
Research Collection

Master Thesis

Complex event detection on an enterprise service bus

Author(s):
Kohler, Silvio

Publication Date:
2009

Permanent Link:
https://doi.org/10.3929/ethz-a-005772951

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-a-005772951
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

COMPLEX EVENT DETECTION ON AN

ENTERPRISE SERVICE BUS

Master Thesis

Systems Group
September 16, 2008 – March 16, 2009

Silvio Kohler
ETH Zurich

kohlers@student.ethz.ch

Supervised by:
Dr. Peter Fischer
Kyumars Sheykh Esmaili

2

Abstract

Service-oriented architectures (SOA) have been adapted by businesses to improve their
flexibility, recently with a focus on dynamic outsourcing of business processes. A cor-
nerstone of a SOA is an Enterprise Service Bus (ESB), which is used to loosely connect
services by the means of message exchange.
Businesses using a SOA still need to comply with applicable laws and regulations. To
ensure this compliance, the MASTER [12] project supposes a control infrastructure
to be implemented as another service in the SOA. Observing the message flow on an
ESB provides ample opportunities to observe and compute indicators for compliance.

The control infrastructure mentioned above needs to catch raw messages on the ESB
to detect complex events and answer queries posed by a higher level infrastructure.
The goal of this master thesis is to close the gap between the interface of such a
higher level infrastructure (defined by MASTER) and the interfaces provided by exist-
ing ESBs. This includes providing an overview of existing Enterprise Service Buses
and the interfaces they offer. A model is developed which describes the interfaces
and the mapping between them. A prototype for a selected ESB is implemented. The
performance of the prototype is evaluated to identify challenges in processing large
numbers of messages on an ESB.

4

Contents

1 Introduction 7
1.1 The MASTER project . 7

1.1.1 Architecture of MASTER 7
1.1.2 The role of ESBs in MASTER 7

1.2 Scope and goal of this thesis . 8

2 ESB Overview 9
2.1 General design . 9
2.2 Core capabilities of an ESB . 10
2.3 State of the art of ESB implementations 11

2.3.1 Existing ESB implementations 11
2.3.2 Classification . 12
2.3.3 Message interception . 18

2.4 Choice of ESB for MASTER . 20
2.4.1 Criteria . 20
2.4.2 Evaluation . 23
2.4.3 Experiences . 24

3 Modeling 27
3.1 Goal of Modeling . 27
3.2 Signaling Interface . 27
3.3 ESB interfaces/interception points 28
3.4 2-layer-model . 29

3.4.1 Vocabulary . 29
3.4.2 Description of 2-layer-model 29

3.5 Using the model in MASTER . 32

4 Implementation 35
4.1 Architecture of ServiceMix / JBI . 35

4.1.1 The Java Business Integration specification 35
4.1.2 ServiceMix as a JBI implementation 38

4.2 Interception in ServiceMix . 42
4.2.1 Architecture . 42

5

4.2.2 Further implementation steps 47
4.2.3 How to install and use the signaling prototype 49

5 Performance 51
5.1 Goal of performance experiments 51
5.2 Test infrastructure . 52

5.2.1 Testbed . 52
5.2.2 Setting . 52

5.3 Experiments . 54
5.3.1 Experiment: Baseline . 55
5.3.2 Experiment: Signaling . 56
5.3.3 Experiment: Intermediate steps 57
5.3.4 Experiment: Message persistence 60
5.3.5 Experiment: Heap size and CPU usage 62

6 Conclusion 65

Bibliography 66

A Example MEF event 69

B ServiceMix configuration 71
B.1 Installation checklist . 71
B.2 servicemix.xml configuration file . 72

C Testbed settings 75
C.1 CXF configuration . 75
C.2 Operating system settings . 76

6

Chapter 1

Introduction

1.1 The MASTER project

Service-oriented architectures (SOA) have been adapted by businesses to improve their
flexibility, recently with a focus on dynamic outsourcing of business processes. The
MASTER [12] project aims to build control structures for SOA infrastructures to allow
monitoring and enforcement of business processes in a SOA.

1.1.1 Architecture of MASTER

Business processes in a SOA infrastructure still need to comply with laws and regu-
lations. The fact that the processes are distributed over several systems, which may
reside on different machines with distributed ownership, introduces new challenges
related to reliability, performance and security to ensure this compliance.
The MASTER project proposes an architecture based on dedicated components for
observation, evaluation and reaction. Figure 1.1 illustrates these components.
The observation layer extracts raw events from the services in the SOA and generates

complex events. The enforcement layer analyzes the complex events and provides re-
porting facilities and enforcement. The observation layer consists of two parts: The
signaling component and the monitoring component. Signaling is responsible for deal-
ing with different interfaces of the underlying services and providing the raw events,
which the monitoring component aggregates to complex events.

1.1.2 The role of ESBs in MASTER

A cornerstone of a SOA is an Enterprise Service Bus (ESB). An ESB is used to loosely
connect services by the means of message exchange. It provides facilities for services
to connect and register themselves, and be discovered by other services. Another fa-
cility of an ESB is to ease communication between services by providing message
transport infrastructures, and routing mechanisms for messages.

7

Figure 1.1: MASTER components, [19]

As an ESB is a key part in a SOA, it is in the scope of the MASTER project to look
into it as a source of raw events for the signaling component.

1.2 Scope and goal of this thesis
Raw events, as introduced in section 1.1.1, that are exposed by an ESB, are mainly
messages exchanged by services. Signaling on an ESB thus has to deal with a lot of
messages flying by, filtering them on different criteria, and creating events that also
contain metadata that belongs to the message.
This thesis’ goal is to find a model that describes this step in a way that is suitable
for all currently used ESB implementations. This includes providing an overview of
existing ESBs and the interfaces they offer (chapter 2). From this, a model is derived
which describes how abstract queries can be transformed to specific queries depending
on a concrete implementation of an ESB (chapter 3). A prototype for a selected ESB
is implemented (chapter 4). It uses the interfaces of the ESB to catch messages on
the bus. The messages are processed in terms of filtering and examining their content
to build events for the signaling interface. The evaluation of the prototype points out
challenges in message interception concerning performance, and how these challenges
can be dealt with (chapter 5).

