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Abstract

TCP’s success is in part due to its ability to deal with congestion, yet congestion control remains an
important topic for today’s Internet protocols. Over time, several enhancements have been proposed that
improve TCP Reno’s congestion control mechanism, e.g., FACK TCP, Rate-Halving, and TCP Vegas.
Most of these enhancements are motivated and evaluated by simulations or small-scale experiments. To
assess the effectiveness of these improvements in practice, we performed an Internet experiment during
six months using a set of hosts in North America and Europe. We measured protocol dynamics of about
25,000 bulk-data transfers using various congestion control mechanisms.

Although this study is limited in that it provides only a snapshot of a small part of the rapidly chang-
ing Internet, it allows us to draw the following conclusions when comparing the proposed TCP enhance-
ments to the baseline Reno protocol: Overall, SACK-enhanced protocols are more robust against packet
loss (for loss rates smaller than 10 %). As a consequence, they achieve significantly higher bandwidths.
Furthermore, these protocols utilize the available network resources more efficiently as they cause fewer
unnecessary retransmissions. The global nature of our experiment allows us to see that the benefit of
SACK-enhanced protocols varies widely, e.g., it is almost a factor two bigger for intra-continental than
for inter-continental connections. Vegas-style congestion window management during the congestion
avoidance phase moderately improves on the number of (multiple) packet loss events, but it does so at
the expense of lower throughput.

These findings are supported by protocol micro-measurements: SACK-enhanced protocols (i) are
highly effective in avoiding timeouts due to burst losses and due to non-trigger of recovery and (ii)
are able to detect and repair lost (fast) retransmissions. Furthermore, we show that Rate Halving’s
congestion control strategy is a win in situations with small congestion windows, because it is able
to evoke additional duplicate acknowledgments and thus reduces the number of non-trigger timeouts.
Nonetheless, non-trigger timeouts still account for a significant fraction of the timeouts experienced
by Rate Halving. Although Rate-Halving’s retransmission strategy is more conservative than FACK’s,
overall, Rate-Halving coupled with lost retransmission detection experiences fewer timeouts.

1 Introduction

Congestion is a serious problem for today’s wide-area networks. Congestion is bad for users and applica-
tions, but it is also bad for the network: when a packet encounters congestion, there is a good chance that
the packet is dropped, and the dropped packet wasted precious network bandwidth along the path from its
sender to its untimely death.

TCP’s success as the most widely used Internet transport protocol is due, in part, to its ability to deal with
congestion. Nonetheless, various studies identified shortcomings of TCP’s congestion control mechanisms
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and proposed techniques to improve both data recovery and congestion control. These improvements have
been evaluated mainly with simulations and in some cases with restricted field tests. However, to date there
has been no large-scale comparative evaluation of the suggested TCP enhancements. Although simulations
are a valuable tool to understand protocol dynamics and the interaction of various protocols, no amount of
simulation can provide a satisfactory assessment of the effectiveness of a protocol, given a complex and
rapidly changing environment such as the Internet.

To obtain a better understanding of the various techniques suggested for data recovery, congestion
avoidance, and congestion recovery, we implemented several promising techniques (TCP Vegas [8], FACK
TCP [23], Rate-Halving [24], and Lost Retransmission Detection [24]) and performed an in-vivo evalua-
tion in the Internet. This paper describes the experiment and reports how the above enhancements compare
against the “classical” congestion control scheme included in TCP Reno [32].

The remainder of the paper is organized as follows: Section 2 introduces congestion control in TCP
Reno and some of the enhancements proposed for it. Section 3 presents related work in the area of protocol
evaluation. The protocol framework developed to evaluate these protocol enhancements is described in
Section 4. The evaluation methodology and the detailed setup of the experiements are outlined in Section 5
and Section 6. Section 7 provides an overview of the evaluations performed. Sections 8–12 present all the
evaluations in turn. Finally, Section 13 summarizes our findings.

2 End-to-end congestion control

TCP Reno is the most widely used transport protocol today, and although its designers paid great attention
to the behavior under congestion, various improvements have been suggested. In this section, we briefly
review congestion control in TCP Reno, some of its weaknesses, and some of the enhancements proposed.

2.1 Congestion control in TCP Reno

TCP Reno maintains a so-called “congestion window” (cwnd) and tries to keep its size proportional to the
available bandwidth. Since today’s networks do not provide explicit feedback about the currently available
bandwidth to an end-point, the protocol itself has to estimate this value by exploiting implicit feedback from
the network, such as the time between sending a packet and receiving an acknowledgment for it. While
sending data, the amount of data outstanding (i.e., unacknowledged by the receiver) must never exceed
the size of the congestion window (and the size of the buffer available at the receiver). To determine and
adapt the size of the congestion window to the bandwidth available, TCP Reno operates in three phases:
slow-start [17], congestion avoidance [17], and congestion recovery [18, 31].

At start-up, the congestion window is set to the size of one packet. During the following slow-start
phase, the congestion window is exponentially opened to allow the sender to quickly increase the send rate
to find the available bandwidth. Unless packet loss occurs, the congestion window is opened until the slow-
start threshold value ssthresh is reached, at which point the opening is slowed down (i.e., it becomes linear)
and the congestion avoidance phase (i.e., the steady state) is entered. In this phase, TCP attempts to send
packets at the maximum rate that avoids packet loss and to find out about opportunities for additional data
transmission. That’s why, even in steady state, TCP slowly attempts to increase the send rate.

Acknowledgments in TCP Reno are cumulative, that is, they acknowledge the reception of all packets
up to the sequence number contained in the acknowledgment. In case of receiving an out-of-order packet,
a TCP receiver cannot generate an acknowledgment for this packet, instead the receiver has to send another
acknowledgment for the latest received in-order packet, a so-called “duplicate acknowledgment”. After
having received three such duplicate acknowledgments, a TCP sender assumes that the next packet to be
acknowledged got lost and enters the congestion recovery phase�: The “fast retransmit” algorithm [18,

�Note that both packet loss and packet re-orderings make a receiver generate duplicate acknowledgments. Since packet re-
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31] retransmits the lost packet (“fast retransmission”). On sending the fast retransmission, the congestion
window is halved to allow the network to recover from the congestion that is assumed to have caused the
packet loss. The “fast recovery” algorithm [18, 31], which sets in after the fast retransmission, attempts
to maintain TCP’s self-clock [17]. It does so by estimating the amount of data that remains outstanding
in the network and hence by controlling the amount of new data that is allowed into the network (“packet
conservation principle”). When TCP has recovered from the data loss (i.e., when the lost packet has been
acknowledged), it leaves the congestion recovery phase and enters the linear window growth regime of
congestion avoidance.

Since the loss of duplicate acknowledgments or a small congestion window can prevent a sender from
triggering a fast retransmission, TCP Reno additionally sets a timeout on every transmitted packet. If a
packet remains unacknowledged for the duration of the timeout period, the packet is retransmitted, ssthresh
is set to half of the current size of the congestion window (i.e., ssthresh now contains a “safe” value),
which itself is then set to the size of one packet, and a slow-start is performed. Therefore, the bandwidth is
drastically reduced in case of a timeout. This effect is aggravated by having timeout values in the range of
seconds to cope with variations of the time between a packet is sent and the arrival of its acknowledgment
(which very often lies in the range of milli-seconds). These settings cause large gaps between the loss of a
packet and the realization of a timeout, and during this gap, no data is sent at all.

2.2 TCP shortcomings and enhancements

We categorize the shortcomings in TCP’s congestion control and data recovery mechanisms and the reme-
dies proposed in the literature according to the congestion control phase affected.

2.2.1 Initial slow-start

The static initial slow-start threshold very often leads to overshooting the available bandwidth during the
exponential opening of the congestion window. This overshooting frequently results in multiple packet loss.
Two approaches that address the problem of overshooting ssthresh have been proposed:

� Hoe [16] tries to avoid this overshooting by estimating the bandwidth available to a connection and
hence the initial value of ssthresh based on round-trip time measurements of the first few packets sent.

� TCP Vegas [8] opens cwnd more conservatively and tries to anticipate congestion (see below).

2.2.2 Congestion avoidance

TCP Reno’s non-adaptive “linear increase” mechanism in the congestion avoidance phase results in periodic
self-induced packet loss. TCP Vegas [8] attempts to avoid the occurrence of this phenomenon by adapting
the congestion window to the capacity of the network-path; the capacity is deduced from delay measure-
ments (of this network-path). As a consequence, TCP Vegas opens the congestion window only if additional
capacity becomes available and reduces the congestion window in case of incipient congestion.

2.2.3 Congestion recovery: Shortcomings

The fast retransmit algorithm is optimized for the case of a single packet loss in a window. Several studies
have shown that TCP Reno has performance problems when multiple packets are dropped from a single
window [12, 16, 11]. Figure 1 illustrates the problems with sequence plots of a 1 MB transfer from Linz

orderings should not result in a fast retransmission, TCP assumes that a packet got lost only after having received three duplicate
acknowledments.
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Figure 1: Multiple loss scenario (transfer Linz – Munich)

(Austria) to Munich (Germany). A sequence plot shows the sequence number of every packet transmit-
ted and the time of its transmission by the sender. It also contains the sequence number reported by an
acknowledgment and the time of its reception.

The protocol used for the transfer in Figure 1 is our user-level implementation of TCP Reno (see Sec-
tion 4). The figures on the left side show the entire transfer. The figures on the right side zoom in on the
first multiple loss event. The top figures show the sequence plots, where dropped packets are marked with
“X” and multiple losses are encircled. The lower figures depict the size of the congestion window during
the course of the connection. Note how the packet losses match the reductions of the congestion window
size.

Packets 85, 86, and 88 are dropped from the same window of data. These losses lead to two fast
retransmit/fast recovery cycles and to two halvings of the congestion window. With TCP Reno, only one
loss can be recovered per round-trip time [11]�. Because of this limitation, and since the congestion window
is reduced once per packet dropped, the third packet loss can no longer be recovered by a fast retransmit and
a timeout has to be awaited (at t � ����s).

