or more functions of the
type z = f(x, y). Layered models are particularly appropriate in CAD systems
for stereolithography, a new manufacturing technology that “grows” 3-d
objects one layer at a time. Each layer is defined by tracing its outline with a
laser and marking the part that is to remain; the latter hardens on top of the
preceding layer when exposed to light.

18

T s

Layered objects are particularly effective, as is the case with maps, when the
number L of layers needed to achieve a desired accuracy is small compared to
the complexity n of the 2-d figures in each layer. Operations on layered objects
typically trigger a sequence of calls to 2-d algorithms, one for each of L
layers, and thus work in time O(L n log n). This often compares favorably to
the complexity O(N®) of a quadratic algorithm on a comparable unrestricted
3-d object of complexity N, where a fair comparison suggests n < N < L n.,

Although layered objects greatly simplify the problems of processing 3-d
objects, they do not eliminate the necessity to consider the 3rd dimension
explicitly. When computing the visible surface, for example, we wish to look
at a layered object from an arbitrarily chosen point of view (not necessarily at
infinity). This results in clipping a stack of layers against a pyramid in
arbitrary position, a true 3-d problem. A second example is the problem of
correct treatment of all degenerate configurations: Layered objects exhibit new
types of degeneracies beyond those that occur in 2-d.

~

F iéure 10: Union of two layered objects

In addition to visibility, we have implemented boolean or set-theoretic
operations, as shown in Figure 10.

But the stair-case shape of layered objects make them unsuitable models for the
graphic representation of smooth objects, so we are also introducing
triangulated surfaces as an alternative 3-d model. As terrain modeling requires
seemingly realistic images, we experiment with the automatic generation of
synthetic images, with grey-levels or color-shading (a graphics problem rather
than a geometric problem). As an example, the following terrain images are
generated automatically from geographic (x, y, z)-data that represents
Switzerland on a 250m x 250m grid:

19

Figure 11: Grey level map of the southern slope of the Alps
(Ticino and Lombardia) automatically generated from geometric data

The interplay between geometric computation and spatial data bases

Practically all algorithms of computational geometry, and the corresponding
complexity results, are based on the “random-access-machine model of
computation”. This model provides realistic performance predictions as long
as all the data fits in central memory, where access time to any data element is
approximately constant. When large data configurations must be processed off
disk, on the other hand, disk access often becomes the bottleneck. The
efficiency of computation is then determined primarily by the following issues:
1) How data is stored on disk, and 2) in what order algorithms access data,
and, of course, the interplay between 1) and 2).

1) How data is stored on disk. Along with the development of
computational geometry there has been growing interest in spatial data bases,
for which efficient data access is perhaps the major issue. [Ni 89] and [Wi9l]
are general surveys of spatial data structures. The XYZ GeoBench interfaces
to a Grid File [NHS 84] as a general-purpose multidimensional data structure
for storing geometric objects on disk. [NH 87] describes how a broad range of
proximity queries are answered efficiently on large collections of objects
stored as points in parameter space.

20

[S

2) In what order algorithms access data. In section 2 we classified

geometric algorithms according to their data access pattern as follows:

- Plane sweep or space sweep: data is accessed in an order (e.g. of increasing
x) known a priori.

- Boundary traversal: data access follows a spatial locality principle, but is
only known at run time.

- Recursive partitioning: data access is usually random.

The advantages of a predictable data access pattern, and the disadvantages of
random access, are even more pronounced when the data is processed off disk.
Thus the preponderance of sweep algorithms in the XYZ library, and the
choice of layered objects for 3-d modeling, are a consequence of our aim at
applications such as terrain modeling that require efficient processing of very
large data volumes.

A geometry engine as front end to a spatial data base

The tight coupling between the XYZ GeoBench and its Grid File allows us to
focus on algorithms that interact in a particularly efficient way with the grid
file data structure. The typical situation in applications that process large
volumes of spatial data, however, is different. Usually, the user’s data is
organized and stored in some commercial spatial data management system that
provides a few types of spatial queries only — clearly a spatial data base system
cannot anticipate the access patterns of all algorithms its users might run on its
data. Thus it is an open question in spatial data base research as to how
efficiently geometric algorithms interface with typical built-in queries. In
order to explore this issue, we started a joint project with the database research
group at ETH (H.-J. Schek) where the GeoBench is used as a front end to a
spatial data base system built on DASDBS [DSW 90]. The first experiments
aim to use the GeoBench as a powerful user interface for retrieving data from
the data base, perform geometric operations on it, and finally store (modified)
objects back in the database. In a second phase we aim at a tighter coupling
based on the extension capabilities of DASDBS, i.e. the ability to manage
arbitrary geometric objects provided a certain set of (geometric) operations is
supplied [DSW 90].

In conclusion, we have presented an overview of a research project that attacks
the practical problems of software development for geometric computation on
a broad front. The XYZ GeoBench in particular has proven its usefulness in
numerous implementations of geometric algorithms. Its animation capability is
regularly used for demonstrating algorithms in courses at ETH. Experiments
have led to some surprising insights about.efficiency and robustness of well-
known algorithms. Other projects have just started, in particular the
interaction between a “geometry engine” and spatial data bases.

21

Acknowledgments

A number of students have contributed to the development of the XYZ
software, in particular Beat Fawer, Markus Furter, Peter Lippuner, and Peter
Skrotzky. The XYZ Grid File is based on a grid file package written by Hans

Hinterberger and adapted to the GeoBench by Bjorn Beeli.

References

[DSW 90]

[ES 90]

[Fo 87]

[Gr72]

[HINS 88]

[HNS 90]

[MN 89]

[NH 87]

[NHS 84]

22

G. Droge, H.-J. Schek, A. Wolf: Erweiterbarkeit in DASDBS,
Informatik Forschung und Entwicklung 5, 4 (special issue on
Nicht-Standard-Datensysteme), pp. 162-176, 1990.

P. Epstein, A. Knight, J. May, T. Nguyen, J. Sack: A workbench
for Computational Geometry (W' OCG), Tech. report, Carleton
University, 1990.

S. Fortune: A Sweepline Algorithm for Voronoi Diagrams,
Algorithmica 2, pp. 153-174, 1987.

R. Graham: An efficient algorithm for determining the convex
hull of a finite planar set, Information Processing Letters 1,
pp. 132-133, 1972.

K. Hinrichs, J. Nievergelt, P. Schorn: Plane-Sweep Solves the
Closest Pair Problem Elegantly, Information Processing Letters
26, pp. 255-261, 11 Jan. 1988.

K. Hinrichs, J. Nievergelt, P. Schorn: An all-round sweep
algorithm for 2-dimensional nearest-neighbor problems,
submitted. '

K. Mehlhorn, S. Niher: LEDA, A Library of Efficient Data
Types and Algorithms, preliminary version, Universitit des
Saarlandes, 1989.

J. Nievergelt, K.H. Hinrichs: Storage and access structures for
geometric data bases. Proc. Kyoto 85 Intern. Conf. on
Foundations of Data Structures (eds. Ghosh et al.), Plenum Press,
pp. 441-455, NY 1987.

J. Nievergelt, H. Hinterberger, K. Sevcik: The Grid File: An
adaptable, symmetric multikey file structure. ACM Trans. on
Database Systems, Vol. 9, No. 1, pp. 35-45, 1984.

[Ni 89]

[PH77]
[PS 85]
[Sch 91 a]

[Sch 91b]
[We 90]

[Wiol]

J. Nievergelt, 7 * 2 criteria for assessing and comparing spatial
data structures, in A. Buchman et al. eds.: Design and
Implementation of Large Spatial Databases, invited paper at 1st
Symp. SSD’89, UC Santa Barbara, Lecture Notes CS 409,
Springer, pp. 3-27, 1990.

F. Preparata, S. Hong: Convex hulls of finite sets of points in two
and three dimensions, Comm. ACM 2 (20), pp. 87-93, Feb. 1977.

F. Preparata, M. I. Shamos, Computational Geometry: an
Introduction, Springer, 1985.

P. Schorn: The XYZ GeoBench: A programming environment for
geometric algorithms, submitted.

P. Schorn: Robust Algorithms in a Program Library for
Geometric Computation, ETH PhD Dissertation 9519, to appear
1991.

E. Welzl: A fast randomized algorithm for computing the minimal
area disk enclosing a set of points in d-space, presentation at the
Workshop on Computational Geometry, Dagstuhl, Oct 1990.

P. Widmayer: Datenstrukturen fiir Geodatenbanken, Tech. Report,
Univ. of Freiburg, 1991.

23

Abstract: The XYZ GeoBench (eXperimental geometrY Zurich) provides a
comprehensive infrastructure for rapid prototyping of geometric algorithms
and the implementation of production-quality library programs. This paper
introduces the components of this programming environment and gives some
implementation details. The system is implemented in an object oriented
extension of Pascal on the Apple Macintosh computer. We report our
experience with object oriented programming in the context of geometric
algorithms and give some advice on building a programming environment for

The XYZ GeoBench:

‘A programming environment for geometric algorithms

Peter Schomn, schorn@inf.ethz.ch
Informatik, ETH, CH-8092 Zurich

geometric computation.

Contents

24

The role of a programmer’s workbench
in a project for experimental geometric computation

Architecture of the XYZ GeoBench and its components

User interface and algorithm animation

Geometric primitives :
Interchangeable arithmetic and parameterized floating point arithmetic
Abstract data types

Universal operations

Implementation aspects: A sample of interesting details

The reference concept

A heap with an efficient delete operation

Implementing plane sweep in an object oriented fashion

Helpful hints for increasing the reliability of a geometric library

Experience with object oriented programming
Dynamic binding and abstract classes

The class hierarchy and inheritance

Design concepts for classes

Conclusion

L S OO U S

e g g e et e e A e s e e A

1 The role of a programmer’s workbench
in a project for experimental geometric computation

The XYZ project [NSABD 91] has the goal to produce production-quality
software for geometric computation. This paper describes the design and
implementation of the XYZ GeoBench, the major development tool.

The following figure shows the GeoBench and its components, as well as its
relation to the other software packages of our system.

X7

e

User Universal Abstract Geometric Parametric
Interface Operations § Data Types | Primitives Arithmetic

il i

Class Hierarchy

Figure 1: System architecture

The XYZ GeoBench provides the following functions:

1) A programming environment and tool kit to facilitate rapid prototypmg of
geometric programs

2) A run-time environment for software testing and the experimental
validation of geometric algorithms

3) A tool for education, featuring algorithm animation for demonstration
purposes

The XYZ GeoBench is written in Object Pascal for the Macintosh. Currently
the whole system consists of more than 70 modules with a total source code
- size of approximately 1000 KB. The author is responsible for the design and
architecture of the system and has written most of the code, although other
people have contributed substantially.

25

The paper is organized as follows. Section 2 describes the components in more
detail whereas section 3 gives a random sample of some interesting
implementation details. Section 4 relates our experience with object oriented
programming in the area of geometric algorithms. We assume that the reader
is somewhat familiar with object oriented programming techniques in general
(e.g. see [M 87] for an introduction).

2 Architecture of the XYZ GeoBench and its
components

In the following sections we examine the components in turn and give
important details that are useful to implementors of similar systems. We claim
that the issues addressed by these components must be solved by any system
that enables the user to perform research in experimental geometric

computation.

2.1 User interface and algorithm animation

GeoBench uses the Macintosh conventions. The user finds an info window
containing useful information, such as available memory, the coordinates of
the cursor, time taken by the last operation and the type of the currently
selected object. Selecting an object for input can either be done by using the
palette attached to each geometry window or by using the objects menu that

also allows the creation of a random instance of any of the currently directly -

accessible objects point, line segment, circle, rectangle, poly line, polygon,
convex polygon and d-dimensional point.

Computation takes place in geometry windows: The user creates a new one,
enters geometric objects, selects them and chooses the desired operation from
the operations menu. The operations menu shows only operations which are
legal for the selected objects. Performing an operation creates a new geometry
window which contains the result of the operation already selected for a
subsequent operation. For example one could enter some points using the
mouse, select them, compute the Voronoi diagram, compute a Euclidean
minimum spanning tree using the Voronoi diagram and finally compute a
traveling salesman tour from the spanning tree.

The geometric transformation operations translate, rotate, scale and reflect can
be found in the edit menu which also provides commands for changing the
viewing transformation: Zoom in and zoom out.

In the animation menu the user selects which algorithms to animate while the

arithmetic menu governs which kind of arithmetic to use for newly created
objects. Since arithmetic is bound to objects and not to operations, various
-kinds of conversion operations are available in the operations menu.

.26

VU S USSP S B A

PR —

e e s i s

et

& File Edit Objects Arithmetic Animation Windows ‘[lperth-ion‘s

Point Set Animation Voronoi Diagram
o
/_M' - A\ o)
LY PN ° °© | o
A
" Zoom
L= Y
O | o
K —
Cursor: (164.000000, 40.000000) 2 °
Time used: 0.133 secs. _Q.
|
Memory: 43804 bytes used, 3389636 bytes free G
Type: Homogen Vector(Point(real),15) Kl
S

Figure 2: Screendump of the XYZ GeoBench while animating the
computation of a Voronoi diagram using Fortune’s sweep [F 87]

Algorithm animation

Algorithm animation is used for demonstrating and debugging. We have
chosen a simple yet powerful approach to animation. There is only one version
of an implementation into which code pertaining to the animation is included
via conditional compilation. This code checks whether animation for this
particular algorithm is turned on. If yes, it updates the currently visible state
of the algorithm and waits for the user to let it proceed. In situations where
speed is crucial, we avoid the slight overhead of repeatedly checking whether
animation is turned on by setting the appropriate compile time variable to
‘false’. Animation code has the following general structure.

{ Geometric algorithm changing internal state. }
{$IFC myAlgAnim }
if animationFlag[myAlgAnim] then
{ Update graphical state information, usually draw some objects. }
waitForClick (animationFlag [myAlgAnim]) ;
{ Update graphical state information, usually erase some objects. }
end;
{$ENDC }

The procedure ‘waitForClick’ provides an interface between the user and the

algorithm currently animated. It supports single step mode and a movie mode

27

with user selectable speed (see the ‘Animation’ dialog box in the previous
screen dump). Updating the visualization of the internal state is facilitated by
the convention that all drawing on the screen is done using XOR graphics
which has the benefit that erasing is the same as drawing. Animating an
algorithm consists of choosing a representation of the internal state (e.g.
position of the sweep line, objects in the y-table, deactivated objects, etc.) and
determining appropriate locations in the program where this information
needs to be updated. Algorithm animation is implemented for all non trivial
geometric algorithms.

