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Abstract

In this thesis I use the term security relation to refer to a certain distribution of cryptographic
keys between two devices. This may be the knowledge of a secret symmetric key or the
possession of an authentic public key. A security relation is typically needed by a cryptographic
protocol to reach a certain security goal such as authenticity, privacy or integrity of data to
be transmitted. A device pairing protocol allows us to create such a security relation.

Device pairing protocols profit from the presence of the user and physical properties of
communication channels, to create a security relation. Depending on the protocol the user
examines certain properties or accomplishes certain tasks. A successful protocol run then
guarantees that the security relation was created between the two chosen devices.

Diffie-Hellman key agreement seems to be suitable to create a shared secret key between
two devices, because the protocol is secure against a passive attacker. To defend an active
attacker, the exchanged messages have to be authenticated. A number of device pairing
protocols are proposed to do this. Other protocols that do not rely on public key techniques
create a shared secret key by having exclusive access to random data, generated or provided
by the user.

Although the integration of the user into the protocols can be very different, the functional
principles of the protocols are often quite similar. This allows to divide the protocols into dif-
ferent classes, which can further be described by transformations of security primitives. This
abstraction allows a better understanding of current protocols and to identify the necessary
requirements for further ones.
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Zusammenfassung

Unter einer Sicherheitsrelation zwischen zwei Geräten verstehe ich in dieser Arbeit eine bes-
timmte Verteilung von kryptographischen Schlüsseln. Dies kann zum Beispiel die Kenntnis
eines geheimen, symmetrischen Schlüssels oder der Besitz eines authentischen öffentlichen
Schlüssels sein. Eine solche Sicherheitsrelation wird typischerweise von einem kryptographis-
chen Protokoll zur Erreichung eines bestimmten Sicherheitsziels wie Authentizität, Ver-
traulichkeit oder Integrität von zu übertragenden Daten benötigt. Ein Device-Pairing Pro-
tokoll erlaubt einem Benutzer eine solche Sicherheitsrelation zwischen zwei Geraten zu er-
stellen.

Zur Erzeugung einer Sicherheitsrelation nutzen die Protokolle die Präsenz des Benutzers
sowie physikalische Eigenschaften der Kommunikationskanäle. In Abhängig des Protokolls
überprüft der Benutzer gewisse Bedingungen oder führt bestimmte Aufgaben durch. Ein
erfolgreicher Protokolldurchlauf garantiert dem Benutzer, dass eine Sicherheiterelation genau
zwischen den Geräte zustande gekommen ist, welche der Benutzer zuvor ausgewält hat.

Die Diffie-Hellman Schlüsselvereinbarung scheint zur Erzeugung eines gemeinsamen,
geheimen Schlüssels geeignet zu sein, da das Protokoll vor einem passiven Angreifer schützt.
Um einen aktiven Angriff auszuschliessen, müssen die ausgetauschten Nachrichten au-
thentisiert werden, wofür eine Reihe verschiedener Device-Pairing Protokolle vorgeschlagen
wurden. Andere Protokolle, welche ohne Public-Key-Techniken auskommen, erzeugen einen
geheimen, gemeinsamen Schlüssel durch exklusiven Zugriff auf zufällige Daten, welche durch
den Benutzer generiert oder zur Verfügung gestellt werden.

Obwohl die Einbindung des Benutzers in das Device-Pairing Protokoll sehr unterschiedlich
sein kann, so sind die Funktionsprinzipen der Protokolle vielfach ähnlich. Dies ermöglicht es,
die Protokolle in Klassen zu unterteilen, welche ferner durch Transformationen von Sicher-
heitsprimitiven beschrieben werden können. Diese Abstraktion erlaubt es bestehende Pro-
tokolle besser zu verstehen und die notwendigen Bedingungen für zukünftige Device-Pairing-
Protokoll aufzuzeigen.
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Security is always excessive until it’s
not enough.

(Robbie Sinclair)

1 Introduction

Electronic devices get more and more important in our daily life since we use them for even
more tasks. For many of these tasks two devices need to communicate with each other, so
that no unauthorized person is able to affect or eavesdrop the communication. This can
either be done by using a physically secure communication medium or by using an insecure
communication medium together with a suitable cryptographic protocol. These protocols
typically rely on some information, shared between the communicating devices (e.g. a secret
key). If this information is missing we have to create it. This is done with device pairing
protocols.

Device pairing protocols can mainly be found in ubiquitous computing environments, where
users want to establish secure ad-hoc communications over wireless standards like Wi-Fi
(IEEE 802.11) or Bluetooth. This is because the underlining communication medium is
insecure and the devices often do not know each other in advance and therefore do not share
any information useful for a cryptographic protocol.

This thesis is a comparative study of device pairing protocols, with focus on the security
properties of these protocols. I present a selection of different protocols, compare them and
point out what they indeed achieve and how they achieve that. I further show, how such
protocols can be attacked and how they should be designed to prevent attacks.

1.1 Document Structure

Chapter 1 introduces the topic, describes the used terms and the device setup. In Chapter
2, I present possible application scenarios. Chapter 3 describes the attacker model, gives an
overview of today’s most important protocols and classifies them. In Chapter 4, I present
a selection of attacks against paring protocols. Finally, Chapter 5 describes the security
properties of device pairing protocols by transformations of security primitives.

1.2 Previous and Related Work

There is a large body of relevant prior work on the general topic of device pairing. Stajano
and Anderson [22] propose the resurrecting duckling security policy model, where keys are
established by physical contact of the communication parties. Balfanz, et al. [1] made
progress by suggesting the use of infrared communication as a human verifiable side-channel.
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Chapter 1: Introduction

Other proposed side-channels are: visual channels [15, 18], audio channels [10, 21] and
secured radio channels [5, 6]. Mayrhofer and Gellersen propose to use the context of a
device for sender authentication [14]. A location based protocol is proposed by Čagalj,
Čapkun and Hubaux [4]. All these approaches are described in more detail in Chapter 3. I
further acknowledge the work of Suomalainen, Valkonen and Asokan for their comparative
analysis and classification of key agreement protocols [23].

1.3 Motivation Example

Consider a user, who wants to print a business contract, just received by e-mail on his
handheld, in a public place (e.g. at an airport). There are several printers he can choose
from. His goal is to print the document with the printer in front of him and the document
should be kept secret, i.e., no-one else should be able to read its content. The user assumes
that the printer is “trusted”, meaning that it is not compromised by an unauthorized person.
How could this be realized?

Idea 1 The user connects his handheld to the printer using a printer cable and prints the
document.

Problem There is no printer cable available to connect the two devices or the handheld has
no appropriate interface, and of course, the user does not want to carry a printer cable
with him all the time.

Conclusion We want to use wireless communication (e.g. Wi-Fi IEEE 802.11) to print the
document.

Idea 2 The user scans the WLAN for all available printers, chooses the right one and sends
the document to the printer.

Problem An adversary nearby could overhear the communication and read the document’s
content.

Conclusion The user needs to send the document in an encrypted form to the printer.

To encrypt the document, the handheld needs a key. If we use symmetric cryptography, the
printer has to possess the same key to decrypt the document. Unfortunately, the handheld
and the printer do not share a key.

Idea 3 The printer or handheld generates a symmetric key and sends it over the WLAN to
the other device.

Problem The key can be intercepted by the adversary and becomes useless.

Conclusion Symmetric keys must not be transferred in plaintext over an insecure network.

Idea 4 Why not use public key cryptography to encrypt the document? In this case, an
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Chapter 1: Introduction

adversary has no benefit if he intercepts the public key. The user now asks the printer
to send his public key over the WLAN to his handheld. The handheld can then en-
crypt the document with the printer’s public key and send the cyphertext to the printer.

Problem As the adversary controls the WLAN, he can replace the printer’s public key by
his own public key (man-in-the-middle attack).

Conclusion The handheld needs an authentic copy of the printer’s public key.

Idea 5 The printer indicates his public key on its display and the user transcribes the key
using the handheld’s keyboard.

Problem This would solve our problem, but unfortunately this procedure is not very user-
friendly because no-one wants to transcribe a several hundred bit long key using a
uncomfortable small handheld keyboard.

Idea 5 is an example of a device pairing protocol used to transfer public keys between two
devices.

The handheld has now an authentic copy of the printer’s public key, can encrypt the document
with this key and send it over the insecure WLAN to the printer. The printer prints the
document and the user leaves the public place together with the printed business contract.
If the printing protocol is designed poorly, an adversary who overhears the communication
could send the same encrypted printing job to the printer, which prints the same document
again and the adversary gets a printed version of the document (replay attack).

This attack points out that the device pairing protocol, executed in Idea 5, can not ensure
that the following protocols are secure. Since this thesis is about device pairing protocols, I
do not further consider the security of protocols following a device pairing protocol.

1.4 Terms and Device Setup

The term device relates to a contrivance, serving one or more particular purposes, such as a
computer mouse or a mobile phone. I require here that a device has at least a microprocessor,
a memory and one or more input and output interfaces. Examples of device input interfaces
are: radio receiver, keyboard, microphone, photo/video camera, accelerometer. Examples of
device output interfaces are: radio sender, speaker, display, LED, vibrating motor.

Figure (1.1) shows the device setup. I name the two involved devices Alice (A) and Bob
(B). The legitimate user of the devices A and B (e.g. their owner) is simply called user.
The term entity is used to refer to a device or a human and the term adversary or attacker
is used for a malicious entity whose aim is to prevent the user from achieving his goal. To
avoid using “he/she” I assume, without loss of generality, that the adversary is male and the
user is female.
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Device BSnd Rcv

Snd

User

Device A

Memory Memory

chooses A and B by demonstrative identification

Output (sending) interfaces
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Insecure inband channels 
 controlled by the adversary 

Snd Rcv

SndRcv

Outofband channels with 
special physical properties 

 controlled by the user 

Figure 1.1: Device Setup

The user can choose the devices she wants to pair (black dotted line in Figure 1.1). In
most of the device pairing protocols she does this by a demonstrative identification [1] of the
devices. Demonstrative identification is the method of selecting the devices, a user wants
to pair, based on a physical context (e.g. the printer in front of me, all handheld’s on this
table).

1.4.1 Channels

A channel is a capability for communication. It can be used to exchange messages between
two entities. In our device setup a channel connects an input with an output interface of
two entities. Note that the user is also an entity and can send or receive data. I use the
term in-band channel for a fast but insecure and unreliable channel and the term out-of-band
(OOB) channel for a usually low bandwidth channel that guarantees some kind of security
(e.g. confidentiality, message integrity) to the communicating entities. Typically out-of-
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Chapter 1: Introduction

band implies that there is an in-band channel available. An in-band channel can for example
be a connection between two computers in an insecure WLAN network and an out-of-band
channel could be a user who exchanges some secret information between the two computers
using a memory stick.

I use the following terms to refer to security properties of channels used in device pairing:

Insecure Channel from A to B is a channel that provides no security. An attacker can
read, insert, modify or delete messages on this channel.

Authentic Channel from A to B is a channel that provides authenticity, meaning that
only A can send on this channel. An attacker can read but not insert or modify
messages on this channel.

Secure Channel from A to B is a channel that provides authenticity and confidentiality,
meaning that only A can send and only B can read from this this channel. An attacker
can neither read, insert nor modify messages on this channel1

1.4.1.1 Device Memory

I assume that all data of a device (e.g. keys) is stored in its memory and that only the
device itself can directly access its memory. Other entities can only send requests to an
input interface and wait for a response from an output interface. A device can execute
functions over the memory data. The supported set of functions is limited by the hardware
(e.g. microprocessor). I further assume that the devices can generate random data (e.g. by
receiving random data from the environment).

1.5 Security Relation

A security relation is a special association between two devices, due to their memory content.
We consider the following security relations for a device A and B:

A B Secret key shared by A and B. A and B have a key that is not known to
anybody else. An adversary is not able to predict this key.

A B A has an authentic copy of B’s public key.

A B B has an authentic copy of A’s public key.

A B A has an authentic copy of B’s public key and B has an authentic copy of
A’s public key.