8

Chapter 2

ESB Overview

An Enterprise Service Bus is used to connect existing and new software components
to build up a Service Oriented Architecture. It needs to be able to connect to any IT
resource, whatever its technology is or wherever it is deployed. The ESB needs to be
flexible to easily combine and re-assemble components to meet changing requirements
without disruption. It connects components in a loosely coupled way. This provides
the ability to integrate existing systems into a SOA and deploy it step by step.

2.1 General design

The general architecture of an ESB with components connected to it is shown in figure
2.1. Components can take on the role of service producers (often called ’services’)
or service consumers. Services can be special components, such as orchestration en-
gines, adapters to data resources or adapters to external systems which need message
transformation or transport protocol conversion. The ESB mediates messages between
the components, decides on where to route messages, and transforms message payload
to fit the receiving components format. To achieve reliability, the ESB needs persis-
tent memory, e.g. a database connected to it. For service consumers to be able to use
the services provided by service providers, the ESB has to offer the facility to register
them at the ESB and offer their interface to service consumers. This ability is referred
to as service registering.

One approach to define a common architecture of an ESB is the Java Business Inte-
gration specification (JBI, section 4.1.1, [11]). Several implementations follow this
specification.
The JBI specification describes a pluggable architecture for a container that hosts ser-
vice producer and consumer components. Services connect to the container via bind-
ing components (BC) or can be hosted inside the container as part of a service engine
(SE). Services are described using the Web Services Description Language (WSDL).
Messages are always translated to a common message format and routed by the Nor-

9

Figure 2.1: General ESB architecture [1]

malized Message Router (NMR). Four message exchange patterns (MEP) are speci-
fied: In-Only, Robust In-Only, In-Out, In Optional-Out.
A JBI-instance is bound to one Java virtual machine. To scale a JBI based system,
several instances running on different machines have to be connected via binding com-
ponents. This implicates several challenges, for instance of how to distribute a central
service registry to let consumers know about services across JVM boundaries.

2.2 Core capabilities of an ESB

The term ESB does not denote a special product, but a type or group of products. They
are defined by the capabilities they provide, and the tasks they fulfill. The following
core capabilities of an ESB can be identified:

Routing The ESB can determine the destination component of a message based on
different criteria, e.g. based on message content.

Transformation To ensure that other systems or external services can be attached to
the ESB, it must provide the ability to transform these systems’ message format
to a format that is understood by the other components.

10

Transport An ESB has to be able to adapt the transport protocols connected compo-
nents use and transmit messages according to the desired messaging pattern (e.g.
asynchronous and reliable messaging).

Service registering/management Service consumers need to have the possibility to
detect services attached to the ESB. It has to be possible to assemble composite
applications from different services.

In addition, an ESB should have the following characteristics:

Scalability The topology of the ESB has to be designed in a way that it is possible to
add as many components as wanted. No bottlenecks should evolve.

Reliability A message has to be transmitted reliably according to the selected mes-
saging pattern. After a crash, the ESB can recover its previous state without data
loss.

Existing ESB implementations follow very different models to achieve this function-
ality. They differ in the choice of possible topologies, how registering is implemented
or where transformation is done.

2.3 State of the art of ESB implementations
Various products exist which fulfill the capabilities mentioned in section 2.2, and thus
are used as ESBs. This section gives an overview of common open source products
and proprietary ones.

2.3.1 Existing ESB implementations

Open Source ESB implementations

MuleESB [13] MuleESB, which is open source and supported by mulesource, is de-
scribed as "a lightweight messaging framework and a highly distributable object
broker designed around the ESB integration pattern". It has a very flexible ar-
chitecture which allows to deploy any topology and distribute the whole ESB
functionality over multiple servers. Routing can also be implemented without
a central routing component, but by specifying destination endpoints directly at
sending components. Mule components can be extended with interceptors. An
interceptor is executed when a messages enters or leaves the component.

Sun OpenESB [16] OpenESB is a JBI based open source ESB implementation. An
ESB distributed over multiple servers can be deployed by connecting several JBI
instances in a star topology with a special JBI instance acting as a central point.

11

Apache ServiceMix [8] ServiceMix is another JBI based open source ESB imple-
mentation. It proposes JMS flow using ActiveMQ to combine multiple contain-
ers distributed over several servers to form a distributed ESB. Thus, like with
OpenESB, any topology is possible.

Apache Synapse [9] Synapse is a simple, high performance ESB from Apache. It
does not follow the JBI specification, but has a similar architecture. By connect-
ing multiple instances using e.g. HTTP/SOAP, any topology can be deployed,
although this is harder to implement compared to other ESB implementations.

Petals [14] Petals ESB is also JBI based. It provides different facilities such as a
replicated registry which help to deploy clustered ESBs like e.g. with OpenESB.
Binding components provided by Petals ESB can be extended with interceptors.
An interceptor is executed in the sender binding component before a message is
sent into the bus, or in the receiver component, when a message is delivered.

Proprietary ESB implementations

There are several commercial distributions of open source ESBs. These provide in
general only additional support or performance warranties, and are thus not interesting
from a technical point of view, as their open source correspondents are already covered.
Other proprietary ESBs, in contrast, are interesting candidates.

BEA Aqualogic [10] Oracle’s BEA Aqualogic Service Bus has a centralized topol-
ogy. The bus resides in the center, and components (service providers and con-
sumers) can connect to it. All ESB functionalities are performed at this central
place. For scalability reasons, BEA Aqualogic Service Bus can be distributed
over several physical servers, while the logical view does not change.

Progress Sonic ESB [15] The Progress Sonic ESB is very similar to BEA Aqualogic
in its architecture. It differs only in the amount of message format transformation
or transport components it provides.