2.2 Geometric primitives
The type ‘point2d’ (section 2.3) is the basic building block of our geometry.
Therefore all geometric primitives are methods in this class and are usually
implemented in three different ways taking advantage of the respective
arithmetic. The overwhelming part of our library is based on the following
primitives.
function whichs‘ide'(p, g, r: point2d): (-1, _0, +1) ;
(* Determines on which side of a directed line segment given by two points a third

point lies. *)

function crossProduct (p, 4, r, S: point2d) : real;
(* Computes the cross product (p — g) X (s = 7). *)

function distance(p, q: point2d): real;
(* Computes the Euclidean distance between p and g. ¥)
function squaredDistance (p, q: point2d): real;
* (Br =2 + Oy =g Y

function squareddDx (p, q: point2d): real;
* (px"Ix)z *)

function squaredDy (p: point2d): real;
* Gy-g)**

function circleCenter (p, q, r: point2d) : point2d;
(* Computes the center of the circle through p, g and r. ¥)

function intersectLineSegment
N (p, ¢, r, s: point2d): [point2d, point2d, boolean];
(* Tests whether the segments pg and rs intersect and computes the intersection
segment. *)

function xPlusY(p: point2d): real;
* px+py®

function xMinusY(p: point2d): real;
(* px _py *)

28

PPN S

ORI

j
s
I
!

In total we need about 15 primitives for all geometric algorithms implemented
so far and ‘whichSide’ turned out to be the most common one.

2.3 Interchangeable arithmetic and parameterized floating point
arithmetic

The choice of arithmetic may have a significant impact on how an implemen-
tation of an algorithm behaves in the case of degenerate or nearly degenerate
configurations. Since we want to experiment with different arithmetics, easily
interchangeable arithmetic is needed. This means that in the best case no line of
code of an implementation must be modified in order to try out a different
model of arithmetic. Since points are a basic building block of geometry, we
achieve this goal by defining an abstract ‘point2d’ class which has no instance
variables for the coordinates but specifies an interface with access procedures
to the coordinates and various geometric primitives (see also the previous
section 2.2).

abstract, has no instance variables,
only interface description

- ; — concrete, has instance variables,
(realPoint)(ConglntPoint)(floatPoint) implements required operations

Figure 3: The abstract class ‘point2d’ and its descendants

From this abstract ‘point2d’ we derive concrete point objects having instance
variables and implementing the geometric primitives in their respective
arithmetic. Algorithms using only the functions and procedures specified by
the abstract type ‘point2d’ can be run in any of the three kinds of arithmetic
currently supported.

In order to study not only the built-in floating point arithmetic (as used in
‘realPoint’ where the x- and y-coordinates are of type real), we have
implemented a software floating point package with arbitrary base (including
odd bases) and precision which is used for the coordinates of the object
‘floatPoint’. The idea here is of course not to simulate high precision floating
point arithmetic but on the contrary low precision arithmetic in order to make
rounding errors and other problems of floating point arithmetic more
pronounced.

2.4 Abstract data types

Efficient geometric algorithms organize data in lists, dictionaries, queues, etc.
We describe design decisions and implementation details for some abstract data
types.

Sequence: The abstract class ‘sequence’, realizing collections of arbitrary

objects, is implemented as a linked list structure and as a (dynamic) array. The
list implementation is useful when no a priori bound on the number of

29

elements is known and sequential processing of the elements is feasible. The
array implementation provides a much greater flexibility and functionality.

Dictionary: In a dictionary based on the reference concept (see also section
3.1) ‘find’ is the only one key-based operation. ‘find’ takes an object o to be
found and a key comparison function and returns, if possible, a reference to an
object with the same key value. If none is found, “find’ returns a direction d
and a reference to an object p such that o can be inserted as p’s direct neighbor
in direction d. Performing the insertion yields a reference for o. All other
operations like ‘delete’ or ‘swap’ require references as arguments.

This separation between key-based operations and operations changing the data
structure has two advantages: 1) Different objects with identical key values are

easier to handle (see the example in 3.1) and 2) operations just changing the

data structure can be implemented more efficiently.

If a dictionary is implemented as an AVL-tree, the delete operation takes
constant time whenever rebalancing is not needed. In an ordinary
implementation we would have to find the object first before we can delete it,
making delete an O(log n) operation most of the time. Other implementations
realize a dictionary as a sorted list and as a sorted vector.

Priority queue: The abstract data type priority queue is implemented 1)
based on a heap and 2) based on a dictionary. We describe in section 3.2 how
to implement a heap with an efficient delete operation using the reference
concept. In our experience, a heap is sufficient most of the time and a general
‘find’ operation on a priority queue is rarely needed.

2.6 Universal operations

Object oriented programming allows the specification of a common interface
that is understood by all objects in the system by placing this interface at the
root of the object hierarchy. All objects in our system are descendants of the
root object ‘obj’ and therefore share a large set of common methods that we
call “universal operations’. A typical example is the ability for an object to
display itself on the screen. In the following we discuss the kinds of universal
operations provided.

Memory management. We provide methods for the creation, destruction
and duplication of objects. When creating an object the difficulty arises that
for its proper initialization additional parameters might be necessary, e.g. the
length of a dynamic array. In this case we specify that the parameterless
initialization method ‘init’, which must always be called after an object is
created, may use additional global variables as implicit parameters.

A second problem-is the treatment of objects that contain other dependent
objects either explicitly as instance variables or implicitly like in a list object.

30

U N N S N

S Sy N

P

The effect of destruction or duplication of such an object is unclear since the
dependent objects might be destroyed or duplicated or not. We solve this
problem by explicitly stating at each object declaration for an object o whether
the dependent objects of o belong to the internal state of o or not. Dependent
objects belonging to the internal state are destroyed and copied just like
regular instance variables whereas dependent objects that do not belong to the
internal state are left intact. The following example shows the difference.

lineSegment = objact (obj)
(* Derived from the root class ‘obj’. *)

p, q: point .
(* ‘point’ is a class. ‘p’ and ‘q’ belong to the internal state of a ‘lineSegment’. *)
end; '

vector = object (obj)
(* Derived from the root class ‘obj’. *)

length: 0. .maxLehgth;
(* Length of the vector *)

elements: array {1..maxLength] pf obj
(* Elements of the vector do not belong to the internal state. *)

end;

The decision whether a dependent object belongs to the internal state or not is
a purely pragmatic one and must be documented when declaring such an object
in order to specify the semantics of destruction and duplication. In the case of
‘lineSegment’ we prefer completely independent copies whereas in the ‘vector’
example a (recursive) copy of the vector’s elements is usually undesirable. We
provide additional methods for cases where the recursive destruction or
duplication of all dependent object is required.

Interactive input/output: Interactive input/output is needed for

experimentation and demonstration. We support the following tasks.

» Display a geometric object on the screen. We use the XOR mode for
drawing which has the advantage that drawing and erasing are the same
operations. ‘

« Display an object in a highlighted fashion which is useful for giving a visual
feedback in algorithm animation or when an object has been selected by the
user.

» Flash an object. This operation is used when animating an algorithm.

« Let the user interactively enter an object. This is usually done by dragging
with the mouse. We have implemented a universal dragging method based
on the following two primitive operations: 1) Construct the object given the
location where the mouse button was first pressed and the current location

of the mouse. 2) A method that displays the object in XOR mode on the
screen.

31

File input/output: When processing geometric objects, we are interested in
saving them permanently on secondary storage. File 1nput/ou§put becomes
therefore another area where operations applicable to all ob_]qcts must 'be
provided. As file format we normally use a by.te stream whlf:h contains
geometry data and some type information in a prefix format. The introduction
of lists and arrays makes this format recursive. A second file format provides
a human readable LISP like notation which is useful for debugging or for data

exchange with other programs.

Geometric transformations: We provide the. foll_owing geometric
transformations: Translation, rotation, scaling and mirroring of a geomeiric
configuration with respect to a given line.

Type computations: Sometimes we wish to enqu_ire the type of an object,
e.g. when testing whether all members of a collection are of the same type.
Another example is the creation of a byte, specify@ng the o]JJect’s type for
storage purposes. These and similar type computations are implemented as

universal operations since they must be available for all objects in the system.

Random instances: Generation of random instances is used for the rapid
creation of test data. We provide a method that changes the internal state
randomly, preserving the object invariant. A global variable, usually a
rectangle, specifies the boundaries in which the random change takes place.

Class description and method execution: Each class should be able to
describe itself to the user, meaning that given a list of arbitrary objects, a class
should deliver all the methods it can execute on these objects in human
readable form. Assuming a list of three points, the ‘point2d’ class should offer
a method for creating a circle, the ‘pointVector’ class should offer a method
for computing a closest pair and a Voronoi diagram and so on. After all classes
have given such a description, it must be possible to execute a specific method
of a specific class on the given list of objects.

3 Implementation aspects:
A sample of interesting details

3.1 The reference concept

In the context of key-based data structures the reference concept helps us
distinguish between operations that require a key (e.g. ‘find’) and those that
change a data structure without needing a key (e.g. ‘swap’). We motivate this
distinction with a problem that occurs when implementing the plane sweep
algorithm for finding all intersecting line segments.

32

S N e

e

e e e e e e e Ao

s>t st s<t

Figure 4: The difficulty of accessing line segments by their y-value

The line segments form a total order along the front and their key value is
essentially their y-value when evaluated at the position of the front. At position
x, we must exchange s and ¢, which is difficult using their key value: There are
two objects with the same key value and we might access the same segment
twice.

As a solution, we prohibit key based access in this case. Instead, we provide
means for performing the required ‘swap’ without using key values. We
associate with each object o in the data structure a unique reference that is
supplied whenever o is known to participate in an operation. For easier
understanding, imagine a reference to be a pointer into a data structure
although the internal representation of a reference is hidden from the user.
The idea of a reference resembles the notion of items introduced in LEDA
[MN 89] as an abstraction of pointers and locations.

3.2 A heap with an efficient delete operation

This section demonstrates how to implement a priority queue as a heap using
the reference concept such that an efficient delete operation is supported. A
heap is a partially ordered binary tree such that the value associated with each
internal node is surpassed or reached by any of its children. The figure below
shows a heap together with its standard breadth first array representation.

3 Data structure invarariant: hf i] < h[2-i] A h[{] < h[2-i+1]
8‘/ \5
/4 ¥y hl 3] 8] sfizfu] ef .. |
7 16 1 2 3 4 5 6 -

Figure 5: Tree and array representation of a heap

The textbook [AHU 83, p. 163] states that a heap does not allow an efficient
delete operation and implementors of priority queues with delete have
abandoned the heap and used more complicated data structures such as
AVl -trees [B 81]. The reference concept is used to add an efficient delete
operation to a heap.

The two key observations are: 1) Any element in a heap can efficiently be

33

deleted if we know its position and 2) we can fix this position as soon as an
clement is inserted. The following figure shows how this works.

free list of 8 > |3 - 11 — value
references @ T = ® Tl 4 ref
JU[@] [] [e

T 2 3 4 5 6 7 .
Figure 6: Implementing a heap with the reference concept

Data structure invariant:
value[heap[i]] < value[heap[2-i]] A value[heap[i]] < value[heap{2-i+1]] A

reffheapli]] =i.

‘When an element is inserted into the heap we use the free list of references to
assign it a location in the array ‘value’. This location is the reference and is
never changed. What we change instead is the appropriate double arrow
between ‘ref® and ‘heap’ which determines the element’s position in the heap.
The operation for insertion (‘sift’ or ‘pushDown’) is basically the same as for
an ordinary heap while the ‘delete’ operation is a simple generalization of the
standard ‘deleteMin’ operation: The element to be deleted is exchanged with
the last element in the heap which is a leaf node. Then we perform the
‘pushDown’ operation on this sub-heap followed by the ‘pushUp’ operation
reestablishing the data structure invariant. Therefore the cost of delete is
O(log n) where n is the number of elements in the heap.

The code is simple.

type
relation = (less, equal, greater);
seqIndex = 1..maxN;
seqIndex0 = 0..maxN;
reference = “integer;

HPQ = object (obj) (*Heap Priority Queue *)

length: seqIndex0; (* Number of elements *)

freeList: - seqIndex; (* Points to first empty element in ‘ref” *)
ref, heap: array [seqIndex] of seqlIndex0;
value: array [seqIndex] of obj;

procedure init; (*Establishes the data structure invariant after creation. *)
function insert

(x: obj;
function compare (a, b: obj): relation): reference;

34

S

S

e e

procedure delete
(x: reference; function compare (a, b: obj): relation);

procedure swap(p, q: seqIndex); (*Private methods *)

procedure pushUp
(i: seqIndex; function compare (a, b: obj): relation);

procedure pushDown
(i: seqIndex; function compare (a, b: obj): relation);

end;

procedure HPQ.init;

begin
length = 0;
freeList := 1;
ref[1] =0
end;

procedure HPQ.swap(p, q: seqlndex);
var pm, gm: seqgIndex;

begin
pm © := heap(pl; qm i= heaplql;
ref [pm] := q; ref(gm] := p;
heap{p] := gqm; heap[qg] := pm

end;

procedure HPQ.pushUp
(i: seqIndex; function compare (a, b: obj): relation);

begin (* > conditional and *)
while (i > 1) &
(compare (value [heap[i]],valuelheap[i div 2]])=less) do
begin
swap (i, i div 2);
1 =1 div 2
end
end;

' procedure HPQ.pushDown
(i: seqIndex; function compare (a, b: obj): relation);
var
4, length2: seqIndexO;

continue: boolean;
begin
continue := true;
length2 := length div 2;
while continue and (i <= length2) do
begln
j := 2 * i; (* = conditional and ¥)

if (j <> length) & '
(compare (value(heap[jl], value[heap[j + 111) > less)
then
joi=3+1;
if compare(valuel[heap{il], valuelheap([]j]]) = greater then
begin

35

swap (i, 3);

i =3
end
else
continue := false
end
and;

function HPQ.insert

(x: obj; f£function compare(a, b: obj):

var
i: seqIndex0;
begin
length := length + 1;
i := freelist;
if ref[freelist] = 0 then
begin
freeList := freelist + 1;
ref[freeList] := 0
end
alse
freelList := ref[freelList];
insert = reference(i);
ref [i] = length;
value[i] = X;
heap [length] := i;
pushUp (length, compare)
end;

procedure HPQ.delete

(x: reference; function compare (a,
var
startPosition: seqgIndex0;
begin
startPosition . := ref[segIndex(x)];
swap (startPosition, length);
ref [seqIndex(x)] := freelist;
freelList := seqlndex (x);
length := length - 1;

if startPosition <= length then
begin
pushDown (startPosition, compare);
pushUp (startPosition, compare)
end
end;

More careful analysis shows that ‘pushUp’ and ‘pushDown’ can be
implemented more efficiently by remembering the element that is common to
consecutive swap operations. In [S 91] and [NSABD 91] we present
experimental evidence that confirms the superior efficiency of this
implementation of a priority queue as comparcd to an AVL-tree

implementation.

