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Abstract

The following paper describes a framework for volume data analysis and visualization using
wavelet transforms (WTs). It bases on the idea that on the one hand WTs have approved to
provide powerful features for various applications in the field of data analysis. Due to the basic
properties of this transform, such as local support and orientation selectivity, many research-
ers tried to exploit the WT for the extraction of local data features. In particular, in image tex-
ture analysis, wavelet based feature extractors accomplished highly accurate segmentation re-
sults that can be extended straightforwardly to volumetric data sets.

On the other hand, due to the compact coding properties of orthonormal wavelets the WT al-
lows to decompose any finite energy function and to approximate it from its bases. Therefore
we can develop rendering methods, that provide an approximate solution of the low albedo
volume rendering equation. Since  generally, the wavelets are not given in a closed form, the
approach reported in this paper bases on a piecewise polynomial representation. Isosurfaces
can easily be obtained from the data either by ray tracing of the bases or by simple marching
cubes techniques.

Hence, the WT provides a uniform data representation that features both data analysis and data
visualization. The paper introduces first to the mathematical foundations of the WT, it reviews
briefly different types of basis functions and  it stresses implementation details using iterated
QMF–pair filters. Furthermore, separable extensions to multiple dimensions are explained
and it is elucidated, how local data features can be derived from the wavelet pyramid. For data
analysis purposes, a newly developed image texture analysis pipeline contains a WT, a princi-
pal component analysis, normalization procedures and a neural network. Volume rendering
is accomplished by projecting the 3D wavelets onto the viewing ray and by piecewise analytic
integration of the rendering equation. The methods reported here are illustrated by various ex-
amples.
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1 Introduction

The wavelet–transform has gained much attraction for getting innovative solutions to various
technical problems in a broad range of applications. Following the mathematical formulation
of the wavelet–transform ([12], [5], [24]) a lot of work has been done to employ wavelets for
hierarchical data coding and representation. This paper, however reports on a framework for
integrated volume rendering and data analysis in wavelet space. Here, the properties of the
WT  are exploited to derive local data features that allow to solve segmentation and classifica-
tion tasks. Consequently, the WT provides a unique data representation that enables to incor-
porate data analysis as an important preprocessing step in rendering. This new concept re-
ported below bases on the following observations:

In image processing, research has been focussed on the investigation of multiresolution analy-
sis techniques for texture feature extraction. [3] used Gabor–functions of different spectral
ranges and orientations to derive a multiscale sight onto the texture. [33] employed a set of
local linear transforms as an initial step in a texture recognition pipeline and combined them
with dimensionality reduction techniques. Orthogonal wavelets and wavelet packages for tex-
ture analysis had been introduced by [19] and [4]. Obviously, most approaches derive global
wavelet features in terms of means from a specific type of texture and they transform each
subset separately into the wavelet space. This procedure renders high classification rates but
it neither takes into account texture boundaries nor does it take advantage of the spatial local-
ization of the wavelet transform. Consequently, for many practical applications, as for
instance remote sensing or medical imaging, difficulties will arise in applying these tech-
niques because they don’t provide large spatial coherent textures. [9] and [11] describe a dif-
ferent approaches to derive features from wavelet–transforms using the spatial and frequency
localization of the WT.  Here, the segmentation pipeline consists of WT,  principal component
analysis, normalization and a neural classifier. This method can easily be extended to volume
textures.

In volume rendering, initial work has also been done to employ wavelets for data representa-
tion. [26] describes a way to get isosurfaces from volume data by computing a continuous
approximation with wavelet bases. [13] used wavelets to control elegantly volume morphing
algorithms and [22] considers line integration as a texture splatting problem. [8] describes a
new method to approximate the volume rendering equation using wavelet transforms. For this
purpose, the initial volume data set is transformed into wavelet space using separable 3D ex-
tensions of orthonormal wavelet types. Since some wavelets, such as the Daubechies, are not
given in a closed form solution they approximate the basis functions with piecewise polyno-
mial splines. This allows a continuous hierarchical approximation of the 3D data set. Due to
the local support of the wavelet bases, the local level–of–detail can be controlled efficiently.
This enables to emphasize local features of interest. Once this continuous piecewise polyno-
mial approximation is computed, the volume intensity function along the ray can easily be for-
mulated and a linear approximation of the exponential absorption term provides a polynomial
approximation of the entire rendering integral. This finally leads towards analytic solutions.

In order to define an integrated framework, this paper reviews and unifies the initial concepts
provided by [10] and [9]. The organization of the paper is as follows: First of all, the mathe-
matical basics of the wavelet–transform are briefly elucidated and it is shown, how to get sepa-



3

rable 2D and 3D extensions. Different wavelet types are discussed and compared to each other
in terms of smoothness and compact support. The second chapter introduces to the concepts
of integrating volume rendering and data analysis in wavelet space. The data analysis pipeline
is illuminated in detail in chapter 3 and examples are given for the segmentation performance
of image textures. Chapter 4 sheds light on the continuous approximation of the data with
wavelet bases and provides an approximation of the volume rendering integral for the ray–
casting process. It is illustrated how to compute isosurfaces in wavelet space and compares
results obtained from Kalra’s [17] method are compared to those of the marching cubes [23]
reconstruction techniques using examples from laser range data sets.