In fact, most of the proprietary ESB implementations have a similar architecture. In-
terception on these ESBs can, without having access to source code, only happen at
the interfaces provided to connect services. Internally, e.g. for the message queue,
there are often proprietary protocols in use. Thus, for intercepting internal messages,
for each ESB implementation, an own interception component must be produced.

2.3.2 Classification
For each task of an ESB, there are very different ways to fulfill it. Concerning the
choice of these solutions, ESB implementations present a very heterogeneous scene.
A classification of the ESB should thus start by analyzing these task dimensions sepa-
rately.

12

The following tables show the capabilities of a sample of ESB implementations in
terms of their environment (table 2.1), their functional capabilities (table 2.2) and their
non-functional capabilities (table 2.3).
Maturity contains information about how emerged an ESB implementation is on the
market and how many companies use it in production.
Important for the scalability is how the components of a SOA can be connected, i.e.
which topologies are possible. Also, not every implementation provides load balanc-
ing on several components that implement the same functionality.
Reliability refers to the reliable transport of messages from one component to another.
Support is given in different manners. For some ESBs, there exists a commercial ver-
sion, mostly with extended support.
Tools include functionality for the development of composite applications, and for
managing and monitoring the ESB instance (e.g. statistics of messages passed or ser-
vices connected).
For all open source implementations mentioned, Unit Testing is provided through
JUnit. Some implementations also provide support for functional testing (test of whole
service). Integration testing refers to the test of a composite application.
Routing is divided into two subcategories: The "how"-subcategory refers to the possi-
ble ways of deciding for the route (e.g. static, based on message content), the "where"-
subcategory to if decisions are made on a central place or step by step on the route of
the message (itinerary).
In most open source implementations, transformation can be done for any message
format by implementing own transformation components. The most common are often
already supported.
Messaging is done using lower level transport protocols. Some ESB implementa-
tions offer explicit support to implement Message Exchange Patterns (MEPs). Mule
also allows message splitting to distribute tasks to different services.
Not every implementation supports the ability for services to register themselves on
the ESB and thus making their functionality known to consumers automatically.
Message flow refers to the ability of intercepting messages at different stages of their
transmission.

Most of the commercial ESB implementations have a centralized topology, where the
ESB resides in the center and components are connected to it. To avoid bottlenecks,
they can be spread over several physical servers. The grade of transparency of this
distribution depends on the implementation.
Message transport between external components and the ESB can be controlled by
its user. It should therefore be easy to intercept messages delivered over these chan-
nels. This in contrast to communication between internal components, such as BPEL-
engines or transformation components. Closed source ESB implementations often do
not provide explicit access to these messages (i.e. without knowing the often propri-
etary protocols used).

13

Table 2.1: ESB environment
Mule
ESB

Sun
Open
ESB

Apache
Synapse

Petals Service
Mix

BEA
Aqua-
logic
(oracle)

Progress
Sonic
ESB

M
at

ur
ity

Stable
version

Mule
2.0.2,
18/07/08

OpenESB
v2,
03/06/08

Synapse
1.2,
09/06/08

Petals
Platform
v1.5.0,
22/09/08

Service
Mix
3.2.2,
20/01/08

Service
Bus 3.0

Sonic
ESB 7.6,
06/05/08

Market 1000 0, com-
mercial
release
11/08

several
100 (for
WSO2)

? ? - -

Refer-
ences

Walmart,
Netcetera,
Deutsche
Bank

- care
organiza-
tion, auto
maker
(for
WSO2)

- - T-
Mobile,
B-Source

Limbic
systems,
pacific
blue
cross

Su
pp

or
t

Manual/
Tutorial

Y Y Y Y Y Y Y

Mailing
lists/Fo-
rum

Y Y Y Y Y Y Y

API Y Y Y Y Y N N
Comm.
support

Y Y Y N N Y Y

To
ol

s IDE Y (com-
mercial
version)

Y N Y Y N Y

Moni-
toring/
Man-
agement

N Y N Y Y Y Y

Te
st

in
g Unit

testing
Y Y Y Y Y N N

Functional
testing

Y N N N N N N

Integration
testing

Y (help
of moni-
toring
tool)

N N N N Y Y

14

Table 2.2: Functional capabilities
Mule
ESB

Sun
Open
ESB

Apache
Synapse

Petals Service
Mix

BEA
Aqua-
logic
(oracle)

Progress
Sonic
ESB

R
ou

tin
g

Static Y Y Y Y Y Y Y
Content
based

Y Y Y Y Y Y Y

Workflow
(i.e.
BPEL,
central)

supported Y Y Y Y Y Y

Itinerary Y N N N N N N

Tr
an

sf
or

m
at

io
n possible any any any any any only sup-

ported
transfor-
mations

only sup-
ported
transfor-
mations

supported from and
to: XML,
byte
arrays,
hex
strings,
Stream,
Object,...

XML XML XML XML XML,
MFL

XML to
many
(non-)
XML

M
es

sa
gi

ng
/T

ra
ns

po
rt

Possible
protocols

any any
(outside
JBI)

any any any
(outside
JBI)

only sup-
ported
protocols

only sup-
ported
protocols

Supported
protocols

JMS,
FTP,
TCP,
UDP,
HTTP,
IMAP,
JDBC

File,
FTP,
HTTP,
JMS,
Mail,
SIP, TCP,
JDBC

HTTP,
HTTPS,
JMS,
SMTP,
JDBC

File,
FTP,
HTTP,
JMS,
Mail,
JDBC

File,
FTP,
HTTP,
JMS,
Mail,
JDBC

File,
FTP,
HTTP,
JDBC,
HTTPS,
JMS,
Mail,
Inter-
ESB
(propri-
etary)

File,
FTP,
HTTP,
HTTPS,
JMS,
Mail,
JDBC

15

Mule
ESB

Sun
Open
ESB

Apache
Synapse

Petals Service
Mix

BEA
Aqua-
logic
(oracle)