Note that the symbol is also used for authenticated Diffie-Hellman half-keys (a.k.a.
Diffie-Hellman public keys)

1This implies that an adversary can also not delay or replay a message.
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It is possible that a user knows a secret key after the device pairing process, for example
because she transmits the key from A to B. As I consider the user as a separate entity (not
part of A or B) the key would then become a shared secret between A, B and the user.
Nevertheless I use the notion A B in this case 2.

1.5.1 Creation/Deletion of Security Relations

A security relation can be established using a device pairing protocol when both devices fulfill
necessary conditions (e.g. have the necessary interfaces) and the user is in an environment
where he can execute the protocol.

1.6 Definition of Device Pairing

Device pairing, also known as secure device pairing, device association, secure first connect,
secure initialization or simply pairing 3 denotes the creation of a security relation between
devices A and B, described in the device setup (1.1). I assume that A and B do not have
any prior context in common nor do they share any common point of trust. We can therefore
not profit from pre-shared secrets, authenticated public keys, certification authorities or a
public key infrastructure.

I say that A and B are paired if there exists at least one security relation between them and
unpaired if no security relation exists between them. I assume that a security relation exists
until the user explicitly deletes it.

Note that I restrict myself to the case of pairing two devices, but that one could think of
protocols where more than two devices are associated in a single protocol run. An example
of such a protocol would be, when you put your Bluetooth mobile phone and 3 different
Bluetooth headsets, which you want to use with your phone, in a Faraday cage. The mobile
phone generates a secret key and broadcasts it using a radio signal to the headsets. In this
case the term pairing would be inappropriate since the word implies that exactly two entities
are involved.

1.7 Trade-Off Between Security and Usability

Device pairing protocols often have to make a trade-off between security and usability. In
string comparison protocols for example, the user has to compare two strings displayed by
A and B. The strings are typically hashes of a previously transmitted public key. If they
are equal the user accepts the protocol run, otherwise she has to abort it. In this case it is

2We could imagine of that the user does not memorize or immediately forgets the key after device
pairing.

3In this paper, I use the term device pairing to refer to the problem at hand.
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possible that an adversary tries to fool the user. If the strings are too short, an adversary
could probably successfully attack the protocol. If they are too long the protocol is no longer
user-friendly. There are a lot of other device pairing protocols where we have to make a
trade-off between security and usability. Since this is not a usability study, I will not consider
the usability of device pairing protocols here.

Another important point, not addressed in this work, is that a protocol should be transparent
for the user. This means that the user should be intuitively aware why she does something in
the protocol and what she achieves with that. This topic is also not addressed in this work.
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When you know that you’re capable
of dealing with whatever comes, you
have the only security the world has
to offer.

(Harry Browne)

2 Use Cases

In this chapter we consider a few application scenarios where device pairing is needed. The
following list shows a set of devices that somebody could like to pair.

• PC/Laptop

• Computer mouse/keyboard

• Handheld/PDA (Personal Digital Assis-
tant)

• Cellphone

• Media player

• Headset

• GPS receiver

• Wireless hard disk

• Camera

• Printer/Copier/Fax machine

• Smart watch

• Hi-Fi device

• Radio remote control

• Access point

• Household appliance

• Radio equipment/Walkie-talkie

Table 2.1: Potential devices for pairing

These devices could be equipped with a wireless adapter to communicate with each other.
Examples of wireless data standards for personal/local area communication are:

• Wi-Fi, (IEEE 802.11)

• Bluetooth

• Wireless USB (WUSB)

• Wibree

• ZigBee

• Ultra-wideband (UWB)

Table 2.2: Personal/local area wireless data standards
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Chapter 2: Use Cases

Now we consider concrete application scenarios where we need to generate a security relation
between two unpaired devices. A sufficient security relation is stated on the left side.

Headset Mobile phone You want to connect a Bluetooth headset to your mobile
phone. An adversary should not be able to overhear your telephone conversation.
Imagine that the adversary can not directly listen to your voice (e.g. because he is not
in the same room), but he is within the Bluetooth signal range.

PC Wireless hard disk You want to connect your wireless hard disk to your PC.
An adversary should not be able to overhear or insert/modify transmitted data.

Keyboard,mouse PC You bought a new wireless keyboard and mouse for your
PC. An adversary should not be able to overhear or insert/modify the transmitted
characters (e.g. passwords).

Handheld Laptop You meet a friend at a public place and want to exchange some
secret documents between your handheld and his laptop. An adversary should not be
able to read the transmitted documents.

Laptop Access Point You want to enroll your new laptop into your home WLAN.
More precisely, you want to generate a shared secret key between your laptop and the
access point to encrypt all further communication.

Laptop Printer You want to print a secret document with your laptop on a specific
WLAN printer in a public area.

Your handheld Your friends handheld You meet a friend at a public place and
want to receive his digital visiting card together with his PGP1 public key on your
handheld. An adversary should not be able to fake your friends PGP public key during
transmission.

Radio remote control Home cinema device You want to control your home
cinema devices (TV, beamer, DVD player, etc.) with an universal radio remote control.
An adversary (e.g. your neighbor) should not be able to (un)-intentionally control your
cinema devices.

GPS receiver Camera You carry a photo camera and a GPS receiver with you
and want to tag each picture you take with the actual GPS coordinates received from
the GPS device. An adversary should not be able to fake the GPS coordinates.

Note that it can make sense to generate a shared secret key between two devices, even if an
authentic copy of a public key would be sufficient. This is because symmetric cryptography
is less power consumpting and is much faster than asymmetric cryptography.

We can also think of scenarios where a provider wants to get some special guarantees from
the customers of his service or vice versa:

Assume that the provider of a public access point in a restaurant wants to restrict the use

1PGP: Pretty Good Privacy. A public key encryption program originally written by Phil Zimmermann
in 1991.
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Chapter 2: Use Cases

of his access point, such that only customers inside the restaurant can use the Internet (and
therefore need to consume something). Restricting the transmission power of the access
point does not fulfill this requirement, because the access point provider does not know how
large the antennas of the customer devices are and therefore how low the transmission power
of the access point should be.

Assume a bank publishes the current stock prices in a window display, but also broadcasts this
information with a short range radio transmitter, such that visitors can directly receive the
stock prices on their handheld. A customer of this service can only trust these prices when
the underlining protocol ensures that the data has not been modified during transmission
and that the sender is indeed the bank.
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No serious commentary will say that
the user has no responsibility. We all
have responsibilities to lock our
doors in our homes and to buckle up
when we get in cars.

(unknown)

3 Device Pairing Protocols

In this chapter I describe a set of different device pairing protocols. The classification of the
protocols is shown in Figure (3.1). This classification is a modified version of Suomalainen,
Valkonen and Asokan’s [23] classification of key agreement protocols, shown in Figure (3.2).
Since we do not only consider shared secret keys as security relations, we extend our clas-
sification by the security relation (authentic copy of a public key). Beside that,
we introduce the protocol classes P2-P4 and skip all insecure classes (unauthenticated key
agreement) those that need a pre-shared secret key (authenticated key agreement based on
symmetric cryptography) because in our device setup a pre-shared secret key is not available.

P2: OOB transfer
Cable/IR link

Authentication by shared secret(Short) integrity checksum

P5: User-assisted
DH-SC

L&C
HAPADEP

P6: OOB transfer
VIC

DH-DB
DH-IC

P7: User-assisted
BEDA

Bluetooth Simple Pairing
Shake Well Before Use (Type 2)

A BA B

P8:OOB transfer

A B

P4: OOB transfer
Shake Them Up!

Key agreement

Without asymmetric crypto

P1: OOB transfer of 
message digests

SIB

P3: User-assisted
Shake Well Before Use (Type 1)

FIB

Security Relations

Figure 3.1: Classification of device pairing protocols
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Chapter 3: Device Pairing Protocols

I classify the selection of device pairing protocols into 8 protocol classes (P1-P8), shown in
Figure (3.1). The protocol name or a shortcut of the protocol name is stated in the gray
rectangles. Each protocol class and superclass (white rectangles) is described in a separate
section in this chapter and the concrete protocols are described in subsections of these.

Key establishment

Key agreementOOB credential transfer

Symmetric crypto onlyAsymmetric crypto

Unauthenticated AuthenticatedAuthenticatedUnauthenticated

Authenticated by integrity cheking Authentication by shared secretHybrig One-way OOB

OOB exchange of key commitments (Short) integrity checksum

User-assisted OOB transfer

User-assisted OOB transfer

Figure 3.2: Classification of Key Agreement Protocols [23]

3.1 Notations

We use the following notations in the protocol descriptions:

PKX Public key of device X (also used for Diffie-Hellman half-keys).
PK−1

X Private key of device X.
KX Symmetric key generated by device X.
⊕ Bit-wise xor operator.
| Concatenation operator.

A “hat” above a value, e.g. ˆPKA, denotes that the value could be modified (by an adversary)
during transmission.
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3.2 General Protocol Assumptions

A device is compromised when unauthorized individuals have gained access to it. We assume
that A and B are not compromised before executing the pairing protocol, otherwise the
involved entities get no reliable guarantees from the protocol. We further assume that A and
B trust each other, otherwise it makes no sense to create a security relation between them.

For all hash functions, denoted as h(), we assume second pre-image resistance, i.e. the
probability of finding another input string that hashes into the same value is negligible. We
apply h() exclusively to public keys in this work and assume that h() is at least 48 bits
for ephemeral public keys and 80 bits for long-term public keys [18]. Further note that an
adversary has usually no benefit of knowing a second preimage of a hashed public key, if he
does not knows the corresponding private key as well.

3.3 General Attacker Model

For all in-band channels we assume a standard Dolev-Yao attacker model [8], in which the
adversary controls the communication. He can therefore eavesdrop, block, delay, modify
or inject messages on in-band channels. For all radio channels (in-band and out-of-band)
we assume that the adversary can jam the transmission and therefore prevent transmission
of information. We further assume that the user has exclusive access to the keyboard and
buttons of A and B during device pairing.

3.4 One-Way Public Key Authentication

A one-way public key authentication protocol can be used to create a security relation
A B or A B if A and B supports the protocol requirements. A security
relation like A B can be used by A to encrypt messages for B or to verify the au-
thenticity of messages signed by B.

Since a security relation includes the security relation , we consider here
only protocols that are unable to create a security relation in a single protocol run.
Protocols which create are described in Section (3.12).

There are many use cases where the creation of such a “unilateral” association between two
devices is sufficient (e.g. our printer example in 1.3). Nevertheless, most of the device pairing
protocols are designed to create a “bilateral” association like a shared secret key, because
then, both devices can use fast and CPU non-intensive symmetric cryptography to secure
their communication. Besides that, the creation of a shared secret key is usually only slightly
more difficult than creating a security relation like A B if the protocol can roll out
some tasks to the user and the user has full access to both devices, which is usually the case
for device pairing. We will see this by comparing the following protocol for one-way public
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key authentication with an extended version, described in Section (3.15.2) that can be used
to create a shared secret key.

Note that all protocol classes for both-way public key authentication (P5-P8) plus the class
P2 can also be used for one-way public key authentication. We do not consider these
protocols here because we can achieve a higher goal with these protocols. We only consider
the protocol class P1, OOB transfer of message digest, for one way public key authentication.

3.5 OOB Transfer of Message Digests (P1)

Protocols in class P1 use an authentic OOB channel to transfer a public key or a hash of a
public key (also called commitment to a public key [1]) from device A to B. The authenticity
of the channel is usually guaranteed by a combination of physical channel properties, the
protocol and the user. If the OOB channel is suitable to transfer a public key, device A can
simply send the public key over the OOB channel to B. If we can only send small messages
(e.g. 60 bit) over the OOB channel we can use the channel to authenticate a message sent
over an insecure (high bandwidth) channel. To do this, A sends her public key PKA over
the insecure channel and a hash hA = h(PKA) of that public key over the (low bandwidth)
authentic OOB channel to B. After B receives both messages, he can check the authenticity

of the received public key ˆPKA by comparing hA
?
= h( ˆPKA). If they match, B accepts A’s

public key, otherwise he rejects it.

3.5.1 Channel Properties

The attacker can read but not write on the OOB channel.