2 Mathematical Foundations

2.1 The Wavelet Transform

The wavelet–transform (WT) is an integral transform of any finite energy function f(x)�
L2(R)  using a set of similar basis functions �ab(x). Its generic continuous form description
for real functions is provided as the following inner product:

( 1 )
WTf,�(a,b) � �f,�ab

� � �
�

–�

�ab(x)f (x)dx      a,b� R

L2(R) denotes the Hilbert space of square integrable functions.

The individual basis functions on the real axis are derived from each other by scaling and shift-
ing one prototype function � controlled by the parameters a and b respectively [12].

( 2 )�ab(x) � 1
|a|	 ��x – b

a �
One required property of the orthonormal bases is their band–pass behavior which is defined
as

( 3 )�ab(0) � 0, �ab(�) : Fourier Transform of�ab(x)

Like any other type of linear transform the WT enables the decomposition and the expansion
of the initial function f(x) by linear combinations of the basis functions.

In order to handle this method with a computer, it is necessary to set up a discrete version. A
dyadic scaling of the bases with a = 2m and a unit shift b = p 2m yields:

( 4 )�mp(x) :� 2–m
2�(2–mx – p)            ,  ��mp�p�Z

basis of vectorspace Um

m: 1,..,M denotes the depth of the iteration.

In many construction schemes, the bases are furthermore supposed to be orthonormal to each
other [5].
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( 5 )	�mp,�m~p~
 � �
�

��

�mp(t)�m~p~(t)dt � �mm~�pp~

 with     �ij :� �1   if  i � j (Kronecker� Delta� function)

0   else

Thus, the transform with discrete orthonormal wavelets can be formalized as

( 6 )DWTf,�(m,p) � 2–m
2 �

�

��

�(2–m x – p)  f (x) dx m,p � Z

Mallat [24] stresses this concept by defining a set of multiresolution function spaces Vm that

provide an approximations of all f(x) � L2(R). The space of resolution m is derived from the
higher resolution step by adding the orthogonal complement space Um.

( 7 )Vm�1 � Vm� Um

�: direct sum

It can be proofed that the so–called scaling functions � � L2(R) with

�mp(x) � 2–m
2�(2–mx – p)  provide orthonormal bases of the vectorspaces Vm in each reso-

lution step. The wavelet ��  L2(R) with �mp(x) � 2–m
2�(2–mx – p) however is proofed to

be a basis of the orthogonal complement space Um.

The statements explained above offer an iterated decomposition scheme, where an initial dis-
crete function can successively be approximated for a given iteration depth M using the scal-
ing function and wavelets in each orthogonal complement space Um.

( 8 )V0 � VM � UM ����� U1

Hence, we obtain the following approximation:

( 9 )f (x) :��
p

c0
p�0p(x) ��

p

c1
p�1p(x) ��

p

d1
p�1p(x)      f(x) � V0

��
p

cM
p �Mp(x) � �

M

m�1

�
p

dm
p�mp(x)

cM
p  and dm

p  denote the coefficients of the transform.

2.2 Extensions to Multiple Dimensions
So far, the definitions were restricted to the one–dimensional case. For multidimensional sig-
nal processing, as image analysis or volume rendering, it is necessary to extend the method
to multiple dimensions. Beside of the non–trivial nonseparable case [31] there is a straightfor-
ward way to accomplish this by means of non–standard tensor product extensions of the one–
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dimensional representatives of the function spaces and of their bases. Once Vm is given, we

can define a 2D version V2
m by

( 10 )

V2
m � Vm� Vm

V2
m � 	Vm�1 � Um�1


 � 	Vm�1 � Um�1



V2
m � V2

m�1 � U2,1
m�1

� U2,2
m�1

� U2,3
m�1

�: Tensor product operator

In eq. 10 the initial space is broken up into 3 spaces that account for the differences in the signal
and into a low–pass part. The resulting 2D versions of the respective wavelet bases yield:

( 11 )

�2
mpq(x,y) :� 2–m�(2–mx – p)�(2–my – q)

�2,1
mpq(x,y) :� 2–m�(2–mx – p)�(2–my – q)

�2.2
mpq(x,y) :� 2–m�(2–mx – p)�(2–my – q)

�2.3
mpq(x,y) :� 2–m�(2–mx – p)�(2–my – q)