Progress
Sonic
ESB

M
es

sa
gi

ng
/T

ra
ns

po
rt

MEPs Y (needs
appropri-
ate
transport
protocol)

Y Y Y Y N N

Message
splitting
and ag-
gregation

both
imple-
mented

N N N N N both
imple-
mented

Se
rv

ic
e

re
gi

st
er

in
g auto

matically
N Y (inside

JBI)
N Y (dis-

tributed)
Y Y Y

manually Y Y Y Y Y Y Y

M
es

sa
ge

flo
w

read
message
at
different
stages

Y, re-
strictions
depend
on
transport
used

Y Y Y Y N N

transform
message
at
different
stages

Y, no re-
strictions

Y Y Y Y N N

16

Table 2.3: Non-functional capabilities
Mule
ESB

Sun
Open
ESB

Apache
Synapse

Petals Service
Mix

BEA
Aqua-
logic
(oracle)

Progress
Sonic
ESB

Sc
al

ab
ili

ty

Topology any
possible

central in
JVM-
instance,
any
outside
JVM-
instance

central central in
JVM-
instance,
any
outside
JVM-
instance
(special
support
for distri-
bution)

central in
JVM-
instance,
any
outside
JVM-
instance

central central

Concurrent
connec-
tions

limited
(100),
blocks on
receipt

unlimited unlimited unlimited unlimited unlimited unlimited

Load
balancing

Y N Y Y Y Y Y

R
el

ia
bi

lit
y Transport Y,

depends
on
transport
protocol

Y Y Y Y Y Y

17

Management and monitoring tools can be used to get information about services reg-
istered. These tools will be a good starting point to get runtime information. A central
service registry may also help for this purpose.
ESB implementations differ, also dependent on their topologies, in where and how
they make routing decisions or transform messages. An abstract view of these mecha-
nisms must be found that matches all ESB implementations to find a common way of
intercepting.

2.3.3 Message interception
Table 2.4 shows for several ESB implementations, where particular information, which
needs to be provided on the signaling interface, can be obtained.

Connected services Information about connected services includes their names, their
functionality and their interfaces.

Transformations Includes information about which transformations are possible at
which states in message transmission. This may be important to determine
where messages have to be intercepted.

Message contents Information that is kept in messages, such as the destination ad-
dress in the message header. Their content depends generally on the state of
their transmission, i.e. if they have been transformed or if they have passed a
router component, which could have changed routing information.

Routing This information is primarily useful to trace a message on its path to its desti-
nation endpoint, or to forecast its destination, respectively. Routing decisions are
not in all cases taken at one central point, but can also be taken at e.g. endpoints.

The heterogeneity of the ESB landscape makes it harder to find a common way of in-
tercepting. One concept that every implementation uses, although in it’s own way, is
the concept of virtual endpoints.
A virtual endpoint shields the user of a service from the actual endpoint. It uses no
hard coded URL, but hides the address of the actual service to enable loose coupling
of components. Another application of this concept is to scale a service up to multiple
hardware devices.
All messages sent from and to services pass at least one endpoint. Observing endpoints
for interception should thus allow to catch all messages sent in a SOA connected with
an ESB.
To get information about the status of the ESB itself, e.g. about services that are
connected, the component where they are registered, i.e. the registry, must also be ob-
served. Not every ESB implementation contains a centralized registry. In some cases,
it will be necessary to gather this information from several, distributed places.
Some ESB implementations use queues to implement asynchronous messaging, mainly

18

Table 2.4: Interception points
connected
services

transformations message
contents

routing

MuleESB xml
configuration
file

xml
configuration
file. A
transformer can
be any
component
(java-class, xslt
file) -> difficult
to extract
information

3 states: before
leaving
outbound router,
on bus
(transport), after
passing inbound
router (includes
filtering).
Content/type
depends on
transformers and
filters attached
to router (no
common
message
format).

xml
configuration
file. Also as
properties of in-
and outbound
router. BPEL
(BPEL-engine
available)

JBI based
ESBs

NMR-interfaces
(javax.jbi)

done by
dedicated SE
which uses
XSLT (only
need to
transform
XML-payload
–> WSDL).
Special
transformation
SEs can be
deployed.

Normalized
Message
consists of
XML-payload
(which can be
transformed by
transformer-SE),
header
(transaction
contexts,
security
information) and
attachment (any
binary data)

BPEL-Engine
(which is an SE)
or dedicated
routing engine
(which can be
any SE)

Apache
Synapse

general: XML
based
configuration
language

XSLT SOAP message XML file
(configuration
language)

19

for internal messaging with JMS. Although, messages to external components are still
sent using i.e. HTTP, so, in most cases synchronous and without queuing. For this
reason, intercepting queues is not a common possibility to get all messages delivered.
Observing routing engines, provided they are central, are a further way to get infor-
mation about the ESB instance. As routing functionality is often distributed to several
components, it will be necessary to decide for a particular implementation if it is nec-
essary at all to observe it, and how to do it.

2.4 Choice of ESB for MASTER

2.4.1 Criteria
The ESB implementation which is chosen to build the prototype of an interception
component should fulfill the following criteria best.

Representative The implementation should use the most common concepts that are
interesting for interception to show their usability for this purpose. Among them
is the concept of virtual endpoints, centralized registry, and a centralized routing
engine.

Maturity The ESB implementation must be stable and "tested" in the sense that it is
used successfully in productive systems. It must implement all commonly used
transport protocols and message transformations.

Support, documentation A good documentation which explains the architecture of
the ESB and helps configuring and managing it together with support help to use
all features of the ESB and make interception fast and complete.

Reliability Message transport in the ESB must be reliable to ensure that all mes-
sages can be caught. In addition, it is important to know about how reliability is
achieved (i.e. using persistent queues), and which grade of reliability is possible
(can a system recover after crash or only ensure that no double messages are
delivered?).

