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1   Introduction

B-splines have been used widely and successfully
in CAGD, computer graphics and visualization [3],
since their versatility makes them irreplacable for
many tasks in geometric modeling. Moreover, most of
the advanced commerically available modeling
systems, such as ALIAS©, base on B-spline represen-
tations of curves and surfaces. However, in many
applications [15], [16], the problem consists of
constucting a spline through a given set of points rat-
her than to work immediately on control points. As a
consequence, the robust and efficient computation of
interpolating B-spline curves and surfaces has been a
fundamental task in geometric modeling.

The mathematical description of the B-spline inter-
polation problem can be found in many textbooks,
tutorials and papers, such as [8], [4], [2], [17], [18] or
others. The standard approach is to solve a sparse
linear system of equations. For this purpose, we have
to build and decompose a matrix, whose rows and
columns are computed by evaluation of the B-spline
basis functions at discrete positions in parameter
space. In the case of cardinal B-spline interpolation

the knots are equally spaced. Depending on the order
of the B-spline, the resulting matrix is banded diago-
nal and respective algorithms perform correspondin-
gly. That is the entire interpolation step can be solved
in O(N), i.e. linear time [8].

Our motivation for the research presented in this
paper was to point out an alternative by treating the
interpolation problem from a signal processing point
of view. This enables to carry over and to extend some
findings from the vast amount of research in that area
for the benefit of visualization. More precisely, in the
case of uniform B-spline interpolation our task collap-
ses into constructing an inverse filter which is convol-
ved over the sequence of interpolating points to
provide the required control points. In this case, filte-
ring can be accomplished in Fourier domain with the
speed of FFT algorithms inO(NlogN) - regardless of
the spline order. In order to construct the required fil-
ters we base on some results of prior work, where
Fourier transforms of uniform B-splines have been
presented in [10] or [20]. Since the Fourier approach
implicitly assumes rotational symmetry special
emphasis has to be put on the preservation of bound-
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We describe an alternative way of constructing interpolating B-spline curves, surfaces or volumes in Fourier
space which can be used for visualization. In our approach the interpolation problem is considered from a signal
processing point of view and is reduced to finding an inverse B-spline filter sequence. The Fourier approach
encompasses some advantageous features, such as successive approximation, compression, fast convolution and
hardware support. In addition, optimal Wiener filtering can be applied to remove noise and distortions from the
initial data points and to compute a smooth, least-squares fitting ‘Wiener spline’. Unlike traditional fitting meth-
ods, the described algorithm is simple and easy to implement. The performance of the presented method is illus-
trated by some examples showing the restoration of surfaces corrupted by various types of distortions.
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ary conditions.

Another very advantage of frequency domain con-
structions is the elegant embedding of least-squares
fitting problems. Spectral estimations of noise and
corruptions from the data enable to compute a so-cal-
led Wiener filter [23] which provides a least-squares
optimal reconstruction of the initially underlying
function. The required parameters can be estimated
efficiently for B-splines and thus provide the control
mesh for a ‘Wiener spline’.

One might argue that the computational advantages
of the presented methods do not outperform in all
cases. However, we demonstrate that the signal pro-
cessing treatment of the interpolation problem allows
applying efficient algorithms for fast convolution and
FFT. Furthermore, advanced low-cost signal proces-
sors could support these operations for getting real-
time performance. In addition Fourier domain inter-
polation comes along with very useful properties,
such as progressivity, multiresolution approximation,
compression and error bounds and provides a fancy
alternative implementation of the problem.

The paper is organized as follows: Without restic-
ting the generality all derivations are given for 1D
parametric curves. For reasons of readability and con-
sistency, section 2 briefly reviews some fundamentals
of B-spline curves and explains the interpolation pro-
blem. In section 3 uniform B-splines are addressed
and Fourier domain construction schemes are presen-
ted. Section 4 is dedicated to spectral analysis and
Wiener filtering. Finally section 5 reports on some
results to illustrate the performance of the method.
Boldface characters are used throughout the paper to
denote vector-valued variables.