3.5.2 Seeing-is-Believing

Seeing-is-Believing (SiB) proposed by McCune et al. [15] uses camera phones for one-way
public key authentication. Today’s camera phones provide sufficient capabilities to scan 2D
barcodes. Having such a camera phone and a device with a good enough screen to display
2D barcodes yields a visual OOB channel. This channel guarantees to the user that the
barcode can only be sent by the device the user took a picture from.

3.5.2.1 Attacker Model

The attacker can read but not write on the visual channel (passive attacker). The attacker
is computationally bounded.
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3.5.2.2 Protocol

Figure (3.3) shows the SiB protocol where B authenticates A’s public key PKA. In the
first step Alice displays the hash h(PKA) of her public key encoded as a 2D barcode on
her display. h(PKA) is then transmitted to B using the visual OOB channel. To do that,
Bob takes a picture of Alice’s display and decodes the 2D barcode in the picture. In the
second step Alice sends the public key PKA over the insecure in-band channel to B where
B can check it’s integrity using the previously received hash (hA). To avoid problems of
user-tracking new keys can be generated for each pair of devices.

1 A −→ B (visual channel): hA = h(PKA)

2 A −→ B (insecure channel): PKA

B verifies hA
?= h( ˆPKA). If they match, B accepts ˆPKA.

Figure 3.3: SiB one-way authentication protocol. B authenticates A’s public key.

3.5.2.3 Device Configurations

SiB supports several device configurations. When only one device has a camera and the other
device has only a display, then only the camera device can authenticate a message from the
display device and not vice versa. When both devices have a camera and a display, both
devices can authenticate a message from the other device by performing the protocol twice
in both directions.

When only one device has a camera and the other device has neither a camera nor a display
we are not lost. We can then print a long-term public key hash encoded as a 2D barcode
on a sticker and attach the sticker to the housing of the display-less device. To authenticate
the public key of the display-less device, the user simply takes a picture of the sticker and
performs the SiB protocol as usual.

3.5.2.4 Assumption

We assume that an adversary can not fool the user into taking a picture with B’s camera
of a barcode that does not belong to A. For stickers, this means that an adversary can not
add (e.g. paste over) or modify the sticker without being noticed by the user or the camera
device.

3.5.2.5 Device Requirements

For using ephemeral public keys, B has to be equipped with a good enough camera to display
2D barcodes that encode at least 48 bits of data.
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3.5.2.6 What the Protocol Achieves

At the end of a successful protocol run B guarantees that the public key PKA it received
was sent by the device that has been photographed.

3.5.2.7 Limitations and Drawbacks

Missing or low-quality cameras and display or an environment with little light can limit the
use of SiB. SiB can further not be used when the devices, to be paired, can not be sufficient
near to each other. Stickers prevent using freshly generated public keys and increase the risk
that an adversary fools a user into accepting a wrong public key by replacing or modifying
the sticker.

3.5.2.8 Channel Bandwidth

A typical barcode has dimensions approximately 2.5 × 2.5cm2 to allow recognition from a
reasonable distance and consists of a total of 83-bits of information (15-bits are for forward
error correction) [18]. This allows us to transfer at most 68 bits with a picture.

3.5.2.9 Presence Property

We assume for SiB that only the device in front of B’s lens can send a message. A on the
other hand, gets the guarantee that B must be present at time t to read a message display
on A at time t. This channel property is called presence. The following protocol example
uses presence to pair two devices that have no camera.

Assume you have two devices, a DVD player and a TV, that communicate wirelessly. The
TV needs an authentic copy of the DVD’s public key, to verify the DVD’s signature on the
data stream. Since the TV has no camera, we can not directly establish a visual channel
from the DVD player to the TV. In this case, a camera device P (e.g. a camera phone),
can be used to forward a hash of the DVD’s public key to the TV. Consider the following
protocol where HMAC is a keyed-Hash Message Authentication Code.

The first two steps of the protocol are the same as in the basic SiB protocol. At the end of
step two, the camera device has an authentic copy of the DVD’s public key. In step 3, the TV
sends a secret key KTV encoded in a 2D barcode over a visual channel to the camera phone.
Here we use the presence property of the channel. The user has to take care, that nobody
except P can read the secret key on the TV ’s display. This can be seen as a realization of a
secure channel. The camera phone can now use the secret key to sign the DVD’s public key
(HMACKTV

(PKDV D)) and send both, the signature and the public key, to the TV. In the
last step, the TV verifies the signature of the public key and accepts the public key if and
only if it is correct.
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1 DVD −→ P (visual channel): hDVD = h(PKDVD)

2 DVD −→ P (insecure channel): PKDVD

P verifies hDVD
?= h( ˆPKDVD). If they match, P accepts ˆPKDVD.

3 TV generates a secret key KTV

TV −→ P (visual channel): KTV

4 P calculate t = HMACKT V
(PKDVD)

5 P −→ TV (insecure channel): PKDVD, t

TV verifies t ?= HMACKT V
( ˆPKDVD). If they match, TV accepts ˆPKDVD.

Figure 3.4: Presence protocol example. At the end of the protocol, the TV has an
authentic copy of the DVD’s public key.

3.6 Shared Secret Key Generation (P2-P8)

Protocols in class P2-P8 can be used to create a security relation A B. We differ
between OOB key transfer protocols and key agreement protocols.

3.7 OOB Key Transfer Protocols (P2)

In OOB key transfer protocols, one device chooses a random key and sends it over a (phys-
ically) channel to the other device. Examples of such channels are: a cable, an infrared link
or a user who transfers data between two devices using a memory stick. The attacker can
be computationally unbounded in this case.

3.7.1 OOB Channel Properties

The attacker can neither read from nor write to the OOB channel.

3.8 Key Agreement Protocols (P3-P8)

In contrast to key transfer protocols (P2), in key agreement protocols both devices A and
B participate in the generation of a shared secret key. We distinguish between asymmetric
key agreement protocols (e.g. Diffie-Hellman key agreement) and key agreement protocols
that do not need public key techniques (e.g. pure symmetric key agreement schemes).

27



Chapter 3: Device Pairing Protocols

3.9 User-Assisted Key Agreement (P3)

Protocols in class P3 need the user to exchange secret information between A and B or to
derive random data that is used for key agreement.

3.9.1 Channel Assumptions

The attacker can neither read from nor write to the user-assisted channels.

3.9.2 Shake Well Before Use (type 1)

Shake Well Before Use proposed by Mayrhofer and Gellersen [14] uses accelerometer data to
establish a shared secret key between two devices equipped with accelerometers. The accel-
erator data is generated by shaking the devices together in one hand. The paper describes
two different protocols, on how to generate a shared secret key from the accelerometer data.
We consider only the first protocol here (we call it type 1). The second protocol (type 2) is
described in the protocol class authentication by shared secret key (P7,8) (Section 3.16).

3.9.2.1 Attacker Model

The attacker can not predict or derive acceleration data that the shaken devices receive. The
attacker is computationally bounded.

3.9.2.2 Device Requirements

All devices must be equipped with accelerators and sufficient accurate real-time clocks for
temporal data alignment.

3.9.2.3 Protocol

In protocol type 1 of Shake Well Before Use [14], both devices directly derive a key from the
acceleration patterns. This protocol is very dynamic since the user simply needs to shake the
devices as long as random input is needed. To derive a key from the accelerator data both
devices first extract feature vectors from the raw data. Since these vectors usually differ on
both devices, an additional protocol to synchronize both devices to the same key is needed.
This approach can also be used to generate a shared secret key between more than two
devices.
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3.9.2.4 Assumptions

We assume that the user shakes the devices as she likes. This ensures that the generated
acceleration data is fairly random. We further assume that the protocol to synchronize the
devices to the same key, does not reveal any useful information for the adversary to construct
the whole or parts of the secret key.

3.9.2.5 What the Protocol Achieves

At the end of a successful protocol run, the devices that are shaked together, established a
shared secret key.

3.9.2.6 Overall Completion Time

According to [14], 20 seconds of shaking should be sufficient to generate a shared secret key
of 128 bits.

3.9.3 Feeling-is-Believing

Feeling-is-Believing (FiB) proposed by Buhan et al. [3] provides an OOB channel which uses
biometrics to generate a shared secret key.

3.9.3.1 Attacker Model

The attacker can not fool a biometric reader into accepting copies of biometrics. The attacker
is computationally bounded.

3.9.3.2 Device Requirements

Both devices are equipped with a biometric reader (e.g. fingerprint reader).
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3.9.3.3 Protocol

The protocol is shown in the following Figure:

1 A: Measure feature vector of a guest: FB

2 A −→ B: HA

2.1 B: Measure feature vector of a guest: FA
2.2 B: K ′A = Extract(FA, HA)
2.3 B: Measure feature vector of owner: F ′B
2.4 B: Verify that TB matches F ′B

3 A←− B: HB , {TB}K′
A

3.1 A: K ′A = Correct(KA, {TB}K′
A
, EA, FB)

3.2 A: KB = Extract(TB , HB)

4 A −→ B: {FB , TA}KB |K′
A

4.1 B: Verify that TA matches FA
4.2 B: Verify that TB matches FB

Figure 3.5: FiB Protocol [3].

We use the following notation:

Dx Identifies device x
Tx ∈ Rn The enrolled template of user x
Hx ∈ Rn Helper data of user x
Fx ∈ Rn Feature vector currently measured for user x
Kx ∈ {0, 1}n Key extracted from Tx and Hx

K ′x ∈ {0, 1}n Key extracted from Fx and Hx

Ex ∈ 〈N,R〉n Error profile for a user x

The both-way OOB channel between A and B is realized by measuring the feature vector (Fx)
of user B on device A (step 1) and vice versa (step 2.1). This can be seen as transmitting
the feature vector from one device to the other. The second half (K ′A) of the secret key is
derived from the feature vector of user A (step 2.2) and the first half (KB) of the secret
key is derived from the template of user B (step 3.2). Unfortunately, the measurement of
biometrics is imprecise. We therefore would not get the same key on both devices if we simply
extract the key from the measured feature vector FX or the user template TX , respectively.
The protocol uses a cryptanalysis function (correct()) to solve this problem.

After exchanging both feature vectors (step 1 and 2.1) device B extracts an uniformly bit
string K ′A from the feature vector FB and the helper data HA using a fuzzy extractor
function (Extract()). K ′A is used in step 3 to encrypt the template TB which is then sent
to A. A can not directly decrypt {TB}K′A because the key KA and K ′A might differ due
to biometric reading inaccuracies. Because KA and K ′A only differ in a few bits, we can
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use the cryptanalysis function correct() to derive the correct key K ′A. Note that only the
communicating devices are able to perform this analysis, because they can start on key
material that is almost correct. An adversary has to start from random key material, and
should thus take longer to derive the correct key K ′A. The key is then used to decrypt B’s
template TB from {TB}K′A . In step 3.2, A extracts the second part KB from B’s template
TB. The shared secret key between A and B is then KB|K ′A.

3.9.3.4 Assumptions

We assume that devices A and B hold a biometric data measurement (TA, TB) from their
owners before the protocol starts.

3.9.3.5 What the Protocol Achieves

At the end of a successful protocol run, A (B) guarantees that the generated secret key
is only known to B (A) and that the owners of device A and B provided their necessary
biometrics. The users A and B must therefore be present to generate a shared secret key
between device A and B.

3.10 OOB Key Exchange (P4)

Devices in protocol class P4 provide a both-way OOB channel. This channel is used to
exchange secret information, the devices use for key agreement.

3.10.1 Channel Properties

The attacker can not read on the OOB channel. If he can write on the OOB channel depends
on the concrete protocol.

3.10.2 Shake Them Up!

Shake Them Up! proposed by C. Castelluccia and P. Mutaf [6] uses anonymous broadcasts
to establish a shared secret key between A and B.

3.10.2.1 Attacker Model

We assume the attacker controls the communication with the exception that he can not
determine the origin of a message. If he inserts a packet with source field set to A, it will
be interpreted as 0 on A and as 1 on B. If he inserts a packet with source field set to B,
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it will be interpreted as 1 on A and as 0 on B. The attacker can further drop packets, but
he does not know who was the sender of such a packet. The adversary can therefore not
explicitly prevent only A or only B from sending packets. The attacker is computationally
(For the key agreement phase it can be computationally unbounded).