A caveat as a final remark: This kind of priority queue cannot be used when
the element to be deleted is only known by its key value. In this case we know

36

relation) : reference;

b: obj):

relation);

——

vt e P et e £

PRI S

no efficient way to locate the element in a heap. In our experience
implementing plane sweep algorithms however, this kind of priority queue was
sufficient in all cases.

3.3 Implementing plane sweep in an object oriented fashion

Another advantage of object oriented design is the uniform treatment of plane
sweep algorithms. When implementing plane sweep object oriented, we model
events as objects, derived from an abstract event class that provides an execute
method. The typical structure is given by the following declarations.

This decomposition has the advantage that all code for handling a certain event
is concentrated in one place, making the implementation clearer and easier to
understand. Furthermore the main program needs no change in the case new
events become necessary (for example when we transform the sweep for
testing whether two line segments intersect to the sweep that additionally finds
all such intersections).

program genericPlaneSweep;
var

xQueue: priorityQueue;
yTable: dictionary;

type
event = object
procedure process (* Abstract method *)
end;
eventl = object (event) (* Derive the interface from the abstract class *)

procedure process; override (*Realimplementation *)
aend;

event2 = object (event) (* Derive the interface from the abstract class *)
procedure process; override (*Realimplementation *)
end;

(* Other event types *)

begin
initialize xQueue; initialize yTable;
while not xQueue.isEmpty do
xQueue.extractMinimum.process (*Letthe event process itself. *)
end;

3.4 Helpful hints for increasing the reliability of a
geometric library

In order to create a reliable system we have tried to catch programming errors
early. We recommend the following methods which were used successfully.

37

Show the dynamic memory allocated. The ‘info’ window contains the number
of bytes currently allocated on the heap for dynamic variables (most]:y
objects). This number gives a first hint whether memory management is
working correctly. A constantly growing number of allocated bytes is usually
something to worry about.

Use assertions. Especially geometric algorithms often depend on the truth of
certain assertions (e.g. the value of some denominator should be cpfferent
from zero) and a defensive programmer introduces cl}ecks_(assemonS) at
appropriate places which give warnings when the assertion fails. Even errors
in algorithms can be detected earlier this way.

Data structures should have a method checking their invariant. This is
especially helpful while testing non trivial data structures like AVL trees or
even a heap. One tests the data structure by different operations, a_nd after each
operation the invariant is checked which increases the confidence in its
correctness. Having program code actually check the invariant (as opposed to
doing it by hand) also makes automatic testing feasible: One could randomly
insert or delete a random element in a dictionary and check the invariant after
each operation.

Write and keep test programs for the central data structures. We have written
test programs to test the abstract data type ‘dictionary” which has the additional
advantage that it can be used for all concrete implementations of the type
‘dictionary’. The alternative to test programs is to actually use the data
structure in an algorithm which has the two disadvantages that 1) in the case of
an error one does not know precisely the source of the error and 2)one
algorithm rarely uses all methods offered by a data structure designed for
universal applicability.

Create geometric test data and keep it for reference in a test suite. Creating
good test data is not trivial and the results of this effort should be kept. A new
program solving the same problem might be written, or more often the
current implementation changes. In both cases one increases the confidence in
the reliability by checking with the test suite. It should contain configurations
ranging from no degeneracies at all to multiple ones.

Use algorithm animation for geometric algorithms. Algorithm animation
should be used to present an algorithm’s essential state information in a
graphical way. In the debugging phase, this facilitates the detection of
inconsistencies before an incorrect result occurs.

Do not remove the code used for debugging. The code used for debugging

should be left in the programs since future modifications might benefit from
it. Using conditional compilation removes any run time overhead if necessary.

38

e e e

4 Experience with object oriented programming

Techniques from object oriented programming have proven to be useful for
implementing a library for geometric computation with extensive support for
experimentation. We use the concept of abstract classes together with dynamic
binding in order to implement interchangeable arithmetic and data structures.
Furthermore the tree structure of the class hierarchy serves as an aid in
structuring the whole system in an understandable way. Polymorphism helps in
implementing universal data structures. Inheritance is mostly used in the form
of interface inheritance; actual code is almost only inherited as methods in
abstract classes that can be written in terms of other methods. In the following
we discuss the points mentioned in the previous summary in more detail.

4.1 Dynamic binding and abstract classes

An abstract class is a class of objects with the property that no instances of the
class itself are created, but only instances of derived classes. Dynamic binding
means that the type of an object and the methods to be executed are determined
at run time. Consider the example of the class ‘point2d’ which has descendants
‘realPoint’, ‘floatPoint’ and ‘longIntPoint’ (see also section 2.3). ‘point2d’
defines a common interface implemented in three different ways using three
different kinds of arithmetic. Programs using only variables of the abstract
class ‘point2d’ can be instantiated at run time to work with all three different
concrete implementations.

We have used abstract classes and dynamic binding for two purposes: 1) Offe-
ring interchangeable arithmetic and interchangeable implementations of
abstract data types and 2) factoring out common code. Factoring out common
code is best illustrated by the universal dragging routine mentioned in section
2.5. An abstract class provides a method My which is solely implemented in
terms of other methods My, My, ..., My of the abstract class. As soon as M;,
M,, ..., My are implemented in a derived class, a working implementation of
M, is available. The abstract implementation of My factors out the common
code.

4.2 The class hierarchy and inheritance

Object oriented design allows us to take a class and derive new classes with
enriched functionality from it, modeling the ‘is_a’ relation. This relationship is
rare among geometric objects, causing the class hierarchy to be relatively flat
in most places. The most prominent counterexample is the sequence
‘convexPolygon’ is_a ‘polygon’ is_a ‘polyLine’ is_a ‘pointVector’.

Inheritance goes hand in hand with derivation: A method M defined in a class

is automatically available for each of its subclasses and ideally needs not to be
implemented in a different way (‘overridden’). This is rarely the case in

39

’

‘geometry: The best way for solving the same problem for a class and a derived
class can be totally different as the trivial example of computing the convex
hull of a polygon and a convex polygon shows.

Having a class hierarchy with a single root has the advantage that universal
data types can be created. For example we need a dictionary that can hold any
other object. Even objects of different types should be admissible as long as we
can define an order relation. The requirement that a dictionary can hold
objects of the type of the root class achieves this goal.

As a conclusion, the concept of a class hierarchy is a useful tool for structuring
the library and creating universal abstract data types. It is of less use for
saving implementation effort.

4.3 Design concepts for classes

Deriving a new class from an existing one should model the ‘is_a’ relation
since otherwise the structure of the class hierarchy would be confusing and the
semantics of inherited operations could become unclear. This rule determines
where to place a new class in the hierarchy. For example the class
‘lineSegment’ should not be derived from ‘point2d’ by adding another point
because a line segment is not a point, but is composed of two points. In this
case composition is the more appropriate construction principle.

During the evolution of a class hierarchy one often finds two classes which

contain some similar methods. An example were the class for linked lists and

the class for vectors for which various methods like displaying itself on the
creen were similar. In this case we factor out common methods by
atroducing a common abstract ancestor class which realizes the common
ehavior.

5 Conclusion

‘We have described the basic building blocks thatbare available to the
implementor of geometric algorithms working in the XYZ GeoBench
programming environment.

A comprehensive set of universal operations applicable to all objects in the
system covers a wide range of tasks: Memory management, interactive
input/output, binary and text file I/O, geometric transformations, type
computations, creation of random instances, class description and method
execution. :

Gegmetric algorithms can be implemented in an arithmetic independent way.
This allows the user to experiment with different kinds of arithmetic:

40

e e e o g e e

e Ao A e e e e o g e g e

S e

T T s e ey e e e e e

- e e e f S L g S W A e T

Ordinary built-in floating point arithmetic, a floating point arithmetic
featuring arbitrary basis and precision and standard integer arithmetic.

A set of reliable geometric primitives and common universal data structures
like sequence, dictionary and priority queue facilitate the implementation
effort. The reference concept on which dictionaries and priority queues are
based allows efficient delete operations in AVL trees and heaps.

A variety of already implemented geometric algorithms covers a wide fange
of 2-dimensional Computational Geometry and serves as the building block for
further implementation efforts.

The XYZ GeoBench serves also as an interactive front end to the XYZ
Library of geometric algorithms. A smooth Macintosh style user interface is
used to access most implemented algorithms, often with animation of their
execution, and to perform a wide variety of experiments. Typical examples are
efficiency measurements, testing the influence of different kinds of arithmetic,
testing the effect of different implementations of abstract data types, running
an algorithm on random or degenerate geometric configurations, etc.

Currently the most active application area of the XYZ GeoBench is in
education. On the one hand we can demonstrate a wide variety of geometric
algorithms in the class room due to the built-in animation capabilities and on
the other hand we give our students the opportunity to implement geometric
algorithms for themselves. The latter is greatly facilitated by the programming
environment our workbench provides.

41

Acknowledgements

I thank J. Nievergelt for his support of the XYZ project and for commenting
on an earlier draft of this paper. I am grateful to C. Ammann and M. Furter
for their dedication in improving the user interface.

References

[AHU 83]

[B 81]

[F87]

[NSABD 91]

M 87]

[MN 89]
{S91]

[W 90]

42

A. Aho, J. Hopcroft, J. Ullman: Data Structures and
Algorithms, Addison Wesley, 1983.

K. Brown: Comments on “Algorithms for reporting and
counting geometric intersections”, IEEE Trans. Comput. vol.
C-30, pp. 147-148, Feb. 1981.

S. Fortune: A Sweepline Algorithm for Voronoi Diagrams,
Algorithmica 2, pp. 153-174, 1987.

J. Nievergelt, P. Schorn, C. Ammann, A. Briingger,
M. De Lorenzi: XYZ: A project in experimental geometric
computation, submitted, 1991.

B. Meyer: Object-Oriented Software Construction, Prentice
Hall, 1987.

K. Mehthorn, S. Niher: LEDA, A Library of Efficient Data
Types and Algorithms, preliminary version, Universitit des
Saarlandes, 1989.

P. Schorn: Robust Algorithms in a Program Library for
Geometric Computation, ETH PhD Dissertation 9519, to appear
1991.

E. Welzl: A fast randomized algorithm for computing the
minimal area disk enclosing a set of points in d-space,
presentation at the Workshop on Computational Geometry,
Dagstuhl, Oct 1990.

e e e

e g

S —

S ——

XYZ GeoBench Manual

Peter Schorn, schom@inf.ethz.ch
Informatik, ETH, CH-8092 Zurich

Abstract

The XYZ GeoBench is a software system for experimental geometric
computation. The User’s Manual explains the Macintosh application GeoBench,
an interactive front end to the XYZ Library of geometric algorithms. The
Programmer’s Manual specifies the interfaces of the object oriented
programming environment supplied.

Contents

n-—n-n—-v—-an—l»-:—t:—li—k [—)
O~ P WER =

PR
W N

28
2.9

The XYZ GeoBench Software

User’s Manual
General

File Menu

Edit Menu
Objects Menu
Arithmetic Menu
Animation Menu
Windows Menu
Operations Menu

Programmer’s Manual

Organization

The class hierarchy

The common behavior of all objects: the root class ‘obj’

Sequences, lists and dynamic arrays: the classes ‘sequence’, ‘list’, ‘vector’
and ‘homogenVector’

Arithmetic independent geometric primitives: the basic geometric classes
‘point2d’, ‘lineSegment’, ‘rectangle’ and ‘circle’

Common universal abstract data types: the classes ‘dictionary’ and
“priorityQueue’

Graphs: the classes ‘graphEdge’, ‘simpleUndirectedGraph’,
‘undirectedGraph’, ‘directedGraph’ and ‘spanningTree’

Support for animation, user interaction and error checking
Implemented geometric algorithms

Appendix A : Syntax of the textual I/O format

Appendix B : Changes to TransSkel

43

0 The XYZ GeoBench Software

The XYZ GeoBench software consists of two parts: 1) the Macintosh
application ‘GeoBench’ and 2) the THINK Pascal sources together with the
necessary project files.

The GeoBench is a Macintosh stand-alone application and is used for
demonstrating the geometric algorithms of the XYZ Library and
experimenting with them. It requires a Mac II with at least 2 MB of memory
and, preferably, a two-page monitor. We describe the ‘GeoBench’ user
interface, which adheres closely to Macintosh standards, in the User’s Manual.

The ‘GeoBench’ and the XYZ Library are written in THINK Pascal 3.0, an
object oriented extension of Pascal. Currently the system comsists of 78
modules with about 1000 kB of source code. We describe the programming
interfaces necessary for extending the GeoBench in the Programmer’s Manual.
We assume a basic understanding of the concepts object, class, abstract class,
method, inheritance and overriding of methods.

An overview of the XYZ project is given in [NB 91] while [S 91b] emphasizes
the programming environment aspect of the GeoBench. A detailed description
of the design and implementation of the GeoBench is given in [S 91a] together
with mathematical methods for constructing provably robust geometric
programs. The diploma thesis [Brii 91] describes the realization of layered
objects in the GeoBench.

Acknowledgements

I thank the following people: Jiirg Nievergelt leads the XYZ project, Christoph
Ammann, Michele De Lorenzi and Adrian Briingger extended the GeoBench
to include layered objects. Christoph Ammann implemented algorithms for
splinegons, wrote the code for boolean operations on polygons and created
color maps from geographic data. Michele De Lorenzi wrote the networking
code. Christoph Ammann and Markus Furter improved the user interface
considerably. Beat Fawer implemented two algorithbms for computing the
Voronoi diagram. Martin Miiller wrote code for the Traveling Salesman
Problem. Peter Lippuner and Peter Skrotzky wrote an earlier version of this
manual and contributed a library routine for computing the contour of a set of
rectangles. Bjorn Beeli adapted a grid file package written by Hans
Hinterberger and Lise Pfau.

44

i e

1 User’s Manual

1.1 General

The standard menus ‘File’ and ‘Edit’ have their usual semantics. Clicking (i.e.

pointing or selecting) and dragging with the mouse are supported where
appropriate. The following discusses the menus available.

1.2 File Menu

New 8N
Open... ®0
Close ®W
Save ®8S

Save As...

Write Text...

Read Text...

Quit ®Q

1.3 Edit Menu

Undo RZ

Cut ®X

Creates an empty geometry window.

Opens an existing geometry document containing
geometric objects and displays it in a geometry
window.

Closes a geometry window. Holding down the shift
key suppresses the saving dialog box.

Saves a geometry window on the disk.

Saves a geometry window on the disk under a new
name.

Saves the contents of a geometry window in textual
format. The grammar is given in Appendix A of
the Programmer’s Manual.

Reads geometric objects specified in a textual
format.