2   B-Spline Interpolation

This section briefly summarizes some fundamental
definitions and relationships associated with B-spline
basis functions for curves and surfaces. Furthermore,
the problem of computing interpolating B-spline cur-
ves is stressed. More general introductions to the
issue are given for instance in [3] or [2]. In particular,
we recommend interactive tools to study the proper-
ties of B-spline curves and surfaces, such as in [24] or
[25].

2.1  Fundamentals of B-splines: Revisited

A parametric B-spline curvec(u) can be considered
the following linear combination

(1)

K: number of basis functions.
Here, u denotes the parametric coordinate anddi

stands for the vector valued control vertices, i.e.di=
(dix, diy, diz)

T, sometimes also called de Boor points.
Needless to say that the upper equation provides a
spatial positionc(u)=(cx(u), cy(u) cz(u))T for each
parameter valueu and thus traces out the curve in E3.

The non-orthogonal B-spline basis functionsφi are
piecewise polynomials of degreen and can be compu-
ted recursively from a degree 0 prototype:

(2)

Obviously, the so-called knot vector
u=(u0,..,uK+n)T divides the parameter space into indi-
vidual segments and accounts for the definition inter-
vals of the bases whose local support is restricted to
n+1 intervals.

We fix easily that the parameter spacings∆i = ui+ 1 -
ui can be eitheruniform or non-uniform, termini by
which the respective curves and surfaces are referred
to.

Thus, our curve is entirely defined by the following
information:

•  The degreen of the bases
•  the set of control vertices {di}
•  the knot vectoru
In the case of uniform knot sequences the recur-

rence relation to construct cardinal B-spline bases
holds

(3)

*: convolution operator.
Conversely, (1) allows us to interpret the curvec(u)

as a projection of an initial functionx(u) into the
functional spaceV, spanned by somedual basesψ.
Along these lines, the control vertices are formally
given by an inner product ofx(u) andψ:

(4)

Duality enforces the following relationships bet-
ween the bases:

c u( ) diφi
n

u( )
i 0=

K 1–

∑=

φi
0

u( )
1 u ui ui 1+,[ ]∈,

0 else,



=

φi
n

u( )
u ui–

ui n+ ui–
----------------------φi

n 1–
u( )

ui n 1+ + u–

ui n 1+ + ui 1+–
------------------------------------φi 1+

n 1–
u( )+=

φn
u( ) φn 1–

u( )* φ0
u( )=

di x u( ) Ψi u( ),〈 〉 x u( )Ψi u( ) ud

∞–

∞

∫= =

Ψi u( ) V∈



M. Gross, D. Kleiner: Wiener Splines

4

(5)

δij : Kronecker Delta function.

A thorough analysis of the properties of the duals
are beyond the scope of our paper and we refer to [20]
or [14] instead.

Note that the lower and upper bounds of the sum in
(1) restrict the spaceV to a finite dimensionality. For
parametric curves, the upper projection has to be
computed separately for thex,yandz coordinates. In a
similar way, projections of functions into finite
dimensional subspaces are fundamental to the theory
and application of finite element analysis (FEM) [1].

Tensor product surfaces can be contructed straight-
forwardly from parametric curves by computing 2D
B-spline basesφi(u)φj(v) from a tensor product of the
1D function spaces. The parametric surfaces(u,v) is
defined accordingly:

(6)

This approach carries out a set ofseparable 2D
basis functions, one of which is illustrated for a bicu-
bic 2D B-spline basis function in Fig. 1. Note again a
fundamental property of B-splines, namely the local
support, which equals the order (n+1)x(n+1) of the
polynomial.

Fig. 1 Functional course of a 2D bicubic B-spline basis
function.