Unfortunately, some wavelet types are not defined in a closed form solution and consequently
the convolution products of eq. (1) cannot be computed explicitly. The implementation of ort-
hogonal wavelet transforms often employs so–called quadrature mirror pair filters (QMFs).
The basic scheme of this filter bank is illustrated in fig. 1a for a decomposition of 2D data sets.
The initial data set is filtered along the x– and y– axis and subsampled by the factor 2 using

the two filters H�(�) � �
�

n�–�

h(–n)ein� and G�(�) � e–i�H�(�� �) with

h(n) :� 2�1
2 �

�

��

�	x
2

�(x� n)dx respectively. The result of this process are three detail sig-

nals D2m
1f,��� , D2m

3f that account for the oriented wavelets in this channel and a low pass

signal A2mf  that is decomposed further. This iterated scheme corresponds to a dyadic subband

coding of the data [7] and is illustrated in fig. 1b. Note, that the filters can be considered as
operators projecting from one function space into another.
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Fig. 1 a) QMF–implementation of a 2D wavelet–transform
b) Dyadic subband splitting according to [7]

As stated earlier, the WT is located both in the spatial and in the frequency plane within the
boundaries of the Heisenberg principle. This property allows to adapt the level–of–detail (lod)
of any reconstruction locally to interesting features and to control the approximation, neglect-
ing unimportant or low–energy coefficients of the transform. Fig. 2 illustrates the effects of
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local lod filtering for different wavelet types (see also next section). The pyramid shows espe-
cially the orientation selectivity of the different frequency channels. 

initial image

Haar–wavelet Daubechies–wavelet Battle–Lemarie–wavelet

reconstructions from the WT

wavelet–pyramides

Fig. 2 Initial image, it’s wavelet transforms and reconstructions with local varia-
tions of the level–of–detail for different wavelet–types

The QMF method features critical sampling of the spectrum and the WT can be formulated
as a filter design problem for H(�) where the conditions for orthogonal wavelets collapse in
Fourier space to [15]:
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(12)|H(�)|2 � |H(� � �)|2 � 1

|H(0)| � 0

For volumetric data sets we can set up a 3D orthogonal wavelet basis straightforwardly using

the same tensor product technique. We obtain the function space V3
m :

(13)

V3
m � Vm� Vm� Vm

V3
m � �Vm�1 � Um�1

� � �Vm�1 � Um�1
� � �Vm�1 � Um�1

�

V3
m � V3

m�1 � U3,1
m�1

� U3,2
m�1

� ��� � U3,7
m�1

Equation (13) shows, that at each decomposition step, the space is broken up into 7 orthogonal
complements that account for the principal orientations of the data, respectively. The corre-
sponding 3D versions of the wavelets and of the scaling function can easily be derived from their
one–dimensional relatives, as

(14)

�3
mpqr(x, y, z) :� 2–3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r)

�3,1
mpqr(x, y, z) :� 2–3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r)

�3,2
mpqr(x, y, z) :� 2–3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r)

�3,3
mpqr(x, y, z) :� 2–3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r)

�3,4
mpqr(x, y, z) :� 2–3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r)

�3,5
mpqr(x, y, z) :� 2–3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r)

�3,6
mpqr(x, y, z) :� 2–3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r)

�3,7
mpqr(x, y, z) :� 2–3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r)

The resulting data pyramid is illustrated in fig. 3. In each branch of this tree the different signal
components are emphasized, being extracted from the corresponding oriented wavelet function.
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Fig. 3 Iterated decomposition of the initial volume data by the wavelet transform

 Let c~j 	 �cm
pqr, dm,1

pqr, dm,2
pqr, dm,3

pqr, dm,4
pqr, dm,5

pqr, dm,6
pqr, dm,7

pqr
 and wj(x,y,z) be the wavelet �3,l
mpqr

or scaling basis function �3
mpqr, we write the expansion of the volume function f(x,y,z):

(15)
��

N

j�1

c~j � wj(x, y, z)

f (x, y, z) ��
r

�
q

�
p

cM
pqr�

M
pqr� (�

m

( dm,1
pqr�

m,1
pqr � dm,2

pqr�
m,2
pqr � dm,3

pqr�
m,3
pqr � dm,4

pqr�
m,4
pqr

dm,5
pqr�

m,5
pqr � dm,6

pqr�
m,6
pqr � dm,7

pqr�
m,7
pqr ))

N: number of voxels

Due to the immense number of basis functions (for 1283 > 2 Mio.) we are forced to define a sig-
nificance measure for the data to reject unimportant coefficients. A generic significance for ort-

hogonal settings can be derived by computing the local signal energy Ej  from  � ��L2.

It is obtained for each basis as

(16)Ej � �
�

��

�
�

��

�
�

��

�c~j wj(x, y, z) � 2dxdydz� |c~j|�� wj(x, y, z) �2L2

Supposing the basis functions to hold

(17)
wi, wj� � �ij

we obtain the local energy by the square of the corresponding coefficients

(18)Ej � �c~j�
2

The total energy Eges of a 3D signal of size N is obtained by summing up all squared coefficients
of the WT:
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(19)Eges��
N3

j�1

�c~j�
2

Obviously, a good L2 oracle is given by sorting and rejection of coefficients according to their
magnitude.