To sum up, TCP Reno suffers from the following two problems in case of multiple packet loss:

Data recovery Reno’s data recovery algorithm allows to retransmit only one dropped packet per round-trip
time.

Multiple window halvings Instead of taking the burst loss as the congestion signal upon which to reduce

�A fundamental consequence of the exclusive use of cumulative acknowledgments (i.e., the absence of selective acknowledg-
ments) is that the sender has to choose from two alternatives to recover from lost data [11]: (i) retransmitting at most one dropped
packet per round-trip time (TCP Reno), or (ii) retransmitting packets that might have already been successfully delivered (TCP
Tahoe).
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the congestion window, Reno’s congestion control treats each packet from the burst of packets dropped
as an independent congestion signal resulting in multiple congestion window halvings.

The following three problems cannot be seen directly from Figure 1, but are also inherent to TCP Reno:

Data in flight TCP Reno assumes that all the packets with sequence numbers higher than the one of the
fast retransmission are still in flight upon entering a recovery and it considers the arrival of a duplicate
acknowledgment a signal for such a packet having left the network and hence as an opportunity to send
new data. Clearly, in case of multiple packet loss, but also in case of lost duplicate acknowledgments,
TCP overestimates the number of packets still in flight, which inhibits the sending of new data.

Non-trigger Lost duplicate acknowledgments or multiple packet loss (which inhibits the generation of
duplicate acknowledgments) may prevent TCP from triggering a fast retransmission for a lost packet,
and the loss has to be fixed by a timeout.

Repeated loss The loss of a fast retransmission always leads to a timeout.

2.2.4 Congestion recovery: Enhancements

Several remedies to TCP’s shortcomings have been proposed in recent years, which are briefly reviewed
here:

Data recovery The use of selective acknowledgments (SACKs) [25], which not only cumulatively ac-
knowledge packets up to a certain sequence number, but also report packets received out-of-order, al-
lows to retransmit more than one dropped packet per round-trip time: Instead of transmitting new data
during congestion recovery, TCP implementations exploiting the information provided by SACKs
(e.g., SACK TCP [11] and FACK TCP [23]) first retransmit not yet selectively acknowledged data.
New data is transmitted only if all packets in any such “hole” have already been retransmitted.

Rate-Halving [24], an enhancement of FACK TCP, also retransmits not yet selectively acknowledged
data, but achieves a clearer distinction between data and congestion recovery: For a packet in a “hole”
to become eligible for a retransmission, three SACKs selectively acknowledging packets with higher
sequence numbers than the one of the candidate for a retransmission have to arrive. Thus, Rate-
Halving applies the logic used for triggering a fast retransmission to trigger retransmissions of packets
in a “hole”.

Multiple window halvings Observations based on Hoe’s work [16] suggest a simple fix of TCP Reno,
which treats multiple packet loss as a single congestion signal to avoid multiple reductions of the
congestion window: NewReno [14], SACK TCP, and FACK TCP leave recovery only after all pack-
ets sent before the recovery have been acknowledged. Note that NewReno, as opposed to the TCP
versions using SACKs, is not able to retransmit more than one packet in a round-trip time: After re-
transmitting a packet, it has to wait for a partial acknowledgment (i.e., an acknowledgment for some,
but not all of the data outstanding at the beginning of a recovery) to find out which packet (if any) has
to be retransmitted next.

Data in flight The forward acknowledgment (FACK) [23] algorithm exploits the information present in
SACKs to better estimate the amount of data outstanding in the network during the congestion recov-
ery phase, and thus allows to (re)transmit (new) data earlier and to better maintain TCP’s self clock:
FACK considers all packets with lower sequence numbers than the highest sequence number selec-
tively acknowledged having left the network (except for retransmissions). Only packets with higher
sequence number and retransmissions are assumed to be in flight. Therefore, FACK’s estimation of
the amount of data outstanding is robust in the face of multiple packet loss and the loss of duplicate
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acknowledgements, as long as the duplicate acknowledgements received by the sender convey the
highest sequence number of all out-of-order packets received by the receiver.

Non-trigger The information provided by SACKs can be exploited to enhance the condition to trigger
fast retransmit/fast recovery: FACK TCP additionally enters the recovery phase when the difference
between the highest sequence number selectively acknowledged and the sequence number of the next
data packet to be acknowledged is larger than two packets. Note that in case of a single packet
loss and no losses of duplicate acknowledgments, this condition is identical to the original condition,
which triggers recovery after receiving three duplicate acknowledgements. Again, this enhancement
increases TCP’s robustness in the face of the loss of duplicate acknowledgments and multiple packet
loss.

Repeated loss SACKs allow to circumvent the problem of lost retransmissions: Rate-Halving associates
every retransmitted packet with the sequence number of the next data packet to be sent containing
new data. As soon as a packet whose sequence number exceeds this cached value is acknowledged,
and the retransmitted packet has not been (selectively) acknowledged, Rate-Halving assumes that the
retransmission has also been lost and schedules the packet for another retransmission.

2.3 Goal

This paper attempts to evaluate some of the enhancements in a real-life setting. One purpose of such an
experiment is that it allows us to confirm (or challenge) earlier simulations or measurements. The Internet
continues to change, and simulations are unlikely to capture the mix of fast and slow links that is encoun-
tered by an actual transfer. Reliance on historical data alone may lead to incorrect conclusions. Another
forward-looking benefit is that an understanding of the effectiveness and shortcomings of the proposed
enhancements may direct protocol developers to those areas that exhibit opportunities for further improve-
ments. Additional to the evaluation of the enhancements, the amount of data collected also allows us to
draw general conclusions about the state (e.g., packet loss rate) of the Internet during our experiments.

3 Related work

The enhancements to TCP’s congestion control mechanisms proposed by Lin et al. [22] and Balakrishnan et
al. [4] have not been included in our study, because they were published after our experiments had started.
Apart from the simulations and experiments conducted by the designers of the various protocol enhance-
ments, there are only a few independent studies that try to evaluate the effectiveness of these enhancements.
Some protocol enhancements, such as Rate-Halving, have not yet been evaluated thoroughly by live experi-
ments, and most others have mainly been tested in a restricted environment.

In a simulation study, Fall et al. [11] show how SACKs allow TCP to deal with multiple packet loss and
retransmit more than one packet in a round-trip time. Bruyeron et al. [9] compare SACK TCP to TCP Reno,
both in a lab testbed and over two Internet paths. For the latter case, SACK TCP is reported to achieve
throughput achievements ranged between 15% and 45%.

Simulations are performed by the inventors of the FACK algorithm to evaluate the effectiveness of FACK
TCP’s improved estimation of the data currently in-flight [23]. FACK TCP is considered less bursty than
SACK TCP and superior to SACK TCP in phases of heavy loss.

Based on WAN emulations and live experiments between two fixed Internet hosts in North America, Ahn
et al. [1] found that TCP Vegas has a smaller and less fluctuating mean RTT, causes fewer retransmissions,
and achieves higher throughputs than TCP Reno.

Hoe [16] pursues the same evaluation strategy to demonstrate that TCP Reno obtains better performance
during slow-start by dynamically estimating ssthresh and treating partial acknowledgments as indication of
lost segments.
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4 Protocol framework

To evaluate some of the TCP enhancements presented in Section 2.2, we need both an implementation of
these enhancements and an environment to evaluate them. This section deals with the first issue. Section 5
addresses the second issue.

An implementation of the protocols for the purpose of a large-scale comparative study based on Internet
experiments has to account for the following difficulties: portability, ease of deployment, and flexibility in
selecting and parametrizing the protocol to be used for an experiment.

4.1 User-level protocols

Protocols like TCP have been implemented in user space before [10, 33], but usually efficiency concerns
motivate a kernel implementation. A user-level implementation may involve additional copies from user to
kernel space, or may constrain the applications on where received data can be kept. Since this experiment
aims at investigating the effectiveness of protocols in controlling congestion (i.e., a network property), host-
side concerns are of secondary importance (since we can take appropriate action to make sure that host-
side behavior does not influence our measurements). Even though, kernel implementations may require
fewer copy operations, our user-level implementation is capable of delivering competitive performance (see
Appendix A.4). To allow a study that involves many hosts, we cannot rely on OS changes, and we must run
our protocol in user mode.

The major motivation for implementing the protocols in user space, however, is that the experiment must
allow an external selection of the protocol to be used. Our base transport protocol includes the congestion
control mechanisms of TCP Reno, but differs in some aspects from TCP (see Appendix A for a detailed
discussion), however, these differences do not affect congestion control. The most important aspect is that
our transport protocol is packet-streaming (and not byte-streaming as TCP). Therefore we use the term
packets instead of segments in this paper.

Our transport protocols run on top of UDP instead of directly on top of IP, and therefore they must live
with the restricted information provided by UDP; for example, no ICMP Source Quenches. However, none
of these disadvantages affects the results of this study, and placing the protocol in user mode made the wide
distribution of our evaluation system possible.

4.2 Flexible, dynamically parameterisable protocol implementation

To ensure that our experiments measure properties of the protocols, we have to be sure that all protocols are
implemented in the same way. As stated in Section 2.1, TCP operates in three phases: slow-start, conges-
tion avoidance, and congestion recovery. Protocol enhancements proposed in the literature often address a
specific problem that can be localized in/attributed to one of these phases. So to maximize code reuse (or
code sharing), we derive as much code as possible from a common code base (i.e., our implementation of
TCP Reno). Then each enhancement can be viewed as selecting a different “strategy” for the corresponding
phase (i.e., an application of the strategy pattern [15]). For example, TCP Vegas describes an alternative
to linearly increasing the congestion window in the congestion avoidance phase. Additionally, by splitting
the congestion recovery phase into three building blocks (i.e., actions to be performed upon entering, being
in, and leaving a recovery phase), we can easily replace the default behavior of TCP Reno by, for example,
NewReno’s new way of leaving a recovery, or FACK TCP’s extended condition to enter a recovery.
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5 Experimental setup

5.1 Control of experiments

Our goal is the evaluation of TCP protocol enhancements. The continuously changing nature of the Internet
presents us with the problem that we are unable to repeat a test under the same conditions with a different
protocol. However, we can obtain a picture of the average behavior of some path by performing the same
experiment several times for every protocol type. But such data collection presents us with another problem:
to find a typical Internet path that can be used for our tests. Even if such a path exists, it may be impossible
to find it. Observing a large number of different network paths with differing characteristics (e.g., short vs.
long round-trip times, high vs. low loss rates, etc.) — instead of observing just a single path — at least
reduces the risk that conclusions about protocol-related properties are fooled by specific properties of the
underlying network path.