Terminates the program. Holding down the shift
key suppresses the saving dialog box.

Undoes the effect of the most recent operation.
This works only for dangerous or destructive
operations.

Removes the selected objects from the geometry
window and puts them into the clipboard. Other

45

Copy ®C
Paste ®xV
Cut Last

Copy Last

Clear All

Select All ®A

Redraw

Zoom In.. ®E

Zoom Out ®BF

I'ransformations
Translate...

Rotate...

46

applications like MacDraw can access the
clipboard.

Copies the selected objects into the clipboard.
Other applications like MacDraw can access the
clipboard.

Pastes the geometric objects from the clipboard
into a geometry window. Objects created with
MacDraw can also be pasted.

Like ‘Cut’ but only the object which was selected
most recently is moved to the clipboard.

Like ‘Copy’ but only the object which was selected
most recently is copied to the clipboard.

Deletes all geometric objects in a geometry
window.

Selects all geometric objects in a geometry
window.

Draws all objects again.
Enlarges a part of the window. After choosing this

command the desired rectangular part of the
window is selected by dragging with the mouse.

" Undoes the most recent ‘Zoom In’ operation.

Moves the selected objects. In the dialog box the
quantities Ax and Ay determine the translation
vector. Note that the origin is usually in the top left
corner of the geometry window. Objects can also
be translated by dragging. Note however that
dragging near a vertex (e.g. of a polygon) results
in moving just that vertex and not the whole

object. If a whole polygon is to be translated by
dragging, one should grab it at an edge.

Rotates the selected objects around a point. First
the point is selected and then the objects to be
rotated (while holding the Shift key down). The
angle is specified using the dialog box.

P P U SN N NI NURIUS NS N

e .

e

e

e e e e e e e e e e e e T

s e

VDA

B

A

Scale...
Reflect...

3d Projection...

3d Transformation...

1.4 Objects Menu
Select

Point

Line Segment

Poly Line

Polygon

Convex Polygon

Rectangle
Circle

D Point

The selected objects are scaled by a given factor
using a user specified origin.

Reflects the selected objects with respect to a user
specified line.

Opens a dialog box that lets the user specify the
eye point and the projection point for the view of
layer objects (see [Brii 91] for further details). In
addition, the dialog box contains a check box that
determines whether hidden line elimination should
be performed.

Opens a dialog box that lets the user apply
transformations such as translation, rotation or
scaling to the view of layer objects (see [Brii 91]
for further details). For convenience this dialog
box contains a check box for hidden line
elimination.

Lets the user select objects as opposed to enter
objects.

Lets the user enter points by clicking with the
mouse.

Click at the start point and drag the segment.

Click at the start point, drag additional segments
and double click when done.

Like ‘Poly Line’.

Like ‘Polygon’. The convex hull of the polygon
entered is used if the polygon is not convex.

Click at a corner and drag the rectangle.
Click at the center and drag the circle.

Create a d-dimensional point by clicking at a
location. This sets the x- and the y-coordinate
while the other d-2 coordinates (if present, see
the ‘Dimension” command) are set to zero.

47

Dimension... ¥D
Group ®G
Ungroup ®H

Random... ®R

Randomize

Reset Random

1.5 Arithmetic Menu
Real

Float

Base...
Precision...

Longint

Specifies the dimension of subsequently created
d-dimensional points.

Groups the selected objects together in an object
of type ‘vector’.

If the selected object is a ‘vector” it is ungrouped.
Only one level of ungrouping is performed.

Generates a number of randomly located objects
of the same type. The type is specified either
using the ‘Objects’ menu or by clicking at an icon
in the palette at the left border of each geometry
window.

Sets the initial value of the random number
generator to some arbitrary value.

Resets the initial value of the random number
generator to the value present at program start
time.

Sets the type of the coordinates of subsequently
created objects to ‘Real’.

Sets the type of the coordinates of subsequently
created objects to ‘Float’, a floating point number
system realized in software. The base and
precision (number of digits in the mantissa) can
be set using the two following commands.

Sets the base of the ‘Float’ number system.
Sets the number of digits in the mantissa.

Sets the type of the coordinates of subsequently
created objects to ‘Longint’.

Objects of the same type (e.g. point) that were created with different settings
of the arithmetic menu are treated as belonging to different types. Changing
the setting of the arithmetic menu affects only subsequently created objects.

48

B L NUU NI ~

A Ao

[S N

e e e I L B e —-«r\—-‘——rkvﬁ——-vf\—————t——-!\—‘

1.6 Animation Menu

Algorithm animation can be selectively tumed on and off. One item activates
the animation of all algorithms solving the same problem (e.g. turning on the
animation for ‘Closest Pair’ animates all algorithms solving the closest pair
problem).

1.7 Windows Menu

Hide - Hides the window that lies on top. By selecting its
name in the ‘Windows’ menu it becomes visible
again.

Info ®I The ‘Info’ window becomes the topmost visible
window.

Geo-## Tﬁe specified geometry window becomes the

topmost visible window.

1.8 Operations Menu

The ‘Operations’ menu contains all the operations that are applicable to the
selected objects. Choosing an operation from this menu performs the operation
and creates a new geometry window containing the result of the operation. For
a list of implemented algorithms see section 2.9 of the Programmer’s Manual.

49

2 Programmer’s Manual

2.1 Organization

This manual is organized as follows. Section 2.2 describes the class hierarchy.
Section 2.3 describes methods applicable to all objects in the system. Section
2.4 explains the basic ways of building collections of objects. Section 2.5
introduces the geometric primitives. Section 2.6 explains the most common
abstract data types, dictionary and priority queue. Section 2.7 describes the
graph oriented part of the GeoBench. Section 2.8 explains animation and how
to interactively obtain parameters. Section 2.9 is a reference section on the
implemented algorithms. Appendix A specifies the grammar of the textual I/O
format. Appendix B describes the changes that we did in TransSkel, a public
domain application module written by Paul DuBois [DB 891.

2.2 The class hierarchy

The class hierarchy is the glue holding the system together. All classes are
descendants of a single abstract root class ‘obj’ which provides a set of
* universal operations applicable to all objects. The classes ‘sequence’, ‘point2d’,
‘dictionary’ and ‘priorityQueue’ are also abstract classes which should be used
to postpone implementation decisions.

A geometric algorithm operating on an object of type T1 and producing an
object of type T2 is a function method of class T1 producing an object of type
T2.

Implementing a new geometric algorithm consists of

1) finding the appropriate place for the new method in the class hierarchy
depending on the input data. Assume we implement a method for class T.

2) implementing the algorithm (with' animation, if possible) using the methods
"~ from sections 2.3 — 2.9.

3) changing the methods ‘describe’ and ‘execute’ (see section 2.3) of class T

such that the interactive front end of the XYZ GeoBench ‘knows’ about the
newly implemented algorithm.

50

N e~ P —__

UL S NS SIS ALY A L 8 SRS

e

B R

e

-—grap Edge
i _ directedGraph)-(undirectedGraph)
(simpleUndirectedGraph
spanningTree

aviTree

abstract class:

voronoiDiagram

2.3 The common behavior of all objects: the root class ‘obj’

This section describes the interface common to all objects. When implementing
a new descendant of ‘obj’, the methods described in this section must be
implemented appropriately, taking the default implementation into account.

type
cbjectType = (intType, stringsType, point2dType,
lineSegmentType, rectangleType, listType, vectorType,
homogenVectorType, pointVectorType, convexPolygonType,
voronoiEdgeType, directedGraphType, undirectedGraphType,

51

graphEdgeType, voronoiDiagramIype, polygon2dType,
markedRealPointType, simpleUndirectedGraphType,
spanningTreeType, rectangleVectorType, dDimPointType,
dpimCircleType, dDimPointVectorType, realPointType,
floatPointType, longIntPointType, sequenceTlype, avlTreeType,
sortedListType, sortedVectorType, lineSegmentVectorType,
dictPriorityQueueType, heapPriorityQueueType, circleType,
splinegonType, spline2Type, straightEdgeType, polyLineType,
layerType, polylayerType, layerVectorType,
polyLayerVectorType, QDPictureType, ColorQDPictureType,
objType) i

relationObj = (lessThanObj, equalObj, greaterThanObij) ;

obj = object

52

(* Memory management *)

procedure init; . X .

(* Initializes the internal state of an object, i.e. all instance variables are set to a defined
value. This method should be called after creating an object with ‘new’. An object
might depend on other objects, either directly like on an instance variable or
indirectly like in a linked list. Dependent objects are initialized iff they belong to the
internal state which is stated explicitly. ‘init’ may use global variables defined in ‘obj’
to determine types or other values. The appropriate variables are specified in the
respective class interface. After ‘init” has been called the object is ready to use. The
default implementation does nothing. *)

procedure free;

(* Reclaims the memory belonging to the object's internal state (the reverse operation to
‘init’). Dependent objects not belonging to the internal state are not destroyed. The
object is removed; no dispose is allowed. The default implementation calls
‘ShallowFree’ which works correctly for all objects without dependent objects. *)

procedure freehAll; ' .)
(* Like ‘free’, but all dependent objects are also reclaimed recursively. The default
implementation calls ‘free’ which is correct for objects that do not have dependent
objects. *)

function duplicate: obj;
(* Produces a copy of the object's internal state. The default implementation calls
‘ShallowDuplicate’ which works correctly for all objects that do not have dependent
objects. *)

function duplicateAll: obj;
(* Like “duplicate’, but all dependent objects are copied recursively. The default
implemeftaﬁon calls ‘duplicate’ which is correct for objects without dependent
objects. *)

procedure ShallowFree;
(* Low level method to free an object, should not be overridden. *)

function ShallowDuplicate: obj;
(* Low level method to duplicate an object, should not be overridden. *)

P P S S S VY S S U N S N N N

B S L I S B A

S PN S U

A e

(* Interactive /O *)

procedure interactiveOutput;

(* Draws the object. Because of the XOR mode, an object can be removed from the
window by a second call to ‘interactiveOntput’ which is useful in algorithm
animation. The world coordinate system is used and the standard implementation
raises an error condition.

Warning: ‘interactiveOutput’ is also used to draw into the external scrapbook, e.g.,
if the user selected “Copy’ from the ‘Edit’ menu and leaves the application. Do not
assume that you are necessarily drawing into a window when your
‘interactiveOutput’ method is called. However, you may use ‘thePort?.portRect’ to
determine the outline of the ‘window’ you are drawing in. If you really need to know
whether you are drawing or just writing to the scrapbook, use ‘thePort?.pnVis’
(‘true’ means you are drawing in a window). See the implementation of
‘voronoiDiagram.interactiveOutput’ as an example.*)

procedure interactiveHighlight;
(* Draws the object in the current window in a highlighted fashion. The world
coordinate system is used. The standard implementation enlarges the pen size and
calls ‘interactiveOutput’, *)

procedure interactiveFlash;)
(* Let the object flash in the current window. The object is not drawn. The world
coordinate system is used and the default implementation is implemented completely
in terms of ‘interactiveHighlight’. *)

procedure interactiveInput (px, py: integer);
(* Like ‘windowInput’ but the world coordinate system is used. The default
implementation is based completely on ‘windowlnput’ and ‘windowToWorld’. *)

procedure windowOutput;
(* Draws the internal state on the current window. The window coordinate system is
used and the default implementation is based completely on ‘interactiveQutput’
although this is inefficient in most cases. ¥)

procedure windowInput (px, py: integer);
(* Like ‘init’, but the internal state is read using the mouse. It gives visual feedback but
leaves the drawing window unchanged after completion (XOR graphics). ‘px’ and
‘py’ are the coordinates of the first mouse click. The window coordinate systemn is
used. The default implementation of ‘windowInput’ is based completely on
‘construct’ and ‘windowQutput’. *)

procaedure construct (px, py, newX, newY: integer);

(* This method changes an existing object on which ‘init’ has been called according to
the four parameters formed by the first click location (‘px’, ‘py’) and the current
click location (‘newX’, ‘newY’). The window coordinate system is used. This
method is only called by the default implementation of ‘windowInput’ and need not
be implemented if ‘windowlInput’ is overridden. The default implementation raises
an error condition. ¥)

(* Binary and text file I/O *)
procedure fileOutput;

(* The whole object is written to ‘currentStream’ but no type identifier is written. The
default implementation raises an error condition. ¥)

53

54

procedure fileOutputTag;
(* Like “fileOutput’, but a type identifier is written first. The function “fileGetType” in
module ‘obj’ can be used to retrieve the type. The default implementation is based
completely on ‘getType’ and ‘fileQutput’. *)

procedure filelInput;
(* The complete object is read from ‘currentStreant’, the first byte on ‘currentStream’ is
the first byte of the internal state. The default implementation raises an error
condition. *)

procedure textFileOutput;
(* Writes the internal state in textual form to ‘currentStrear’. The first token written is
always the type of the object. The grammar is given in appendix A. The default
implementation raises an error condition. *)

procedure textFilelnput;
(* Reads the internal state in textual form from ‘currentStrean?’. The first token is
always the type of the object. The grammar is given in appendix A. The default
implementation raises an error condition. *)

(* Description / execution. Whenever objects are selected by the user,
the interactive front end of the XYZ GeoBench calls for each class in the
system the respective ‘describe’ method, thereby asking each class

whether an operation of this class can be executed on the selected objects.