In addition, these equations allow us to estimate the error bounds of our approximation when
rejecting unimportant coefficients. Once the coefficients are filtered, we obtain a residual
approximation as

(20)f
^
(x, y, z) ��

K

j�1

c^ j � w^ j(x, y, z)

K � N

The same conditions hold for the 2D case.

2.3 Wavelet Bases for Data Representation

The elucidations above do not further restrict the mathematical properties of the wavelet bases
and there have been different construction schemes proposed in literature depending on smooth-
ness, strict local support and other criteria. This section briefly introduces the most important
orthogonal wavelets. (see also [9]).

Haar Wavelets

A very simple, but discontinuous basis is given with the Haar wavelet, whose scaling function
and corresponding wavelet is defined by

(21)�(x) :� 
1     for  0� x � 1

0     otherwise
�(x) :� �

��
�




     1     for  0� x � 1�2

� 1     for  1�2 � x � 1

     0     otherwise

The Fourier transform of these functions (eq. (22)) show, that the expressions have optimal local-
ization properties in the spatial domain

(22)�(2�) � e�i� sin(�)
� �(2�) � ie�i� sin2(��2)

��2

but a weak localization in frequency.

Daubechies Wavelets

In order to obtain better localization in frequency along with a minimal local support in space
and smoother basis functions, Daubechies [5] proposes wavelet types as follows: the smoothness
can be measured by the regularity R, (of any function �) which is defined as the maximum of
R such that

(23)
|�(�)| � c

(1� |�|)R�1 c 	 �
�
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This relation also describes the continuity of �(x), where �(x) � Ci(�) with  i�R. The regular-
ity of the Daubechies wavelets is proportional to the number of vanishing moments V, defined
by

(24)�
�

��

xn�(x)dx� 0 n � �0,. ..,V� 1�

The function � is only constraint by eq. (25).

(25)�
�

��

�(x)dx� 1

Note, that these wavelets are given by their corresponding QMF–pairs.

Coiflet – Bases

Restricting further the scaling function to a fixed number of vanishing moments following eq.
(26)

(26)�
�

��

xn�(x)dx� 0 n � �1,. ..,V� � 1�

results in a different wavelet type, the so–called Coiflet wavelet [1]. Besides the Haar–Wavelet,
strict finite support comes along in the orthonormal case with a lack of symmetry. However there
is a relationship between the number of vanishing moments, stated earlier, and the symmetry of
the function. Thus Coiflet bases appear to be ”more symmetric” than Daubechies ones.

Battle–Lemarie Wavelets

Wavelets with an infinite support can be approximated in the frequency plane. An example with
4 vanishing moments is given by the equations (27) – (30) (see [24]).

(27)�
^
(�) :� 1

�4 �8(�)�
where

(28)�8(�) :�
N1(�) � N2(�)

105	sin�
2

8

with

(29)N1(�) :� 5� 30	cos�
2

2

� 30	sin�
2

2	cos�

2

2

and

(30)N2(�) :� 2	sin�
2

4	cos�

2

2

� 70	cos�
2

4

� 2
3
	sin�

2

6

The resulting wavelet type is often referred to in literature as the Battle–Lemarie wavelet.

Figure 4 – 6 gives again a graphical representation of the shape of some 2D wavelet basis func-
tions. We can clearly distinguish between the smooth shape of the Battle–Lemarie wavelet on
the one hand and the strict local support of the Daubechies wavelet on the other hand. It is clearly
to see, where the name ”wavelet” comes from.
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scaling function vertical wavelet

horizontal wavelet diagonal wavelet

Fig. 4 2D–Daubechies 4–tap wavelets and scaling function

scaling function vertical wavelet

horizontal wavelet diagonal wavelet

Fig. 5 2D–Coiflet wavelets and scaling function
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scaling function vertical wavelet

horizontal wavelet diagonal wavelet

Fig. 6 2D–Battle–Lemarie wavelets and scaling function

We should also note that for continuous approximations we face the competing criteria of provid-
ing strict compact support and smooth symmetric shapes along with orthonormality in order to
achieve a perfect reconstruction and compact coding. A good introduction to wavelet theory is
given in [15].

3 A Framework for Integrated Data Analysis and Visualization

As stated earlier, the WT has successfully been used for data feature extraction [33],[19],[4] as
well as for volume and isosurface rendering [26], [13], [10]. In particular in the field of image
processing, several approaches to texture analysis have been proposed so far. Most of these tech-
niques use a local WT on single coherent texture samples. In order to overcome this restriction,
[9] proposed a new concept for texture feature extraction in images based on a global WT. The
features are derived from the local wavelet coefficients and take advantage of the localization
properties of the WT. These results motivated us to extend the segmentation scheme to 3D and
to embed it into the rendering process – all that in the underlying data space of the WT. Figure
7 illustrates again the pipeline, where one global WT is first performed on the initial data set.
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Fig. 7 Framework for integrated volume rendering and data analysis in wavelet
space

Once the data is transformed, the segmentation pipeline associates a segmentation to all voxels
in the data set. Therefore, we first extract a wavelet stream of coefficients from the wavelet pyra-
mid for each voxel. This vector is taken as the feature vector describing the local properties of
the data surrounding the voxel. These data have to be decorrelated, because the extraction
scheme renders slightly correlated features, in spite of the orthogonality of the transform. After
normalizing the features, they are feed into a neural network [8] that accomplishes clustering and
classification. The result from this process is a segmentation map, that can be imported into the
volume renderer. The following two chapters shed light on both data analysis and volume render-
ing [10] based on WTs.