Therefore, we recruited a number of Internet sites and distributed our protocol implementation and a
simple application that can issue/participate in a transfer of n bytes length using a specified protocol p with
a set of parameters s. (Section 6.3 provides details on the parameters n� p� s used in our experiment). To
operatively control the experiment, we adopted Paxson’s measurement framework, consisting of the network
probe daemon (NPD), which is installed at each participating site, and a control program, which is run on
our local workstation [30, 28]. At randomly chosen moments, the control program then chooses two sites
(a source and a sink) and a protocol p, contacts the NPDs at both sites and asks them to carry out a probe,
that is, a transfer of n bytes using the protocol p specified. The transfer is monitored as described below and
the traces are sent back to the controller for further analysis. The measurement intervals, that is the intervals
between measurements of the same connections, are taken from an exponential distribution. Therefore,
the measurements correspond to additive random sampling. This kind of sampling is unbiased because
it samples all instantaneous signal values with equal probability. Paxson [30] explains that with such a
sampling, asymptotically, the proportion of the measurements that observe a given state should be equal to
the amount of time that the Internet spends in that state. And since we choose the protocol to be used by a
given measurement probe randomly from a uniform distribution, we can easily compare protocols based on
the measurements collected by comparing the respective distributions.

Furthermore, note that due to possible asymmetries of the routes or the properties of the shared network
path between two hosts [30], N hosts allow us to observe N � �N � �� different network paths. Therefore,
a fairly modest number of participating sites allows to measure the dynamics of a reasonable number of
different network paths.

5.2 Data collection

There exist two options for the design of a monitoring and analysis system that can provide detailed in-
formation. With off-line analysis (outside the protocol stack), the system records a lot of events that are
subsequently interpreted. tcpdump [20] is a well-known example of this approach, and although it can
provide a wealth of data without perturbing the protocol operations, it is extremely difficult to reconstruct
information about protocol internals (such as the number of timeouts, size of the congestion window, the
packets that are dropped, etc.) from the packet traces [30]. The problems are exacerbated if the monitoring
of the connection is done at a different host on the same LAN as the host running the protocol stack to be
analyzed [30], but such an arrangement is desirable to reduce perturbations caused by the monitoring.

On the other hand, on-line monitoring and analysis (within the protocol stack) have the advantage of
having all the relevant information about protocol internals readily available (i.e., there is almost no ad-
ditional computation needed to infer relevant information). Furthermore, this approach is easily extended
to capture those aspects of the protocol dynamics that are relevant for a particular study. However, active
monitoring and on-line analysis consume CPU resources and therefore may perturb the results slightly.
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Since our experiment configuration requires only a moderate amount of data to be logged, we chose the
second option. To minimize the impact of data collection, our implementation takes care to avoid unneces-
sary I/O so that the processing overhead stays within acceptable bounds. Another reason that influenced our
decision for the second approach is that it can be extended easily to support network-aware applications [6],
which need up-to-date information about the status of the network (and the protocol) at run-time.

5.3 Limitations

This paper merely presents a snapshot of six months of measurements; without doubt, the Internet has
changed by now. Furthermore, we used a limited number of host pairs that may not be representative for the
totality of Internet paths. However, measurements from this restricted group of hosts is more informative
than just observing one path, using a dedicated network, or simulations alone.

Another issue that we cannot address is the fairness of a protocol. We cannot assess the influence a large-
scale deployment of one TCP enhancement may have on other connections or on the Internet as a whole.
An investigation of this aspect remains future work, and given the complexity of such an investigation,
simulations may provide the most practical approach.

We have every reason to believe that our conclusions carry over to TCP. However, since we started with
a new implementation of the protocol and the enhancements discussed in this paper, we cannot comment on
the difficulty to fit these enhancements into one of the more popular TCP implementations.

6 Experiments

6.1 Protocols implemented

From the enhancements listed in Section 2.2, we chose the most promising ones (i.e., TCP Vegas, FACK
TCP, and Rate-Halving) and added them to our user-level implementation of TCP Reno. In the case of
TCP Vegas, we implemented only its modified behavior during congestion avoidance, and we omitted the
proposed changes to slow-start and congestion recovery. This omission allows us to more clearly evaluate
the effects of the first change.

We refer to the various protocols in this paper as follows:

Reno: Baseline, TCP Reno congestion control;

Forward acknowledgment (FACK): SACK TCP with congestion recovery based on the forward acknowl-
edgment algorithm�;

Rate-Halving (RH): Retransmission strategy that waits for three SACKs for each of the packets lost, con-
gestion recovery strategy that avoids the instantaneous halving of cwnd on entering recovery and
instead continually lowers cwnd, such that it is halved after one RTT;

Lost Retransmission Detection (LRD): Rate-Halving plus detection and repair of lost retransmissions;

Vegas: TCP Reno’s slow-start and congestion recovery phase combined with a TCP Vegas-style congestion
avoidance phase (i.e., RTT measurement, estimation of available bandwidth, and cwnd adaptation).

6.2 Participating hosts

The sites recruited for our in-vivo Internet experiment are listed in Table 1. From every site, at least one
host participated in our experiments. For this report, we exclude campus-wide connections and concentrate
on protocol behavior in wide area networks.

�Note that our SACKs acknowledge packets instead of blocks of bytes, see Appendix A.2 for details.
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Host domain Machine type Operating system Location
North America

lcs.mit.edu Sun Sparc Solaris 2.5 Cambridge, MA
ics.uci.edu Sun Sparc Solaris 2.5 Irvine, CA
uwaterloo.ca DEC Alpha Digital UNIX 3.2 Waterloo, Canada
research.digital.com DEC Alpha Digital UNIX 3.2 Palo Alto, CA
cs.cmu.edu DEC Alpha Digital UNIX 4.0 Pittsburgh, PA

Europe
inf.ethz.ch SGI IRIX 6.2 Zurich, Switzerland
unibe.ch Sun Sparc Solaris 2.5 Bern, Switzerland
cie.uva.es Sun Sparc Solaris 2.5 Valladolid, Spain
ssw.uni-linz.ac.at Sun Sparc Solaris 2.5 Linz, Austria
abo.fi Sun Sparc Solaris 2.6 Turku, Finland
e-technik.tu-muenchen.de DEC Alpha Digital UNIX 4.0 Munich, Germany

Table 1: Participating hosts.

6.3 Parameters

The NPDs at the sites listed are contacted by the central controller at random intervals. The measurement
times are chosen such that each network path between two of the NPD sites is probed with a mean interval
of 10 hours and that the inter-measurement intervals obey an exponential distribution (i.e., on average, each
site participates once per hour in a measurement).

Each probe is characterized by the tuple (p, n, s), where p specifies the protocol to be used�, n the
number of bytes to be transferred, and s the set of protocol-specific parameters to be used. The protocol
to be used for a particular probe was chosen randomly with equal probability for each of the protocols�.
We chose n to be 1 MB and s to specify ssthresh as 64 kB (which is the default value for current TCP
implementations), packet size as 1024 bytes, and receive buffers of 256 kB, which means that we used large
windows to avoid the performance of the transfer being receiver window limited. The values for n and s
guarantee that even for connections experiencing no loss at all, a significant part of a connection is spent in
congestion avoidance, and Vegas is given a chance to adapt the congestion window.

During August and September of 1997, we debugged and refined our measurement system, and we
started collecting logs in earnest in October 1997. The data presented in this paper are based on experiments
that took place between October 31, 1997 and May 2, 1998.

6.4 Data collected

To avoid overwhelming the reader with data by looking at every possible connection, we summarize the
data into four groups: traffic inside (North) America (A � A), from America to Europe (A � E), from
Europe to America (E � A), and inside Europe (E � E). This clustering is quite intuitive and has already
been applied by other researchers [30]. Our evaluations have shown this clustering to be reasonable, since
we found considerable variations between the four classes of connections. Additionally, we also present the
summarized data for all connections. Table 2 summarizes the number of connections logged, clustered by
continents.

�p � fReno� V egas� FACK�RH�LRDg.
�To be precise: A bug in the configuration of the measurement system resulted in the protocols Reno and Vegas being chosen half

as often as the other protocols during the first 1.5 months of our experiment, which is reflected by the total number of connections
for each protocol presented in Table 2.
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Reno FACK RH LRD Vegas
A� A 667 858 947 940 693 4105
A� E 919 1206 1269 1282 914 5590
E � A 1388 1720 1688 1861 1309 7966
E � E 1174 1631 1665 1628 1184 7282
All 4148 5415 5569 5711 4100 24943

Table 2: Clustering of connections.

7 Evaluation

7.1 Analysis of protocol dynamics

There are several aspects to the effectiveness of a protocol (or protocol enhancement). Questions about the
effectiveness can focus on

� the performance for a single connection, or

� the degree of fairness extended towards all other connections that share a bottleneck.

Since we perform our measurements in today’s Internet, we can modify the parameters of only a single
connection; all other connections are beyond our control. So our measurements may help only with under-
standing the first issue.

Therefore, our experiments present an extensive set of micro performance data of protocols (e.g., number
of timeouts, number of recoveries, number of lost packets). These data are interesting from two points of
view: they provide an evaluation of various protocol enhancements in a real-life setting, and they may
provide insight to protocol designers.