3.10.2.2 Protocol

Figure (3.6) shows a sample protocol run in which an 8 bit key is established between A and
B.

round 1        src: A dst: B

round 2        src: A dst: B

round 3        src: B dst: A

round 4        src: A dst: B

round 5        src: B dst: A

round 8        src: B dst: A

Start(k)
Start

A B

1
0
0
1
1
0
0
1

hash(A|B|key)
hash(B|A|key)

round 7        src: A dst: B

round 6        src: B dst: A

1
0
0
1
1
0
0
1

SHARED SECRET KEY

Figure 3.6: Key agreement protocol for movement-based pairing [6].

The protocol is randomly initiated by one of the devices with a start message containing the
desired key length (k). The other device answers with an empty (payload) start message.
Both start messages contain the correct sender address in the source field. A shared secret
key can now be generated bit by bit. In every protocol round either A or B sends a single
bit to the other device. A sends the bit 1 (0) to B by broadcasting an empty packet with
the source field set to A (B). B sends the bit 1 (0) to A by broadcasting an empty packet
with the source field set to B (A). Note that A and B stands here for A and B’s address.
When a device receives a foreign packet (a packet that is not sent by itself) it decodes it
to 1 if the source field is set to the others device address and 0 if the source field is set to
its own device address. At the end of the protocol, both devices exchange a hash of the
claimed shared secret key to check whether both devices agreed on the same key. Here we
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require that the attacker is computationally bounded. These messages are also exchanged in
random order.

The protocol security mainly relies on the following three properties. The first two properties
guarantee the anonymous broadcast channel and the third property prevents MitM attacks.

Spatial indistinguishability ensures the anonymity of the broadcast channel by preventing
spatial signal analysis (e.g. signal power analysis). This property can be guaranteed
by moving the devices around each other during protocol execution.

Time indistinguishability ensures the anonymity of the broadcast channel by preventing
timing analysis. This property is ensured, if in each round of the protocol, the proba-
bility that A or B sends a packet is 1/2. This can be realized by sending the packets at
a randomly chosen point in time withing a fixed time interval. A media access protocol
like CSMA1 would support this.

Start message authentication is needed to prevent a MitM attack. This attack is ex-
plained in Section (4.3.2). To authenticate the start messages, the user could be asked
to validate the device addresses. Since this is not very user-friendly and would need an
appropriate output interface (e.g. display) on both devices, Shake Them Up! proposed
another protocol that uses proximity for authentication. I refer to [6] for this protocol.

3.10.2.3 Assumptions

We assume that both devices have an authentic copy of the others device address and that the
user moves A and B during pairing around each other to ensure spatial indistinguishability.
Further, A or B discard the generated n bit key if they have not both contribute at least e.g.
n/3 bits to the key. Finally we assume that hash() is a preimage resistant hash function. I
will explain the last two assumption, in more detail in Chapter 5.

3.10.2.4 What the Protocol Achieves

At the end of a successful protocol run, A and B established a shared secret key.

3.11 Diffie-Hellman Key Agreement (P5-P8)

Diffie-Hellman (DH) key agreement [7] can be used to create a security relation ,
on the basis of a security relation .

1CSMA: Carrier Sense Multiple Access (e.g. used in WLAN IEEE 802.11).
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3.11.1 Protocol

The protocol is shown in Figure (3.7). This protocol is based on modular exponentiation and
on the difficulty of the discrete logarithm problem. Since DH key agreement is vulnerable to
man-in-the-middle attacks we need to authenticate the exchanged half-keys. This protocol
allows us therefore to reduce the problem of creating a shared secret key between A and B
to the problem of creating a security relation A B. Device pairing protocols in the
classes P5-P8 can be used to create this security relation.

Alice (A) Bob (B)

Pick XA ∈U {0, ..., p− 2} Pick XB ∈U {0, ..., p− 2}
PKA := gXA (mod p) PKB := gXB (mod p)

PKA−−−→
PKB←−−−

kAB := PKXA

B (mod p) kBA := PKXB

A (mod p)

kAB ≡p PKXA

B ≡p (gXB )XA ≡p gXAXB ≡p kBA

Figure 3.7: The Diffie-Hellman key agreement protocol. The prime p and the generator
g are publicly known parameters.

3.11.2 Assumptions

In order for the shared key kAB = kBA to be secure, the so called Decisional Diffie Hellman
(DDH) assumption must hold. The DDH-assumption holds in the group G if, for uniformly
and independently chosen a, b, c ∈ {0, ..., |G| − 1}, the triples (ga, gb, gab) and (ga, gb, gc)
are computationally indistinguishable.

3.12 Both-Way Public Key Authentication

In the context of device pairing, both-way public key authentication is the problem of creating
the security relation A B. This can be done by executing a one-way public key
authentication protocol twice. First, A authenticates B’s public key, afterwards they change
the roles and B authenticates A’s public key (or vice versa). Protocols in class P1 (OOB
transfer of message digest) can therefore be used for both-way public key authentication by
establishing two unspoofable OOB channels in both directions. As described for Seeing-is-
Believing this can not be done if one device has not the necessary interface to establish the
OOB channel. All protocols in this section can achieve both-way public key authentication
even if only a one-way OOB channel is available (not that we use the term OOB channel
only for device-to-device channels). All these protocols first exchange the public keys over
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insecure in-band channels and then authenticate these public keys by use of an OOB channel
and/or by user-assistance.

3.13 Authentication by Integrity Checksum (P5,P6)

Protocols in class P5 and P6 create, after exchanging public keys, a short integrity checksum
on A and B. These checksums are compared either by the user (P5) or by one or both
devices (P6). The protocol guarantees, if the checksums are equal, that the public keys were
exchanged by the devices which sent the integrity checksums to the comparison oracle (e.g.
user). In all protocols here, the user (intuitively) identifies A and B as the sending devices
of the integrity checksums. This guarantees that indeed A (B) is the sender of the public
key received by B (A).

3.14 Authentication by Integrity Checksum -
User-Assisted (P5)

Protocols in this class need the user to verify if two integrity checksums are equal or not.
If they are equal, the user accepts the public key exchange by pushing an accept button
on both devices. Otherwise she rejects the public keys by pushing a reject button on both
devices.

3.14.1 Assumption

We assume that the user correctly compares the two integrity checksums, displayed by A
and B and that she pushes the right feedback button on A and B.

3.14.2 Device Requirements

Both devices have an input interface for the user’s feedback (e.g. keyboard) and an output
interface to display the integrity checksum (e.g. display, speaker).

3.14.3 Diffie Hellman Key Agreement with String Comparison

Diffie Hellman key agreement with string comparison (DH-SC) proposed by Čagalj and
Čapkun [24] provides an optimal trade-off between the length of the integrity checksums
and the computational effort an attacker has, to break the authentication scheme.
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3.14.4 Attacker Model

The attacker can read from all involved channels but he can not write on the visual channel
from the devices to the user. The attacker is further computationally bounded.

3.14.4.1 Protocol

The protocol is shown in Figure (3.8). The security parameter k determines the length of the
integrity checksum and can be chosen by the user. The goal of the protocol is to authenticate
the Diffie-Hellman half-keys PKA and PKB. This protocol is used as a building block for
other pairing protocols (3.15.3, 3.15.4). In the simplest application, which we consider here,
both devices show the integrity checksums iA and iB on their display. The user compares the
two checksums and pushes an accept/reject button on both devices depending on whether
the checksums are equal or not.

Encoding

Besides the length of the integrity checksums, the encoding plays an important role on how
user-friendly the protocol is. To encode a for example k = 60 bit checksum by an alphabet
of n = 26 symbols, the user would need to compare at least dk/log2(n)e = 13 symbols. To
make the comparison easier we could encode the checksum to l short words. If we choose
l = 4, then we need to store 2k/l = 4096 different words in a directory on both devices.
Other ideas are to encode the checksum to a syntactically-correct sentence (3.14.5) or to a
sequence of pictures/pictograms.

Protocol
Alice Bob

Given IDA, PKA Given IDB , PKB

Pick NA ∈U {0, 1}k Pick NB ∈U {0, 1}k
mA ← 0|IDA|PKA|NA mB ← 1|IDB |PKB |NB

(cA, dA)← commit(mA) (cB , dB)← commit(mB)
cA−−→
cB←−−
dA−−→ m̂A ← open(ĉA, d̂A)

m̂B ← open(ĉB , d̂B) dB←−− Verify 0 in m̂A; iB ← NB ⊕ N̂A
Verify 1 in m̂B ; iA ← NA ⊕ N̂B

If iA = iB Alice and Bob accept m̂B and m̂A, respectively.

Figure 3.8: DH-SC: Mutual Message Authentication using Short String Comparison [4].
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3.14.4.2 Assumptions

We assume that the used commitment scheme 〈(commit(), open()〉 is ideal (hiding and
binding)2.

3.14.5 Loud-and-Clear

Loud-and-Clear (L&C) proposed by Goodrich et al. [10] describes four protocol variants
for one-way and both-way public key authentication. In all variants the user compares two
syntactically-correct (english-like) sentences, generated from hashes of previous exchanged
public keys. The protocol variants differ in the way the user compares the two sentences.
In type 1, both devices vocalize the sentence using an audio speaker. In type 2 and 3, one
device vocalizes the sentence and the other device displays it. This approach can be used if
only one device has an audio speaker. In type 4, both devices display the sentence. Last type
is useful when both devices lack an audio speaker. In all four variants, the user compares the
two vocalized/displayed sentences and accepts the protocol run if they are equal.

3.14.5.1 Device Requirements

Protocol type 1: Both device are equipped with audio speakers.
Protocol type 2: A is equipped with an audio speaker and B with a display.
Protocol type 3: B is equipped with an audio speaker and A with a display.
Protocol type 4: Both device are equipped with displays.

3.14.5.2 Protocol

Figure (3.9) shows protocol type 3 of L&C for on-way public key authentication. Both-
way public key authentication can for example be achieved by applying DH-SC (3.14.3) and
generating sentences from the integrity checksums iA, iB. To ensure the authenticity of the
integrity checksums, the user further needs to verify that the sentences are indeed originated
from A and B (she has to guarantee that the right devices are playing).

3.14.5.3 Protocol Assumptions

We assume the adversary can not overlay the audio signal to fool the user into comparing
two integrity checksums that are not sent by A and B. We further assume that for a given
sentence s = f(h(PK)), where h(PK) is the hash of a public key and f() is the function
that maps a hash to a sentence, the adversary can not find a value PK ′ with PK ′ 6= PK
and f(h(PK ′)) = s.

2Note that in practice, a commitment scheme can not be perfectly hiding and binding.
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1 A −→ B (insecure channel): PKA

2 B calculates ĥA as h( ˆPKA) and generates a syntactically-correct sentence from ĥA
B displays this sentence on its screen.

3 A calculates hA as h(PKA) and generates a syntactically-correct sentence from hA
A vocalizes this sentence using an audio speaker.

4 The user compares the sentence on B’s display with the vocalized sentence. If they are equal
and the read out sentence is indeed originated from A the user accepts the protocol.

Figure 3.9: L&C type 3 one-way authentication protocol. B authenticates A.

3.14.5.4 Overall Pairing Time

According to [10], the average user can pair two devices using L&C in 23-32 seconds (de-
pending on the protocol variant).

3.14.6 Human-Assisted Pure Audio Device Pairing

Human-Assisted Pure Audio Device Pairing (HAPADEP) proposed by Soriente et al. [3]
uses audio channels to exchange both, public keys and hashes of public keys. In contrast to
the protocols presented so far, HAPADEP does not need an additional in-band channel like
Bluetooth or Wi-Fi. All data is transferred over audio channels.

3.14.6.1 Device Requirements

We assume that both devices are equipped with a speaker and a microphone to play and
record audio sequences.