GeoBench determines this way which operations’are appropriate for
which objects. Whenever a new method should be made available to the
end user the pair ‘describe’ / ‘execute’ must be changed to reflect the
new algorithm. *)

procedure describe;
(* Computes the (possibly hierarchical) menu entries of operations applicable to the list
of objects in the global variable ‘currentArguments’. The procedures ‘menuEntry’
(plus ‘beginSubMenu’ and ‘endSubMenu’ for hierarchical menus) from the module
‘sequence’ are to be used. The default implementation does nothing. *)

procedure execute (item: integer);
(* Executes the selected method ‘item’ with arguments in ‘currentArguments’ and
appends the result to the global variable ‘currentResulf . The default implementation
raises an error condition. *)

(* Geometric transformations *)

procedure trans_late (dx, dy: extended);
(* Translates an object by (‘dx’ ,'dy’{ The default implementation raises an error
condition. ¥)

procedure rotate (xOrigin,. yOrigin, alpha: extended):;
(* Rotates the object by ‘alpha’ (radians) around (‘xOrigin’, ‘yOrigin’). The default
implementation raises an error condition. *)

procadurae scale (lambda: extended);
(* Scales the object by ‘lambda’. The default implementation raises an error
condition. ¥)

e

e

[V D I RIS SRS S

procedure reflect (a, b, c: extended);

(* Mirrors the object at the line a-x + b-y = ¢, & + b?# 0. The default implementation
raises an error condition. *)

(* Other transformations *)

procedure randomChange;

(* Changes the internal state randomly constrained by ‘currentRandomConstraint’ . This
global variable is usually interpreted as a rectangle describing the boundaries in
which the random change takes place. The default implementation raises an error
condition. *)

procadure windowToWorld;
(* Transforms the object to world coordinates. The default implementation raises an
error condition. *)

(* Type computation and comparison *)

function getType: objectType;
(* Get ‘self’'s type. The default implementation raises an error condition and returns
‘objType’. ¥)

function getTextType: str255;
(* Computes a textual description of ‘self’'s type. The default implementation raises an
error condition and returns the string ‘Obj’. *)

function memberType (o: obj): boolean;
(* Tests whether ‘0’ is a descendant of ‘self”. The default implementation raises an
error condition and returns ‘true’. *)

function convertToType (t: pointTypeRange): obj; :
(* Produces a copy of ‘self’ based on type ‘¢’. The default implementation raises an
error condition and returns the result of ‘duplicateAll’. *)

function equal (o: obj): boolean;
(* Determines whether ‘self” is identical to ‘o’. The default implementation raises an
error condition and returns ‘false’. *)

function genericLessThan (o: obj): boolean;

" (* Determines whether ‘self”’ is less than ‘0* where ‘o.getType = self.getType’. This
function imposes a canonical order on the objects of a type and is used to eliminate
duplicates by sorting. The default implementation raises an error condition and
returns ‘true’ <> ‘o’ and ‘self” are different. *)

(* Selecting and dragging *)

function isSelected (where: obj): boolean;
(* Determines whether the object is selected by the given rectangle ‘where’. The default
implementation raises an error condition and returns “false’. *)

function dragVertex (where: obj): boolean;
(* Tests whether the user attempted to drag a point (vertex) inside the rectangle ‘where’.
"~ Ifavertexis to be dragged, the function does all the dragging until the mouse button

is released, updates the object and returns ‘true’. The default implementation returns
‘false’. *)

55

(* Miscellaneous *)

procedure textOutput; .
(* Outputs the object in textual form in the THINK Pascal text window. Used for

debugging. The default implementation raises an error condition. *)

procedure centerOfGravity (var cx, cy: exte.nded) ; .
(* Returns a point (‘cx’, ‘cy”) close to the object. The center is used for drawing
graphs. The default implementation raises an error condition and returns the

point (0, 0). *)

function pointCover (n: longInt): obj; . .
(* Covers the object with points, ‘n’ point for each atomic part. Theresultisa
*pointVector’. The default implementation raises an error condition and returns

‘nil’. ¥)

end,; (* obj *)

2.4 Sequences, lists and dynamic arrays:
The classes ‘sequence’, ‘list’, ‘vector’ and ‘homogenVector’

This section describes the basic classes for building collections of objects. The
abstract class ‘sequence’ factors out the common behavior of lists and arrays.
The class ‘list’ realizes single linked lists whereas the class ‘vector’ realizes
dynamic arrays. All elements in a ‘homogenVector’ have the same type.

type
seqIndex = 1l..maxN;
seqlndex0 = 0..maxN;

sequence = object (cb])

length: seqIndexO;)
(* Number of elements in the sequence. *)

procedure forAll (procedure whatToDo (x: obij));
(* Performs the procedure ‘whatToDo’ on all objects. *)

procedure append (x: obj);
(* Appends ‘x” at the end of the sequence. *)

procedure removelast;
(* Removes the last element from the sequence without destroying it. *)

procedurae appendNonNil (x: obj);
(* Appends ‘x’ if x’ # ‘nil’. *)

function sameType: boolean;
(* Tests whether all elements of the sequence are of the same type. *)

56

I T Y

N S S e I e A

function ith (i: seqlIndex): obj;
(* Produces the ith element of the sequence. Although this method is also available for
vectors we recommend for efficiency reasons the use of ‘elementsAA[i]’ instead of
the more expensive method call. *)

end; (* sequence *)

objArrayH = ~*~ array [seqlIndex] of obj;
(* Handles (i.e. pointers to pointers) are more efficient than pointers for the Macintosh
megdlory manager. They can be moved after they have been allocated while pointers stay
fixed. *)

vector = object (sequence)

elements: objArrayH;
(* Handle to an array containing the elements. The objects in the array do not belong to
the internal state but the array does. ¥)

(* Memory mahagement *)

procadure init; override;
(* The global variable ‘currentVectorLength’ determines how many elements are
allocated and must be set before “init’ is called. ¥)

procadure initFromList (1l: list);
(* Creates a vector from the elements in the list ‘7’. No call to ‘init” is necessary. *)

procaedure allocateElements (number: seqIndex0);
(* Reserves space for at most ‘number’ elements. This method is used to dynamically
extend or shrink a vector although it should be used cautiously because it involves

copying. *)

function allocatedElements: seqIndex0;
(* Returns the number of currently allocated elements. *)

(* Rearranging the elements *)

procedure :fevert ;
(* Reverts the order of the elements in the vector. *)

procedure swap (i, j: seqlndex);
(* Exchanges the ‘i’th and the ‘/’th element. *)

procadure randomShuffle (n, 1l: seqIndex0);
(* Chooses randomly ‘n’ elements from the elements in 1.. and places them
into 1..n’. *)

57

58

(* Sorting and searching *)

procedure sort i
(Function lessThan (p, q: obj) : boolean;
1: segIndex; r: seqIndex0);
(* Sorts “elements’ between ‘I’ and ‘7’ using the comparison function ‘lessThan’. *)

procedure sortAll .
(function lessThan (p, q: ob_j) : boolea‘n) ;
(* Sorts ‘elements’ between 1 and ‘length’ using the comparison function ‘lessThan’.*)

function binarySearch
(x: obj; function compare (a, b: obj): relationObj;
1: seqgIndex; r: seqgIndex0): seqIndex0;
(* Finds x’ between ‘I’ and ‘7’ in the vector which is sorted in ascending order.
“binarySearch = 0’ means that ‘x’ was not found, otherwise ‘binarySearch’ gives the
location of ‘x’ in the vector. *)

function findExtreme
(function lessThan (p, q: obj): {)oolean) : segIndex0;
(* Finds the smallest object according to the comparison function ‘lessThan’. ¥)

(* Heap operations *)

procedure heapify (function lessThan (p, g: obj): boolean):
(* Produces a heap using ‘lessThan’. The first element is the minimum. *)

procedure sift
(function lessThan (p, q: obj): boolean;
1, r: seqlndex);
(* Sifts element ‘I’ into the heap which ranges from /" + 1 t0 ", *)

procedure nextMin (function lessThan (p, q: obj): boolean);
(* Creates anew heap by removing the first element. *)

procedure insert :
(x: obj; function lessThan (p, g: obj): boolean);
(* Inserts an element into the heap. *)

procedure heapSort
(function greaterThan (p, g: obj): boolean);
(* Sorts the whole vector using heapsort into ascending order. Note that the usual
lessThan function will sort the wrong way! *)

function isHeap
(root: seqglIndex;
function lessThan (p, q: obj): boolean): boolean;
(* Tests whether the vector with the given 7oor’ (usually 1) fulfills the heap property.*)

(* Miscellaneous *)

procedure appendsSafe (x: obj; increment: seqIndex0);
(* Like ap}))end, but the vector is extended by ‘increment’ if there is not sufficient
space.

B e I S

procedure preset (number: seqIndex(; t: objectType) ;
(* Creates a vector of ‘number’ objects of type ‘2. No call to init is necessary. *)

rocedure eliminateDuplicates;
(* Removes from ‘self’ all duplicated elements and destroys them with ‘free All’. *)

procedure forAllPermutations
(n: seqlndex0; procedure whatToDo (v: vector));
(* Executes the procedure ‘whatToDo’ for all permutations of the first ‘n’ elements. *)

procedure readlength;
(* Reads the length of the vector from ‘currentStream.’ *)

end; (* vector *)

homogenVector = object (vector)

(* All objects are of the same type and the operations are the same as for a ‘vector’. *)

end; (* homogenVector *)

elementH = ** record
value: obj; (* The object, *)
next : elementH; (* The successor. *)
end; (*elementH*)

list = object (sequence) (*linked list *)

first, last: elementH;
(* ‘The first and the last element in the linked list. *)

procedure concatenate (x: list);
(* Appends the list ‘x” at the end of the list. Note: No duplication is taking place and the
list “x’ is left intact. *)

procedure flatten;

(* Appends to the list recursively all elements which are member of a sequence which is
amember of ‘self”. The member sequences of ‘self’ are destroyed. *)

procedure push (x: obij);
(* Appends the element ‘x’ at the front of the list. *)

proceadure pop;
(* Removes the first element from the list, *)

end; (*list¥

59

2.5 Arithmetic independent geometric primitives:
The basic geometric classes ‘point2d’, ‘lineSegment’,
‘rectangle’ and ‘circle’

In this section we describe the elementary geometric objects and the geometric
primitives available. We recommend to use the abstract class ‘point2d’
whenever possible in order to write code that is arithmetic independent.

type
signType = -1..1;
point2d = object (obJ)

procedure randomChange; ove rride;
(* The global variable ‘currentRandomConstraint’ is interpreted as a rectangle. *)

(* Coordinate manipulation *)

function getX: extended;
(* Gets the x-coordinate. ¥)

procedure setX (newX: extended);
(* Sets the x-coordinate. ¥)

function getY: extended;
(* Gets the y-coordinate. *)

procedure setY (newY: extended);
(* Sets the y-coordinate. ¥)

function xLessThan (p: point2d): boolean;
(* Ts ‘self.getX < p.getX’ 7 *)

function xEqual (p: point2d): boolean;
(* Is ‘self.getX = p.getX’ 7 %)

function ylessThan (p: point2d): boolean;
(* Is ‘self.getY < p.getY’ 7 %)

function yEqual (p: point2d): boolean;
(* Is ‘self.getY =p.getY’ 7 %)
(* Drawing *)

procedure drawlLine (p: point2d);
(* Draws a line from ‘self’ to ‘p’. *)

procedure labelPoint (l: str255);
(* Draws the string ‘I’ below ‘self’. *)

60

(* Geometric primitives *)

function whichSideX (p, q: point2d): extended;
(* Determines on which side of the directed line segment from “p’ to ‘g’ the point

‘self” lies.
<0: ‘self’ lies to the left of the directed line segment ‘pq’
=0: ‘self’ lies on the directed line segment ‘pq’
>0: ‘self’ lies to the right of the directed line segment ‘pq’
‘whichSideX" is also twice the signed area of the triangle with vertices ‘self’, ‘p’
and ‘q’. *)

function whic;hSid(_eSign (p, g: point2d): signType;
(* Computes ‘sign(whichSideX)’ and rounds it to ‘0’ if the exact result cannot be
determined. *)

function crossProductX (p, q, r: point2d): extended;
(* Computes the cross product (‘self” — ‘p*) x (‘’r —‘g’). *)

function distanceX (p: point2d): extended;
(* Computes the Euclidean distance between ‘self” and ‘p’. *)

function squaredDistanceX (p: point2d): extended;
(* Computes the squared Euclidean distance between ‘self’ and ‘p’. *)

function squaredDxX (p: point2d): extended;
(* Computes the squared difference in x-coordinates between ‘self” and ‘p’. *)

function squaredDyX (p: point2d): extended;
(* Computes the squared difference in y-coordinates between ‘self’ and ‘p’. *)

procedure circleCenterX
(p, q: point2d; var cx, cy: extended);
(* Computes the point (‘cx’, ‘cy’), the center of the circle through ‘self’, ‘p’
and ‘q’. ¥)

function intersectLineSegmentX
(g, r, s: point2d;
left, right: point2d): boolean;
(* ‘true’ ¢ the segment ‘self ¢’ and ‘rs’ intersect. The left intersection point is ‘left’,
the right intersection point is ‘right’ (lexicographically). ‘Lp’ = ‘l.¢’ is possible and
common. *)

function xPlus¥YX: extended;
(* Computes ‘x” + ‘y’. *)

function xMinus¥X: extended;
(* Computes ‘x’ —‘y’. *)
function rayEvalX
(p: point2d; cosSlope, sinSlope: extended): extended;
(* Evaluates the positive ray emanating from ‘p’ with the given slope at ‘self.getX’. *)

function bisectorEvalX (p, q: point2d): extended;
(* Evaluates the bisector of ‘p’ and ‘¢’ at ‘self.getX’. *)

61

function intersectRayBisectorX
(cosSlope, sinSlope: extended;
p, 4, intersection: point2d): boolean; . .
(* Tests whether the positive ray emanating from ‘self” with the given slope intersects
the bisector given by ‘p’ and ‘g’. ¥)

function intersectBisectorBisectorX
(p, q, ¥, intersection: point2d) : boolea,ri;,
(* Tests whether the bisector(‘self’,p’) intersects bisector(‘q’,‘r") where
1{‘self’, ‘p’, ‘¢, ‘FPH=3.%)

function intersectRayRayX
(cosLower, sinLower: extended;
p: point2d; cosUpper, sinUpper: extended;
intersection: point2d): boolean;
(* Tests whether the rays (‘self’, ‘cosLower’, ‘sinLower’) and (‘p’, ‘cosUpper’,
‘sinUpper’) intersect. *)

function middle (p: point2d): point2d;
(* Computes the point (‘self.getX +p.getXC’, ‘self.getY + p.getY') /2. %)

function createlineSegment (p: point2d): lineSegment;
(* Creates a line segment from “self’ to ‘p’. ¥)

function createCircle (p, g: point2d): circle;.
(* Creates the circle through ‘self’, ‘p’ and ‘g’ if they are not collinear. *)

end; (*point2d *)

lineSegment = object (obj)

P, 4q: point2d;
(* Points ‘p’ and ‘q’ belong to the internal state. *)

procedure init; override; . X .
(* The global variable ‘currentPoinfType’ determines which kind of points are used. *)

procedure randomChange; override;
(* The global variable ‘currentRandomConstraint’ is interpreted as a rectangle. *)

function whichSideX (r: point2d): extended;
(* Determines on which side of the directed (from ‘p’ to ‘g’) line segment ‘self’
the point ‘7 lies.
< 0: ‘7 lies to the left of the directed line segment ‘self’
=0: ‘7 lies on the directed line segment ‘self’
> 0: ‘r’ lies to the right of the directed line segment ‘self’ ¥)
‘whichSideX" is also twice the signed area of the triangle with vertices ‘r’, ‘self.p’
and “self.q’. This function is similar to ‘point2d.whichSideX’ and introduced here
for convenience. *)

function intersectlineSegmentX (r, 1l: lineSegment): boolean;

(* ‘true’ & the segment ‘self’ and ‘" intersect, The intersection point is ‘I’, where ‘Lp’
£ ‘lg’ lexicographically (‘L.p’ = ‘¢’ is possible and common). *)