7.2 Evaluations performed

The presentation of the results proceeds as follows: Section 8 presents the net effect of the different enhance-
ments by comparing the throughputs of the five protocols. Moreover, we analyze the protocols’ robustness
against packet loss and look at how much of the bottleneck bandwidth is utilized by each protocol variant.
In Section 9, we turn to the question of how effectively the protocols use the bandwidth available to them
by looking at their goodputs. By comparing protocol internal parameters, such as the number of timeouts
in Section 10, we investigate whether and how the changes in achieved throughput or goodput can be ex-
plained by changes in the protocol internal parameters and whether the proposed protocol enhancements
achieve their objectives (as they were primarily targeted at metrics such as avoiding packet loss, timeouts,
etc.). Such a comparison of protocol internal parameters across different protocols must be put in relation to
the loss rate experienced by the connections of different protocols. Loss events are examined in Section 11.
Section 12 concludes our evaluations by tackling the question of how much redundancy in the selective
acknowledgements is needed or beneficial.

8 Bandwidth

If — from an application perspective — Vegas, FACK, RH, and LRD are to be improvements to Reno,
they should deliver some benefits to an application that utilizes them. A possible benefit is an increase of
the bandwidth provided to the application (throughput). Therefore, we first investigate throughput-related
metrics for the protocols under consideration.
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(a) All connections. (b) Geographical clustering.

Figure 2: Absolute bandwidths (CDF).

8.1 Absolute bandwidths

Figure 2 (a) shows the cumulative distribution functions (CDF) of the achieved bandwidth for all connec-
tions. Note that this figure (and all other CDF plots presented in this paper) has a log-scaled x-axis. The
more a graph (distribution) is shifted to the right, the more bandwidth is achieved by the corresponding pro-
tocol. In terms of application-level throughput, Vegas performs consistently worse than Reno (for Reno, the
median is 0.80 Mbit/s, as opposed to 0.62 Mbit/s for Vegas). Moreover, the SACK-based protocols FACK,
RH, and LRD clearly outperform the other two protocols (they achieve median bandwidths of 1.13, 1.16,
and 1.22 Mbit/s). We also note that LRD’s ability to recognize lost retransmissions results in slightly higher
throughput.

Studying continent-to-continent variations (Figure 2 (b) contains the CDFs for A� A and A� E con-
nections) not only shows that transatlantic connections achieve significantly lower throughputs than intra-
continent connections (this observation also holds for E � E and E � A connections), but also that the
differences between the protocols are much more pronounced (almost a factor of 2) for the intra-continental
connections than for inter-continental connections. The (absolute) difference between the geographic clus-
ters can be explained by the differences in the available bandwidths, that is, intra-continent connections
provide more bandwidth to a single connection than transatlantic connections.

The (relative) difference between the protocols can be explained as follows: The throughput of a con-
nection achieved by Reno and its SACK-based enhancements is proportional to

�B �
�

RTT
p
p

where RTT corresponds to the average round-trip time of the connection and p to the loss indication
probability, which is defined as the ratio of the number of loss events (timeouts + recoveries) to the number
of packets sent [26]. The two curves in Figure 3 plot �B for two fixed values of RTT , that is, for the average
round-trip time of all A � A connections (RTT � 	��	s) and all A � E connections (RTT � 	���s)
respectively.

For each curve, we mark �B for two fixed values of p: the average measured loss indication probability
p for Reno and FACK in the two regional clusters A � A and A � E. Due to its smaller loss indication
probability p and its smaller average round-trip timeRTT , FACK achieves a higher bandwidth improvement
for A � A than for A � E connections, which corresponds to the observation we made in Figure 2 (b).
Thus we conclude that the benefit of SACK-enhanced protocols is bigger for low-loss, low-RTT connections
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Figure 3: Relative bandwidth for AA and AE connections.

than for high-loss or high-RTT connections. Section 8.2.2 confirms this statement: there we see how the
bandwidths achieved by the different protocols in our experiment vary depending on the loss rate, and we
show that the bandwidths are nearly identical for high loss rates, regardless of the protocol used.

8.2 Normalized bandwidth

To analyze the effectiveness of a particular protocol enhancement in relevant situations (e.g., for connections
that experience multiple packet loss), we would like to compare the effective bandwidths achieved using
protocol 1 and protocol 2. However, every network path exhibits different characteristics, so we can at most
compare the performance of protocols on connections between two given hosts A and B�. However, if we
do this, we end up with a very small number of connections and bandwidth measurements which prevent
a meaningful comparison. Although there are about 5,000 bulk data transfers for every protocol, there are
about 100 host-pairs, and of course only a fraction of the connections exhibits the property that we want to
investigate (e.g., multiple packet loss).

However, simply clustering the data, for example, based on location of the hosts, is no solution, since
such a clustering ignores the differences in the various network-path characteristics. Given the range of
hosts, the paths can exhibit tremendously different properties, and these differences introduce a high degree
of variation, which does not stem from the protocol characteristics under consideration and may make it
difficult to support any protocol-specific conclusions.

A solution is the normalization of the achieved bandwidth of each transfer to its estimated bottleneck
bandwidth. The bottleneck bandwidth is the maximum forwarding rate of the slowest element in the end-
to-end chain of network elements (links or routers). It is calculated by applying Paxson’s “packet bunch
mode”-algorithm for robust bottleneck bandwidth estimation [29, 30] to the traces recording data packet
departure/arrival.

The normalization with respect to bottleneck bandwidth proved tedious but turned out to be quite ben-
eficial and informative. For example, it allowed us to identify a high variation of the achieved bandwidth
on some connections between the US and Switzerland that we could ultimately trace back to an upgrade in
the network infrastructure (a 2 MBit/s link was replaced by an 8 MBit/s multi-pipe link). The bottleneck
bandwidths measured range from T1 (1.5 MBit/s) to Ethernet (10 MBit/s).

�Even this assumption does not necessarily hold, since the route between the two hosts can change and different connections
might experience different link characteristics.
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8.2.1 Correlation with loss rate

As earlier studies indicated, there is a strong negative correlation between the data loss rate of TCP Reno
and its achieved throughput [30]. The results from Section 8.1 show that FACK, RH, and LRD achieve
higher absolute bandwidths than Reno and Vegas. The SACK-based protocols therefore seem to hold the
promise of better coping with multiple packet loss and hence better utilizing the bandwidth available. We
thus expect the correlation between the throughput and the data loss rate to be smaller for FACK, RH, and
LRD than for Reno.

To determine how the throughput of a connection correlates with the connection’s data loss rate, we
applied the methodology described by Paxson [30]: We compute the correlation between the logarithm
of the normalized throughput and the data loss rate, where the logarithmic transformation is to reduce the
otherwise dominating effect of throughput outliers.

The correlations for Reno, FACK, RH, and LRD are -0.73, -0.62, -0.69, and -0.57 respectively. With
a value of -0.73, the correlation for Reno is even more pronounced than in Paxson’s study [30], which
mentions a correlation of only -0.52. We also note that FACK, RH, and LRD connections indeed have
smaller correlations between bandwidth and loss rate.

8.2.2 Robustness against packet loss

The results of Section 8.2.1 may be interpreted as an indication of the robustness of the different protocols
in the face of packet loss: From the correlations between throughput and loss rate, a summary metric, we
can derive that the throughput of SACK-enhanced protocols depends less strongly on the ratio of packet loss
than is the case for Reno. Thus, based on this summary metric, we may conclude that the SACK-enhanced
protocols are more robust against packet losses.

To gain more insight, we try to characterize a protocol’s performance (i.e., throughput) as a function of
the loss rate experienced. According to a study performed in a testbed environment [9], SACK TCP and
TCP Reno achieve identical performance in situations with no packet loss and in situations with high packet
loss, (i.e., loss rates exceeding 9% for single packet loss and 3% for burst losses). If there is no loss, TCP
Reno and SACK TCP have exactly the same behavior (by design). If there is high loss, the congestion
window remains small and timeouts cannot be avoided, even with SACK TCP. This seems to indicate that
the robustness of SACK-enhanced protocols against packet loss seems to depend strongly on the actual loss
rate experienced. Our data — gathered in a real-world environment — allows us to verify this statement and
to include additional protocols (e.g., Vegas).

We compute the loss rate for every connection and cluster the connections in bins of size 0.02. For every
bin, the median bandwidth is determined. Figure 4 then plots the median bandwidth as a function of the loss
rate experienced for each protocol enhancement. A value of x on the x-axis represents all connections with
loss rate �x � 	�	�� x
. We only show the results for Reno, Vegas, and FACK. The results for RH and LRD
connections are very similar to those for FACK connections.

Confirming the results of the previous study [9], we find that for connections with no packet loss, Reno
and FACK achieve identical throughput. Furthermore, high-loss environments (loss rate � 0.1) have an
equally bad effect on Reno and FACK performance. However, for medium-loss environments (loss rate �
0.1), the SACK-enhanced protocols achieve considerably (49–89%) higher throughputs and therefore seem
to be more robust in the face of packet loss than Reno.

Looking at the results for Vegas connections, we note that for low loss connections (0.02 � loss rate
� 0.04) Vegas achieves slightly lower throughputs than Reno. For other loss rates, no marked differences
between the two protocols are discernible. This may be interpreted as follows: In our experiment, Vegas
and Reno only differ in the way they update/adapt the congestion window during the congestion avoid-
ance phase. In contrast to Reno’s strict linear increase, Vegas tries to “sense” incipient congestion and it
proactively tries to avoid packet loss by reducing the sending rate (i.e., the congestion window). As will be
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Figure 4: Normalized bandwidth (median) as a function of loss rate.

explained in Section 11, Vegas is indeed (moderately) successful in doing so (for low-loss connections). But
as our data indicates, it does so at the expense of performance, that is, it adapts the congestion window too
conservatively. This convervatism is best seen for connections experiencing no loss at all: Reno connections
keep increasing the congestion window, whereas Vegas connections may keep the window constant or even
decrease its size during some periods. Therefore, even for no loss at all, Reno achieves higher bandwidths
than Vegas.