3.14.6.2 Protocol

The protocol is divided in a transfer phase and a verification phase. In the transfer phase
both devices exchange their public keys using a fast, human unpleasant codec. In the
verification phase, both devices present a human pleasant audio sequence (e.g. a melody)
to the user. This audio sequence encodes a hash to the previous exchanged public keys.
The user compares the two audio sequences and accepts the pairing, if and only if the audio
sequences are equal. Further the user has to guarantee that the two melodies are indeed
originated from A and B.

HAPADEP uses two different audio channels to exchange and verify public keys, because the
user can not guarantee what the recoding device in the transfer phase exactly receives. The
separate verification phase on the other hand gives a satisfying proof to the user whether the
public key exchange was successful or not.
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3.14.6.3 Protocol Assumptions

The attacker can not overlay the audio signal (melody) to fool the user into accepting two
different integrity checksums.

3.15 Authentication by Integrity Checksum - OOB
Transfer (P6)

Protocols in class P6 use an unspoofable OOB channel to transfer A’s integrity checksum to
B. B compares the received checksum with his checksum. If they are equal he knows that
the public key has sent by the device which sent the integrity checksum. The user notifies
device A about the comparison result by pushing an accept/reject button on A’s device.
A assumes that the received public key is authentic, if the accept button is pushed on his
keyboard.

3.15.1 Channel Properties

The attacker can read from but not write on the OOB channel.

3.15.2 Secure Device Pairing based on a Visual Channel

Secure Device Pairing based on a Visual Channel (VIC) proposed by Saxena et al. [18]
describes how mutual message authentication can be achieved with a one-way visual channel,
where SiB (3.5.2) needs two visual channels, one in each direction.

3.15.2.1 Device Requirements

For using ephemeral public keys, B has to be equipped with a good enough camera to display
2D barcodes that encode at least 48 bits of data.

3.15.2.2 Protocol

The protocol is shown in Figure (3.10).

3.15.2.3 What the Protocol Achieves

At the end of a successful protocol run B knows that the public key ˆPKA was sent by the
device that has been photographed. A knows that the public key ˆPKB was sent by the
device that indicates accept to the user.
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1 A −→ B (insecure channel): PKA

2 A←− B (insecure channel): PKB

A calculates hA as h(PKA| ˆPKB) and B calculates hB as h( ˆPKA|PKB)

3 A −→ B (visual channel): hA
B checks hA

?= hB . If they match, B accepts and continues. Otherwise B rejects and aborts. In
either case, B indicates accept/reject to the user.

4 A prompts the user as to whether B accepted or rejected. A continues if the user answers
affirmatively. Otherwise A rejects.

Figure 3.10: VIC mutual authentication protocol [18].

3.15.3 Integrity Codes

DH-IC proposed by Čagalj and Čapkun [24] is based on the short string comparison protocol
DH-SC (3.8) but provides in addition a special OOB channel that ensures the integrity of a
transmitted message. The protocol is shown in Figure (3.11). As in DH-SC the goal of the
protocol is to exchange and authenticate Diffie-Hellman public keys (PKA, PKB).

3.15.3.1 Attacker Model

We assume that the attacker can not disable the communication channel between A and
B, e.g. by putting one device in a Faraday cage, but he can jam the transmission. In this
case the receiver will still get the message from the sender, superimposed by the attacker’s
messages. We further assume that the attacker is computationally bounded.

3.15.3.2 Protocol

In DH-SC the user has to compare the two strings iA and iB to check the integrity of the
transmitted public keys, where as in DH-IC this comparison is done by device B. Since
we need an authentic copy of iA on device B to do that, the protocol/user has to provide
an authentic channel from A to B. As in VIC (3.15.2) we assume that the user pushes
an accept/reject button on device A at the end of the protocol to inform A about the

comparison result iA
?
= iB.

3.15.3.3 Channel Properties and Coding

The OOB channel in DH-IC uses a coding called integrity code (I-code) that relies on (phys-
ical) channel properties to ensure the integrity of a transmitted message. We present here
only a short overview of integrity codes. A detailed description can be found in [24].
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Alice (A) Bob (B)

Given IDA, PKA Given IDB , PKB

Pick NA ∈U {0, 1}k Pick NB ∈U {0, 1}k
mA ← 0|IDA|PKA|NA mB ← 1|IDB |PKB |NB

(cA, dA)← commit(mA) (cB , dB)← commit(mB)
cA−−→
cB←−−
dA−−→ m̂A ← open(ĉA, d̂A)

m̂B ← open(ĉB , d̂B)
dB←−− Verify 0 in m̂A; iB ← NB ⊕ N̂A

Verify 1 in m̂B ; iA ← NA ⊕ N̂B

Alice makes sure that Bob’s device is listening
Alice pushes on a button.

I−codes(iA)−−−−−−−−−→
Alice announces “MessageSent” to Bob.

Bob updates his device (a push on a button).

Verify I-code message integrity and iA
?
= iB

If verification OK, Alice and Bob output “Accept” m̂B and m̂A, respectively.

Figure 3.11: DH-SC key agreement enhanced with I-codes (DH-IC protocol) [4].

Integrity codes allow for the receiver to verify if a message has been changed during trans-
mission. To do so, we use a special coding that relies on the channel property that a symbol
“1” can neither be blocked nor changed to “0” in a communication sequence without being
detected (except with a negligible probability). The idea is to encode every word to a bi-
nary sequence with a fixed number of “0” and “1” symbols in it. The decoding of a binary
sequence aborts if the ratio between the number of “0” and “1” symbols is incorrect. An
adversary can therefore only change a message by blocking or flipping at least one “1” in a
communication sequence which we assume is prevented by the channel.

To ensure the above channel property in the context of radio transmission, we can profit
from the fact that it is hard for an adversary to decrease the power of a signal below the
background noise level, since this can only be done by sending out an inverted signal with
exactly the same characteristics. Let pr(i) be the average power received in the interval
corresponding to the i’th symbol. The protocol defines two signal power levels p0 and p1

with p1 > p0 and p0background noise level. To transmit the i’th symbol “1”, the sender
generates a signal with random characteristics but pr(i) ≥ p1. To transmit the i’th symbol
“0” the sender generates a signal with pr(i) ≤ p1. The demodulation on the receiver side
works analogous by measuring the signal power. The random signal characteristics make it
(even more) difficult for an adversary to send out an inverted signal and therefore to block
or flip a symbol “1”.

3.15.3.4 Assumptions

We assume that A is sending constantly at a given location and that B is listening on the
correct channel during A’s transmission. We further assume that the distance between A
and B is smaller than d, where d is the maximal distance where we can still guarantee that
the power level of every symbol “1” at B is higher than or equal to the threshold power level
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p1.

3.15.3.5 Authentication Through Presence

I-codes allows us to authenticate a public key solely by awareness of the presence of the
sender. We can therefore use I-codes to realize the bank use case at the end of Chapter 2.

3.15.4 Distance Bounding

The protocol DH-DB proposed by Čagalj and Čapkun [24] is based on the short string
comparison protocol DH-SC (3.8). The protocol guarantees that the exchanged Diffie-
Hellman public keys are sent (or forwarded) by an entity that is within a determined integrity
region. Figure (3.12) shows the integrity region for A and B. At the end of the protocol,
both devices ask the user to check if no other radio device is within its integrity region. If this
is the case, A and B can be sure that the public keys are not modified during transmission
and that they are indeed sent by A, B respectively.

dA B

r r

M

integrity region

Figure 3.12: Integrity region of device A and B. d is the distance between A and B and
r is the calculated upper bound on d.

3.15.4.1 Assumptions

The attacker can not be present in A’s and B’s integrity region during device pairing without
being noticed by the user.
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3.15.4.2 Protocol

The protocol is shown in Figure (3.13). A calculates the upper bound r on the distance
to the other device by r = (c · t)/2 where t is the average round-trip time of a challenge-
response scheme and c the speed of the used signal type. The round-trip time is measured in
the distance-bounding phase of the protocol. The signal speed depends on the transmission
medium (usually air) and the signal type. For ultrasound we use c = speed of sound and for
radio c = speed of light.

3.15.4.3 Protocol Requirements

Both devices are equipped with hardware for fast bit transmission. For measuring the distance
using ultrasound, both devices need to be equipped with speakers and microphones.

3.15.4.4 Location-Based Authentication

Distance-bounding protocols allow us to authenticate a message, based on the location of
a sender. Such a protocol can therefore be used to realize the “restaurant-use-case” at the
end of Chapter 2.

3.16 Authentication Using a Shared Secret (P7,P8)

Protocols in this section authenticate public keys using a short shared secret key. Figure
(3.14) shows one round of such an authentication protocol, a variant of the MANA III
protocol [9]. The short shared secret key is either generated by the user or by a device. If it
is generated by a device A, either the user forwards it to B (P7) or A herself sends it to B
over a secure OOB channel (P8). We consider here only protocols from class P7.

3.17 Authentication using a Shared Secret -
User-Assisted (P7)

3.17.1 Button-Enabled Device Pairing

Button-Enabled Device Pairing (BEDA) proposed by Soriente et al. [20] uses a single button
on A and/or B to generate a short secret key between A and B. The short secret key is
then used to authenticate (Diffie-Hellman) public keys.
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Alice (A) Bob (B)

Given IDA, g
XA Given IDB , g

XB

Pick NA, RA ∈U {0, 1}k Pick NB , RB ∈U {0, 1}k
mA ← 0|IDA|gXA |NA mB ← 1|IDB |gXB |NB

(cA, dA)← commit(mA) (cB , dB)← commit(mB)
(c′A, d

′
A)← commit(0|RA) (c′B , d

′
B)← commit(1|RB)

cA,c
′
A−−−−→

cB ,c
′
B←−−−−

dA−−→ m̂A ← open(ĉA, d̂A)

m̂B ← open(ĉB , d̂B) dB←−− Verify 0 in m̂A; iB ← NB ⊕ N̂A
Verify 1 in m̂B ; iA ← NA ⊕ N̂B

— distance-bounding phase —

The bits of RA are RA1, RA2, ..., RAk The bits of RB are RB1, RB2, ..., RBk
The bits of iA are iA1, iA2, ..., iAk The bits of iB are iB1, iB2, ..., iBk

α1 ← RA1 ⊕ iA1
α1−−→
β1←−− β1 ← RB1 ⊕ iB1 ⊕ α̂1

...
αi ← RAi ⊕ iAi ⊕ β̂i−1

αi−−→ Measure delay between βi−1 and α̂i

Measure delay between β̂i and αi
β1←−− βi ← RBi ⊕ iBi ⊕ α̂i
...

αk ← RAk ⊕ β̂k−1
αk−−→ Measure delay between βk−1 and α̂k

Measure delay between β̂k and αk
βk←−− βk ← RBk ⊕ α̂k

— end of distance-bounding phase —

d′
A−−→ 0|R̂A ← open(ĉ′A, d̂

′
A)

1|R̂B ← open(ĉ′B , d̂
′
B)

d′
B←−−

îBi ← αi ⊕ β̂i ⊕ R̂Bi (i = 1, ..., k) îA1 ← α̂1 ⊕ R̂A1

Verify iA
?= îB îAi ← α̂i ⊕ βi−1 ⊕ R̂Ai (i = 2, ..., k)

Verify iB
?= îA

The users visually verify that there are no other users/devices in their “integrity region”.

Figure 3.13: DH-DB: DH key agreement based on distance-bounding [4].
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1 A generates a long random value RiA and computes the commitment
ci1 = commit(1, PKA, ˆPKB , Pi, RiA)
A −→ B: ciA

2 B generates a long random value RiB and computes the commitment
ci1 = commit(2, PKB , ˆPKA, Pi, RiB)
A←− B: ciB

3 A opens its commitment by sending RiA to B
A −→ B: RiA

4 B checks ĉiA
?= commit(1, ˆPKA, PKB , Pi, RiA) and aborts if it does not hold.

5 B opens its commitment by sending RiB to A
A←− B: RiB

6 A checks if ĥiB
?= commit(2, ˆPKB , PKA, Pi, RiB) and aborts if it does not hold.

Figure 3.14: Round i of mutual authentication of the public keys PKA and PKB using
a shared secret key P . The protocol steps will be repeated for every bit i
of P [23].

