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Abstract— This paper presents work on sensor-based motion
planning in initially unknown dynamic environments. Motion
detection and modeling are combined with a smooth navigation
function to perform on-line path planning in cluttered dynamic
environments. The SLIP algorithm, an extension of Iterative
Closest Point, combines motion detection from a mobile platform
with position estimation. This information is used via probabilis-
tic prediction to estimate a traversal risk function that unifies
dynamic and static obstacles. The risk is fed to E∗ and leads to
smooth paths that trade off collision risk versus detours.

I. INTRODUCTION

Path planning in a-priori unknown environments cluttered
with dynamic objects is a field of active research. It can be
addressed by using explicit time representation to make the
problem static and solve it with an existing planner. This
increases the dimensionality and requires exact motion models
for surrounding objects. The computational effort rises, and
motion prediction raises theoretic and practical issues, espe-
cially in the presence of humans. As robotic companions are a
promising application area, we need on-line path planning in
environments with unforeseeable human behavior. It would be
inappropriate to add explicit time-representation to the model:
if the humans surrounding the robot do not know where they
will be going, how can the robot attempt to incorporate such
knowledge during planning?

A. Approach and Contribution

Figure 1 illustrates the problem statement of the Probabilis-
tic Navigation Function (PNF). The following objectives led
to its ongoing development:

• Avoid invalid assumptions, use sensor-based models. Co-
occurrence estimation in PNF uses a few parameters that
we quickly and robustly extract from real data.

• Avoid adding dimensions for ST (state×time space)
planning [1] by introducing worst-case scenarios.

• Interweave planning and execution, perform many com-
putations in the workspace W to keep complexity low.

To produce smooth navigation functions we rely on E∗ [2],
[3]. It is a grid-based weighted-region planner, requires rela-
tively little computational overhead, and is capable of dynamic
replanning in near real-time1.

1http://estar.sourceforge.net/
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Fig. 1. The Probabilistic Navigation Function plans a path that strikes a
balance between the accumulated risk and the detours necessary to avoid
dangerous regions. Risk estimation relies on co-occurrence probabilities
between the robot and each moving object. The shortest admissible path from
each object to the region of interest is used as worst-case estimate in order
to avoid the extra dimensions that would be required for ST -space planning.

On-line motion detection is performed by SLIP [4], a
scan alignment method. In order to use sensor-based motion
modeling, it is of primary importance to compensate for the
ego-motion of the robot. The main sensor used in the presented
work is a laser scanner, thus motion detection requires robust
scan alignment. The SLIP approach is based on ICP [5], [6] (a
comparison of different variants can be found in [7]) and has
proven its robustness on sensory data taken during EXPO.02, a
six-month national exhibition which took place in Switzerland
during the summer of 2002.

The interface between these two building blocks of motion
detection and path planning is developed in the following
sections. It is an estimation of co-occurrence probabilities
between the robot and surrounding dynamic obstacles (e.g.
humans, other robots), given environment constraints and
assumptions based on worst-case scenarios.

B. Related Work

The PNF is a navigation function, a concept of which the
NF1 [8] is a classical implementation. Navigation functions
are like potential fields [9], but are guaranteed to have a
unique global minimum. The PNF incorporates a continuous



Fig. 2. Steps required for calculating the PNF: aligned laser scanner
data is separated into static and dynamic objects. Static elements update
the map, while dynamic elements can be optionally tracked (to obtain e.g.
velocity vectors). The static and dynamic information is used to calculate co-
occurrence probabilities that are fused into a navigation function. Reactive
obstacle avoidance is then used to take into account the most recent scans
during path execution.

risk measure of traversing regions of W , which is similar to
edge costs in graph-based planners, but is conceptually closer
to weighted regions.

The weighted region path planning problem is described
in [10], [11], but instead of pre-determined regions we use
a grid-based risk map. Among the published research that
incorporates environment dynamics during path planning [1],
[12]–[17], most seem inappropriate for an application in
highly cluttered dynamic environments: they either rely on
information and computational resources that are not available
for such unforeseeable settings (extending C to a full-fledged
ST representation [1], a velocity space [12], [15], essentially
off-line movement simulations [14]), or are limited to constant
velocity models [17], [18]. In [16], environment dynamics are
treated using worst-case scenarios that take into account the
sensor capacities, but it treats all known obstacle information
as static during planning.