8.2.3 Utilization of bottleneck link

As mentioned in Section 7.1, our methodology does not allow us to control other connections that share
the bottleneck link with one of our connections. Therefore, we are unable to determine the influence of,
for example, a FACK connection on a Reno connection. We can determine only the ratio of the bottleneck
link bandwidth consumed by one of our connections. According to the results in Section 8.1, the SACK-
enhanced protocols deliver higher bandwidths and we thus expect them to consume a higher ratio of the
bottleneck bandwidth than Reno (and Vegas).

Figure 5 plots the CDFs of the normalized bandwidths for all protocols. FACK, RH, and LRD indeed
achieve a higher utilization of the bottleneck link than Reno, which itself achieves a higher value than Vegas.
Overall, the percentage of the bottleneck bandwidth used by one of our protocols is quite low; in 50% of
the cases, FACK consumes at most 24% of the bottleneck bandwidth and the corresponding figures are even
lower for Reno and Vegas.

Our data do not allow us to conclude whether the additional bandwidth consumed by the SACK-
enhanced protocols was taken away from other connections sharing the bottleneck link or whether it was
achieved by better exploiting the available bandwidth. The former would be harmful in the case of a de-
ployment of TCP implementations using SACKs in the Internet, as allowed by a current Internet Draft [2]:
during the transition period, in which “old” TCP variants share links with SACK-enabled TCP versions, the
SACK versions would take all bandwidth, while Reno connections would starve.

However, a study conducted in a testbed points out that this additional bandwidth is not taken away
from TCP Reno [9]: both TCP Reno and SACK-enhanced TCPs adhere to the same principles of congestion
control, that is, linear increase and multiplicative decrease [17]. The observed difference in bandwidth con-
sumed results from SACK TCP’s better use of the bandwidth wasted by TCP Reno: TCP Reno unnecessarily
treats multiple packet loss in a single congestion window as multiple congestion signals and therefore gives
bandwidth away by unnecessary reductions of the congestion window which may even lead to timeouts.
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Figure 5: Bandwidths normalized to bottleneck bandwidth(CDF).

9 Goodput

An application wants its data to be transmitted as fast as possible. From the network’s viewpoint, however,
it is important to minimize the number of data packets required to reliably transmit the application data to
prevent a waste of resources. The metric of interest for the application is throughput. For the network-
centric viewpoint, the metric of interest is goodput, where goodput is defined as the ratio of the amount of
data generated by the application to the amount of data transmitted over the network. Obviously, a protocol
that succeeds in keeping the goodput close to one is superior to a protocol that achieves the same throughput,
but that must transfer more data.

Section 8.1 has shown that FACK, RH, and LRD achieve higher bandwidths than Reno and Vegas. We
now investigate whether they must generate more data packets to do so. Figure 6 plots the CDFs of the
goodput for Reno, Vegas, RH, and LRD�. Note that the x-axis starts at 0.6. For low goodputs (� 0.90), the
distribution is nearly identical for all protocols. The same applies to high goodputs (� 0.99). For goodput
values between these two limits, RH and LRD connections on average achieve higher goodputs than Reno
and Vegas connections.

As will be shown in Section 11, all protocols experience similar loss rates. Since Reno and Vegas achieve
lower goodputs than RH and LRD, they must evoke more unnecessary retransmissions than the SACK-
enhanced protocols. The source of such unnecessary retransmissions are slow-starts following timeouts due
to multiple packet loss: Every acknowledgment triggers the retransmission of two packets with adjacent
sequence numbers. Since the first of these two packets has not been acknowledged, it is reasonable to
assume that its first transmission was dropped. However, this assumption need not hold for the second
packet: its first transmission may have arrived at the receiver, but there is no way for the receiver to tell the
sender. Section 10 reveals that Reno and Vegas indeed suffer more timeouts due to multiple packet loss than
the SACK-enhanced protocols and thus are more likely to generate more unnecessary retransmissions.

To sum up, the SACK-enhanced protocols not only achieve higher throughputs than Reno and Vegas,
they also use the available resources more efficiently, that is, they cause fewer unnecessary retransmissions.
Our data thereby backs a claim made by Floyd [13], who predicted the number of unnecessary retransmission
to be low for SACK TCP.

�A bug in the implementation of FACK prevents us from presenting the data for FACK. However, the other evaluations are not
affected.
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Figure 6: Goodput per connection (CDF).

Figure 7: Number of timeouts per connection (CDF).

10 Timeouts

As we have seen in Section 8.1, FACK, LRD, and RH provide more bandwidth to an application than Reno
and Vegas. To explain this difference, we take a closer look at some protocol internal parameters, such as
the number of timeouts per connection.

The use of selective acknowledgments and FACK’s enhanced congestion recovery strategy aim at coping
better with multiple packet loss. The expectation is that these improvements reduce the number of timeouts
due to such loss events. Although Vegas employs the same congestion recovery algorithms as Reno, its
congestion avoidance algorithm, which tries to avoid (multiple) packet loss altogether, should still have a
positive effect on the number of timeouts.

10.1 Overall comparison

Figure 7 presents the CDFs of the number of timeouts per connection for Reno, Vegas, FACK, RH, and
LRD (logarithmically scaled x-axis). A value of x means x� � timeouts per connection. The more a graph
(distribution) is shifted to the left, the fewer timeouts occur for the corresponding type of connection. The
distributions for Reno and Vegas are almost identical. The clear left shifts in the distributions for FACK,
LRD, and RH show that these protocols significantly cut down the number of timeouts per connection.
61.0% of the RH, 65.9% of the FACK, and 77.3% of the LRD connections do not suffer any timeouts at all,
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whereas only 32.8% of the Reno and 34.1% of the Vegas connections are timeout-free.

10.2 Classification

To shed more light on the results reported above, that is, to understand the reasons why FACK, RH, and
LRD outperform Reno and Vegas in terms of timeouts, we try to isolate the effects of their enhancements.
To do so, we first classify the timeouts according to their causes into the following four categories. A similar
clustering has also been suggested by Lin et al. [22].

Multiple packet loss For Reno and Vegas, multiple packet loss leads to multiple halvings of the congestion
window. In case of too many losses (both of data packets and acknowledgments) or too small a con-
gestion window, the fast retransmit algorithm cannot be triggered for all lost packets and a timeout is
evoked. Since FACK, LRD, and RH treat multiple packet loss as a single congestion signal and there-
fore remain in recovery until all the data outstanding prior to the recovery has been acknowledged,
timeouts due to multiple packet loss always happen in congestion recovery for these protocols. There
are two causes for such timeouts:

Missing acknowledgments The flow of acknowledgments triggering (re)transmission of data ebbs
off.

Lost MPL retransmission A retransmission distinct from the fast retransmission (i.e., a retransmis-
sion caused by multiple packet loss) is dropped (MPL = Multiple Packet Loss).

Non-trigger of recovery Packet loss situations which fail to trigger a fast retransmit/fast recovery because
of a small congestion window or high losses of acknowledgments result in so-called non-trigger time-
outs. This kind of timeouts is caused either by a single lost packet or by the first packet lost in
a multiple packet loss situation (as opposed to the timeouts due to multiple packet loss, which are
caused by the second or higher packet lost in a multiple packet loss situation).

Lost fast retransmission None of Reno, Vegas, FACK, and RH are able to recover from a lost fast re-
transmission without evoking a timeout. Only LRD may become aware of the loss and get around it
without triggering a timeout.

Lost timeout retransmission All of the five protocols can recover from the loss of a timeout retransmission
only by another timeout.

10.3 Timeouts in Reno

Before turning to a detailed investigation of each protocol enhancement’s effectiveness in dealing with
multiple packet loss and in avoiding certain types of timeouts, we must first understand their impact on the
base protocol (Reno).

The heights of the bars in Figure 8 depict the mean number of timeouts per connection, where the average
is based on all connections using a given protocol. Additionally, the figure shows a detailed breakdown of
the causes for these timeouts�. We find that the majority of timeouts suffered by Reno connections are
caused by multiple packet loss (36% of all timeouts) and by non-trigger of a recovery (41% of all timeouts).
This finding ties in with results reported by Balakrishnan et al. [4]. Lin et al. [22], however, report different
results: More than 85% of the TCP timeouts in their study are due to non-trigger, whereas only 11% are

�For RH and LRD, we present only the data for the second three months because of a flaw in the computation of the timeout
interval in the case of timeouts on lost fast and lost timeout retransmissions during the first three months. A detailed analysis of the
results for the other protocols reveals that the numbers are nearly identical regardless of which three-month period is considered,
which indicates that it is reasonable to make such a comparison. Note that all other evaluations are based on the data for the
complete period of six months, as the effect of this flaw is negligible for these enhancements.
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Figure 8: Breakdown of timeout causes for each protocol.

due to multiple packet loss. Lost fast retransmissions and lost timeout retransmissions account for 11% and
12% of our Reno timeouts respectively.

We now turn to investigating each class of timeouts in the context of the four protocol enhancements
and to determining how effective each enhancement is in reducing the kind of timeouts it claims to reduce.
The results for Reno we just presented thereby serve as baseline.

10.4 Multiple packet loss

As shown in Figure 8, Vegas succeeds in reducing the number of timeouts due to multiple packet loss by
15% compared to Reno. The reason for this improvement is Vegas’s modified management of the congestion
window during congestion avoidance. With the help of this modification, Vegas seems to be able to avoid
multiple packet loss and suffers fewer such timeouts.

By handling multiple packet losses in a window in a single recovery, FACK is highly effective in cutting
down the number of timeouts due to such multiple packet losses (reduction by 83.0% compared to Reno).
Almost all the Reno connections that suffered at least one timeout (67.2%) also suffered from at least one
timeout due to multiple packet loss (65.4%). However, only about half of the FACK connections that suffer a
timeout (34.1%) also suffer from a multiple loss timeout (18.3%). RH and LRD also succeed in reducing the
number of timeouts due to multiple packet loss, but not as drastically as FACK (RH: 68.5%, LRD: 77.0%).