3.17.1.1 Attacker Model

The attacker can not eavesdrop the secret key that is sent from the user to A and B or
forwarded by the user from A to B. The attacker is computationally bounded.

3.17.1.2 Device Requirements

Device A needs a single button and device B either a button, a display, a LED or a vibrating
motor.

3.17.1.3 Protocol

The paper presents four different protocol variants, called display-to-button (D-to-B), short
vibration-to-button (SV-to-B), long vibration-to-button (LV-to-B) and button-to-button (B-
to-B). The first 3 variants are shown in Figure (3.15). The only difference between these
variants is the way device A presents the bits of the generated short secret P to the user.
Each bit of P is encoded by A using the delay between two impulses. In D-to-B an impulse
can be a blinking square on A’s display or a blinking LED. In SV-to-B an impulse is a short
vibration and in LV-to-B an impulse is either the beginning or the end of a long vibration.
For every impulse the user receives from device A, she has to press (or release) a single
button at the same time on device B. Device B can now decode the bits of P using the
time interval between two button events. We assume that these protocol variants realize a
secure channel between A and B. By demonstrative identification of the sending/receiving
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device the user guarantees that indeed A and B are communicating. To guarantee that only
B can read from the channel the user additionally needs to verify that no adversary records
the time interval between two impulses or button events (e.g. with a video camera).

1 A generates a short secret P and presents each bit of P sequentially to the user. The user
forwards these bits to B using a single button on B.

2 A −→ B (insecure channel): PKA

3 A←− B (insecure channel): PKB

4 A and B authenticate their respective public keys PKA and PKB using P . One round of this
mutual authentication protocol is shown in Figure (3.14).

Figure 3.15: BEDA mutual authentication protocol (Variants D-to-B, SV-to-B and LV-
to-B).

In the fourth variant of BEDA, called Button-to-Button (B-to-B), the user directly generates
a short shared secret P on A and B by simultaneously pressing a button, multiple times,
on both devices. A and B derive P from the random timing intervals between two button
events and use P to authenticate their public keys. This protocol is shown in Figure (3.16).
As in the three previous protocol variants we assume that the involved channels (from the
user to both devices) are secure.

1 The user generates a short secret P on both devices A and B by simultaneously pressing a button
multiple times on both devices.

2 A −→ B (insecure channel): PKA

3 A←− B (insecure channel): PKB

4 A and B authenticate their respective public keys PKA and PKB using P . One round of this
mutual authentication protocol is shown in figure 3.14.

Figure 3.16: BEDA mutual authentication protocol (Variant B-to-B)

3.17.1.4 What the Protocol Achieves

Under the assumption that the user correctly forwards the short term key from the device
A and B, the protocol guarantees that the received public keys are indeed sent by A, B,
respectively.

3.17.1.5 Overall Pairing Time

According to [20], the average user can pair two devices using BEDA in 53-73 seconds
(depending on the protocol variant).
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3.17.2 Shake Well Before Use (type 2)

Protocol type 1 of Shake Well Before Use is described in Section (3.9.2). In type 2, the
accelerometer data is used to generate two secret feature vectors on A and B, which are
then used to authenticate Diffie-Hellman public keys. Note that this protocol type uses a
better known design than type 1, but is computationally more expensive and less dynamic.

3.17.2.1 What the Protocol Achieves

At the end of a successful protocol run, both devices guarantee, that the Diffie-Hellman
public key they received was sent by the other shaken device.

3.17.3 Bluetooth Pairing

Bluetooth Pairing is standard to create a shared secret key on two Bluetooth devices. In
Bluetooth version 1.x, this is done by entering a short secret passkey (e.g. 4-digit PIN) on
both devices. In some very insecure implementations, one device (e.g. a headset) defines a
fix passkey (e.g. 0000) which the user has to enter on the other device (e.g. mobile phone).
The secret passkey is used to authenticate Diffie-Hellman public keys.

3.17.3.1 Device Requirements

Both devices need a keyboard.

3.17.3.2 What the Protocol Achieves

At the end of a successful protocol run, both devices, guarantee, that the public key they
received was sent by an other device that knows the passkey.

3.18 Another Protocol Classification

Another classification for device pairing protocols is shown in Figure (3.17).

3.18.1 User Assisted Protocols

User-assisted device pairing protocols (protocol classes P3,P5,P7) are protocols where the
user is the central element. Besides choosing the devices to pair, she either forwards a key
from A to B (BEDA,FiB), compares two integrity checksums (DH-SC, L&C, HAPADEP) or
enters a secret key on two devices (Bluetooth Simple Pairing).
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User-Assisted OOB Channel Context-Based
BEDA Cable/Infrared as OOB Shake Well Before Use
Feeling-is-Believing Seeing-is-Believing DH-DB (location-based)
DH-SC VIC DH-IC (by presence)
Loud and Clear Shake Them Up!
HAPADEP DH-IC
Bluetooth Simple Pairing

Figure 3.17: Protocol classification based on location/context/user-assistance

3.18.2 OOB Channel

Protocols in the second column of (3.17) provide an OOB channel with special security
properties (e.g. a visual channel that guarantees the integrity of transmitted data).

3.18.3 Context-Based

In the third category, called context-based, are protocols that use certain aspects of a common
device context to achieve a security goal. The common context for Shake Well Before Use,
for example, is the users random movements. Distance-bounding protocols can be seen as
a subclass of context based protocols that use the location of a device to achieve a security
goal.

Note that a protocol can be in more than one category. DH-IC for example provides an
OOB that ensures the integrity of a transmitted message. On the other hand it enables
authentication through presence what can be seen as a context-based property.
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You can’t consider the problem of
defense without first understanding
the problem of attack.

(Doug Tygar)

4 Attacks

4.1 Compromising Devices

An adversary may attempt to attack a device by installing malicious software on the device.
This could allow him to read out a secret key or to replace a public key in a memory. Moreover
if the device is compromised before device pairing, we can not guarantee that the protocol
will be executed correctly. Such attacks can not be prevented by device pairing protocols.
It is the task of the user and the device to ensure that a device can not be compromised,
e.g. by implementing a good system policy. I do not consider such attacks or prevention
mechanisms here.

4.2 Denial-of-Service Attacks

In the context of device pairing, the goal of a Denial-of-Service (DoS) attack is, to preclude
A and B from creating a security relation. Most device pairing protocols are vulnerable to
DoS attacks, but they differ in how easy the user/device can detect such an attack. If the
user detects a DoS attack and if she can determine the attack source, then she could try to
eliminate it, or failing this, change the environment. I consider only the most important DoS
attacks for the protocols presented in Chapter 3.

General Jamming radio or infrared channels.

Shake-Them-Up! Insert a bogus packet with source address A or B. A and B abort at
the end of the protocol when they notice, that they have not agreed to the same keys.
An extended version of the protocol can partially resist against DoS attacks [6]. To
do this the receiving device acknowledges a packet by sending the same packet back
to the sender. A protocol round with more than two packets is simply ignored. This
protocol needs twice as many packets as the original version to generate a key of the
same length.

Integrity Codes Insert a bogus packet with symbol “0” or “1”. The decoding of at least
one codeword will fail. Depending on the implementation of integrity codes the sender
has to begin again with the whole transmission or need only to resend the corrupt
codeword.

HAPADEP Play a loud sound (e.g. tone or noise) to prevent the receiving device from
recording what the sending device is playing. This attack can be recognized (actually,
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heard) by the user if the sound is in the audible range. To prevent DoS attacks with
sounds outside the audible range, the devices could filter out all frequencies unused for
data transmission.

Loud and Clear Same as for HAPADEP. But here, the user is prevented from recognizing
the audio sequence(s).

4.3 Man-in-the-Middle Attacks

Man-in-the-Middle (MitM) attacks are the most widespread attacks against device pairing
protocols. In a MitM attack an adversary impersonates A when he communicates with B
and B when he communicates with A. I state here a few examples for MitM attacks in the
context of device pairing.

4.3.1 MitM Attack against Diffie-Hellman Key Agreement

The Diffie-Hellman key agreement protocol (5.9) solves the problem of establishing a security
relation A B if no secret channels between A and B are available. Unfortunately the
protocol is vulnerable to a MitM attack. The attack is shown in Figure (4.1). At the end of
the attack, the adversary M shares a key kA with A and a key kB with B.

Alice (A) Adversary (M) Bob (B)

Pick
XA ∈U {0, ..., p− 2}

Pick XM ∈U {0, ..., p− 2} Pick XB ∈U {0, ..., p−2}

yA := gXA (mod p) yM := gXM (mod p) yB := gXB (mod p)
yA−−→ yM−−→
yM←−− yB←−−

kA := yXA

M (mod p) kA := yXM

A (mod p) kB := yXB

M (mod p)
kB := yXM

B (mod p)

A and M share the key kA and B and M share the key kB

Figure 4.1: MitM attack against Diffie-Hellman key agreement protocol. The prime p
and the generator g are publicly known parameters.

4.3.1.1 Conclusion

We must authenticate the public keys yA and yB.
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4.3.1.2 MitM Attacks in Practice

In the last section we saw a protocol that is vulnerable to MitM attacks. But are such
attacks in today’s communication networks even possible? The answer is yes. I state here
one example of a concrete MitM attack in networks using ARP (Address Resolution Protocol).

Assume a user wants to pair his two handhelds A and B by creating a shared secret key
using Diffie-Hellman key agreement. A and B are enrolled into an insecure WLAN (no WEP,
WPA etc.). The adversary has access with his laptop (M) to this WLAN. Since A and B are
in the same network segment both devices directly communicate with each other by sending
packets to the other device hardware (MAC) address (note that this attack is also possible
when A and B are not in the same network segment). The adversary now sends fake ARP
messages to A and B, so that both devices bind the IP address of the other device to the
hardware address of M . All IP packets exchanged between A to B are now transferred over
M . This kind of attack is called arp spoofing [12].

4.3.1.3 Conclusion

It is relatively easy to perform a MitM attack in unprotected wireless network standards.

4.3.2 MitM Attack Against Shake Them Up!

As a third MitM example we consider the protocol Shake Them Up! (3.10.2) using an
anonymous broadcast channel to agree A and B to a shared secret key. To transmit a
secret bit from A to B or vice versa, both devices need to know the others device address.
Remember that a bit is encoded in the source field of a packet and that the device addresses
are exchanged in the first two start messages of the protocol. An adversary who can fake these
two addresses can launch a MitM attack and decode the transferred secret bit. Assume the
adversary fools A and B to believe that the other device address is M(A), M(B) respectively.
Thus he knows that each packet with a source field set to A or M(B) is sent by A. If the
field is set to A the packet represents 1. If it is set to M(B) it represents 0. In the same
way he can decode the packets from B. To complete the MitM attack, he replaces M(B)
with B and M(A) with A in the source field of each packet. The generated key on A and
B is now also known to the adversary without being noticed by A and B.

4.3.2.1 Conclusion

We must authenticate the two start messages.
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4.4 Bluetooth Pairing Attack

The security of simple Bluetooth pairing relies on the user’s choice of a secret PIN, which is
often much too short. Yaniv Shaked and Avishai Wool showed that a passive attacker can
derive a 4-digit PIN from an eavesdropped pairing communication in less than 0.06 seconds
on a common PC using brute force algorithm [19].

4.4.1 Conclusions

Standard Bluetooth pairing using a short PIN is insecure in an hostile environment. Users
should therefore refrain from entering the PIN for pairing the Bluetooth devices as much as
possible. As PINs length ranges from 8 to 128 bits, it is also advisable to choose the PIN as
long as possible.

The Bluetooth Special Interest Group (SIG) reacted to these concerns by creating Secure Sim-
ple Pairing (Bluetooth version 2.1). The protocol supports four association modes: Passkey
entry, Numeric Comparison, ’Just Works’ and an OOB model (particular with Near Field
Communication technology). For a detailed description of these modes I refer to the paper
[11].