2.2  The Interpolation Problem

Partition of unity of B-spline bases force the curve
or surface to be bounded locally by the convex hullof
the corresponding control vertices. In other words rat-
her than passing through those points the curve or sur-
face roughly approximates a set of predefined
vertices. However, in many practical data modeling
applications, the construction of interpolating B-spli-
nes is a critical issue. Fig. 2 illustrates the interpola-

tion problem for a planar curve.

Fig. 2 Illustration of the interpolation problem: A cu-
bic spline curve has to pass through a set of given

points. Parameter spacing:u = [0,0,0,0,1,2,3,4,4,4,4].
In order to describe the interpolation problem

mathematically let‘s restrict to parametric curves. Let
f=(f0,..,fK-1)

T be a vector of points to be interpolated.
Each entry of f itself is a vector fk=(fkx,fky,fkz).
Obviously, the problem collapses to finding the
appropriate control verticesdi of the curve, where for
a given parameter valueuk the curve function has to
pass through the pointfk, or

(7)

(7) can be rewritten in matrix form by

(8)
Hence, we have to solve a linear system of equati-

ons of type
(9)

which apparently proceeds straightforwardly by
computing the inverse matrixB−1or by decomposi-
tion.

2.3  Boundary Conditions

The parameter values do not necessarily have to
correspond to individual knots and thorough parame-
trization has turned out to be of critical importance for
getting meaningful results. Due to the signal proces-
sing approach, we restrict ourselves to knotwise inter-
polation in subsequent analysis and direct our
attention to the curve boundaries.

φi ψ j,〈 〉 δi j=

s u v,( ) di j φi u( )φ j v( )
i 0=

K 1–

∑
j 0=

L 1–

∑=

f k c uk( ) diφi
n

uk( )
i 0=

K 1–

∑= =

f 0

…
f k

…
f K 1–

φ0 u0( ) φ1 u0( ) … φK 1– u0( )

φ0 u1( ) … … …

… … φi uk( ) …

φ0 uK 1–( ) … … φK 1– uK 1–( )

d0

…
di

…
dK 1–

=

f B d⋅=
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1) Floating End Conditions

Recalling that the curve needsn+1 active bases in
its interval of definition we sum up to a total ofn+K-1
basis functions, required to fully represent the curve
in [u0,..,uK-1]. K of them are given by (8) and the
others can be selected to satisfy individual criteria.

2) Open End Conditions

Assume a knot vector of typeu = [u0,..,u0,u1,..,uK-

1,..,uK-1], where the boundary knots are repeated up to
the odern+1 of the curve. This commonplace tech-
nique forces the curve to interpolate the endpoints. In
this case and for uneven degrees we end up withK-1
equations to define the interior spline intervals and
n+1 equations to specify the boundary conditions.
Endpoint interpolation costs 2 equations, namely
d0=f0 anddn+K-1=fK-1 The remainingn-1 degrees of
freedom can be set to satisfy additional criteria, like
tangents, curvature and others, for instance tot0=d1 -
d0 andtK-1 = dn+K-1 - dn+K-2 .

3) Periodic End Conditions

Unlike the open curves from above a periodic clo-
sed curve can be constructed by repeating the knot
vector [u0..uK-1] periodically withuK = u0, uK+1 = u1
etc. At the same time the control vertices [d0..dK-1]
are repeated as well. In this case, (8) is sufficient to
satisfy the interpolation and no additional degrees of
freedom are left.

It has to be noted, however, thatB can be arbitrarily
ill-conditioned and singularities may arise for even
degrees and coincidence ofuk with the knots [8]. In
addition unbalanced parametrization of the curve can
lead to undesired oscillations, such as the ones illu-
strated in Fig. 3. Here, the curve has only been plotted
in 5/6 of the cyclic interval.

Due to the local support of the bases,B is in gene-
ral a sparse bandmatrix, where the width of the band
depends on the degreen. Thus, sparse matrix algo-
rithms perform decomposition inO(N). We will ela-
borate on that subject in subsequent sections.