4 Data Analysis in Wavelet Space

4.1 Feature Extraction in Images and Volumes
As stated earlier, the result of the wavelet transform is a pyramidal representation of the image
as illustrated in figure 8b. The initial image is separated into a dyadic set of frequency channels
where horizontal, vertical and diagonal components are split by the corresponding wavelets. Due
to the local properties of the wavelet transform, the idea of [9] was to derive local texture features
in the adjacency of any pixel (x, y) of the initial image by a set of respective coefficients from
the pyramid. Supposing a depth of M in the pyramid, the set g(x, y) = {gi (x,y)} = {g0,...,g4M–1}
renders a feature vector for further analysis:

gi(x,y) ���dm,l
x,y | l � 1� (i mod 4)�    if (i mod 4� 2)

�cm
x,y
�                                  else 

m� 1�� i
4�
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Since the spatial localization of the WT decreases with lower frequencies according to the Hei-
senberg principle, we have to perform a bilinear interpolation between adjacent coefficients in
every channel to approximate the contribution of the respective wavelet for a spatial coordinate
(x, y) in the image.

Figure 8 illustrates these properties of the WT. The initial image consisting of different types of
textures is transformed into the wavelet space. The result is a 4 level pyramid that separates hori-
zontal, vertical and diagonal subbands of different spectral ranges. The local texture properties
of the image can be described by the respective wavelet coefficients of the pyramid, since they
provide a local spectral estimate. The contribution of the corresponding sets g(x, y) can be dem-
onstrated by the reconstruction of the image using only coefficients of the scaling functions and
of the wavelets inside the marked region. The resulting image in figure 8c features local lod, since
the high frequency information is only provided locally.

x

y

Fig. 8 a) Initial test image consisting of four different texture types and 
non–linear texture boundaries.

b) Subband representation by an orthogonal WT
(Battle–Lemarie filter [24]).

c) Reconstruction of the image with a spatially varying 
resolution.

It should be noted, that the coefficients of the scaling function cm
xy of each resolution step m are

added into our feature vector. They represent the low–pass parts of the signal and are decom-
posed further. This gives rise to a correlation of the individual features, but it turned out to pro-
vide better results. For this end, decorrelation is a meaningful step in the pipeline even when em-
ploying orthonormal wavelet types.

This scheme can be extended into 3D as shown in fig. 9. The local volume texture properties
surrounding a voxel (x,y,z) are described by their respective set of coefficients g(x,y,z) from the
volume pyramid.
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Fig. 9 Illustration of the extraction of local volume texture features from the vol-
ume pyramid.

4.2 A Pipeline for Data Analysis
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Fig. 10 Wavelet–based data analysis pipeline.

Figure 10 shows again the pipeline for data analysis as first applied in [9] and later extended in
[11]. After an initial WT decorrelation of the coefficients is required to provide an optimal repre-
sentation of the extracted features. There are many different approaches in mathematical statis-
tics to perform this. The method proposed here employs the PCA [7]. Since the amplitude dis-
tribution of the data is unknown, the normalization step supposes an uniform distribution and
scales the data straightforwardly to its minimum and its maximum.

The required cluster analysis of the texture features as well as the supervised classification step
is accomplished with an extension of the Kohonen Feature Map proposed by [8]. The basic topol-
ogy of the network is illustrated in figure 11. The competitive layer is extended to 3D and each
neuron j is assigned to a specific color triplet (Rj , Gj , Bj ) in the RGB color space. During the non–
supervised organization process the network performs a C–means clustering of the incoming
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data, where each weight vector wj  represents the position of a centroid in feature space. Since
the network tries to preserve the data topology, neighbored neurons in the output layer are
mapped to neighbored cluster centers in feature space. Visualizing these cluster centers in terms
of color results in a mapping of a multidimensional data distribution to color similarities in RGB.
The updating of the weights wj  for each neuron j during learning follows the basic rules of Koho-
nen:

�wij � �(t) � (gi (x, y) – wij)  ,    if neuron j � Nj(t) (31)

�(t): time dependent learning rate

gi : feature coordinate i

weights

3D–output layer

input layer

input vector g(x,y)

neuron j
� color
(Rj,Gj,Bj)

R

G

B
RGB–
color space

Fig. 11 3D Kohonen map and color assignment

Nj(t) represents the local neighborhood of neuron j with the minimum Euclidian distance to the
feature vector g(x,y).