4.5 Reflection Attack

Consider protocol DH-SC (3.8) where A would calculates message mA as IDA|gXA|NA and
B mB as IDB|gXB |NB. Then an adversary can fool A and B into accepting their own
public keys by reflecting every message sent from A back to A and every message sent from
B back to B. In this case both devices calculate the same checksum iA = NA⊕NA = ib =
NB ⊕ NB = 0k. To prevent such an attack A adds 0 to the beginning of mA and B (the
answering device) adds 1 to the beginning of mB. Both devices can now detect a reflection
attack by verifying this first character in the received message mA, mB respectively.

4.6 Attacks against Distance-Bounding Protocols

A distance-bounding protocol can for example be used by an automatic door system, to verify
that a visitor possesses a secret key and that he/she is within a predefined distance to the
door. Only when both conditions hold, the door opens. In contrast to this example, we can
profit from the presence of the user in a device pairing protocol. In DH-DB for example, the
user verifies that no other devices are within a calculated distance to A and B.

We consider a user of device A that wants to verify that a public key PkB is indeed sent
from device B. To do this A determines an upper bound u on the (euclidean) distance d to
B. The user verifies that B is the only device that is d away from A. If this is the case she
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knows that B must be the sender of PkB. The adversary M now tries to impersonate B
and fool A into accepting his own public key. Since M does not want to be detected by the
user, he has to be more than u away from A. We now consider A’s approaches to determine
the correct upper bound to B (respectively M) and M ’s attempt to foul A into accepting
his public key as the public key of B.

Approach 1 A sends a challenge to B and waits for B’s response. From the response signal
she measures the signal power and tries to derive the distance to B.

Attack 1 M could have special equipment to generate a strong signal and therefore to fool
A that he is closer than he actually is.

Conclusion 1 In the context of device pairing, signal power analysis is not reliable to deter-
mine the distance to a device.

Approach 2 A measures the time between sending a challenge and receiving the answer.
She then calculates the upper bound u from this time interval and the signal speed.

Attack 2 M can try to send the response before he gets the challenge.

Conclusion 2 The response must depend on the challenge and the challenge should not be
predictable.

Approach 3 A uses ultrasound signals to measure the distance d.

Attack 3 M installs a small device S near A that forwards each message of A to M over a
radio channel. If S receives a message from M it converts it back over an ultrasound
channel to A. M can now respond to a challenge of A as he would be in the integrity
region of A. A calculates an incorrect upper bound u on the distance to M because
she assumes that the signal can not be faster than the speed of sound (radio signals
are about 880’000 times faster than ultrasound signals in air1).

Conclusion 3 If the user correctly checks that no other device is u away from B, then
an adversary can not install device S near enough to A. If A uses radio signals to
measure the distance to B, then M can not accelerate the signal speed using a device
S, because we assume that information can not be transmitted faster than with the
speed of light.

Approach 4 B first sends his public key over an insecure channel to A and then performs
the distance measuring phase with A.

Attack 4 M replaces B’s public key with his own public key on the insecure channel and
let B perform the distance measuring phase with A.

Conclusion 4 The distance measuring phase must depend on the public key, such that the
sender of the public key must also be the entity performing the distance measuring
protocol with A.

This is a set of distance fraud attacks, where M pretends to be nearer to A than he actually

1Speed of radio signals ≈ speed of light ≈ 300’000 km/s, Speed of ultrasound in air ≈ 340 m/s
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is. The attacks are partially based on ideas from mafia fraud attacks and terrorist fraud
attacks against identification and authentication systems [2, 16, 17].

4.7 Another Attacks Against Shake Them Up!

Shake Them Up! (3.10.2) is vulnerable to an active attacker if the following assumption
does not hold: “A or B discard the generated n bit key if they have not both contributed
at least, e.g. n/3 bits to the secret key” 2. Consider again the protocol example of Shake
Them Up! already introduced in Chapter 3. (a copy of the protocol example is shown
below). An adversary could drop all packets sent by A and B and insert arbitrary bogus
packets Bi, i = 1, . . . , n with source field set to A or B. A would then agree on the key
KA = KA1, KA2, . . . , KAn, where KAi = 1 if the i’th packet she receives has a source
field B and 0 if the i’th packet has a source field A. B would agree on the key KB =
K̄A1, K̄A2, . . . , K̄An, where 1̄ = 0 and 0̄ = 1. In the last two steps the adversary broadcasts
the values a = hash(A|B|KB) and b = hash(B|A|KA) such that both A and B accept the
protocol run.

To prevent this attack, both devices should contributed enough bits to the generated key, so
that the adversary can not generate the last two key validation values a = hash(A|B|key)
and b = hash(B|A|key).

round 1        src: A dst: B

round 2        src: A dst: B

round 3        src: B dst: A

round 4        src: A dst: B

round 5        src: B dst: A

round 8        src: B dst: A

Start(k)
Start

A B

1
0
0
1
1
0
0
1

hash(A|B|key)
hash(B|A|key)

round 7        src: A dst: B

round 6        src: B dst: A

1
0
0
1
1
0
0
1

SHARED SECRET KEY

Figure 4.2: Key agreement protocol for movement-based pairing [6].

2I have not found this assumption in [6].
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You can’t defend. You can’t prevent.
The only thing you can do is detect
and respond.

(Bruce Schneier)

5 Security Properties

In this chapter I describe the protocol classes, introduced in chapter 3, as channel and
security relation transformations. An overview of these transformations is shown in the
following figure, where I assume that insecure channels are available at any time.

P5 P6

P7

P1

A B
long term key

A B

A B

A B

“Oracle”, usually the user

high bandwidth channel: can be used to transfer a public key or a long term secret (several hundret bits)

low bandwidth channel: can be used to transfer a key digest or a short term secret (< 80 bit)

very low bandwitdth channel: can be used to transfer a single bit (e.g. confirmation bit accept/reject)

A B
Cable/IR link

B

DH-DB

A B

A B
A B

VIC
DH-IC

A/B O
O A/B

HAPADEP
Loud and Clear
DH-SC

A B
short term key

A B
BEDA (D|SV|LV)-to-B

O

Shake Well Before Use (type 2)
Simple Bluetooth Pairing
BEDA B-to-B

A B

A B

Seeing-is-Believing

A B
A

LLC

LLC 

Shake Them Up!

A Banonym

A B
shared addresses

O A/B

Shake Well Before Use (type 1)
FiB

O A/B

Security Relations

P2 P3 P4

Figure 5.1: Overview of channel and security relation transformations
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5.1 Terms and Notations

Inspired by the •-calculus by U. Maurer and E.Schmid [13] I use the following channel
notations. The channel properties are described in (1.4.1).

A B Insecure channel from A to B.

A B Authentic or authenticated channel from A to B.

A B Both-way secure channel between A and B.

I use the term authentic channel to refer to a channel providing authenticity by physical
properties and/or user assistance and the term authenticated channel to refer to a channel,
authenticated by a (cryptographic) protocol. Further note that the security properties of the
channels are guaranteed by the user and the protocol, e.g. the channel guarantees integrity
and the user guarantees that the correct device is sending.

5.1.1 Timing Aspects

Two time parameters ti, tj i, j ∈ N above a channel symbol, e.g. A
t1 t2

B, denote when
a messages must be sent (t1) and when it arrives (t2). This implies that t2 > t1. If the delay
of a channel is not important, only one time parameter t or ti appears above the channel

symbol. A
t3

B states therefore for a secure channel available at time t3.

Applied to shared secrets and authentic copies of public keys, A t B stands for a shared
secret between A and B available at time t′ > t and A t B describes that A has an
authentic copy of B’s public key at time t′ > t.

5.1.2 Mutual Access to Channel Endpoints

We use the notation A/B to refer that both A and B have exclusive access to one end of the
channel, e.g. A/B

t
O denotes an authentic channel available at time t where both

A and B can send a message to O. O receives two messages at time t and knows for both
messages whether the message was sent by A or B.
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5.1.3 Channel Bandwidth

The line thickness of a channel symbol describes the bandwidth of the channel:

very low bandwidth channel, suitable to transmit 1 bit (e.g. ok/nok commit-
ment).
low bandwidth channel, suitable to transmit a key digest or a short term key
(< 80 bit).
high bandwidth channel, suitable to transmit a public key or a long term key
(few hundred bits).

Note that one could think of using a low bandwidth channel to transmit a public key or a long
term key by waiting longer for transmission completion. Since for almost all low bandwidth
channels the user is involved in either way, this technique would not be user-friendly and is
therefore inapplicable.

5.1.4 Channel Transformations

We use the following notation for channel or security relation transformations: the required
conditions and primitives are on the left side, followed by  , and the derived primitives are
on the right side.

We further use the following trivial transformations:

A one-way, high bandwidth and secure channel can be used to transmit a long term secret
key.

A
t

B
}
 A t B (5.1)

A one-way, high bandwidth, authentic (or authenticated) channel can be used to transmit a
public key.

A
t

B
}
 A t B (5.2)
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5.2 OOB Transfer of Key Commitments (P1)

Devices in protocol class P1 provide a (physically) low bandwidth OOB channel to
authenticate a high bandwidth, insecure channel . This is depicted by the following
channel transformation:

A
t1 t2

B

A
t3 t4

B
t2 < t4

 A
t3 t4

B (5.3)

To send a message m over
t3 t4

B, A first sends a commitment c = h(m) to m over the

authentic channel
t1 t2

to B. Afterwards, A sends m over the insecure channel
t3 t4

to B. B can now use c to verify the authenticity of m (by checking c
?
= h(m̂)).

By composing transformation (5.2) and (5.3) we get the transformation:

A
t1 t2

B

A
t3 t4

B
t2 < t4

 A
t4 B (5.4)

5.2.1 Seeing-is-Believing

Seeing-is-Believing (3.5.2) is an application of transformation (5.4). The visual OOB channel
ensures the integrity of the transmitted public key and the user makes sure that indeed A is

sending. This provides the necessary channel A
t1 t2

B.

5.3 OOB Key Transfer (P2)

Protocols of class P2 generate a security relation A B by transferring a long term
secret key from one device to the other, using a (physically) secure channel. This trivial
transformation is stated in (5.1).

5.3.1 Shielded Cable/ Infrared Link

A shielded cable or an infrared link can be used to realize a high bandwidth, secure channel
necessary for transformation (5.1). For a cable connection, we assume that the

transmission can not be overheard or modified by an adversary without being detected by
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the user. For an infrared link we assume that the user ensures that no other infrared device
is in line of sight (to prevent MitM attacks). By demonstrative identification of the devices
at the endpoints of the cable respectively in line of sight, the user ensures that only A can
send and only B can read from the channel.

5.4 User-Assisted Key Agreement (P3)

Devices in class P3 have exclusive access to a random oracle (usually the user) providing
enough random data to create a long term key A B. I use the notation O

t
A/B

to show that A and B get the same random data from the oracle O. This leads to transfor-
mation:

O
t

A/B
}
 A t B (5.5)

5.4.1 Shake Well Before Use (type 1)

In type 1 of Shake Well Before Use (3.9.2), the user provides the secure channel to
both devices, by shaking the devices in one hand. I assume here that an adversary is unable
to derive the generated accelerator data (secrecy channel property), e.g. by a side channel
attack and that he can not influence the accelerator data, without being noticed by the user
(authenticity channel property).

5.5 OOB Key Exchange (P4)

Devices in class P4 provide two high bandwidth, secret OOB channels A B and
A B which we abstract here as a both-way secure channel A B. The devices
agree to a shared secret key by exchanging secret key material over these channels. Note
that this protocol class differs from protocol class P2 where one device generates the whole
key and sends it over a secure channel to the other device.