Features Additional features such as management and monitoring tools provide easy
access to information about services registered and messages sent over the bus.

Topology Routing, transport and service registering, which correlate closely with the
topology of the ESB implementation, must be considered to decide on the inter-
ception model. First in the abstract concept and later in the concrete implemen-
tation.

Performance The chosen ESB implementation should have adequate performance
numbers. This issue is discussed in the following chapter.

20

Table 2.5 contains information about the criteria mentioned above that are not yet
covered in this document: Support, documentation and reliability.
Another important criterion is performance. As the settings of ESB performance tests
differ, the results can not be compared across all ESB implementations. The listings
below show numbers from tests that include most of the ESB implementations dis-
cussed. From these results, performance numbers for an adequate implementation can
be derived.
Table 2.6 shows results (transactions per second) from a test performed by WSO2/
Apache [17]. Three scenarios were deployed:

1. The ESB simply serves as a proxy server for a single service which is used by a
number of clients.

2. The ESB routes messages based on their XML-payload.

3. The whole message payload is transformed by the ESB.

For this test, small messages were used (1 KB).
Table 2.7 shows response times for the last two settings for a 1 KB message.
Another test includes commercial ESB implementations [2]. It uses large size mes-
sages (MB range). The size of the messages leads to performance degradation due to
message serialization.
The test used the same scenario as the WSO2 test (ESB as proxy) for 1 to 50 clients.
For the big messages used, no dependency on the number of clients has been observed.
Table 2.8 shows the response time for 1 MB messages in seconds.
Table 2.9 shows the response time in seconds depending on the message size for the
same setting.
The test results can not directly be compared or merged for already mentioned reasons.
Although, reasonable performance numbers can be derived that an ESB implementa-
tion must fulfill.

• 100’s up to 1000 1 KB messages should be processed in a proxy setting, also for
big number of concurrent clients (requests not blocking).

• Same performance when simple XML-content based routing is used.

• 100’s of 1 KB messages should be processed when simple XSLT transformation
is applied.

• Response time for 1 KB messages should be in any case smaller than 1 second.
It should not be greater than 10 ms without transformation and few clients.

• For 1 MB messages, response time should be in the range of few seconds (ap-
proximately 10 seconds).

These numbers must be verified for an ESB implementation that is chosen to use, using
a simple scenario with an echo-service.

21

Table 2.5: Decision criteria
Support community,
documentation

Reliability, Scalability

MuleESB Full Javadoc available. Active
community with forum,
examples, mailing lists with a
lot of information on the many
components.

Scalability: Showed poor
scalability in terms of
concurrent connections in a test
made by WSO2 (Synapse), but
scalable topology possible.
Reliability: No dedicated
mechanism, use reliable
transport (persistent, e.g. JMS)
or idempotent operations.

Apache ServiceMix Full Javadoc available. Lack of
information about architecture
on project page. Found on other
pages. Active community with
forum, examples, mailing lists.

Scalability: "Mesh of
bus"-topology provides
scalability for distributed
systems.
Reliability: NMR for internal
transport, use e.g. JMS for
external transport. No persistent
orchestration engine.

Apache Synapse Full Javadocs available. Lack of
information about architecture.
Active community with forum,
examples, mailing lists.

Scalability: Best results in
performance tests made by
WSO2 (Synapse). "Mesh of
bus"-topology provides
scalability for distributed
systems.
Reliability: Internal transport
with queues.

OpenESB Full Javadocs available. Active
community with forum,
examples, mailing lists.

Scalability: "Mesh of
bus"-topology provides
scalability for distributed
systems.
Reliability: NMR for internal
transport, use e.g. JMS for
external transport. Database
persistence for BPEL SE.

Petals Full Javadocs available. Active
community with forum,
examples, mailing lists.

Scalability: "Mesh of
bus"-topology provides
scalability for distributed
systems.
Reliability: NMR for internal
transport, use e.g. JMS for
external transport.

22

Table 2.6: WSO2 results. TPS for 1 KB messages
Number of clients 20 40 80 160
ESB as proxy
WSO2 1400 2400 3400 4200
Mule 580 590 610 crashed
ServiceMix 1140 1100 1220 1380
Proprietary 1400 2800 4700 5000
Content based routing
WSO2 1210 1870 2040 2100
Mule 570 590 560 crashed
ServiceMix 560 690 780 690
Proprietary 1180 1570 1510 1530
XSLT Transformation
WSO2 540 560 530 470
Mule 600 570 590 crashed
ServiceMix 600 650 600 580
Proprietary 870 880 920 890

Table 2.7: WSO2 results. Response time for 1 KB messages
Number of clients 20 40 80 160
Content based routing
WSO2 8 14 26 58
Proprietary 10 18 36 76
XSLT Transformation
WSO2 20 32 75 175
Proprietary 37 75 160 310

2.4.2 Evaluation

Representative As JBI for the far is the most common specification used in open
source ESB implementations, it is suggested to limit the choice to JBI based
ones. This covers the largest group of implementations.

Maturity All ESB implementations in this survey are used productively and support
the common transports (FTP, HTTP, JMS, JDBC) and message transformations
(XML).
Mule and Petals have a special feature which eases the interception at endpoints:
Interceptors are filters that are executed before and after the event/message is
processed (Petals only at binding components).
ServiceMix has a listener interface which can be used for the same purpose.

23

Table 2.8: Response time for 1 MB messages
Number of clients 1-50, no dependency
IBM Websphere 6.5
BEA Aqualogic 5.0
Oracle 4.5

Table 2.9: Response time depending on message size
Message size (KB) 200 800 1400
IBM Websphere 5 14 25
BEA Aqualogic 3 8 14
Oracle 3 8 14

Support, documentation Support and documentation seems to be mature for all pre-
sented open source ESB implementations. Only ServiceMix does not have sat-
isfiable information about the architecture on their website.