4.3 Some Results on Texture Analysis

Figure 12 (upper) shows four different images generated to investigate the capabilities of the ap-
proach. The task was to perform a classification of the textures in the different images. The fol-
lowing wavelets were employed:

– Gabor wavelets (8 spatial orientations)
– Daubechies wavelets (4–tap)
– Haar wavelets
– Battle–Lemarie wavelets
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a) b) c) d)

D68

D17

D55

D24

Fig. 12 Different texture compositions and results:
a) Sine1: Sine gratings of different spectral ranges

 and orientations
b) Sine2: Sine gratings of different spectral ranges
c) Random dots
d) Brodatz textures: D17, D24, D55, D68

Figure 13 illustrates the error we obtained for different images and wavelets as a function of the
iteration depth. The results show that the accuracy depends on the texture type. It is interesting
to compare the homogeneity of the results within the texture regions. The errors recorded appear
mostly at the boundaries.
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Fig. 13 Results for a) RANDOT
b) BRODATZ
c) Best matches for all samples
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A detailed analysis of the performance of this algorithm for image texture analysis is provided
in [9]. The following section of the paper elaborates a volume visualization method based on
wavelets according to [10].

5 Volume Rendering in Wavelet Space

5.1 Preliminary Remarks

The basic goal of volume rendering is to find a good approximation of the low albedo volume
rendering integral [2], [16] which expresses the relation between the volume intensity and opac-
ity functions and the intensity in the image plane. Most of the standard volume rendering algo-
rithms therefore approximate an integral equation with the ray parameter t of the type  

( 32 )I � �
t2

t1

C(t) e

��
t

t1

�(s)ds

dt

where C(t) stands for a volume intensity function and includes emitted, scattered and reflected
light. �(t) denotes the opacity function of the data and can be used to encode data features to be
enhanced in the final images. Hence, the inner integral includes the self–occlusion of the volume.

The most common way to get a numeric solution of eq. (32) employs a first–order quadrature
of the inner integral along with a linearization of the exponential. The outer integral is also solved
by a finite sum of uniform samples. We yield

( 33 )I � �
M

k�1

Ck �k�
k�1

i�1

(1 � �i)

where �k are the opacity samples along the ray and Ck are the local color values derived from
the illumination model. Note that I has to be computed for each spectral sample �, i.e. in R,G,B.

A good mathematical analysis of the problem and error bounds of numeric quadrature is pro-
vided in [28].
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5.2 Approximate Solutions of the Volume Rendering Equation
In chapter 2 we elaborated that some wavelet types are not given in a closed form solution and
properties of smoothness, symmetry and the keeping of the orthonormality can only be achieved
by infinite support. That is, explicit approximations are vulnerable to truncation errors. In order
to compare different wavelet types and to be independent of the basis function, we require a ge-
neric continuous representation scheme. Furthermore, the final goal is to find an approximate
and analytic representation for the ray intensity function. Thus the discrete values of the wavelet
functions obtained by feeding Dirac–pulses into the filter bank are interpolated by piecewise

polynomials using cubic splines in each interval I � �
3.

Note, that this approach provides a good framework for fundamental studies and investigations,
however, it is not suited for building fast rendering schemes.

From the sections above we know, that a 3D wavelet decomposition of a volume data set accom-
plishes an expansion of the volume function f(x,y,z) according to eq. 15.

The separability of the bases w^ j allows us to write eq. 20 as

( 34 )f
^
(x, y, z) ��

K

j�1

c^ j b1
j (x) b2

j (y) b3
j (z)

where the bj represent the x,y and z–components of the tensor product basis functions.

The image generation with ray casting turns out to be a parametrization of the ray as

( 35 )�x
y
z
� �


	




�xt � �x
�yt � �y
�zt � �z



�

�
� � ��x,�y,�z�

T
 ,    � � ��x,�y,�z�

T,

� and � are the viewing direction and the eyepoint respectively.

We obtain the intensity function along the ray with

( 36 )f
^
(t) � f

^

	




�xt � �x
�yt � �y
�zt � �z



�

�
��

K

j�1

c^ j b1
j (�xt � �x) b2

j (�yt � �y) b3
j (�zt � �z)

This scheme is illustrated in fig. 14. The ray intensity function is provided by projecting the indi-
vidual basis functions onto the ray and by superimposing them. It is accomplished by scaling
with � and by translating with �. Due to the piecewise spline interpolation we get now a continu-

ous approximation of the ray intensity function. In each interval �tjn, tj
n�1

� and for each compo-

nent of the resulting vector the cubic polynomials bi,n
j (t) are given for each wavelet wj  as mono-

mials

( 37 )bi,n
j (t) � �

3

k�0

a~i,n
k,j tk i � 1, 2, 3
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and their coefficients a~i,n
k,j  as