II. ALGORITHM OVERVIEW

The components that constitute the PNF approach are shown
in figure 2. It is based on the observation that, as static
objects define the environment topology, dynamic objects can
be considered traversable if it is reasonable to assume that a
given object will not remain at its position once the robot has
moved there. The result is an approximate plan that relies on
lower level obstacle avoidance to turn it into robot movements.
The PNF computes a trade-off between the collision risk of
traversing a region and the detour needed if it was to be com-
pletely circumnavigated. Accepting a certain risk is necessary
for avoiding frequent replanning, which would cripple reactive
human-robot interaction, but can be done only if lower-level
collision avoidance and other safety features perform reliably.
The overall steps of the algorithm are:
Input: Laser scanner data (and odometry / localisation)

(a) scan data superimposed using raw odometry

(b) the same scans after SLIP alignment

Fig. 3. Example of a scan alignment: the information obtained by raw
odometry is not suitable for motion detection. After correcting the ego-motion
using SLIP, regions of motion are now immediately apparent. The corrected
robot path is shown as a dashed line in the lower image.

Motion detection: SLIP precisely determines the transforma-
tion between subsequent scans, then reliably detects motion
that takes into account occlusion changes from a moving
platform.
Determine co-occurrence risk: Translate dynamic objects
into a probability of colliding with the given object at a
given location, based on assumptions derived from worst-case
scenarios.
Path planning: Compute a smooth navigation function using
E∗, taking into account a fusion of all co-occurrence risks.
Output: Direction of travel (steepest gradient) that can be fed
into reactive obstacle avoidance, such as the one in [19].

III. SCAN ALIGNMENT AND MOTION DETECTION

Motion can be detected as differences between successive
scans, because moving objects change sensor readings. Ad-
ditionally, however, differences arise from occlusion changes
due to the motion of the robot. Thus, the ego-motion has
to be compensated prior to comparing scans. SLIP performs
scan matching based on an initial guess from odometry, then
iteratively establishes links between points, and transforms



Fig. 4. Example of a motion detection from a mobile robot, using data
acquired by the Photobot at EXPO.02. This was a difficult region for
localisation, producing particularly large orientation errors when the robot
rotated on the spot. Using SLIP, the scans were aligned very precisely to
allow robust motion detection (dark spots surrounded by thin lines). Note that
the map is shown for illustration only, SLIP does not require such a-priori
information.

the scans to minimise the remaining distance between the
elements. Special care has to be taken to suppress outliers,
particularly from moving objects, in order to achieve a high
precision. Alignment correction is based on differences be-
tween the centers of gravity of the matching point sets in both
scans.

To detect motion on aligned scans, elements without corre-
spondence within a defined distance (derived from the maxi-
mal localisation error) are considered outliers. Projective filters
are used to distinguish between moving objects and occlusion
changes. Non-outliers are used to create a map of the static
environment. SLIP then determines which outliers were visible
from the previous position. An example alignment result is
given in figure 3. Moving elements are clustered by the well
known friend-of-friends algorithm to model dynamic objects
with associated location (the center of gravity) and size (cluster
radius). An example of motion detection from a mobile robot
is shown in figure 4.

IV. PLANNING WITH ESTIMATED RISK

Conceptually, the co-occurrence models the probability that
a given location will be occupied by a static or dynamic
object by the time the robot has moved there. In principle,
when all future trajectories are known, co-occurrence is a
deterministic entity. However, the robot trajectory cannot be
known at the planning stage, and the object movements are
usually not available under real-world conditions. To cope with
this, we first reduce the problem to point objects evolving in
one dimension, then apply probabilistic worst-case reasoning
to compute a co-occurrence estimate, and finally transform the
W-space information such that it represents non-point objects
in DW dimensions. Figure 5 shows the form of probability
densities that we calculate.
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Fig. 5. Pc,i in the 1D case. The robot is at the origin, collisions may occur
on either side of its initial position: objects can catch up if they have higher
speeds. (a) objects are located at x = {−20,−5} and move with equal or
twice the speed of the robot. (b) Pc,i is adapted to the robot and object shapes
in the W transform, which computes the distance from a point of interest to
the borders of the robot and the dynamic object (at x = −20 and moving
twice as fast as the robot, object and robot radii rr = ri = 4).

A. Co-Occurrence Estimation

Instead of attempting to take into account the infinite
number of trajectories that could lead to a certain region of
interest R(x) at a given time, we consider the case where
the robot moves with vr along the shortest admissible path to
R(x), and then estimate the probability of a dynamic object
being there as well. Admissible paths are those along which
the robot does not collide with any static objects. The length
of the shortest such path is denoted λr(x).

Similarly we define a dynamic objects’s admissible paths
and corresponding λi(x), and consider a stochastic process for
the movement of the object over λi from its current (estimated)
position to R(x). We assume that the object’s speed and
direction of travel (along the shortest admissible path) can
change several times, but that it is bounded by vi. This motion
model allows to compute the probability that the object will



be at R(x) when the robot arrives. We consider them to co-
occur if they are then within the same interval of size δ, which
discretizes space into grid cells.