Fig. 3 Influence of the parametrization on the fairness
of the curve for a periodic cubic spline: a)u=[0, 1, 2,
3, 4, 5, 0, 1, 2, 3] (black curve) b)u=[0, 1.7, 2, 3.7, 4,

5, 0, 1.7, 2, 3.7] (grey curve)

3   Cardinal B-Spline Interpolation

In the following section, the case of uniform B-
splines is discussed. Therefore, we start with an ana-
lysis of continuous convolution. By discretizing the
representations, the interpolation problem can be
implemented as a discrete convolution. One of the
very advantages of uniform B-splines is the cyclic
symmetry, i.e. Toeplitz structure of the underlying
matrix which allows to compute a single inverse filter
sequence inverting our matrixB. Here, constructions
in Fourier space provide an elegant alternative.

3.1  B-Spline Interpolation as a Filter Operation

Recalling some fundamentals of signal processing
[6], the continuous 1D convolutionf(u) of an initial
functiond(t) with a kernelφ(u,t) is defined as:

(10)

According to (4) we assume the functionf(t) to
trace the functional course of the inner product of
d(u) and a kernelφ(u), continuousely shifted along
some parametert. A first discretization of (10) evalua-
tes the integral at a finite number of positionsti=i ∆
and replaces it by the following sum:

(11)

Note that the upper equation conforms with (1),
which actually defines our curve. Further discretiza-
tion of f at positionsuk=k∆ and the knot spacing set to
∆=1 results in

f u( ) t( )φ u t–( )d td

∞–

∞

∫=

f u( ) d i∆( )φ u i∆–( )
i 0=

K 1–

∑=
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(12)

or in matrix notation as a special instance of (7)

(13)

whereφi = φ(i).
The rows of our matrixB are derived by shifting an

initial sequence {φk}. Thus, (13) represents a discrete
convolution of the sequence of control vertices {di}
with a discrete filter kernel given by {φk}.

A this point in time, we sum up as follows:A set of
points{ fk} on the curve can be computed by filtering
the control points with a B-spline low-pass filter ker-
nel.

(14)

*: Convolution operator.
It follows immediately that one can solve the inter-

polation problem by a convolution off with the
inverse filter sequence {ψk}

(15)

It is easy to see that the required sequence {ψk}
forms the entries of the rows ofB-1. As elucidated in
subsequent sections this sequence can be constructed
from a closed form representation in Fourier domain.

3.2  Stability

A further critial issue deserving attention is the sta-
bility of the interpolation problem. Therefore, we
compute the condition numberκ of the circular
Toeplitz matrix B from above using the matrix-2
norm [12]. In this case, the norm is given immediately
by the ratio of the two extreme singular valuesσ
which themselves correspond to the respective abso-
lutes of the eigenvalues of the matrix.

(16)

For efficient computation of the eigenvalues we
exploit their correspondence with the discrete Fourier
transform for cyclic matrices. That is, given the clo-
sed form continuous descriptionΦD of the FT of a
zero-centered B-spline sequence {φk} (see [10], [20])
with uneven degree as1

(17)

we find the condition number easily by maximizing
and minimizing (17). Some algebraic transforms
which are omitted here for brevity reveal:

(18)

TABLE I depicts the condition ofB as a function of
the B-spline degree n. We observe a moderate
increase withn making the problem traktable for
spline orders used in practice.

TABLE I:Condition number ofB as a function of the degree
n of the B-spline

3.3  Fourier Domain Constructions

An elegant way of finding the dual sequence {ψk}
is to make use of Fourier domain descriptions. Espe-
cially, analythic formulations of the FT of B-spline
bases, such as given in [10], enable us to construct the
dual filter sequence without much effort.

Recalling the Fourier convolution theorem the con-
tinuous form of the curve equation of (10) converts
into a product of the Fourier transformsF(f) andΦ(f),
wheref denotes the frequency.