62

- e S i B e e T VU SN S .
S SN N S S R SR e s b & - U

function length: real;
(* Computes the length of the segment. *)

function collinear (l: lineSegment): boolean;
(* Tests whether ‘self’ and ‘!’ are parallel. *)

end; (*lineSegment *)

circle = object (obj)
x, y, radius: real;

procedure randomChange; override;
(* The global variable ‘currentRandomConstraint is interpreted as a rectangle. *)

function getRadius: markedRealPoint;
(* Creates a ‘markedRealPoint’ marked with the radius. *)

function inCircle (p: point2d): boolean;
(* Tests whether ‘p’ is in the circle. *)

procedure makeFrom2points (p, g: point2d);
(* Creates the smallest circle through the two points ‘p’ and ‘g’. *)

procedure makeFrom3points (p, g, r: point2d);
(* Creates the smallest circle through the three points ‘p’, ‘g’ and ‘7. *)

procedure makeDisk (l: list);
(* Creates the smallest circle through the points in ‘. *)

procedure makeFromPointCircle (p: point2d; c: circle);
(* Creates the smallest circle through ‘p’ and ‘¢’ with ‘not inCircle()’. *)

end; (*circle *)

rectangle = object (obj)

left, bottom, right, top: real;
(* (left< right) A (bottom < top) *)

procedure randomChange; override;
(* The global variable ‘currentRandomConstraint’ is interpreted as a rectangle. *)

end; (*rectangle ¥)

(* Comparison functions for points *)

function pointLessThanXY (p, q: point2d): boolean;
(* Lexicographical comparison, first the x-coordinate then the y-coordinate. *)

63

function pointLessThan¥X (p, q: point 2d) : boolean;
(* Lexicographical comparison, first the y-coordinate then the x-coordinate. ¥)

function pointGreaterThanXY (p, q: point2d): boolean;
function pointGreaterThan¥X (p, g: point2d): boolean;

function comparePointXY (p, q: po:Lnth‘i),: relationObij;
(* Determines which relation holds between ‘p” and ‘¢’ *)

function comparePoint¥YX (p, q: point2d): relationObij;

v

2.6 Common universal abstract data types: the classes ‘dictionary’
and ‘priorityQueue’

The most common abstract data types encountered in geometric algorithms are
the dictionary and the priority queue. Both data types are implemented in the
XYZ GeoBench in a general way based on the reference concept. A reference
is the abstraction of location in a data structure and can be viewed as a pointer
into the data structure. For example, when a data item is inserted into a
dictionary, the dictionary returns a reference which can be used to delete the
data item or to change its value.

type .
reference = “~integer; (* Any pointer suffices. ¥)
directionType = (left, right);

dictionary = object (obj)
numberOfElements: longlnt;

function getObject (where: reference): obj;
(* Retrieves the object referenced by ‘where’. *)

procedure setObject (where: reference; newvValue: obj);
(* Changes the object referenced by ‘where’ into ‘newValue'. *)

procedure sequenceToDictionary
(s: vector; 1l: seqIndexl; r: seqgIndex0);
(* Equivalent to inserting the sorted vector elements between ‘I’ and ‘7’ into an empty
dictionary. ¥)

function find
(x: obj; function compare (a, b: obj): relationObij;
var where: reference;
var direction: directionType): boolean;
(* If “find’ = ‘true’ then ‘where’ points to some element ‘e’ with ‘compare(e, x) =
equalObj’. If ‘find’ = ‘false’ then either ‘where’ = ‘nil’ (dictionary empty) or ‘x’ is a
direct neighbor of ‘where’ in direction ‘direction’. *)

64

function member
(x: obj;
function compare (a, b: obj): relationObj): boolean;
(* Tests whether %’ is in the dictionary or not. *)

function insert
(x: obj; where: reference;
direction: directionType): reference;
(* If ‘where’ = ‘nil’ theninsert “x’ into the dictionary which must be empty. If ‘where’
‘}l;il’ thf;x insert ‘x” before (‘direction’ = ‘left’) or after (‘direction’ = ‘right”)
‘where’.

function insertObj
(x: obj; function compare (a, b: obj): relationObj;
var found: boolean): reference;
(* Inserts x’ into the dictionary. ‘found’ = ‘false’ ¢ ‘x’ is unique. ¥)

procedure insertNewObj
(x: obj;_ function compare (a, b: obj): relationObi);
(* Inserts “x’ if it is not a member of the dictionary, otherwise this is an error. *)

procedure delete (x: reference);
(* Removes the element referenced by ‘x’ from the dictionary. *)

procedure swap (p, q: reference);
(* Exchanges the elements referenced by ‘p’ and ‘g’ in the dictionary. *)

procedure rangeSwap (p, q: reference);
(* Exchanges the elements between ‘p’ and ‘q’ in the dictionary (‘compare(p, g) =
lessThanObj’ must hold and is not checked). *)

function next

(x: reference; direction: directionType): reference;
(* Find*the predecessor (‘direction’ = ‘left’) or the successor (‘direction’ = ‘right’) of
x’.

function extreme (direction: directionType): reference;
(* Find the leftmost (‘direction’ = ‘left’) or the rightmost (‘direction’ = ‘right’) value. *)

function isEmpty: boolean;
(* Determines whether the dictionary is empty, *)

procadure forAll

(procedure whatToDo (x: obj); direction: directionType);
(* Performs ‘whatToDo’ on all elements ‘x’ of the dictionary, starting at the location
most in direction ‘direction’. ¥)

procedure rangeForAll

(leftBound, rightBound: obj;

function compare (a, b: obj): relationObij;

procedure whatToDo (x: obj); direction: directionType);

(* Performs ‘whatToDo’ on all elements “x’ of the dictionary that are between

‘leftBound’ and ‘rightBound’ (including), starting at the location most in direction
‘direction’. The value ‘nil’ serves as -eo for ‘leftBound’ and as +oe for
‘rightBound’ . *)

65

function compareReference (p, q: reference) : r.elati_orgobj;
(* Determines the order of the elements referenced by ‘p” and ‘¢’ in the dictionary
(without key operations!). ¥)
function infoString: str255; X
(* Computes information about the dictionary (this only makes sense for a
‘dictionaryStatistics’). *)
end; (*dictionary *)
Dictionaries come in four different flavors, differing mainly in their internal
realizations and the corresponding initialization routines.
type
avlTree = object (dictionary)

(* Implementation as an AVL tree with optimal insertion / deletion costs. *)

root: avlNodeH; .
(* No global variables are needed for the initialization procedure ‘init’. *)

end; (*aviTree ¥)

sortedList = object (dictionary)
(* Implementation as a sorted list. Insertion / deletion is expensive. *)

minimum, maximum: sortedListNodeH; .
(* No global variables are needed for the initialization procedure ‘init’. ¥)

end; (*sortedList *)

sortedVector = object (dictionary)

(* Implementation as a sorted array. Insertion / deletion is expensive. ¥)
procedure init; override; -

(* The global variable ‘currentVectorLengtK determines how many elements are
allocated. *)

end; (* sortedVector ¥)

66

dictionaryStatistics =
object (dictionary)

d: dictionary;
(* Actual dictionary that is used. *)

maxLength,
(* Maximal number of elements in the dictionary. ¥)

insertions, .
(* Number of insertions into the dictionary. *)

deletions: longlInt;
(* Number of deletions from the dictionary. *)

procedure init; override;
(* The global variable ‘currentDictionaryType’ determines which kind of dictionary is
used for ‘d’ and initializes it. Note that the initialization of ‘4’ might require the
correct setting of additional global variables. *)

end; (* dictionaryStatistics *)

Besides the abstract data type dictionary, we support the priority queue. Again,
priority queue is an abstract class realized either as a heap or a dictionary. In
the first case an efficient find operation is not possible while in the second case
we can guarantee a logarithmic time for find.

type
priorityQueue = object (cbj)

function getObject (where: reference): obj;
(* Retrieves the object referenced by ‘where’. *)

function insert.
(x: obj;
function compare (a, b: obj): relationObj): reference;
(* Inserts ‘x’ into the priority queue using ‘compare’ giving a reference for
later removal. ¥)

procedure delete
(x: reference;
function compare (a, b: obj): relationObj);
(* Deletes the object referenced by ‘x’ from the priority queue. ‘compare’ may be used
for restructuring. *)

function isEmpty: boolean;-:
(* Tests whether the queue is empty. *)

function minimum: reference; .
(* Retrieves the minimum without deleting it. *)

67

procedure forAll (procedure whatToDo (x: obj)).,- .
(* Performs the procedure ‘whatToDo’ on all elements ” of the priority queue. *)

function infoString: stxr255; .
(* Computes information about the dictionary (this only makes sense fora

‘priorityQueueStatistics’. *)
end; (* priorityQueue *)

The abstract class “priorityQueue’ is realized in three different ways.

type

dictPriorityQueue =
object (priorityQueue)

(*Priority queue implemented with a dictionary with an efficient find and next operation. *)
d: dictionary;

procedure init; override;
(* The global variable ‘currentDictionaryType’ determines which kind of dictionary is
used for ‘d’ and initializes it. Note that the initialization of ‘d’ might require the
correct setting of additional global variables. *)

function find
(x: obj; function compare (a, b: obj): relationObj;
var where: reference;
var direction: directionType): boolean;

(* If “find’ = ‘true’ then ‘where’ points to some element ‘e’ with ‘compare(e, x) =
equalObj’. If “find’ = ‘false’ then either ‘where’ = ‘nil’ (dictionary empty) or ‘x’ is a
direct neighbor of ‘where’ in direction ‘direction’. *)

function next (x: reference;
direction: directionType): reference;

(* F%nds :l)me predecessor (‘direction’ = ‘left’) or the successor (‘direction’ = ‘right’)

of ‘x’

end; (* dictPriorityQueue *)

heapPriorityQueue =
object (priorityQueue)

(* Implements the priority queue as a heap. *)

procedure init; override;
(* The global variable ‘currentVectorLength' determines how many elements
. are allocated. ¥)

end; (* heapPriorityQueue *)

68

OO N S S S S S MU MU ~——7P——~—4»——ﬂk——b——+_—r—-4&_—$-——¢—&——#—#—fh——&—1

priorityQueueStatistics =
object (priorityQueue)

(* Instruments a priority queue. ¥)

currentLength,
(* The actual number of elements in the priority quene. *)

maxLength,
(* Maximal number of elements in the priority queue. *)

insertions,
(* Number of insertions into the priority quene. *)

deletions: longInt;
(* Number of deletions from the priority queue. *)

p: priorityQueue;
(* Actual priority queue that is used. *)

procadure init; override;
(* The global variable ‘currentPriorityQueueType’ determines which kind of dictionary
is used for ‘p’ and initializes it. Note that the initialization of ‘p’ might require the
correct setting of additional global variables. *)

end; (*priorityQueueStatistics *)

We describe in section 2.8 a convenient procedure that lets the user choose
between different implementations of dictionaries and priority queues
(function ‘getXY").

2.7 Graphs: the classes ‘graphEdge’, ‘simpleUndirectedGraph’,
‘undirectedGraph’, ‘directedGraph’ and ‘spanningTree’

The GeoBench is primarily designed for geometric computation. Nevertheless
we support graphs in a limited way.

type
graphEdge = object (ob7j)

startVertex, endVertex: seqlndex;
(* Pointers to the corresponding vector of vertices. *)

procedure drawEdge
.(g: simpleUndirectedGraph; directed: boolean);
(* Displays the edge which is part of graph ‘g’. ‘directed’ specifies whether the edge
should be drawn as a directed edge or not. *)

end; (* graphEdge *)

69

simpleUndirectedGraph = object (obj)

vertices: vector;
(* Specifies the nodes. ¥)

edges: homogenVector;
(* A vector of ‘graphEdge’. *)

procedure init; override;
(* The global variables ‘currentVertices’ and ‘currentEdges’ determine how many
vertices and edges are allocated. *)

procedure addEdge (e: graphEdge);
(* Adds the edge ‘e’ to the graph. *)

function minimumSpanningTree: spanningTree;
(* Computes a minimum spanning tree under the assumption that the edges are sorted
by length into ascending order. *)

_ function perimeter: real;

(* Computes the total length of all edges in the graph under the assumption that the
vertices are points (member of the ‘point2d’ class). *)

end; (*simpleUndirectedGraph *)

spanningTree =
object(simpleUndirectedGraph)
function TSPEMST: vector;

(* Traverses the spamung tree and produces in the Euclidean case as result a traveling
salesman tour that is at most twice as long as the optimal tour. *)

end; (*spanningTree *)

directedGraph
object (simpleUndirectedGraph)

adjacency: homogenVector;
(* Of list of graphEdge. *)

procedure init; override;
(* The global variables ‘currentVertices’ and ‘currentEdges’ determine how many
vertices and edges are allocated. *)
procedure initAdjacency;

(* Constructs the adjacency lists for the already existing graph. This method can be
used to transform a simple undirected graph into a directed graph. *)

end; (* directedGraph *)

70

f
}1,
lﬁ
|
|
|
J
|
|
i

undirectedGraph = object (directedGraph)
(* The undirected graph has the same operations as an directed graph. *)
end; (*undirectedGraph *)

2.8 Support for animation, user interaction and error checking

Animation

Algorithm animation is primarily used for two purposes: Demonstrating
algorithms and debugging them. In order to animate an algorithm the
implementor chooses a graphical representation of the program state and
decides when and where this information needs to be updated. The typical code
looks as follows:

(* Geometric algorithm changing internal state. *)
(*¥*$IFC AnimationEnabled AND myAlgAnim *)
if animationFlag[myAlgAnimItem] then

(* Update graphical state information. Often: show a picture. *)
waitForClick(animationFlag[myAlgAnimItem]);

(* Update graphical state information. Often: hide a picture. *)
end;

(*$ENDC *)

The conditional compilation variable ‘AnimationEnabled’ serves as a global
flag for enabling animation for the whole system while ‘myAlgAnim’ is a local
flag enabling or disabling animation for a specific algorithm.

The procedure ‘waitForClick’ stops the algorithm and lets the user choose
what to do next. For the choice of ‘myAlgAnimItem’ we distinguish two cases:
1) An appropriate flag is already defined since there are already
implementations solving the problem (e.g. ‘myAlgAnimltem =
AconvexHullltem’, if we implement another algorithm for the convex hull) or
2) there is no such flag. In case 1) nothing needs to be done while in case 2) we
define another constant, say ‘myAlgAnimltem’, in module ‘GeoBenchUtility’
and update the constant ‘maxAnimation’ accordingly. In procedure
‘initAnimation’ in module ‘GeoBenchUtility’ we add the line

menuEntry (myAlgAnimItem, 'My algorithm');

and algorithm animation is possible.