Reliability Each of the implementations offers reliable message transports (e.g. JMS
with queues) that can be chosen for reliable transport. Queues are in most cases
in memory, but can be made persistent by just setting a flag.
This does not yet ensure reliability in the sense of that the whole state of the
ESB, i.e. the composite applications, can be recovered after a crash of the server
hosting the ESB.

Features Open ESB has a monitoring and editing tool integrated in NetBeans. Petals
offers the same functionality as an eclipse plug-in. ServiceMix uses a JMX
based monitoring tool from J2SE (JConsole). This is not special SOA monitor.

Topology The "Mesh of Bus"-Topology most JBI based ESB implementations use is
very common. The star-topology with a central node handling all ESB-function-
ality is often applied in commercial implementations. As the "Mesh of Bus"-
Topology combines the star- and the mesh-topology, this choice covers aspects
of both architectures.

Performance As mentioned in the preceding chapter, performance numbers have to
be checked for a chosen ESB implementation.

Among JBI based Open Source ESB implementations, ServiceMix, OpenESB and
Petals seem to fulfill the above requirements best. For these reasons, these three ESBs
are installed and tested.

2.4.3 Experiences
The three ESBs which were tested have the following characteristics:

24

OpenESB OpenESB has a handy, though quite slow graphical user interface. Thus, a
business process developer does not need to write code, not even XML-config-
uration files. It is aimed at being a well working platform to develop business
processes, without providing much facilities for developing special applications.

Petals Petals is similar to Open ESB, but uses a web interface instead of the more
sophisticated OpenESB user interface.

ServiceMix ServiceMix focuses more on development. It has different components
that provide similar functionality to test different approaches. Internal interfaces
provide much functionality, such as a listener interface with different types of
listeners. Though, for deploying services, no graphical user interface is avail-
able. Also, the components have a lot of bugs.

Despite the drawbacks concerning usability and maturity of components, ServiceMix
provides a good basis for developing the prototype due to the listener interfaces and
the different types of components used.

25

26

Chapter 3

Modeling

3.1 Goal of Modeling
The goal of the modeling presented in this chapter is to describe the signaling step
of MASTER in a formal manner, using ontologies, as required by MASTER. The ab-
stract interface of the signaling step is formalized as well as the core capabilities of an
ESB and the lower, implementation specific architecture with ESB components. In-
terception points for obtaining raw events from the ESB are described in the model,
combined with a mapping to the signaling interface to show how to get the required
information from the actual ESB implementation.
To obtain this model, the components and relations between them are described in
the lower level, implementation specific models, and commonalities of different im-
plementations in a higher level model. These models are called the ’How’-Models, as
they describe how the ESB functionality is achieved. The interception points identified
in section 3.3 are analyzed and depicted in both the lower level How-Models and the
higher level How-Model, as well as the mapping between the to levels. To illustrate
the core capabilities of ESBs as introduced in section 2.2, another model, the ’What’-
Model, is developed and mapped to the How-Model. This is called the 2-layer-model,
which is explained in detail in section 3.4.

3.2 Signaling Interface
Monitoring and enforcement in MASTER needs information about the business pro-
cesses in the SOA in the form of events. In the case of an ESB, this information consists
of the less dynamic ’status’ information and the more dynamic ’runtime’ information.
Status information is information about registered services and their endpoints, and
about routing and transformation information. This may change, also at runtime, but
not very often. Runtime information consists of the messages services exchange, and
metadata belonging to the messages, such as the time the message flew by, and the
services the messages were sent from or to.

27

3.3 ESB interfaces/interception points
Concerning the design of existing ESB implementations, to monitor an ESB, several
components of it must be observed. In the following, possible interception points
for components are listed, with notes on which actions can be observed and which
information they can provide.

• Virtual Endpoint

Description Builds an interface for real endpoints/services. Services are in-
voked using virtual endpoints. The real endpoint is hidden. Is used to bind
service names flexibly to their address. Can have load balancing func-
tionality, but not routing (route message to one of equal services without
changing message content).

Actions Receive message, reply of service at endpoint, forward to other end-
point (possibly with changed payload), endpoint fault reply

Messages Message contents (headers+payload) of message received/sent in ac-
tions

Metadata Id of endpoint, date/time, correlation id for actions on ’same’ re-
ceived message, next receiver (endpoint and/or intermediate queues)

Events For each action, generate an event with the observed message and meta-
data.

• Transformation component (MessageTransformation)

Description Change of the form or content of the message payload

Actions Similar to endpoint, without service reply or unchanged message

Messages Similar to endpoint

Metadata Id of transformation component, date/time, correlation id for actions
on ’same’ received message, transformation schemes, original/result for-
mats, dropped or projected elements (if any)

Events Similar to endpoint

• Registry

Description Components where data about registered services (or partition of
registered services) can be discovered by at least some of the service con-
sumers. Data can be distributed over multiple components or kept central.

Actions Service registration, deregistration (explicit or by failure)

Messages Service description

Events Service change + Service description

28

3.4 2-layer-model
As mentioned in section 2.3.2, modeling the existing ESB implementations in a hier-
archy does not make sense because of the heterogeneity of the approaches used in the
design of the ESBs. This hierarchy would consist of one root model - a very abstract
model that fits all implementations - and several direct subnodes, one for each of the
implementations. Instead, a model with two kinds of orthogonal layers is proposed.
One layer, the What-Layer, describes the concepts of a general ESB, i.e. the common
capabilities of ESBs as described in section 2.2. On the other layer, a model describes
how these capabilities are achieved. This model, the general How-Model, can then
be mapped to specific How-Models for each ESB implementation. There has to be
developed a specific How-Model for each of the ESB implementations because of the
differences in their architecture. If a mapping between the general How-Model and
a specific one exists, the specific model can be hidden, and the ESB instance can be
abstracted to the general How-Model. This approach is presented in detail in chapter
3.4.2.

3.4.1 Vocabulary
Even if the different ESB projects in some parts use the same structures and design,
they use different terms to identify them. This might be confusing. For this reason, the
most common terms, as they are used in the models, are defined in table 3.1.