(19)

The upper equation gives us the relationship bet-
ween the FT of the convolution kernelΦ and it‘s dual
Ψ

(20)

Thus,Ψ(f) represents an inverse filter, which can-
cels the smoothing ofD(f) by Φ(f).

1As a consequence the eigenvalues ofB can be com-
puted with the speed of DFT algorithms.

f k∆( ) f k d i∆( )φ k∆ i∆–( )
i 0=

K 1–

∑ diφ k i–( )
i 0=

K 1–

∑= = =

f 0

…
f k

…
f K 1–

φ0 φ 1– … φ1 K–

φ1 φ0 … φ2 K–

φ2 φ1 … φ3 K–

… … … …
φK 1– φK 2– … φ0

d0

…
di

…
dK 1–

=

f d* φ=

d f * ψ=

κ B( ) B B 1– σmax

σmin
------------=⋅=

degreen condition numberκ
2 2
3 3
4 4.8
5 7.5
6 11.8033
7 18.53
8 29.112
9 45.726
10 71.828
11 112.826
12 177.226
13 278.386

ΦD f( ) φ0
n

2 φi
n

2πif( )cos
i 1=

n 2+ 1+

∑+=

κ B( ) 1 4 φ2i 1+
n

i 0=

(n-2) DIV 4

∑–
 
 
  1–

=

F f( ) D f( )Φ f( ) or D f( ) F f( )Ψ f( )= =

Φ f( )Ψ f( ) 1= Ψ f( )⇔ 1
Φ f( )
-------------=
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Switching over again to the discrete setting, we
develop an analytic version ofΨD(f) straightfor-
wardly by inversion of (17):

(21)

Note that both ΦD and ΨD are continuous
functions. Fig. 4 illustrates the functional course of
ΨD(f) for different spline degrees.

Note furthermore thatΨD(f) has no poles in the
interval of interest.

Fig. 4 a) Fourier transforms of the inverse filters Ψ(f)
for different degreesn.

In order to implement this approach using inverse
FFT, we have to discretizeΨD(f) takingK samples in
[-0.5, 0.5]. Therefore, we generate a discrete sequence
{ Ψp}={ Ψ(fp)} of the inverse filter in Fourier space by
sampling at frequency positions

(22)

Pointwise multiplication of the discrete FT {F(fp)}
with the inverse filter sequence renders the FT of our
control points, or2

(23)

The control pointsdi in spatial domain are compu-
ted by a discrete inverse Fourier transform (DIFT) of
type:

(24)

i: Complex operator.
Note that in the discrete implementation the fre-

quency interval is shifted to [0, 1].

2According to the fundamental relationships between
Fourier and spatial domain discretization of the FT leads
to a periodic repetition of the ‘curve signal’ in spatial
domain. See literature, such as [13], [21] or [7].

A major advantage coming along with frequency
computations is the energy concentration in the low-
pass coefficients of the transform. This spectral
decomposition allows performing versatile analysis,
such as the separation of high frequency noise from
the ‘curve signal’. Most simply, we can define an
upper cut-off frequency, let‘s say |fg|<0.5 from which
all coefficients are set to zero. The resulting frequency
window Γg(f) is given by

(25)

and an approximate solution  by

(26)

Due to the orthogonality of Fourier basesfg
governs the accuracy of the interpolation withinL2.

The Fourier setting described above assumes peri-
odic end conditions, that is, it operates on a periodic
knot vector and produces closed curves. However,
most applications require open end conditions, which
can be generated by evaluation of the curve in a subin-
terval of the parameter space. Unfortunately, this trun-
cation may lead to undesired oscillations of the curve,
such as illustrated in Fig. 5 and Fig. 6. The curve plot-
ted in Fig. 5 exhibits oscillations at its end points
which can be avoided by insertion of multiple end
points. A triple end point produces a fair curve in this
example.

Fig. 5 Avoidance of oscillations generated by trunca-
tion. Insertion of multiple end points generates a fair
interpolation curve (grey: single; black: double; light

grey: triple).