( 38 )a~i,n
k,j ��

3

l�k

� l
l–k�ai,n

l,j
� k � l–k

ai,n
l,j

 : Spline coefficients in interval [tjn, tj
n�1

]

Thus we can write

( 39 )bi,n
j (t) � �

3

k�0

�
�
	
�

3

l�k

� l
l–k� ai,n

l,j
� k � l–k�



�

t k with t � [tjn, tj
n�1

]

The final expression for f
^
(t) is obtained by

( 40 )

f
^
(t) ��

K

j�1

c^ j�
�
	
�

3

k�0

�
�
	
�

3

l�k

� l
l–k�a1,n

l,j
� k

x � l–k
x �


�
t k�


�

��
�
	
�

3

k�0

�
�
	
�

3

l�k

� l
l–k�a2,n

l,j
� k

y � l–k
y �


�
t k�


�

��
�
	
�

3

k�0

�
�
	
�

3

l�k

� l
l–k�a3,n

l,j
� k

z � l–k
z �


�
t k�


�

t � [tjn, tj
n�1

]
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Fig. 14 Illustration of the rendering process

Note, that eq. (40) finally provides an approximation with cubic volume splines which can be
integrated straightforwardly. Unfortunately, however, the rendering equation incorporates an
exponential absorption term.
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Now, depending on the application there are different ways to compute the image intensity I. In
the simple, but important [32] case of constant transfer functions eq. (32) simplifies to

( 41 )I � �
t2

t1

f (t) dt

We obtain a piecewise analytic solution for each interval  	tjn, tj
n�1


 by the piecewise primitive

functions Wn
j (t) � �b1

j (t) � b2
j (t) � b3

j (t) dt , with

( 42 )

I ��
K

j�1

I j ��
K

j�1

c^ j �
Lj�1

n�0

	Wn
j (t

j
n�1

) � Wn
j (t

j
n)
 Lj : number of spline intervalls

Note, that the size and number of the intervals Lj  depend either on how the viewing ray intersects
the wavelet and on the iteration m. In the case of a close form representation of the Wj(t) , such

as with B–spline wavelets the relations collapse to:

( 43 )I ��
K

j�1

I j ��
K

j�1

c^ j	Wj(t2) � Wj(t1)
 ��
K

j�1

c^ j �
�

��

w~ j(t)dt

The upper integral can be computed effectively using Fourier projection slicing [22].

In order to include a self–occlusion term and to evaluate the inner integral, we expand the func-
tion �(s) by our bases and obtain the following expression:

 

( 44 )

e

� � �

t

t1

(s)ds

� e
��

K

j�1

�j �
Lj(t)�1

n�0

	Wn
j
(tj

n�1
)�Wn

j
(tj

n)
 �j , tj
0
� t1

tj
Lj(t)

� t
�j : wavelet coefficient for �(x,y,z)

Due to the local support of the WT, we have only to account a subset of wavelets along the ray.
A linear approximation of the exponential function aligned to the spline intervals yields

( 45 )
e

� �
t

t1

�(s)ds

�

K

j�1

�j 

Lj(t)�1

n�0

�1 � 	Wn
j (t

j
n�1

) � Wn
j (t

j
n)
�

Again, it has to be noted that a closed form representation provides a compact approximation,
but worse error bounds.
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( 46 )e

� �
t

t1

�(s)ds

�

K

j�1

�j �1� �Wj(t) � Wj(t1)�	

The final discrete solution of the rendering equation depends on the shading model.

The gradient ∇ f(x,y,z) that is required for shading can be computed easily from

( 47 )
�f

^ �xyz	 ��
K

j�1

c^ j � d
dx

b1
j (x) b2

j (y) b3
j (z) , b1

j (x) d
dy

b2
j (y) b3

j (z) ,

b1
j (x) b2

j (y) d
dz

b3
j (z)	

We have to mention here, that the implementation of these equations is not straightforward. Al-
though the piecewise spline interpolation of the basis functions has only to be performed for the
1D–prototypes of � and �, the calculation of the spline intervals in t are computationally very
expensive.

The problem of getting isosurfaces in the images will be treated separately and discussed in the
next section. The pictures in this paper are based on eq. (41).

5.3 Examples
In fig. 15 a Gaussian density distribution was voxelized at a  resolution of 323 and rendered with
different numbers of coefficients and iteration depths. The isosurface was set to �= 0.5, the inten-
sities below that threshold are represented as a bluish translucency. We should note that symme-
try and shape of the wavelet strongly influence the shape of the isosurface. Asymmetric and frac-
tallike functions, as for instance the Daubechies wavelet, generate artifacts, such as rips or
modulations of the translucency. It is interesting to compare them to the shapes obtained by a
standard marching cubes on the initial volume data set.