To understand the differences among the SACK-enhanced protocols as far as their effectiveness in deal-
ing with multiple packet loss situations is concerned, we briefly review the relevant mechanisms: FACK and
RH/LRD employ different congestion control strategies during recovery. FACK halves the congestion win-
dow on entry of fast retransmit. The first opportunity to (re)transmit data is after about half an RTT. After
that period, data can be (re)transmitted for every incoming duplicate acknowledgment (“dup”). RH/LRD’s
congestion strategy tries to continually lower the congestion window so that it is halved after one RTT. Data
can be (re)transmitted for every other dup directly after entering recovery. FACK and RH/LRD also differ
in the retransmission strategy used. FACK retransmits not yet selectively acknowledged data immediately,
whereas with RH/LRD, a not yet selectively acknowledged packet becomes eligible for retransmission only
after three dups have arrived that selectively acknowledge packets with higher sequence numbers.

We can now turn to analyzing the effect of these congestion control and retransmission strategies on the
two types of multiple loss timeouts identified in Section 10.2. Figure 9 provides a breakdown of the number
of multiple loss timeouts per connection reported in Figure 8 according to the two possible causes for such
a timeout, that is, missing acknowledgments and lost MPL retransmissions.
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Figure 9: Breakdown of causes for multiple packet loss timeouts.

10.4.1 Missing acknowledgments

The number of timeouts of this class of timeouts may serve as an indicator of how well a protocol can
maintain the self-clock in situations with multiple packet loss. At first sight, the results are somewhat
counter-intuitive: FACK, whose instantaneous halving of the congestion window may actually disrupt a
connection’s self-clock, very rarely experiences timeouts due to missing acknowledgments. On average,
there are only 0.01 such timeouts per FACK connection, whereas RH and LRD, which could — in principle
— continually (re)transmit data, experience 0.19 such timeouts. This is explained as follows: the retrans-
mission strategy dominates the effects of the congestion control strategy. The only packet that may cause
such a timeout in FACK is the one following the packet acknowledged by the first partial acknowledgment
in a recovery	, as this is the only packet whose retransmission can be prevented by the congestion control
strategy. Further partial acknowledgments always cause one or more (re-)transmissions. With RH/LRD,
candidates for retransmission must wait for three SACKs, which increases the risk of timeouts due to miss-
ing acknowledgments. Based on these observations, the following two questions must be answered:

Is FACK’s retransmission strategy too aggressive? FACK’s strategy of retransmitting not yet selectively
acknowledged packets immediately may be too aggressive, for example, in situations with packet reorder-
ings. However, our data reveals that not yet selectively acknowledged packets are very rarely retransmitted
unnecessarily, that is, shortly before the SACK arrives: 74% of all connections with at least one recovery
experience zero, 9% one, and only 17% of all these connections experience two or more such unnecessary
retransmissions. This implies that the blocking for half an RTT seems to be quite effective in avoiding
unnecessary retransmissions.

Can RH’s retransmission strategy be improved? A possible remedy might be the addition of FACK’s
extended condition to enter recovery to RH and LRD’s retransmission algorithm: A packet is also retransmit-
ted if the difference between its sequence number and the highest selectively acknowledged packet becomes
larger than two packets. By determining this difference for every such timeout, we can estimate the frac-
tion of such timeouts that might have been avoidable with this extended retransmission trigger mechanism.
We find that for RH, only 15.7% of this class of timeouts have a difference larger than two packets (LRD:
21.0%). Note that these numbers serve as an upper bound on the reduction potential, since RH and LRD’s
congestion control might not have allowed the sending of a retransmission in all the cases.

10.4.2 Lost MPL retransmission

Overall, lost MPL retransmissions account for most of the timeouts due to multiple packet loss for all the
SACK-enhanced protocols. Such timeouts make up 11.8% of all FACK timeouts. 18% of all connections

	A partial acknowledgment is an acknowledgment for some, but not all of the data outstanding at the beginning of the recovery.
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are affected and could therefore benefit from mechanisms to detect and repair such lost retransmissions.
In principle, timeouts due to lost MPL retransmissions should be equally likely for FACK and RH. LRD

should be able to improve on the number of such timeouts due to its ability to recognize lost retransmissions.
Again, the results are somewhat surprising: RH suffers 28% more timeouts caused by lost MPL re-

transmissions than FACK. Our data do not allow us to pin down the cause for this discrepancy, but the
following statement may provide a reasonable explanation: Multiple packet loss is a sign of “severe” (i.e.,
non-negligible) congestion in the network. Waiting half a RTT before resuming (re)transmission — the
model employed by Reno’s and FACK’s congestion control strategy — gives the network time to recover
from its congested state and thus makes it less likely that subsequent (re)transmissions are lost. RH’s strategy
of continually (re)transmitting data, although at half the original rate, risks to hit the congestion period as
it trails off and thus risks that its retransmissions are dropped. This phenomenon remains subject to further
investigation.

Furthermore, Figure 9 shows that LRD suffers 34.5% fewer timeouts due to lost MPL retransmissions
than RH and about the same number of such timeouts as FACK. This implies that LRD is really able (and
quite effectively so) to detect and repair lost MPL retransmissions (and to compensate for the increase in
such timeouts witnessed by RH).

10.5 Non-trigger of recovery

Vegas According to Figure 8, Vegas causes 34.7% more timeouts due to non-trigger of a recovery than
Reno. This increase is a consequence of the rather conservative congestion window adjustment strategy
implemented by Vegas, whose negative influence on bandwidth has already been mentioned in Section 8.2.2.
The more conservative the window adjustment is, the smaller is the average congestion window and the more
likely it is that non-trigger timeouts occur.

FACK FACK’s extended recovery trigger condition is responsible for the decrease in the number of non-
trigger timeouts (37.5% improvement over Reno). When looking at each recovery, we note that they were
triggered by three, two, and one duplicate acknowledgment in 58.3%, 26.5%, and 12.0% of the cases.

RH There are fewer non-trigger timeouts for RH than for FACK. At first look, this decrease might seem
astonishing because RH’s condition for sending a fast retransmission requires the arrival of three pack-
ets selectively acknowledging packets with higher sequence numbers, whereas FACK may trigger a fast
retransmission after as early as after one SACK, provided the distance between the highest selectively ac-
knowledged packet and the packet for which a cumulative acknowledgment is awaited is bigger than two
packets. However, when taking a closer look at this kind of timeouts for FACK, we note that the average size
of the congestion window before such a non-trigger timeout is 3.63 packets. Therefore, on average, at most
three packets are in transit before the timeout: the first one being lost and the other two packets resulting in
at most two duplicate acknowledgments. But there is no way for these two acknowledgments to trigger a
recovery (and a fast retransmission) in the case of FACK, since the distance mentioned above cannot exceed
three packets. In contrast, RH already enters a recovery after having received the first duplicate acknowledg-
ment and triggers the transmission of a data packet for every second duplicate acknowledgment: The first
duplicate acknowledgment triggers the transmission of a new data packet. The third duplicate acknowledg-
ment results in the fast retransmission. Assuming that both of the duplicate acknowledgments mentioned
above arrive, we are sure to have a transmission, which can evoke another duplicate acknowledgment. With
the help of this acknowledgment, the sender will finally be able to trigger the fast retransmission.

The hypothesis that RH is able to survive a loss in a congestion window having a size of fewer than four
packets is confirmed by the following figure: Only 13.9% of the recoveries that had a congestion window
smaller than four packets on entry resulted in a timeout. In the remaining 86.1% of the cases, RH was able
to trigger a fast retransmission.
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LRD LRD suffers nearly the same average number of non-trigger timeouts as RH, which is not astonish-
ing, as both protocols apply the same mechanism to trigger fast retransmissions.

Even though the SACK-based protocols are able to cut down the number of non-trigger timeouts com-
pared to Reno, all the protocols still experience a considerable number of such timeouts. Non-trigger time-
outs are likely to happen in situations with severe congestion, and we have seen in Section 8.2.2 that none
of the protocol enhancements studied here are able to cope with such situations. Balakrishnan et al. [4] and
Lin et al. [22] both proposed a solution that mitigates the problem of packet loss for connections with tiny
congestion windows: They proposed to send new data for every duplicate acknowledgment, which could
then generate further duplicate acknowlegements and trigger recovery. Their method is similar to the mech-
anism used by RH, however, it may be more aggressive than RH, which starts halving the sending rate right
away.

10.6 Lost fast retransmissions

Figure 8 shows that LRD succeeds in detecting some of the lost fast retransmissions: it reduces the average
number of these timeouts per connection by 48% (compared to RH). Overall, it achieves the lowest number
of timeouts on lost fast retransmissions for all five protocols.

The timeouts on lost fast retransmissions reported in Figure 8 allow us to check the plausibility of our
experimental setup and the conclusions drawn from the analysis of the experiment. Since the probability
that a fast retransmission is dropped should be identical for Reno, Vegas, FACK, and RH (as no lost re-
transmission detection is performed), the ratio of the number of timeouts on lost fast retransmissions to the
number of fast retransmissions should stay constant for those protocols. This fraction is 0.058 for both Reno
and Vegas and only slightly higher for FACK (0.066) — an indication of plausibility. However, this does
not apply to RH, where the corresponding value is 0.080. We already noticed a similar phenomenon in
Section 10.4, where RH has been found to suffer more timeouts due to lost retransmissions in a recovery
than FACK.

10.7 Lost timeout retransmissions

Although the SACK-enhanced protocols do not employ mechanisms to avoid timeouts due to lost timeout
retransmissions, we can see from Figure 8 that FACK, RH, and LRD experience 30, 36, and 44% fewer such
timeouts than Reno. This decrease can be explained as follows:

The SACK-enhanced protocols are effective in reducing the number of timeouts due to multiple packet
loss, non-trigger, and lost fast retransmissions (as shown in Sections 10.4, 10.5, and 10.6). Therefore, there
are fewer timeout retransmissions. Assuming that the probability for such a timeout retransmission to get
lost is identical for all protocols, there are also fewer lost timeout retransmissions and thus fewer timeouts
caused by such a loss.