A
t

B
}
 A t B (5.6)

5.5.1 Shake Them Up!

Shake Them Up! (3.10.2) provides together with the user an anonymous broadcast channel
denoted as A anym B. This channel ensures that nobody except A and B can determine
from which particular sender a signal originates. Beside this channel, both devices need an
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authentic copy of the others device address1. This is denoted by the symbol A B.
Note that this is not a security relation and has nothing to do with keys. An adversary
M who can fool at least one device A or B into accepting a wrong device address (e.g
A M(B), where M(B) denotes M masquerading as B), can launch a MitM attack
against the protocol (as we have seen in 4.3.2). A B can be created by comparing
A and B’s addresses displayed on both devices or by means of techniques from other device
pairing protocols. Having these two primitives, the protocol provides a both-way secure
channel:

A
t1 B

A
t2

anym B
t1 < t2

 A
t2

B (5.7)

The last two messages a = hash(A|B|key) and b = hash(B|A|key) of the protocol are
used to validate the exchanged key (key). We assume that hash() is a preimage resistant
hash function, to ensure that the adversary can not learn the key from the hash digest. As
we have seen by attack (4.7), the adversary can insert bogus bits into the key, during key
agreement. This would violate our assumption that the channel between A and B provides
authenticity. By requiring that A and B abort the protocol run if they have not contribute
at least, e.g. n/3 bits to the generated n bit key, we ensure that the adversary can not bring
A or B into accepting the protocol run. This leads to that an adversary can not insert or
modify packets send on the anonymous broadcast channel.

By combining transformation (5.7) and (5.6) we get:

A
t1 B

A
t2

anym B
t1 < t2

 A
t2 B (5.8)

5.6 Diffie-Hellman Key Agreement (P5-P8)

Diffie-Hellman Key Agreement allows us to generate a security relation A B if we can
generate a security relation A B, i.e. if we can authenticate Diffie-Hellman half-keys.
This is depicted by the following security relation transformation:

A t B
}
 A t B (5.9)

1It is sufficient to have an authentic copy of any value that can be used in the source field of a packet.
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For the last of this chapter we consider security transformations to generate a security relation
A B and therefore, due to transformation (5.9), to generate a shared secret key
A B.

5.7 User-Assisted Key Agreement (P5)

Protocols in class P5 need the user as a comparison oracle to verify if two strings (integrity
checksums) are equal. If they are equal, the protocol guarantees that previously exchanged
public keys (e.g. Diffie-Hellman half-keys) are authentic. Channel transformation (5.10)
shows the involved channels for user-assisted protocols, based on integrity checking (class
P5).

We assume that O is a comparison oracle (usually the user) with the following properties:

• If O gets two identical values at time t5 from the channel A/B
t5

O it sends “accept”

on the channel O
t6

A/B.

• If O gets two different values at time t5 from the channel A/B
t5

O it sends “reject”

on the channel O
t6

A/B.

A
t1 t2

B

A
t4 t3

B

A/B
t5

O

A/B
t6

O

t5 > t2, t4
t6 > t5


 

A
t1 t6

B

A
t6 t3

B
(5.10)

The first two channels A
t1 t2

B and A
t4 t3

B are used to exchange public keys and
calculate the integrity checksum. After that (at time t2, t4), both devices send the integrity

checksum over
t5

to O. O processes as describe above. A and B accept at time t6
the received public key if and only if they receive accept from O. The insecure channels are

therefore authenticated at time t6 depicted as A
t1 t6

B and A
t6 t3

B.
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By applying transformation (5.2) to both high bandwidth, authenticated channel from (5.10)
we get the necessary security relation A B for protocols in class P5:

A
t1 t6

B

A
t6 t3

B

}
 A

t6 B (5.11)

For all of implementations of class P5 protocols, the user selects A and B by demonstrative
identification. The devices send the integrity checksum over a visual or audio channel to the
user. Visual means that a device shows the integrity checksum on its display. Audio means
that a device encodes the string to an audio sequence and plays the sequence using an audio
speaker. For both channels the user checks that only A or B can send on the channel
and that the message is not modified during transmission. This ensures the authenticity of
the channel. The result of the comparison can be transmitted to the devices by pushing an
accept/reject button on the device keyboards. The user ensures that she has exclusive access
to the device keyboard during device pairing. This guarantees that nobody else can send on

the channel O
t6

A/B.

5.8 Authentication by Integrity Checksum - OOB
Transfer (P6)

Device pairing protocols in class P6 provide two low bandwidth authentic channels from A
to B and vice versa to check the integrity of previous exchanged public keys.

5.8.1 Distance Bounding

We do not directly model the channel transformation for DH-DB here, because the protocol
needs 6 + 2k channels, where k is a security parameter of the protocol. We describe instead
an abstract version of a distance bounding device pairing protocol with the following channel
transformation (5.12) and explain why DH-DB uses more channels in practice.

A
t1
r B

A
t2 t3

B
t1 < t3

 A
t2 t3

r B (5.12)

The channel A r B stands here for a location limited (wireless) channel (LLC) where
B knows that the sender of a message must be closer than r. r is therefore an upper bound
on the actual (euclidean) distance between A and B. As we already have seen, such a LLC
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can be realized by a distance-bounding protocol.

The insecure channel
t2 t3

is used to transfer A’s public key to B. By sending a hash of

this public key over
t3
r we get the channel

t2 t3
r .

A distance-bounding device pairing protocol allows us therefore to transfer the distance
property of r to a high bandwidth insecure channel . This is similar to
transferring a • from a low bandwidth to a high bandwidth channel (e.g. as in 5.3).

By verifying that only A is in the integrity region (3.12) of B during device pairing, the user
knows that the public key received by B must be sent by A. This is depicted by the following
transformation:

A
t2 t3

r B
User verifies integrity region of B

in the time between t2 and t3.

 A
t2 t3

B (5.13)

5.8.1.1 DH-DB

DH-DB (3.13) uses a k-round distance-bounding phase, where k is the size of the two integrity
checksums iA and iB. In each round only one bit is send from A to B and B to A. This
allows to calculate a tighter upper bound on the the distance to the other communication
partner because the processing delay on A and B can be very short. The challenges of A
are calculated as αi = RAi ⊕ iAi ⊕ β̂i−1 i ∈ 1, . . . , k. RAi is a random bit, generated by
A, that ensures that B can only predict the challenge with a probability of 1/2. iAi is the
i’th bit of A’s integrity checksum iA that B needs to compare with this integrity checksum
iB. The distance-bounding phase therefore depends on the integrity checksums of A and
B. This ensures that the same entity performing the distance-bounding phase must have
sent the public key. The last value β̂i−1 is the challenge of B received in round i − 1. A’s
challenge bit αi is therefore also a response the the previous challenge bit of B.

5.8.2 User-Assisted Feedback Channel

Both-way public key authentication can also be achieved when A and B only provide a
one-way, low bandwidth OOB channel , e.g. from A to B. This is depicted by the
following transformation:
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A
t1 t2

B

A
t4 t3

B

A
t5 t6

B

A
t8 t7

B
t5 > t4
t7 > t2, t6


 

A
t1 t6

B

A
t8 t3

B
(5.14)

The two insecure channels are used to exchange public keys. A and B calculate then an
integrity checksums from the keys. If the checksum on A is equal to the checksum on B
the protocol guarantees that the public keys are sent by A and B respectively. The low

bandwidth authentic channel A
t5 t6

B is used to transmit A’s checksum to B. B can
then compare the two checksums. To inform A whether the checksums are equal or not, the
user forwards the result of the comparison from B to A by pushing an accept/reject button

on A’s keyboard. This is depicted by the channel A
t8 t7

B.

5.8.3 VIC

In VIC (3.15.2), the integrity checksum is a hash of the concatenation of A’s and B’s public

key (3.15.2). The channel A
t5 t6

B is realized in the same way as in SiB, where the user

takes a picture of A’s display with B’s camera. The authenticity of the channels
t5 t6

and
t8 t7

is guaranteed by the visual channel and the user by demonstrative identification
of A and B.

To break the authentication scheme of VIC, the adversary has to find two values X, Y such
that h(KA|X) = h(Y |KB). Note that finding a collision in h() is not enough since KA and
KB are fixed.

5.8.4 Integrity Codes (DH-IC)

DH-IC extends DH-SC by the channel A
t5 t6

B. Section (3.15.3) describes how the user

and the protocol ensures the authenticity of a transmitted message sent over A
t5 t6

B.
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5.9 Authentication using a Shared Secret Key (P7,P8)

Protocols in class P7 and P8 generate a short term key A short B on both devices to
authenticate Diffie-Hellman half-key afterwards.

Authentication by a short term key A short
t B is depicted by the following transformation.

A short
t1 B

A
t2

B
t2 > t1

 A
t2 B (5.15)

A protocol for mutual authentication using a short shared secret was introduced in (3.16).
Note that this protocol needs l insecure channels between A and B, where l is the size of
the short term key short

t1

5.9.1 BEDA (D|SV|LV)-to-B

In the BEDA protocol variants D-to-B, SV-to-B and LV-to-B (3.17.1) the user provides a
one-way, low bandwidth secure channel A B, by forwarding a message bit by bit
from A to B. This is shown in channel transformation (5.16). Each channel on the left
side is used to transmit one bit. The secrecy property of the channel is guaranteed by
choosing an environment where the adversary has no visual access to A′s display and where
no equipment is installed (e.g. camera, microphone) that can record the timing property of
the button/vibration events. The user ensures that indeed A sends and B reads from the
channel by demonstrative identification of the sending/receiving device.

A
t1 t2

User

User
t3 t4

B
...

A
tn−3 tn−2

User

User
tn−1 tn

B

tn > tn−1 > . . . > t2 > t1


 A

t1 tn

B (5.16)

This low bandwith secure channel can now be used to transmit a short secret key, which can
further be used in transformation (5.15) to authenticate Diffie-Hellman half-keys.

A
t1 tn

B
}
 A short

tn B (5.17)
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5.10 Authentication using a Shared Secret Key -
User-Assisted (P7)

Devices A and B in protocol class P7 have exclusive access to a random oracle O (e.g. the
user) providing random data to establish a short term secret key between A and B. This is
depicted by the following transformation:

O
t

A/B
}
 A short

t B (5.18)

Note that this transformation is quite similar to transformation (5.5), where we use a random
oracle to generate a long term key. The oracle here, can only send few random data, such
that we only get a short shared secret key between A and B. This key is then used to
authenticate Diffie-Hellman half-keys.

By combining transformation (5.15) and (5.18) we get:

O
t1

A/B

A
t2

B
t2 > t1

 A
t2 B (5.19)

5.10.1 Shake Well Before Use (type 2)

In Shake Well Before Use Type 2 (3.17.2), the user generates random accelerator data on A
and B by shaking A and B, equipped with accelerators, in one hand. We assume that an
adversary is not able to derive or influence the random data. This leads to the secure channel
depicted in transformation (5.18). Both devices extract a feature vector from the random
accelerator data. This can be seen, if the vectors are equivalent, as a shared secret key
A short

t B, but this key would be neither of defined length (e.g. 128 bit) nor distributed
uniformly. Nevertheless the feature vectors can be used to authenticate Diffie-Hellman public
keys. Shake well Before Use propose a special interlock protocol to do this. I refer to the
paper [14] for a detailed description of this protocol.

5.10.2 Simple Bluetooth Pairing

In Simple Bluetooth Pairing the user enters a short key (PIN) on both devices. We assume
this key is large enough and that the users chooses it randomly and uniformly from the set
of possible keys. The user takes care that only she can enter a PIN on the device keyboards
and that nobody else can see which buttons she pushes. This leads to the secure channels
required in (5.18).

66



Chapter 5: Security Properties

5.10.3 BEDA B-to-B

In BEDA B-to-B the user generates a random key on both devices by simultaneous pushing
a button on both devices. We assume that only the user can push a button on a device and
that it is infeasible for an adversary to determine the time between two button events. This
provides the necessary channel O A/B for transformation (5.18).
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Conclusions

We have seen that most device pairing protocols make use of public key techniques to
resist against passive attackers. To defend an active attacker, the messages are sent over
user-assisted channels or OOB channels with special physical properties to ensure that no
adversary can affect the communication without being noticed by the user or the protocol.
Other protocols directly generate a shared secret key on two devices by receiving random data
provided or generated by the user or by exchanging key material over secure OOB channels.

All presented protocols need the user to check certain conditions or accomplish certain tasks.
Although the integration of the user into the protocols can be very different, the functional
principles of many protocols are often quite similar. This allows to divide the protocols
into different classes. These classes can further be described by transformations of security
primitives. This abstraction allows to better understand current protocols and to identify the
necessary requirements for further ones.
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