Fig. 15 Images obtained from a Gaussian density distribution of  323 voxels:
(a) Isosurface at � = 0.5 with a marching cubes algorithm.
(b) Isosurfaces and translucent hull obtained from a Battle–Le-

marie wavelet with 961 coefficients.
(c) Isosurfaces and translucent hull obtained from a Coiflet

wavelet with1006 coefficients.
(d) Isosurfaces and translucent hull obtained from a Daubechies

wavelet with1154 coefficients.
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The pictures were generated with our hybrid renderer that composes the volumetric intensities
with the isosurfaces. In these examples, the isosurfaces were rendered using the implicit function
approach of [17]. The coefficients were filtered according to the significance measures in section
2.2.

6 Isosurface Reconstruction

6.1 Implicit Function Approach versus Marching Cubes

The wavelet decomposition offers different ways to get isosurfaces from volume data. Direct
volume integration to get opaque surfaces, as proposed by [21] or [6] usually base on shading
models that estimate the surface normal by means of the volume gradient �f. Another way to
solve the isosurface problem is proposed by [26]. It bases on the idea, that isosurfaces of a thresh-
old � satisfy

( 48 )f
^
(x, y, z) � � � f

^
(x, y, z) � � � 0

in the continuous approximation of eq. (20).

Equation (48) leads to an implicit function that can be rendered using methods as in [17]. De-
tailed descriptions of how to compute the Lipschitz condition are given in [10].

Unfortunately, there are several shortcomings in this approach: Due to the huge number of basis
functions, Kalra’s method becomes extremely time consuming. Furthermore, the appearance of
the isosurface is strongly influenced by the shape of the wavelet, which has to be represented in
a continuous form. Hence, it becomes interesting to apply a simple marching cubes technique
[23] on the expanded data set and to compose the polygons with the volume data during the ren-
dering process. In these cases, the isosurface generation is no longer performed in wavelet space,
but the local data quality is still controlled by the wavelets.

6.2 Examples

Figure 16a shows the bust of Johann Strauss, as it is derived from a 3D laserscanner. This model
was illuminated and voxelized with a resolution of 322x64 voxels. The isosurfaces obtained from
a marching cubes are presented for a flat shaded reconstruction in fig. 16b respectively. Figures
17a,c,b show the isosurface reconstruction with Kalra’s method [17] which is accomplished on
immediately by ray tracing the basis functions in wavelet space. In figure 18a,b,c the same recon-
structions are presented after an inverse transform of the filtered data and with a marching cubes
algorithm. In both cases, an increasing number of coefficients were employed to encode the data.
We can clearly recognize that the level of detail increases as the number of wavelets is raised.
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Fig. 16 a) Range data of a bust of Johann Strauss
b) Voxelized volume data at a resolution 322  x  64
c) Isosurface reconstruction using a marching cubes algorithm
(range data courtesy provided by the ZGDV, Darmstadt, Germany)

Fig. 17 Isosurface reconstruction using Kalra’s method and 3D–wavelets with
�=0.5
a) 1180 coefficients
b) 2832 coefficients
c) 9601 coefficients
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Fig. 18 Isosurface reconstruction using marching cubes methods with �=0.5 and
Battle–Lemarie–wavelets
a) 1180 coefficients
b) 2832 coefficients
c) 9601 coefficients

Fig. 19 Isosurfaces from a human scull obtained by Haar decompositions of the
data with different levels of approximation:
a) 100 % coefficients
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b) 15.5 % coefficients
a) 6.8 % coefficients
a) 0.3 % coefficients
a) 0.02 % coefficients

Fig. 20 Contolling the local level–of–detail of the data by Gaussian weighting
functions:
a) Result obtained with Haar wavelets.
b) Illustration of the weighting function (red ellipsoid).

In fig. 19 a series of isosurface reconstructions from a human scull is depicted with an increasing
number of coefficients. Due to the Haar wavelets employed for the decomposition the surface
becomes more or less ”box–like”. Figure 20 illustrates the localization properties of the WT.
Here, a 3D Gaussian weighting–function (transparent ellipsoid in fig. 20b) was applied in wave-
let space to enhance the approximation. Obviously, we end up with a perfect reconstruction of
the isosurface in those spatial regions affected by the Gaussians.

7 Conclusion and Future Research
In this paper, a new framework for integrated volume rendering and data analysis in wavelet
space was elaborated. It was shown, that the WT is well suited for the extraction of local data
features in  images. Future research activities have to focus on testing the method on volume data
sets and to combine it with current imaging techniques, such as morphological processing. Fur-
thermore the proposed rendering method provides piecewise analytic solutions of the intensity
integral, since the underlaying volume is approximated continuously by polynomials. The qual-
ity of the results depends strongly on the types of the selected basis function. Yet, it turns out,
that the projection of the bases onto the ray is computationally expensive. Hence we have to find
a wavelet, that is smooth, of strict finite support, orthonormal and that provides a closed–form
integral in t. These properties account for both rendering and data analysis, but cannot be satis-
fied in common. Thus a compromise has to be found as in terms of biorthogonal wavelets.
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