10.8 Discussion

10.8.1 Summary

Our data indicate that SACK-enhanced protocols succeed to drastically reduce the average number of time-
outs per connection compared to Reno and Vegas (similar findings are reported by Bruyeron et al. [9]).
FACK, RH, and LRD achieve reductions in the average number of timeouts of 48, 50, and 61% compared
to Reno.

We note that these results contradict earlier studies [4, 22], which predicted the optimization potential
of the usage of selective acknowledgments to be small. Balakrishnan et al. [4] determined only 4.43% of
the TCP timeouts to be avoidable by the usage of SACKs. These differences might be attributed to the fact
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that the connections we traced observed bandwidths that are (at least) an order of magnitude higher than
the bandwidth available to the connections in the earlier studies�
. This change may reflect the general
trend towards higher bandwidths but may also be due to the fact that the sites participating in our study are
generally well connected to the Internet.

When comparing this section’s results on timeouts with the throughput results obtained in Section 8.1,
we find correspondence between the bandwidth and timeout results: FACK, RH, and LRD’s ability to reduce
the overall number of timeouts results in higher throughput, and the fact that Vegas suffers a significantly
higher number of non-trigger timeouts is reflected by the lower throughputs achieved (compared to Reno).

10.8.2 Reduction potential in Reno

Two interesting questions from a protocol designer’s point of view are: Can we postulate an upper bound of
the Reno timeouts avoidable with the help of SACKs, and how well is this reduction potential exploited by
those SACK-enhanced protocols that we investigated in this study?

To answer the first question, we assume that the 36% of multiple packet loss timeouts (in Reno) and the
11% of the timeouts due to lost fast retransmissions are avoidable by SACK-enhanced protocols. Further-
more, to get a better handle on the potential benefits of SACK-enhanced protocols in reducing the number of
non-trigger timeouts, we address this question: “How many of these timeouts suffered by Reno connections
would have been avoidable with FACK’s extended condition to trigger a recovery?” For this purpose, we
installed a “SACK receiver” (i.e., a receiver generating SACKs for out-of-order packets) at the sink of the
bulk data transfer and made the sender trace the incoming SACKs, but not evaluate them. For all non-trigger
timeouts, the highest selectively acknowledged packet and the sequence number of the next data packet to be
acknowledged at the time of the timeout are determined. This information then allows us to find out whether
the extended recovery condition would have triggered a recovery��. We find that with the help of SACKs,
29.4% of Reno’s non-trigger timeouts or 11.7% of all Reno timeouts could have been avoided. Note that
FACK reduces the number of non-trigger timeouts by 37.5%.

Based on these observations, we can postulate an upper bound for the potential benefits of SACK-
enhanced protocols: approximately 59% of all the Reno timeouts could be avoided by the use of SACKs,
that is, the 36% timeouts due to multiple packet loss, the 12% avoidable, non-trigger timeouts, and the 11%
timeouts on lost fast retransmissions. Considering the effect described in Section 10.7, we can expect that
due to the reduction in the number of these timeouts, SACK-enhanced protocols will also witness fewer
timeouts due to lost timeout retransmissions, and we would thus expect that SACK-enhanced protocols can
reduce the number of timeouts compared to Reno by at most 64%��.

When comparing this upper bound to LRD, which avoids the most timeouts of all the SACK-enhanced
protocols we evaluated, we see that it is close to the estimated reduction potential: LRD reduces the number
of timeouts by 61%.

11 Loss events

11.1 Data loss

Section 10 discussed the effect of the protocols under consideration on the number of timeouts experienced
per connection. This section focuses on the analysis of the number of loss events per connection. A loss
event designates either a single lost packet or multiple lost packets in a congestion window. The absolute

�
Bandwidth evaluations for these studies have been performed by Balakrishnan et al. [5] and Paxson [30].
��Since we did not trace the reception of selective acknowledgments by Reno senders for connections during the first three

months, this evaluation is based only on the data from the second three months.
��64% = 59 (multiple + avoidable non-trigger + lost fast retransmission timeouts) + (1–0.59) � 12 (lost timeout retransmission

timeouts)%
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any loss multiple packet loss
� percentile 10 25 50 75 90 10 25 50 75 90

Reno 0 1 4 19 40 0 0 2 6 16
Vegas 0 1 3 18 40 0 0 1 5 14
FACK 0 1 5 18 40 0 0 2 6 17
RH 0 1 4 18 42 0 0 2 7 20
LRD 0 1 3 15 36 0 0 2 6 16

Table 3: Number of loss events per connection.

numbers for the timeouts per connection must be put in relation to the number of loss events experienced by
the connection to allow for a valid comparison of the protocols. For instance, the impressive reduction in the
number of timeouts achieved by FACK compared to Reno is only meaningful if the number of loss events is
of the same order for both protocols. By design of the protocols, that is, because FACK and Reno share the
same code for slow-start and congestion avoidance, we would expect this to be the case. In contrast, Vegas’
congestion avoidance mechanism aims at reducing the number of loss events by continuously adapting the
size of the congestion window to the available bandwidth.

Table 3 presents the number of loss events per connection. We classify loss events into two categories:
any kind of loss and multiple packet loss in a window. The second group is contained in the first. The table
reports the 10-, 25-, 50-, 75- and 90-percentiles of the number of loss events per connection. For example,
at least 10% of all connections experience no loss (in fact, almost 20% of all connections are loss-free).

Any loss As seen in Table 3, overall, the number of losses is nearly identical for all the protocols. Up to the
first quartile no differences are discernible and the medians differ only slightly. This implies, that the
comparisons made in Section 10 are indeed valid. Vegas’ success in reducing the number of losses
(compared to Reno) is at best fairly modest.

Multiple loss Table 3 also presents the number of multiple loss events per connection. In this case, Vegas
performs consistently better than the other protocols. That is, even though Vegas does not seem to be
able to reduce the overall number of loss events, it is (modestly) effective in reducing the number of
multiple packet loss events.

Multiple packet loss seemed to be the main motivation for the protocol enhancements studied here and
initial slow-start overshoot has been identified as one of the major causes for multiple packet loss [16]. We
find that this overshooting of the available bandwidth in initial slow-start leads to packet loss in 59% of
all the connections. 42% of all the connections experience multiple packet loss in initial slow-start. There
is room for enhancements that try to avoid such loss events, for example, by estimating the bandwidth
available and setting the initial slow-start threshhold appropriately [16, 27]. The SACK-enhanced protocols
can merely try to keep the “damage” small (i.e., to avoid timeouts)��, but they have no means to avoid the
“damage” altogether.

11.2 Ack Loss

The generation of acknowledgments (“acks”) depends on the arrival of data packets at the receiver, but not
on the current congestion state of the network path from the receiver to the sender. Therefore, the sending of
acks does not adapt to congestion in the network, as opposed to the sending of data packets. Ack loss rates
thus allow conclusions about the loss rates which would be experienced by a non-adaptive protocol.

��32% of all Reno connections experience a timeout due to multiple packet loss during initial slow-start, whereas only 5% of
SACK-enhanced connections are affected by such timeouts.
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ack loss rate
TCP Reno �

A� A 1.6% 2.2% +0.6%
E � E 2.8% 1.5% -0.7%
E � A 11.7% 7.1% -4.6%
A� E 3.2% 2.1% -1.1%
all 4.6% 3.6% -1.0%

Table 4: Ack loss rates for different connection geographies.

quiescent loss rate (non-quiescent)
TCP Reno � TCP Reno �

A� A 69% 48% -21% 4.4% 4.2% -0.2%
E � E 58% 34% -24% 5.9% 2.2% -3.7%
E � A 31% 27% -4% 16.9% 9.7% -7.2%
A� E 52% 42% -10% 6.0% 3.6% -2.4%
all 52% 36% -16% 8.7% 5.6% -3.1%

Table 5: Conditional ack loss rates for different connection geographies.

The ack loss rates of TCP connections have been thoroughly examined in an earlier study [30]. Since
this study is based on data gathered in 1994 and 1995, the comparison of its results with ours allows us to
draw conclusions about the development of loss rates in the Internet during the last three years.

Table 4 compares the ack loss rates reported in the earlier study (“TCP”) to the ack loss rates measured
for our Reno connections (“Reno”). With the exception of A � A connections, ack loss rates decreased.
A � A connections now suffer higher loss rates than E � E connections. Note that for E � A con-
nections, data flows into America, therefore acks flow into Europe. Similarly, for A � E connections, ack
streams travel from America to Europe. As mentioned in the earlier study, loss rates higher than 5% have
serious adverse effect on TCP performance. E � A connections still achieve loss rates in this range, but
the situation has improved.

Table 5 presents the percentage of quiescent connections as reported in the earlier study and as experi-
enced by our Reno connections. Quiescent connections are connections for which no ack loss occurred at
all. Additionally, the ack loss rates for connections suffering at least one ack loss are given. We note that the
decrease of the loss rates for this type of connections is more pronounced than in case of all the connections
(as shown in Table 4). Thus the percentage of quiescent connections has to be lower, which is confirmed by
Table 5.