A similar behavior can be observed for 2D parame-
tric surfaces. In Fig. 6a we interpolated a step function
with single end points. The parametric setting used to
illustrate the phenomenon reveals the deviation of
individual points due to truncation. Again, triple end
points solve the problem and produce a fair surface,
such as depicted in Fig. 6b. End points of multiplicity

ΨD f( ) 1

φ0
n

2 φi
n

2πif( )cos
i 1=

n 2+ 1+

∑+

---------------------------------------------------------------------=

1

2

3

4

-0.5 0 0.5
t

n=2

n=3

n=4

f p
1
2
--- p

K
----+ 

 – 
  , p 0 … K 1–, ,= =

Dp D f p( ) F f p( )Ψ f p( )= =

dk
1
K
---- Dpe i2πpk K⁄–

p 0=

K 1–∑=

Γg f( )
1 for f f g≤

0 for f f g>



=

D̃ f( ) F f( )Ψ f( )Γg f( )=
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r restrict the curve evaluation to [r-1, r-1+K].

Fig. 6 B-spline interpolation in 2D parametric settings.
Step function of size 10x10: a) single end points, b) tri-

ple end points.

In order to exploit the speed of the FFT zeros have
to be padded into the data vector up to the next power
of 2.

4   Wiener Filtering

Besides interpolation, many practical applications
in CAGD face the problem of how to cope with cor-
rupted data samplesfk. These curruptions are mostly
invoked by measuring systems of limited accuracy. In
such cases, rather than interpolation the goal is often
to fit a curve or surface through the points in a least
squares sense. We will demonstrate that this least
squares estimation is accomplished elegantly in Fou-
rier space by eploiting the fundamental features of so-
called Wiener filters [23]. Due to the rich literature on
Wiener-Kalman problems3 [22], we restict our des-
cription to a brief summary and omit most mathemati-
cal details.

3Norbert Wieners’ fundamental work relates to linear
estimation theory of stochastic signals. Later, recursive
implementations of such filters using the notion of state
variables became famous as Kalman filters [22] and
have enormous practical importance for signal detec-
tion, restauration and tracking.

4.1   The Notion of the Wiener Filter

We start with continuous descriptions and assume
our dataf(u) to be distorted by an uncorrelated noise
signalr (u). Our goal is to find the control vertices of
the curvec(u), which smoothesf(u) in a least squares
sense. Let

(27)

Linearity of the Fourier transform translates the
relation conformingly

(28)

The so-called Wiener filter problem consists of fin-
ding a least squares optimal estimate C of the initial
signal by design of an appropriate filterW(f). It
extracts the ‘curve signal’ from noise

(29)

thereby maximizing the signal-noise ratio in spatial
and frequency domain with

(30)

It can be proofed that this optimal filter is construc-
ted from the power spectra of both the initial signal
C(f) and the distorting noiseR(f) and yields

(31)

(31) is often called the Wiener filter. Given some
estimates of the power spectra this simple and elegant
equation allows the computation of least squares fit-
ting curves.

Now we are in place to combine the results of sec-
tion 3 with (31) and invoke our filterΨ. As a conse-
quence we obtain a least squares estimateDlq(f) by

(32)

In finite dimensional discrete settings the relations
from above can be summarized as follows: An addi-
tional weighting of the sequence {Dp} computed by
(23) with a Wiener filter sequence {Wp=W(fp)} provi-
des us with the control points {Dlq(p)} of a curve,
which fits through the data {Fq}. The inverse Fourier
transform renders the desired points in spatial domain
{ dk}.

Note that (31) can also be computed as a vector-
valued filterW(f).