3.4.2 Description of 2-layer-model
The upper layer of the proposed 2-layer-model is called the ’What’-Layer or ’What’-
Model. It describes the core functionalities an ESB is supposed to provide. The lower
layer, called ’How’-Layer, describes the basic structure of ESB implementations. As
these implementations differ, a refinement of the How-Layer is needed for each prod-
uct.
The groups of components of the ESBs can be arranged in taxonomies. This can be
modeled with ontologies. Additionally, the dependencies between these groups can be
described using relations in the ontology.

What-Layer

The core functionalities this layer describes are message routing, message transport,
message transformation and service registering. Figure 3.1 depicts the What-Layer of
the model. In addition, the basic entities in an ESB are shown and their relationship
to the core functionalities. ConnectionPoint refers to an endpoint that represents a
service in the ESB. An external service uses connection points to connect to the ESB.
As messages represent the main interception information, the relationships to the core
functionalities are shown as well.

29

Table 3.1: Vocabulary used in the How-Model
Concept Definition

Abstract ESB
The abstract view of the ESB as a concept, defined by its
functionality. These are message transport, routing, message
transformation and service registering/managing.

ESB node
Smallest set of components that together provide full ESB
functionality. Corresponds to a JBI instance in case of a JBI
implementation, which is then bound to one JVM.

Centralized ESB
ESB with a star topology, where all messages pass a central node,
which implements all ESB functionality. This logical ESB can be
distributed over multiple servers, but this must be transparent.

Mesh of services
ESB that can be deployed in any topology. Components/Services
can connect directly to other components (peer to peer).

Virtual endpoint

Builds an interface for real endpoints/services. Services are
invoked using virtual endpoints. The real endpoint is hidden. Is
used to bind service names flexibly to their address. Can have
load balancing functionality, but not routing (route message to one
of equal services without changing message content).

Transport
Direct message delivery to a known destination. Without routing
functionality. Defined primarily with the transport protocol it
uses.

Queue
Part of (asynchronous) transport. Can be used for routing
facilities, but has itself no routing functionality.

Internal service
Service provider or consumer which is local to an ESB node from
its own point of view. Differences to external services are in type
of transport they use.

External service Service provider or consumer which is not an internal service.

Protocol translator

Internal service component which provides the ability to change
from one transport protocol to another to let external services
connect to an ESB. E.g. a binding component as defined in the
JBI specification.

Registry

Components where data about registered services (or partition of
registered services) can be discovered by at least some of the
service consumers. Data can be distributed over multiple
components or kept central.

Transformation Change of the form or content of the message payload.

Normalized Message
Message format specified in the JBI specification and used in the
Normalized Message Router.

30

Figure 3.1: What-Layer of the 2-layer-model

Figure 3.2: How-Layer of the 2-layer-model

How-Layer

The How-Layer, as shown in figure 3.2, provides a view on concepts and structures
generally used in current ESB implementations. It includes the shared entities among
them without sacrificing the abstraction.
An AbstractESB has components (services), which are categorized in two orthogonal
dimensions. One dimensions denotes if the service is an internal or an external one,
the other if the service is a provider or a consumer. ServiceRegistry, MessageRouter
and ProtocolTranslator may, depending on the implementation, be services too, but not
in the general case.

Specific How-Models As already mentioned, the How-Layer shows an abstraction
of the actual implementations. Specific How-Models are refinements of the model of
the How-Layer. As the general How-Model represents the signaling interface, while
the specific How-Model represents the actual ESB interface, the matching between

31

these two models can serve as a guideline for the implementation of the signaling
component.
Figure 3.3 shows the mapping from the general How-Model to the specific How-Model
for Apache ServiceMix.
As ServiceMix is a JBI implementation, it has a special case of internal services: bind-
ing services. They are used to let external services connect to the ESB. Message trans-
formation and message routing is implemented as internal services.
The ESB can be distributed over several physical machines. One ServiceMix instance
is called an ESB node. The nodes can be connected in any topology. Together, they
form a mesh of ESB nodes.
The ellipses in figure 3.3 depict which compound from the general model are mapped
to which parts of the specific model. For example, the ESB component with its sub-
types from the general How-Model is mapped to the corresponding taxonomy in the
specific How-Model.

Mapping between What- and How-Layer

The mapping between the What- and the How-Layer shows how the functionalities in
the What-Layer are implemented. In figure 3.4, an arrow pointing from a functionality
in the What-Layer to an entity in the How-Layer indicates that the entity is involved in
fulfilling the corresponding functionality.
Message transport is done by a dedicated component, or by each component by using
their endpoints. For message transformation, a special internal service is responsible.
Routing is carried out by the message router with the help of endpoints and the ser-
vice registry. Service registry functionality is accomplished using the endpoints of the
services and a dedicated registry.

3.5 Using the model in MASTER
The model presented can be used to ease the signaling and monitoring procedures
within the MASTER project. In figure 3.5, the interception points that are used to
obtain information for the signaling interface from the ESB are highlighted in the gen-
eral How-Model. The following information can be obtained from the corresponding
points:

1. Registered services and their interfaces.

2. Messages (metadata and content) as they enter/leave the component (through the
endpoint).

3. How messages are routed (e.g. based on which criteria).

4. Message content/structure before/after transformation (as more dynamic infor-
mation), or the transformation rules (as less dynamic information).

32

Figure 3.3: Mapping from general How-Model to ServiceMix specific How-Model

33

Figure 3.4: Mapping from What-Layer to How-Layer

Figure 3.5: Possible interception points, depicted in the general How-Model

34

Chapter 4

Implementation

4.1 Architecture of ServiceMix / JBI
Apache ServiceMix, which is chosen to build the prototype (chapter 2), implements the
Java Business Integration specification (JBI). Thus, pure JBI, as it is also used in other
JBI based ESBs, is explained first (section 4.1.1). ServiceMix extends the specifica-
tion with a few interfaces and implementations which are very useful for interception.
These additions are explained in section 4.1.2.