12 Selective acknowledgments

Since a non-negligible fraction of acknowledgements are dropped in today’s Internet, selective acknowl-
edgements have been designed to provide redundancy [25]. Current TCP implementations allow a maximum
of three SACK-blocks to be present in a TCP-header. The question is how much redundancy is necessary
to achieve a good tradeoff between header space (and hence bandwidth) wasted and robustness against loss
of acknowledgements gained? We try to establish a minimum number of selective acknowledgments per
acknowledgment required to overcome most of the acknowledgment losses. For that purpose, we consider a
selective acknowledgment to be used by the sender if the corresponding packet has not yet been selectively
acknowledged. The first, second, ..., sixth selective acknowledgment in an acknowledgment are expected to
be used by the sender in different proportions: the first one is most likely to be used, the extent in which
the other ones are used is smaller and depends on the probability of acknowledgment (burst) loss, which has
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Selective acknowledgment no.
1 2 3 4 5 6

A� A 97.0( 4.8) 2.0(3.3) 0.5(1.1) 0.2(0.7) 0.1(0.5) 0.1(0.3)
A� E 96.9( 6.2) 2.2(4.0) 0.5(1.4) 0.2(0.7) 0.1(0.5) 0.1(0.3)
E � A 92.4(12.3) 4.7(6.3) 1.6(3.2) 0.7(1.9) 0.4(1.2) 0.2(0.9)
E � E 98.3( 3.2) 1.3(2.1) 0.3(0.7) 0.1(0.4) 0.1(0.3) 0.0(0.2)
All 96.0( 8.1) 2.6(4.5) 0.8(2.0) 0.3(1.2) 0.2(0.7) 0.1(0.5)

Table 6: Use of selective acknowledgments.

been investigated by Paxson [30]��.
Table 6 shows the mean rate (parentheses contain standard deviation) of use of the nth selective ac-

knowledgment in an acknowledgment��. For example, for connections with both sender and receiver in
North America, 97% of all the selective acknowledgments that the sender considered as useful were at the
first position in an acknowledgment.

The second–sixth selective acknowledgments are rarely used, compared to the first one. However even
the sixth is used, and the decision on how many acknowledgments to support involves a tradeoff between
space and frequency of usage. With the top three acknowledgments, the overwhelming number of cases are
covered.

13 Concluding remarks

In our experiment, we investigated the effectiveness of various congestion control mechanisms that have
been proposed as enhancements to TCP Reno.

In summary, we record that SACK-enhanced protocols are a considerable improvement over Reno-style
congestion recovery, as they are more robust against packet loss (for loss rates smaller than 10%), and in
particular are highly effective in dealing with multiple packet loss situations. The SACK-enhanced protocols
may seem to be more aggressive in that they achieve a higher utilization of the bottleneck bandwidth than
Reno, however, they are merely more efficient in using their share of the bottleneck bandwidth, that is, they
produce fewer unnecessary retransmissions.

These summary results are confirmed by the findings about protocol micro-measurements: Compared
to Reno, SACK-enhanced protocols significantly cut down the number of timeouts due to multiple packet
loss and due to non-trigger of recovery. Furthermore, Lost Retransmission Detection proved to be quite an
effective mechanism in reducing the number of timeouts in recovery that are caused by lost retransmissions.
Overall, LRD reduces the number of timeouts by 61% relative to Reno. This result is impressive as we
estimate (based on the kind and frequency of Reno timeouts) that 64% of these timeouts can be removed by
the enhancements investigated.

As far as differences among the SACK-enhanced protocols are concerned, we note that Rate-Halving
suffers more timeouts due to multiple packet loss than FACK, on the other hand, it is able to survive a packet
loss in small congestion windows without a timeout. Overall, these two effects cancel out. We also note that
non-trigger timeouts still account for a significant fraction of the timeouts experienced by Rate-Halving and
thus offer room for improvements.

Vegas-style network path adaptation in congestion avoidance is able to reduce the number of multiple
packet losses, and hence the number of timeouts caused by multiple packet loss, by 15%. However, being
rather conservative, Vegas causes more non-trigger timeouts (35%). With regard to the delivered bandwidth,
the result is an overall performance that is slightly worse than Reno’s.

Our experiment has confirmed a number of earlier investigations, but also produced some results that

��Note that our SACKs acknowledge packets instead of blocks of bytes, see Appendix A.2 for details.
��The values given are overall for FACK, RH, and LRD.
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differ from previous work. The improvement of the SACK-enhanced protocols over Reno is more pro-
nounced than has been reported. Packet loss rates have decreased (with the exception of connections having
both sender and receiver in North America). Although RH and LRD are closer to an “ideal” congestion
control strategy, as they continously (re)transmit data at half the original sending rate, in practice, the cruder
response (halving of the congestion window) included in FACK produces better results in situations with
multiple packet loss.

Understanding the behaviour of a network as complicated as the Internet is difficult. Both simulations
and experiments are a valuable tool. Experiments allow us to focus simulations on those parts of the design
space that is problematic in practice. For example, our experiments show that the relative bandwidth im-
provement obtained by SACK-enhanced protocols is bigger for intra-continental than for inter-continental
connections. Therefore, simulating only the first scenario may result in too optimistic conclusions. We
hope that others will be able to add to our understanding of the Internet and that, at some time, the best
enhancements to TCP’s congestion control find their way into the “production” network protocol.
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A TCP/Reno differences

This section describes the differences between TCP�� and Reno��. They can be divided into three categories:
design issues, differences with regard to TCP-related RFCs, and deviations from existing TCP implementa-
tions. The latter ones are pointed out only in relation to congestion control issues. At the end, a comparison
of bandwidths achieved by TCP and Reno is presented.

A.1 Design issues

Reno is a user-level protocol and relies on UDP and therefore avoids the introduction of a separate checksum
calculation.

Reno is not stream-based. Fixed-sized packets are used to transfer both data and control packets. There-
fore, the sequence numbers and the window calculations are packet-oriented. For example, in congestion
avoidance, an acknowledgment increments the congestion window by 1/cwnd (see below). The size of the
packets is statically determined, that is, there is no exchange of the sender’s and receiver’s MSS at startup.
For the tests, we chose a data load of 1024 bytes. The Reno header additionally requires 17 bytes, so the
packets handed over to UDP have a size of 1041 bytes and could have been subject to fragmentation (a host
is required to be able to process IP packets up to a size of 576 bytes [7]) Fragmentation has never been
observed in connections involving a host at ETHZ. The described setup guarantees reasonably sized data
packets and therefore avoids the occurrence of the Silly Window Syndrome.

To simplify the development of the protocol, several features of TCP with no influence on our tests have
been omitted; Reno has no PUSH flag or urgent data pointer. Since our main interest for this experiment
focuses on bulk data transfers, Nagle algorithm has not been implemented.

The acknowledgment scheme consists of three different types of acknowledgments: normal acknowl-
edgments are delivered on the reception of every second in-order packet, immediate acknowledgments on
the reception of an out-of-order packet, and periodic acknowledgments on the absence of a normal or im-
mediate acknowledgment during the last 200 ms��. Periodic acknowledgments impede the probing of zero
windows by the sender. Since there are no bidirectional data transfers in our tests, piggy-backing is not
supported.

A.2 Differences between Reno and various TCP-related RFCs

RFC 1122 [7] requires a TCP sender to slow down transmission on the receipt of a Source Quench ICMP
message. UDP does not notify an application when receiving such a message (in violation of the RFC), so
there is no possibility for Reno to react to such a message. Fortunately, these messages are quite rare [30],
and their use is deprecated to avoid additional data during phases of congestion [3].

Upon the acknowledgment of new data, RFC 2001 [31] allows a TCP sender to open the congestion win-
dow by a factor depending on the MSS (and on the current window size during congestion avoidance), but
the window cannot depend on the amount of acknowledged data. However, Reno does use the latter amount
for this purpose. Therefore, Reno is more aggressive than TCP in the presence of delayed acknowledgments.
We chose this behavior for Reno because it is closer to the spirit of Jacobson’s landmark paper [17].

In violation of RFC 1122, Reno does not immediately send an acknowledgment after the reception of an
out-of-order packet that does not fit into the receiver window�	. Thanks to the periodic acknowledgments,

��With TCP, we designate the transport protocol as described in RFC 1122 [7].
��With Reno, we designate our user-level implementation of a transport protocol with TCP Reno congestion control.
��Similar to TCP Reno, the generation of periodic acknowledgments relies on a 200 ms timeout timer. Therefore all periodic

acknowledgments following a normal or immediate acknowledgment are distributed over a range of 0 ms to 200 ms after this last
acknowledgment.

�	This event can result from a sender being confused about the current state of the receiver. With an immediate acknowledgment,
the receiver tries to remedy this situation as quickly as possible to avoid the unnecessary retransmission of further packets.
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the sender will nonetheless become aware of the current window position, although it may take longer than
with an immediate acknowledgment.

A selective acknowledgment as described in RFC 2018 [25] consists of two sequence numbers, which
acknowledge a block of bytes, and every acknowledgment can contain at most three of these acknowledg-
ments (due to space constraints in the TCP header). Because our protocol is packet-streaming, we use
a slightly different acknowledgment scheme: a selective acknowledgment consists of a sequence number
acknowledging a packet, and every acknowledgment can contain at most six of these acknowledgments.

A.3 Differences between Reno and TCP Reno

The TCP implementation presented by Stevens [32] (TCP Reno) is considered as implementing TCP cor-
rectly (with some small flaws) and is therefore used as base for many other implementations [30]. Therefore
we point out some differences between TCP Reno and Reno.

For the RTT calculation, we chose a scheme similar to the one proposed in RFC 1323 [19]. This scheme
allows the sender to calculate the current RTT more than once in a window. If permitted by Karn’s algo-
rithm [21], every second data packet includes a time-stamp in its header and is immediately acknowledged
by the receiver. This enhancement can significantly improve the accuracy of the RTT estimator, especially
for large windows [19].

TCP’s mechanism to check for a packet suffering a timeout is triggered every 500 ms, whereas Reno
retransmits a packet as soon as its RTO has expired.

A.4 Bandwidth Comparison

Although Reno has been implemented in an object-oriented manner in C++ and does not include optimiza-
tions like TCP’s header prediction, its performance is sufficient to allow conclusions based on Reno. The
following absolute bandwidths (in Mbit/s) were measured in an experiment conducted in an lightly loaded
local-area network; they support our view that Reno provides a platform for the evaluation of other protocols.

Bandwidth [Mbit/s]
Mean StdDev

TCP 6.748 0.064
Reno 6.776 0.124
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