4.1  General Spectral Estimates

One of the difficulties of the Wiener filter is to
compute robust spectral estimates of signal and noise.

a)

b)

f u( ) c u( ) r u( )+=

F f( ) C f( ) R f( )+=

C̃ f( ) F f( ) W f( )⋅=

C̃ f( ) C f( )–
2

fd

∞–

∞

∫ min=

W f( ) C f( ) 2

C f( ) R f( ) 2
+

----------------------------------------=

Dlq f( ) F f( )Ψ f( )W f( )=
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In cases of unknown data corruption we have to
extract this information somehow from the power
spectrum of the given dataF(f), where

(33)

Generally, spectral estimation is nontrivial and
often there is no chance to get the initial signal back
from the corrupted sequence. A fast and mostly robust
way of estimation [5] is illustrated in Fig. 7. Assu-
ming the signal to be smooth and band-limited the
noise characteristics can be estimated by computation
of an asymptotic regression line towards high fre-
quencies. Assuming furthermore a linear or constant
spectral behavior of the distortion, straightforward
extrapolation reveals the signal.

Fig. 7 Power spectrum of some measured data and its
decomposition into signal and noise (see also [5]).

4.2  Improved Estimates for B-Splines

For B-spline curves and surfaces, however, it is
possible to incorporate more a priori knowledge into
the estimation algorithm. Here, we consider the
uncorrupted signal to represent a smooth ‘low-pass’
curve defined by a linear combination, such as in (1).
For periodic curves and uniform knots the Fourier
transform of (1) is obtained by

(34)

because the shifting of individual basis functions
translates to a phase shift of its Fourier transform.
Consequently, a B-spline curve distorted by some
noise yields

(35)

Thorough analysis of this equation shows that the
signal vanishes at the zero crossingsfi of the sinc
polynomial. Obviously, the noise spectrum can be
estimated from

(36)

Unfortunately, these relations are only valid for
periodic curves. Truncation to enforce open end con-
ditions affects the Fourier transform of the curve and
cancels out the zero crossings. In Fig. 8 a periodic
curve is compared to a curve truncated after 5/6 of the
period.

Fig. 8 Illustration of the effects of truncation on the
power spectrum of B-splines: a) Power spectrum of a
periodic curve with 256 samples b) truncation after 5/

6 of the period.

We recommend to employ the asymptotic regres-
sion line method for open end conditions. In mere
periodic settings the zero crossing search can be an
appropriate choice.

5   Results

In the following section we present various applica-
tions to illustrate the performance and suitability of
our method. It ranges from sheer parametric interpo-
lation for image warping to removal of quantization
noise in compressed geometry.

C f( ) 2 R f( ) 2
+ F f( ) 2

=

f

logF(f)
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R2 (extrapolated)

C2 (from F2 und R2)
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n

f( ) d j e
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5.1  Error Norms

As in all signal processing approaches our most
important measure to quantify the error imposed by
the method is the signal-noise ratio defined as

(37)

whereEC andER are theL2-norms ofc(u) andr (u).
For geometric objects it is sometimes desirable to
report the maximal (Linf) error. Both errors will be
used.

5.2  Interpolation error

TABLE II reports the numerical error of the Fourier
space method for different test data sets and 32 Bit
floating point precision. The good conditioning of the
problem causes very small numerical errors.

5.3  Noise Removal

The second example is a nonparametric digital ter-

C
R
---- 20

EC

ER
-------log⋅= dB( )

TABLE IIMaximal numerical interpolation error for different test
data sets.

data set Maximum error

Box function 1.192 10-7

Matterhorn 1.32 10-6

TABLE IIIPerformance of the Wiener filter on the digital terrain
data set. Figures in the second row represent the Wiener filter.

noise C/R ratio (dB) L2-error Linf-error

0.11 78.48
77.36

2.21
2.51

2.58
7.22

0.25 64.93
65.57

10.74
10.0

5.69
9.23

0.5 52.96
54.75

44.48
36.2

11.5
14.34

1.0 41.68
43.9

176.8
136.2

23.2
20.6

Fig. 9 Data restauration using the Wiener Filters: a) original data set, b) horizontal slice from the power spectrum, c) cor-
rupted data (noise level =0.11), d) restauration, e) corrupted data (noise level =0.5), f) restauration. (Data source: Courtesy