We develop the co-occurrence estimation Pc in the one-
dimensional case. For workspaces with DW dimensions we
compute λr and λi for each region of interest and thus obtain
Pc : R

DW → R for each dynamic object i. Pc,i has five terms
that are switched on or off depending on the robot and object
speeds and reflect co-occurrences in different areas, namely
far-left, left, center, right and far-right:

Pc,i = Pc(λi, λr, vi, vr, δ) = pc,l + pc,ll + pc,m + pc,rr + pc,r (1)

where vr is the robot speed, vi the object speed, λi the distance
to the object, λr the distance to the robot, and δ the grid
resolution.

Each individual pc represents an estimate for the partial co-
occurrence in one of the five different areas mentioned above.
Equations (3)-(7) are the expressions for these terms and the
conditions under which they are non-zero. The values of v1,2,
N , and η are defined as:

v1,2 =
vr (λi ∓ δ)

2λr
, N =

⌈
λr

δ

⌉
, η =

N − 1
2Nv2

i

(2)

The bounds v1,2 govern the applicability of the individual
terms below. For each of the following equations, if the interval
condition does not hold, the corresponding pc = 0.

if (v1, v2) ∈ (−∞,−vi) × (−vi, 0)

pc,l =
v1 + vi

vi
+ η

(
v2

1 − 2v2
i

)
(3)

if (v1, v2) ∈ (−vi, 0) × [−vi, 0)

pc,ll =
v2 − v1

vi
+ η

(
v2

2 − 2v2
1

)
(4)

if (v1, v2) ∈ [−vi, 0) × [0, vi)

pc,m =
v2 − v1

vi
− η

(
v2

2 + 2v2
1

)
(5)

if (v1, v2) ∈ [0, vi) × [0, vi)

pc,rr =
v2 − v1

vi
− η

(
v2

2 − 2v2
1

)
(6)

if (v1, v2) ∈ [0, vi) × [vi,∞)

pc,r =
vi − v2

vi
− η

(
v2

i − 2v2
2

)
(7)

Note that λ denotes distances after the W-transform, such that
these equations take into account non-point objects and robots
by using the distance to their boundaries, as opposed to their
center points. The effect of the W-transform is illustrated in
figure 5(b).
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Fig. 6. Processing flow inside the PNF. Cylinders show a-priori information
and inputs, rectangles represent grid layers, big arrows denote E∗ operation,
rounded boxes are other computations. C obstacles are essentially binary maps
for each object and the robot.

B. Risk Fusion and Planning

How can the co-occurrence information be used for path
planning? The PNF is based on a combination of collision
risks estimated in workspace W , which is then fused and
transformed to configuration space C. The main contribution
lies in the formulation of multiple layers of co-occurrence
probabilities, and how these are fused into a risk map rep-
resenting all dynamic objects as well as the environment
topology. A flow diagram of the PNF algorithm is given in
figure 6:

1) The distance from each grid cell to the closest static
object is computed using E∗. The resulting distance map
is denoted Ds

2) Ds is used to compute C-space obstacles for each dy-
namic object as well as for the robot. Then, similarly to
the first step, E∗ is invoked to calculate the topologically
correct distance maps Di to the current centers of
dynamic objects and Dr to the center of the robot.

3) The distance maps are transformed to values that
can be fed into the one-dimensional co-occurrence
equations: the W-space transform computes λi(x) =
miny∈Ai(x) (Di(y)), which represents the distance of a
point x to the border of the dynamic object i, where



Ai(x) denotes the object shape placed at location x. λr

is computed accordingly.
4) λi and λr are fed into equation (1) to yield dynamic

object co-occurrence maps, that is to say Pc,i for each
object at each grid cell. Ds is similarly transformed into
the static co-occurrence map, after optionally applying a
buffer zone which can help to smooth the robot behavior
close to walls.

5) Risk fusion is performed as PW
r = 1 −

∏
(1 − Pc)

over the dynamic and static co-occurrences in W-space,
followed by P C

r = 1−
∏

(1−PW
r ) over the robot shape

to expand it to C-space. A tunable risk map (typically of
sigmoid form) is used to turn P C

r into region weights.
6) Finally, E∗ is used again, this time to compute the

navigation function taking into account the cell weights
computed with the help of the risk map. The resulting
values are the Probabilistic Navigation Function.

The number of dynamic objects and the size and resolution
of the W and C representations all influence the computational
complexity (see figure 6). Computing Ds, Di, and Dr requires
O(IWDW ), where I is the number of objects and W is the
number of cells along one axis in a DW -dimensional W-space.
The W-space transform, risk fusion, and final planning step all
take place in C, altogether adding O(ICDC ), where C is the
number of cells along one C-axis in DC dimensions. Without
taking into account SLIP and queue-ordering overhead in E∗,
the overall computational complexity of the core planning
algorithm is thus O(IWDW CDC ).