71

In addition to visually animating a program, one can give feedback on whether
a program is executing or the machine hangs. This is done by advancing the
hands of the stopwatch. The procedure ‘advanceStopWatchHands’ from the
module ‘GeoBenchUtility’ should be called sufficiently often.

procedure advanceStopWat chHands;
(* Advances the hands of the stop watch. ¥)

Parameter input

Sometimes an algorithm needs additional input from the user. We provide in
the module ‘getUserParameter’ three different kinds of interactive input
procedures.

1) Get one to three numerical values

function getUserParameterl
(title: str255; default: extended; var value: extended;
function check (x: extended): boolean): boolean;

function getUserParameter2
(titlel, title2: str255;
defaultl, default2: extended;
vaxr valuel, value2: extended;
function checkl (x: extended): boolean;
function check2 (x: extended): boolean): boolean;

function getUserParameter3
(titlel: str255; defaultl: extended;
var valuel: extended;
function checkl (x: extended): boolean;
title2: str255; default2: extended;
var value2: extended;
function check? (x: extended): boolean;
title3: str255; default3: extended;
var value3: extended;
function check3 (x: extended): boolean): boolean;

(* The string ‘fitle’ specifies the appropriate title for the numerical value, ‘defaull’ gives
the default value and function ‘check’ tests whether the user supplied value is
acceptable. The boolean result ‘true’ indicates that the operation was performed
successfully while ‘false’ indicates that the operation was canceled or some
numerical value was not accepted by the ‘check’ function(s). *)

function noConstraint (x: extended): boolean;
(* This function returns always ‘true’ and can be used if a numerical value is
unconstrained. *) ‘
"2) Get one or two string values
function getUserStringl

(title: str255; var value: str255): boolean;

72

e e I e L I et

D N U .

function getUserString2
(titlel, title2: str255;
var valuel, value2: str255): boolean;

(* The string ‘zifle’ specifies the appropriate title for the string value. ‘value’ contains at
entry the default value and at exit the user supplied value. The boolean result “true’
indicates that the operation was performed successfully while “false’ indicates that
the operation was canceled. ¥)

3) Ask the user for the appropriate data structures

function getXY

(xLength: seqIndex0; mustBeDictPriorityQueue: boolean;
var xQueue: priorityQueue;

fyLength: seqIndex0; var yTable: dictionary): boolean;

(* If ‘xLength’ > O the user is asked to choose the data type of the priority queue
‘xQueue’. The value of ‘xLength’ indicates the maximal number of entries in the
priority queue. The value of ‘mustBeDictPriorityQueue’ specifies whether the
priority queue must be realized as a dictionary (‘mustBeDictPriorityQueue’ = “true’)
or whether a heap implementation is admissible (“mustBeDictPriorityQueue’ =
‘false’). If “yLength’ > O the user is asked to choose the data type of the dictionary
‘YTable'. The value of ‘yLength’ indicates the maximal number of entries in the
dictionary. ‘getXY’ = ‘false’ <> the operation was canceled by the user. *)

Display of additional information

Algorithms that need to display information (e.g. when statistics information is
collected by various abstract data types) can display an info string using the
procedure ‘displayInfoString’ from the module ‘infoWindow’.

procedure displayInfoString (info: str255);
(* Displays the string ‘info’ in the info window of the XYZ GeoBench. *)

Error checking

We advocate the use of assertions to check invariants. The module
‘GeoBenchUtility’ provides the procedure assert.

procedure assert (condition: boolean; t: str255);

(* If ‘condition = false’ the user gets the warning that the assertion ‘¢’ has failed. The
user can abort the program or continue. ¥)

2.9 Implemented geometric algorithms

This section describes the implemented geometric algorithms and their
interfaces. Many algorithms contain a boolean parameter ‘ask’ which

determines whether the user is asked to choose how certain data structures are
implemented at run time.

73

type

lineSegmentVector
object (homogenVector)

i

(* A collection of line segments. *)

(* Intersection routines *)

function simpleFirstIntersect: obj; .
(* Computes the first intersection using the trivial method. The result can be a ‘point2d’
object or a ‘lineSegment’ object or ‘nil” if no intersection exists. *)

function planeSweepFirstIntersect (ask: boolean): obij; .
(* Computes the first intersection using a plane sweep. The result can be a ‘point2d’
object or a ‘lineSegment’ object or ‘nil’ if no intersection exists. *)

function simpleAllIntersect: vector; . .
(* Computes all pairwise intersections with the trivial algorithm. The result is a vector
of points and line segments or ‘nil” if no intersection exists. ¥)

function planeSweepAllIntersect (ask: boolean): vector;
(* Computes all intersections using a plane sweep algorithm. The result is a vector of
points and line segments or “nil” if no intersection exists. If ‘ask = true’ the user is

asked to choose how the x-queue and the y-table should be implemented. *)

function hvPlaneSweepAllIntersect (ask: boolean): vector;

(* Like ‘planeSweepAlllntersect’ but all line segments must be either horizontal or
vertical. *)

(* Projection routines *)

function projectOnX: lineSegmentVector;
(* Projects all line segments on the x-axis and produces a new ‘lineSegmentVector’. *)

function projectOnY: lineSegmentVectox;
(* Projects all line segments on the y-axis and produces a new ‘lineSegmentVector’. ¥)

function projectOnXY: lineSegmentVector;

(* Projects all line segments on the axis that results in a shorter segment and produces a
new ‘lineSegmentVector’. *)

(* Miscellaneous *)

function isHorizontalVertical: boolean;
(* Tests whether all line segments are either horizontal or vertical. ¥)

function eliminateZeroLengthSegments: lineSegmentVector;
(* Eliminates all line segments where the start point and the end point coincide and
produces a new ‘lineSegmentVector’. *)

end; (*lineSegmentVector *)

74

f
)
!
5
‘;.
%

PR S S

PO S\ Y S, NS N—

pointVector = object (homogenvVector)

(* Convex hull ¥)

procedure convexHull
(eliminate: boolean; var hulllength: segIndex0);
(* Computes in place the convex hull of the given points using the Graham scan. The
elements from 1 to ‘hullLength’ constitute a convex polygon whereas the elements
from *hullLength + 1’ to “self.length’ are the inner points. *)

function convexHullDivideAndConquer: convexPolygon;
(* Computes the convex hull using the divide and conquer algorithm. *)

(* Closest pair *)

function closestPairHeuristic: lineSegment;
(* Computes the closest pair using the heuristic method which sweeps only in x-
direction. The resulting ‘lineSegment’ is formed by the closest pair and might have
zero length. The order of the input data points might change. *)

function closestPair (ask: boolean): lineSegment;
(* Computes the closest pair using the plane sweep method. The resulting

‘lineSegment’ is formed by the closest pair and might have zero length. The order of
the input data points might change. ¥)

function closestPairProbabilistic
(ask: boolean): lineSegment;

(* Computes the closest pair using Rabin's probabilistic algorithm. The resulting
‘lineSegment’ is formed by the closest pair and might have zero length. The order of
the input data points might change. ‘ask = true’ asks the user for the size of the hash
table, otherwise the size is determined by the algorithm. This is useful for

demonstration purposes where giving a large hash table causes few or no
collisions. ¥)

function closestPairNewHeuristic: lineSegment;
(* Computes the closest pair using the heuristic method which sweeps simultaneously
in x- and y-direction. The resulting ‘lineSegment’ is formed by the closest pair and
might have zero length. The order of the input data points might change. *)

function closestPairN2: lineSegment;
(* Computes the closest pair using the trivial quadratic method. The resulting
‘lineSegment’ is formed by the closest pair and might have zero length. The order of
the input data points does not change. *)

(* All nearest neighbors to the left *)

function leftANN (ask: boolean): homogenvVector;

(* Computes all nearest neighbors to the left using the plane sweep method. The result
is a homogeneous vector of line segments where the start point is a given point and
the end point is the start point's nearest neighbor to the left. The left most point gets
itself as nearest neighbor to the left. The order of the input data points might
change. ¥)

75

function leftANNHeuristic: homogenVector;
(* Computes all nearest neighbors to the left using the projection-on-x-only method.
The result is a homogeneous vector of line segments where the start point is a given

point and the end point is the start point's nearest neighbor to the left. The left most
point gets itself as nearest neighbor to the left. The order of the input data points

might change. ¥)

function leftANNNewHeuristic: homogenVector; .
(* Computes all nearest neighbors to the left using the projection method. The result is
a homogeneous vector of line segments where the start point is a given point and
the end point is the start point's nearest neighbor to the left. The left most point
gets itself as nearest neighbor to the left. The order of the input data points might
change. *)

function leftANNInSector
(ask: boolean;
cosLower, sinlLower, cosUpper, sinUpper: extended):
homogenVector;

(* Computes all nearest neighbors to the left in the sector that is bounded by the rays
with slope ‘cosLower / sinLower” and “cosUpper / sinUpper’ using the plane sweep
method. The result is a homogeneous vector of line segments where the start point is
a given point and the end point is the start point's nearest neighbor to the left in the
specified sector, The left most point gets itself as nearest neighbor to the left. The
order of the input data points might change. *)

(* Voronoi diagram *)

function voronoiDiagramSweepLine
(ask: boolean): voronoiDiagram;
(* Computes the Voronoi diagram using the plane sweep method. The order of the
input data points does not change. *)

- function voronoiDiagramDivideAndConquer: voronoiDiagram;

76

(* Computes the Yoronoi diagram using the divide and conquer method. The order of
the input data points does not change. ¥)

(* Euclidean minimum spanning tree *)

function EMST: spanningTree;
(* Computes a Euclidean minimum spanning tree of the point set using a quadratic
algorithm. The order of the input data points does not change. *)

(* Traveling salesman *)

function TSPEMST: polygon2d;
(* Computes a tour of the traveling salesman through the given points with the
Euclidean minimum spanning tree heuristic. The order of the input data points does
not change. *)

function TSPNN: polygon2d; .
(* Computes a tour of the traveling salesman through the given points with the nearest
neighbor heuristic. The order of the input data points does not change. *)

e

e

e e A LA s e

VI

e e e o

A A

function TSPConvexHull: polygon2d;

(* Computes a tour of the traveling salesman through the given points with the convex
hull heuristic. The order of the input data points does not change. *)

(* Minimal area disk *)

function minimalDisk: circle;

(* Computes the smallest circle which contains the given points using a randomized
algorithm. The order of the input data points might change. *)

function simpleMinimalDisk: circle;
(* Computes an approximation to the smallest circle which contains the given points
using a heuristic algorithm. The order of the input data points might change. *)

function containedInCircle (c: circle): boolean;

(* Tests whether all the given points lie in circle ‘c’. The order of the input data points
does not change. ¥) ‘)

(* Projection *)

function projectOnX: pointVector;
(* Projects the points on the x-axis and produces a new ‘pointVector’. The order of the
input data points does not change. *)

function projectOnY: pointVector;
(* Projects the points on the y-axis and produces a new ‘pointVector’. The order of the
input data points does not change. ¥)

(* Test data generation *)

function createGrid (yCoordinates: pointVector): pointVector;
(* Computes a grid G of points of size ‘self.length - yCoordinates.length’ where G =
{p:Jue ‘self.elements’: I v € ‘yCoordinates.clements’: p, = u, A py=vy }. The
order of the input data points does not change. *)

function createLineSegmentVector
(q: pointVector): lineSegmentVector; ‘
(* Creates a vector of line segments where ‘self’ provides the starting points and ‘g’ th
end points. Both must have the same number of elements. The order of the input
data points does not change. *)

(* Conversions *)

function makePolygon: polygon2d;

(* Produces a polygon from the given points. The order of the input data points does
not change. *)

function makePolyLine: polyLine;

(* Produces a poly line from the given points. The order of the input data points does
not change. *)

71

function makeSimplePolygon: pol.ygox}Zd;
(* Produces a simple polygon using a modification of Graham's scan. The order of the
input data points does not change. *)

function makeStarShapedPolygon: polygon2d; .
(* Produces a star-shaped polygon. Atotational sweep around the center of gravity of
the first three points in the input ‘pointVector’ ‘self” is used. The order of the input
data points does not change. *)

end; (* pointVector *)

polyLine = object (pointVector)

function tolineSegmentVector: lineSegmentVector; . .
(* Computes a vector of line segments that corresponds to the edges of the poly line or

polygon. *¥)

function perimeter: real;
(* Computes the sum of the length of all edges. *)

end; (*polyLine ¥)

polRange = 0..maxPolysMl;
polSet = set of polRange;

polygon2d = object (polyLine)

function windingNumber
(r: point2d; var onBoundary: boolean): longlnt;

(* Computes the winding number of ‘r* around the polygon. ‘onBoundary = true’ <
the point ‘7 Hes on the polygon's boundary. *)

function TSPOptimize
(whichN: longInt; ask: boolean): polygon2d;
(* Tries to shorten a given traveling salesman tour. 'Fhe parameters ‘whichN’ and ‘ask’
determine what kind of optimization is tried. The reader is referred to the source code
for their precise meaning. *)

function clip (ls: lineSegment): polygon2d;
(* Clips “self’ on the given lineSegment. Everything on the right side (the line segment
‘Is” itself excluded) of the directed line segment ‘Is’ is assumed to be visible.
Algorithm: Sutherland-Hodgman. *) :

78

U N U N S e

O
o= e e -

procedure intersection
(pols: sequence; function zoneQ (s: polSet): boolean;
result: list; ask: boolean); ’

(* Computes boolean operations on polygons using the sweepline algorithm of
Nievergelt and Preparata and adds the resulting polygonal pieces to the list ‘resuir’.
‘pols’ is a sequence of polygons enumerated from 1 to ‘pois.length’. The function
‘zoneQ’ determines which areas belong to the result. To get the union of all polygons
use ‘zoneQ :=polSet # []°. To get the intersection, use
‘zoneQ := polSet = [1..pols.length]’. In particular, a single polygon can be
decomposed into simple parts by using the function ‘zoneQ := polSet # []’ (menu
entry ‘Decompose’). To divide a polygon into its ‘simple hull’ and zero or more
simple polygons inside, use ‘zoneQ := polSet =[]’ (menu entry ‘Simplify’). *)

function simpleSelfIntersect: vector;

(* Computes all intersections of edges of a polygon that do not occur at vertices using
the trivial algorithm. *)

function selflntersect: vector;

(* Computes all intersections of edges of a polygon that do not occur at vertices using a
boundary traversal algorithm. This algorithm is efficient for the class of polygons
that have a left turn in each vertex. *)

end; (* polygonZd *)

convexPolygon = object (polygon2d)

function intersect (x: convexPolygon): convexPolygon;