Bundesamt für Landestopographie, Bern, Switzerland.)
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rain model of size 100x100 of the Matterhorn,
Switzerland. In order to investigate the power of the
Wiener filter, we corrupted the data artificially by
white noise signals of different amplitude. Fig. 9a
depicts the original data set along with two different
noise signals. The restauration of the signal provides
visually appealing results, where for large noise
amplitudes the Wiener filter cancels out high fre-
quency signal components, such as in Fig. 9f. Specifi-
cally, Fig. 9b shows a 1D horizontal slice from the
power spectrum. TABLE III gives some quantitative
results. The Wiener filter, as a least squares estimator
improves theL2 error mostly for medium and low
signal-noise ratios, not necessarily the Linf error.

In order to further investigate the performance of
the Wiener filter we tested parametric data sets distor-
ted by noise of unknown spectral composition. The
data were generated by a lossy geometry compression
scheme, such as presented in [15]. Changing the num-
ber of bits used to encode the data creates some quan-
tization noise. In Fig. 10 the initial data set is a
smooth parametric B-spline surface sampled at size
100x100. In this example the performance of the Wie-

ner filter is paramount. We observe that even for
strong distortions (5 Bit quantization) the estimation
produces a visually smooth and fair surface.

5.4  Image Warping

Our last example relates to 2D interpolation for
image warping. Here, an initial grid is defined interac-
tively on the image to govern the warp. We assume
the grid to be rectilinear in some 2D tensor product
parameter space, spanned by the coordinates(u,v).
The goal is to compute a smooth cubic interpolation
of the warped target image based on the grid informa-

TABLE IVError improvement of the Wiener filter for the ‘Goblet’
data set.

quantization L2-error Linf-error

10 Bits 8.78 10-7

5.13 10-6
3.2 10-3

1.54 10-2

7 Bits 3.63 10-5

2.07 10-5
0.0213
0.0144

5 Bits 7.76 10-4

2.53 10-4
0.087
0.041

Fig. 10 Wiener Filtering on the parametric ‘Goblet’ data set corrupted by quantization noise: a) - d) different bit rates used
for compression, e) - h) Resulting surfaces computed by the Wiener filter.

a) b) c) d)

e) f) g) h)
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tion. In this case the interpolation problem is twofold:
In a first step, we construct a vector valued parametric
interpolation functions(u,v) which essentially compu-
tes the spatial position (sx, sy) in the initial image at
each given coordinate pair (ui, vj) in parameter space.
By equally spaced sampling of the parameter space
we obtain a 2D matrix of positions in the initial image
at any desired resolution. Now, given a spatial posi-
tion (sx, sy) the second step consists of a nonparame-
tric cubic B-spline interpolation/filtering in the
original image. To obtain the pixel color the interpola-
tion is computed indepently for R, G and B. Note that
the second step is an antialiasing of the results.

Some illustrations are given in Fig. 11 and Fig. 12,
respectively. We observe that the cubic polynomial
provides smooth interpolations and cancels out all ali-
asing artifacts while still preserving the image details.
The parametric interpolation of image positions
allows to define fancy warp grids.

Fig. 11 Image Warping: a) Original image and interac-
tively defined warp grid, b) result image.

In this context the Wiener filter could be used to
denoise the initial image.

Fig. 12 More fancy warp grids: a) Original image and
grid, b) result image.

6   Conclusions and Future Work

We presented an alternative way of computing B-
spline interpolation by inverse filtering in Fourier
space. Although the computational speed of the
approach is limited by the complexity of FFT algo-
rithms the spectral formulations provide various use-
ful properties. Specifically, least squares fitting
problems and the removal of data corruptions can be
attacked efficiently by using the notion of Wiener fil-
ters.

Although the presented method performs surprisin-
gly well for some of the examples, yet, the robust
spectral estimation of unknown distortion sources is
still an open issue and will be part of future investiga-
tions.
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