V. RESULTS

Figures 7(a) and 7(b) illustrate how PNF takes into account
the environment topology for each object individually, for
example in a hallway where objects can loom from rooms.
The robot is the circle on the left, with a trace of gradient
descent towards the goal on the right. There is a moving object
behind the opening. The path is pushed into the free space in
order to maximize the distance from the door, but only if the
object is actually small enough to fit through. In this example,
the robot speed is vr = 0.3, the object moves with vi = 0.2.
Figures 7(c) and 7(d) show the effect of adding an object that
moves with the same speed as the robot, in this case making
the path switch homotopy class.

The various mappings in these figures are very smooth,
which is a consequence of the interpolation in E∗, and could
not be achieved with any strictly graph-based method such as
D∗ [20]. However, it has an increased computational cost (up
to 40% increase per operation and up to 65% increase in the
number of operations).

VI. DISCUSSION

In general, the robot may travel on arbitrary admissible
paths from one point to another. Taking this into account
would lead to an iterative approach of path planning and
estimating the co-occurrence probabilities. But such a method
is not only going to suffer from expensive computations, it
may also face non-trivial convergence issues. We avoid the

(a) Pc,i of a small object (b) Pc,i of a big object

(c) Pr at vi = 2.5vr (d) Pr at vj = vr

Fig. 7. PNF takes into account the environment topology individually for
each object. Compare (a) with (b): When an object is too large to fit through
an opening, it does not interfere with the robot trajectory. (c) and (d) illustrate
how different object speeds affect the trajectory, and how the addition of a
dynamic object can influence the topology of the chosen path.
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Fig. 8. This ad-hoc alternative motion model simply maximizes the co-
occurrence along the vi axis. We denote with P ∗ the envelope of Pc curves,
and use it to illustrate the local effects of motion models in figure 9.

need for iteration by assuming that the robot will reach each
point as fast as possible, and that the objects follow shortest
admissible paths (with varying but bound velocities). These
simplifications make it possible to address on-line planning
with dynamic objects in real-time.

The motion model underlying the estimation of Pc could
be based on different application-dependend assumptions, or
it could be extended to take into account more knowledge
about dynamic objects. The effects of changing the motion
model are visible on the global and local scale:
Globally: Motion models influence the conditions under



(a) Pc (eqs. (3)-(7)) (b) P ∗ = maxv∈[0,vi]
Pc

Fig. 9. Using P ∗ (shown in figure 8) as motion model leads to more
cautious robot behavior in the presence of very fast objects. In this example,
vi = 2.5 × vr and the object between robot and goal hardly influences the
trajectory because Pc is smeared, whereas P ∗ keeps the robot from planning
through the object’s current position.

which the planned path switches homotopy, as illustrated in
figures 7(c) and 7(d).
Locally: During path execution, the direction and steepness
of the gradient is determined by the motion model, it thus
influences how strongly dynamic objects “repel” the robot.

The local effect can be seen in figure 9, which illustrates
an ad-hoc motion model that addresses a potential drawback
with very fast objects that are not close to the robot: if vi � vr

and λi > L and λi > L, where L is a “near” distance, then
Pc is smeared widely across W . The robot thus potentially
plans a path through present positions of fast dynamic objects.
This behavior could be countered by preserving a high-co-
occurrence peak around the current object position, as shown
in figure 8.

Note that we use P ∗ solely for the purpose of this discus-
sion, it is not based on a maximum-likelihood formulation.
Given that E∗ can efficiently update existing plans when new
information arrives, and that vi seldom takes on excessive
values in the target applications, the motion model presented
in this paper can be considered appropriate.

VII. CONCLUSION AND OUTLOOK

The Probabilistic Navigation Function is an approach to
on-line path planning for a-priori unknown dynamic cluttered
environments. It incorporates sensor-based motion models into
weighted region planning, using a probabilistic risk map based
on co-occurrences. Global and local robot behavior can be
tuned by changing the motion model. The individual build-
ing blocks were designed with on-line constraints in mind:
incremental knowledge, frequent changes to environmental
information, adapting existing plans, and separating planning
from execution.

The finished components of the PNF are scan alignment,
probabilistic collision risk estimation, and computation of the
navigation function. Verifications have been carried out via
simulation. Ongoing work concerns integration and testing
on a real robot and implementation of higher-dimensional C-
spaces. Motion detection and ego-motion compensation were
combined in the SLIP algorithm to segment sensor data into
static and dynamic objects. The dynamic information is used

to predict future positions, taking into account the available
knowledge for each object and the static environment topol-
ogy. E∗ is used to plan with co-occurrence information. For
execution, we rely on lower level reactive obstacle avoidance
guided by gradient descent, an interplay between planning and
execution that has proven to perform well.
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