(* Computes the intersection of the two convex polygons using the boundary traversal
method. ¥)

procedure tangent
(c: convexPolygon;
var upperP, upperQ, lowerP, lowerQ: seqglndex);
(* Computes the two common outer tangents of the two convex polygons. The lower
tangent is given by index ‘lowerP’ in ‘self’ and ‘lowerQ’ in ‘c’ and the upper.
tangent is given by index ‘upperP’ in ‘self’ and ‘upperQ’ in ‘c’. *)

procedure diameter (var i, j: seqIndex0); .
(* Computes the indices ‘i’ and ‘j’ of the two points determining the diameter of the
convex polygon. *)

function inside (p: point2d): boolean;
(* Tests whether point ‘p’ is inside the convex polygon or not. The boundary belongs
per definition to the inside. *)

end; (*convexPolygon *)

79

voronoiDiagram = object (obj)

function delaunayTriangulation: simpleUndirectedGraph;
(* Computes the Delaunay triangulation, the dual to the Voronoi diagram. *)

function EMST: spanningTree; ‘ .)
(* Computes a Euclidean minimum spanning tree from the Voronoi Diagram. *)

function leftANN: homogenVector;

(* Computes a vector of line segments such that each point of the Voronoi diagram
occurs as a start point of a segment and the end point of the segment is its nearest
neighbor to the left. The leftmost point does not occur in this collection (in contrast
to the nearest neighbor to the left algorithms that work directly on point sets. *)

end; (*voronoiDiagram *)

rectangleVector = object (homogenVector)

_ function boundingBox: rectangle;
(* Computes the smallest rectangle that contains all the given rectangles. *)

funection contourOfUnionOfRectangles: lineSegmentVector;

(* Computes a set of horizontal and vertical line segments that determines the contour
of the given rectangles using a plane sweep algorithm. *)

end; (*rectangleVector *)

dDimPoint = object (obj)

procedure randomChange; override;
(* The global variable ‘currentRandomConstraint’ is interpreted as a rectangle. ¥)

function distance (p: dDimPoint) : extended:;
(* Computes the Euclidean distance between the d-dimensional points ‘self’ and ‘p’. *)

end; (* dDimPoint *)

dDimCircle = object (obj)

procedure randomChange; override;
(* The global variable ‘currentRandomConstraint’ is interpreted as a rectangle. *)

function inCircle (p: dDimPoint): boolean;
. (* Tests whether the d-dimensional point ‘p’ is inside the d-dimensional circle ‘self”. *)

function inCircleEps
(p: dDimPoint; tolerance: extended) : boolean;
(* Tests whether the d-dimensional point ‘p” is in the d-dimensional circle ‘self’ whose
radius is enlarged by a factor of (1 + ‘tolerance’). *)

80

B s S A e

T L e i S

B s T e

et

e

NI -

procedure makeDisk (l: list);

(* Creates the smallest disk in d-space having the d-space points from ‘I’ on the
boundary. *) ’

procedure makeFromPointCircle (p: dDimPoint; c: dDimCircle);
(* Creates the smallest circle through ‘p’ and ‘¢’ with ‘not inCircle(p)’. ¥)

function randomPoint: dDimPoint;
(* Creates a uniformly distributed random point inside the disk. *)

end; (*dDimCircle *)

dDimPointVector = object (homogenVector)

function minimalDisk
(tolerance: extended; initialize: boolean): dDimCircle;
(* Computes the minimal area disk that contains the given points. The radius is correct
within a factor of (1 + ‘tolerance’), i.e. the radius is exact if ‘tolerance = 0. If
‘initialize = true’ the algorithm is initialized with the pair of points that have the
largest coordinate difference in any direction. *)

function simpleMinimalDisk
(shuffle, initialize: boolean): dDimCircle;

(* Computes a disk containing all given points using a heuristic that is guaranteed to
produce a circle whose radius is at most twice as large as the radius of the minimal
area disk. If ‘shuffle = true’ the points are randomly shuffled before the algorithm
starts since it depends of the order of the input data points. The parameter ‘tolerance’
has the same meaning as in the previous method. *)

function worstSimpleMinimalDisk: dDimCircle;
(* Rearranges the points in such a way that the worst case order for the previous
enclosing disk algorithm is achieved. This algorithm has running time proportional
to the factorial of the number of given points. ¥)

function containedInCircle (c: dDimCircle): boolean;
(* Tests whether all given points lie inside the d-dimensional circle ‘c’. *)

function projectOnXY: pointVector;
(* Projects the given points on the x-y-plane and produces a collection of 2-dimensional
points (type ‘point2d’). *)

end; (*dDimPointVector *)

81

Appendix A: Syntax of the textual /O format

Axiom of the grammar is ‘List’, i.e. GeoBench expects a list of objects as

textual input.

Digit
Natural
Integer
Real
Float

String

Circle

ConvexPolygon
ColorQuickDrawPicture

DDimCircle
DDimPoint

DDimPointVector
DirectedGraph

FloatPoint
GraphEdge
HomogenVector
Int
IntegerPoint
Layer
‘LayerVector
LineSegment
LineSegmentVector
List .
MarkedRealPoint

Polygon
PolyLayer

PolyLayerVector
PolyLine
PointVector
QuickDrawPicture
RealPoint

Rectangle

82

wnnwnu

]

L.

] non

I unn [

it

nunn

nwn I}

‘0’1‘1,“2, I &39 l «4a I £5?|66$ I «77 I 581 ' 19v

Digit { Digit }
[¢’ 1 Natural
Int:g:;l[‘.’ml\rI:ltum;l] [‘E’[‘+’1‘~"] Natural]
Nal Na Re
(* base precision value *)
& Char [Cha.r] “ar
(* Char # " *)
‘¢ ‘CIR’ Real Real Real
(* x y radius *)
‘¢ ‘CPL’ PointList
‘¢ ‘cQp’ Real Real Real Real
(* left bottom right top *)
‘¢ ‘DCr Coordinateliist Real
(* coordinates radius *)
‘C ‘DPT’ CoordinateList
(* coordinates *)
‘¢ ‘DPV’ DDimPointList
‘C ‘DGR’ Vector Homogen Vector
(* vertices edges *)
‘¢ ‘FPT’ Float Fioat
(*xy¥)
‘C ‘GED’ Integer Integer
(* startVertex end Vertex *)
‘C*HVC HomogenObjectList
‘¢ “INT” Integer
‘C‘IPT %ritcger I)nteger
xy¥*
‘¢ ‘LAY’ Real Real Vector
(* z thickness objects *)
‘C LAV’ Real Vector
(* dz objects *)
‘{C ‘LSG’ Point Point
‘¢ LVC LineSegmentList
‘C‘LST’ ObjectList
‘¢ ‘MRP’ Real Real Str
(* x y mark *)
‘¢ ‘POL’ PointList
‘" ‘PLA’ Real Real Vector
(* z thickness objects *)
‘C ‘PLV’ Real Vector
(* dz objects *)
‘¢ ‘PLI PointList
‘CPVC PointList
‘(" ‘QDP’ Real Real Real Real
(* left bottom right top *)
‘C ‘RPT’ Real Real
. “ (* Xy *
(¢ ‘REC’ Real Real Real Real
(¥ left bottom right top *)

3%

e e =

RectangleVector

SimpleUndirectedGraph

SpanningTree
Spline2
Splinegon

Str

StraightEdge
UndirectedGraph

Vector
VoronoiEdge

VoronoiDiagram

CoordinateList
DDimPointList
HomogenObjectList
LineSegmentList
ObjectList

Point
PointList

RectangleList

Object

1]

nmunn

/)

]

‘C RVC’ RectangleList
‘¢ ‘SUG’ Vector Homogen Vector
(* vertices edges *)
‘¢ ‘SPT” Vector HomogenVector
(* vertices edges *)
‘¢ ‘Sp2’ RealPoint RealPoint
‘E’ S%’ (S)bjectList
Y& I Ein g
‘¢ ‘SED’ RealPoint RealPoint
‘(C ‘UDG’ Vector HomogenVector
(* vertices edges *)
‘(‘VEC ObjectList
‘(" ‘“VED’ Integer Point Point [Point] [Point]
(* edgeType pl p2 vl v2 #)
‘C VDG’ PointVector List List
(* points edges neighbors *)

Integer { Integer }

(* dimension coordinates *)
Integer { DDimPoint } |

(* length elements *)

Integer { Object }

(* Iength elements *)

Integer { LineSegment }

(* length elements *)

Integer { Object }

(* length elements *)

RealPoint | FloatPoint | IntegerPoint
Integer ({ RealPoint } | { FloatPoint } | { IntegerPoint })

(* length elements *)
Integer { Rectangle }
(* length elements *)

3%

Circle | ConvexPolygon | ColorQuickDrawPicture | DDimClircle |

DDimPoint | DDimPointVector | DirectedGraph | FloatPoint |
GraphEdge | HomogenVector | Int | IntegerPoint | Layer |
LayerVector | LineSegment | LineSegmentVector | List |
MarkedRealPoint | Polygon | PolyLayer | PolyLayerVector |
PolyLine | PointVector | QuickDrawPicture | RealPoint |
Rectangle | RectangleVector | SimpleUndirectedGraph |
SpanningTree | Spline2 | Splinegon | Str| StraightEdge |
UndirectedGraph | Vector | VoronoiEdge | VoronoiDiagram

83

Appendix B: Changes to TransSkel V2.02 in GeoBench

The Version of TransSkel V2.02 [DB 89] used by GeoBench was extended as
follows:

1. Hierarchical Menus

function SkelMenu
(theMenu: MenuHandle;
pSelect, pClobber: ProcPtr;
drawBar, hierarchical: boolean): boolean;

If ‘hierarchical’ is false, the function behaves as in the original TransSkel. If
‘hierarchical’ is true, the menu is inserted in the hierarchical portion of the
menu list. These menus can be used as hierarchical or pop-up menus (the
‘beforelD’ parameter to ‘InsertMenu’ is -1, see Inside Macintosh, Vol. V, p.
236).

2. Delayed scrap operations

procedure SkelApple
(aboutTitle: str255;
aboutProc, deskAccProc, resumeProc: ProcPtr);

The two new procedure parameters serve to control delayed execution of the
standard Cut and Copy commands of the Edit menu. If the two new parameters
are ‘nil’, the behavior is as in the orlgmal version of TransSkel. The
“deskAccProc’ of the form

procedure myDeskAccOpenHandler;

is called whenever a desk accessory is called under the old finder. The internal
scrapbook should be written to the external scrapbook in this case (In older
Mac OS versions this procedure is also to inform when the user switched
applications in multifinder).

The ‘resumeProc’ of the form
pProcedure myResumeHandle (resume:- boolean);

1s called whenever another application is activated under System 7. The
‘resume’ flag tells you whether your application has been resumed or
suspended. The flag ‘acceptSuspendResumeEvents’ of the 'SIZE' resource
should be set in order to get the corresponding events from the system. See
Inside Macintosh Vol. VI, p. 5-14 and 5-19 for more information.

The procedures ‘SkelSetWindResume’ and *SkelGetWindowResume’ have been

84

e e ey e e e+ a9

[ESS————

P

e g e ey

removed because they were buggy and because the suspend / resume event is
actually not window-related.

3. Window growing

function SkelWindow
(theWind: WindowPtr;
pMouse, pKey, pUpdate, pGrow, pActivate,
pClose, pClobber, pIdle: ProcPtr;
frontOnly: boclean): boolean;

The procedure ‘pGrow’ is called after the user has resized the window. The
boolean parameter to the ‘pUpdate’ procedure has been removed. Warning:
Do not use update procedures which still have this parameter! Annoying,
unrelated crashes are the result. Instead, use procedures of the following style:

procedure myUpdateHandler;
procedure myGrowHandler;

In the original version of TransSkel, the whole window was redrawn after
resizing a window. Now, only the part which was not visible before sizing is
redrawn. To have the whole window redrawn, just insert the statement
‘InvalRect(thePortA.portRect)’ in your grow handler.

References

[Brii 91] A. Briingger: Schichtenmodelle in der XYZ GeoBench, Diploma
Thesis, ETH Ziirich, February 1991.

[DB89] TransSkel version 2.02 — Transportable application skeleton,
written by Paul DuBois, Wisconsin Regional Primate Research
Center, 1220 Capital Court, Madison WI 53706 USA, e-mail:
dubois@rhesus.primate.wisc.edu

[NB91] J. Nievergelt, P. Schorn, M. De Lorenzi, C, Ammann, A.
Briingger: XYZ: A project in experimental geometric computation,
submitted, May 1991.

[S91a] P. Schorn: Robust Algorithms in a Program Library for Geometric
Computation, ETH PhD Dissertation 9519, 1991.

[S91b] P. Schorn: The XYZ GeoBench: A programming environment for
geometric algorithms, submitted, May 1991

85

Gelbe Berichte des Departements Informatik

145

146

147

148

149

150

151

152

153
154
155

156

157
158

159
160
161

162

J. Mdssenbock
H. E. Meier

G. Weikum, P. Zabback,
P. Scheuermann

D. Degiorgi
A. Moenkeberg,
G. Weikum

M.H. Scholl, Ch. Laasch
M. Tresch

C. Szyperski

M. Bronstein

G.H. Gonnet, D.W. Gruntz
G.H. Gonnet, St.A. Benner

D. Crippa
R. Griesemer

C. Pfister (ed.), B. Heeb,
J. Templ

T. Weibel, G. Gonnet

M. Scholl (ed.)
K. Gates
H. Mossenbdck
S. Lalis

G. Weikum, C. Hasse

She: A Simple Hypertext Editor for Programs
(vergriffen)

Schriftgestaltung mit Hilfe des Computers
Typographische Grundregeln (vergriffen)

Dynamic File Allocation in Disk Arrays (vergriffen)
A New Linear Algorithm to Detect a Line Graph and
Output its Root Graph

Conflict-Driven Load Control for the Avoidance of
Data-Contention Thrashing

Updatable Views in Object-Oriented Databases
(vergriffen)

Write - An extensible Text Editor for the Oberon
System

On Solutions of Linear Ordinary Difierential
Equations in their Coefficient Field

Algebraic Manipulation: Systems (vergriffen)
Computational Biochemistry Research at ETH

A Special Case of the Dynamization Problem for
Least Cost Paths

On the Lineatization of Graphs and Writing Symbol
Files .
Oberon Technical Notes

An Algebra of Properties

Grundlagen von Datenbanken (Kurfassungen
des 3.Gl-Workshops, Volkse, 21. - 24.5.91)

Using Inverse lteration to improve the Divide and
Conquer Algorithm

Ditierences between Oberon and Oberon-2
The programming Language Oberon-2

XNet: Supporting Distributed Programming in the
Oberon Environment

Multi-Level Transaction Management for Complex
Objects: Implementation, Performance, Parallelism