4.1.1 The Java Business Integration specification
The basic structure of JBI is illustrated in figure 4.1.

Service Engines and Binding Components, which correspond to internal services
in the How-Model presented in chapter 3, are connected to the Normalized Message
Router, which represents the central bus, via Delivery Channels. The Normalized
Message Router routes Normalized Messages, whose format is part of the JBI specifi-
cation.
The message exchange JBI components (Service Engines or Binding Components) use
to interact is described using Web Services Description Language (WSDL).
Services in JBI are wrapped into service units. One or more services can be in one
service unit, but they all need to use the same component as connector to the container.
One or more service units can be packaged in a service assembly as one jar-file, which
can then be deployed to the container.

JBI messaging

The basic elements of the JBI messaging infrastructure are NormalizedMessage, Mes-
sageExchange and DeliveryChannel.

NormalizedMessage This interface defines the container which holds messages sent
through the bus. A NormalizedMessage can be a service invocation message, a

35

Figure 4.1: Basic structure of JBI [18]

response message as well as a fault message, which are all XML messages. It
also includes message properties and a binary attachment. The properties are,
depending on the configuration, also used for transporting e.g. SOAP-Headers
in a common format.

MessageExchange This is a container which holds the message and the state of the
service invocation (e.g. ACTIVE, DONE, ERROR). There are subtypes for each
supported message exchange pattern (see section 4.1.1, Message Exchange Pat-
terns). The possible values for the state depend on the message exchange pattern
used.

DeliveryChannel Each component has a delivery channel, which is used to send and
receive message exchanges. The delivery channel can be used to catch the mes-
sage exchanges for interception, either by calling a blocking ’accept’ method on
its implementation or by letting it inform registered listeners.

The logic to route message exchanges is provided by the JBI implementation. This is
referred to as the Normalized Message Router (NMR).

Message Exchange Patterns

Each message exchange in JBI has a particular message exchange pattern (MEP)
bound to it. The MEP defines the ordering of message exchanges that occur when
an operation is invoked. The MEP used by the ServiceMix-CXF binding component

36

Figure 4.2: In-Out MEP, normal case [18]

[3] for the testbed explained in chapter 5 is In-Out. Figure 4.2 illustrates the normal
response case for this pattern exemplarily.
The consumer creates a MessageExchange instance, sets the ’in’ message to the re-

quest, and sends the instance to the NMR, which puts it in the queue appropriate to
the provider component. The provider processes the request, sets the ’out’ message
to the response, and sends the MessageExchange instance to the NMR. The consumer
accepts the instance and sets its status from ’active’ to ’done’. The ’done’ status indi-
cates the end of the MEP. Thus, the In-Out MEP consists of three exchanges.
There are three more MEPs available:

In-Only The In-Only MEP is a one-way pattern. The consumer sends a MessageEx-
change instance with the ’in’ message set. The provider accepts the exchange,
sets its status to done and sends it back. The ’out’ message is not set. Two
exchanges are sent when this pattern is used.

Robust-In-Only The Robust-In-Only pattern extends the In-Only pattern by the op-
tion of sending a fault message back. If no fault occured, it is the same as the
In-Only MEP. If the provider wants to send a fault, it is the same as the In-
Out MEP, but with the response message set to a fault message. Two to three
exchanges are sent.

In-Optional-Out In this pattern, the provider can respond to a request either with a
normal message (then the pattern corresponds to In-Out), with a fault message
(In-Out in case of fault), or with the status of the exchange set to ’done’ (In-
Only). In this pattern, two to four message exchanges take place.

37

Figure 4.3: General procedure for flows in ServiceMix [4]

4.1.2 ServiceMix as a JBI implementation

Apache ServiceMix implements JBI, and extends it with mechanisms that are helpful
for message interception.

For the implementation of the NMR, ServiceMix has four different flows. Flows are
responsable for transporting the MessageExchange instance from the sending to the
receiving service. When a service starts a message exchange, its delivery channel
instance first calls each ExchangeListener’s exchangeSent() method registered at the
container. Then, it passes the exchange to the container, which uses a broker to choose
a flow. Figure 4.3 illustrates the further procedure. The broker calls the send method
of the AbstractFlow, the doSend() method of the actual flow implementation then de-
termines how the message is transmitted. The doRouting() method of AbstractFlow
chooses the appropriate endpoint and calls the accept() method of the corresponding
delivery channel.

The flow that should be used to transmit a message can be chosen by setting the
FLOW_PROPERTY_NAME property of the message exchange. If not set, the flow is
chosen by the broker depending on the components default flow. The default flow for
the CXF-component for example is SEDA flow. If this flow is not available, JMS flow
is chosen.

38

Below, the flows available in ServiceMix are described. It is also explained how the
message exchange is processed.

Straight Through flow The Straight Through flow is the simplest mechanism. It does
not use staging or buffering. The doSend() method of the flow directly calls
doRouting().

SEDA flow The SEDA (Staged Event Driven Architecture) flow uses in-memory queues
for staging. It is illustrated in figure 4.4. The flow enqueues the exchange in
a SedaQueue instance and returns from the doSend() method. Thus, the flow
is available for new exchanges. The exchange is dequeued by another thread,
which then calls the doRouting() method of AbstractFlow. This flow is fast and
non-blocking.

JMS flow The JMS flow uses the Java Message Service (JMS) implementation Apache
ActiveMQ’s persistent queues. It can be seen as the persistent, thus slower vari-
ant of the SEDA flow. It is also used for communication among a network of
remote containers. Figure 4.5 illustrates the JMS flow.
For this flow, there is one JMS queue per container and one JMS queue per
component. The JMSFlow instance is also a listener for the container-queue
and the component-queues. Requests are sent directly to the receiving compo-
nents queue. The remote JMSFlow instance’s (which may be the same) onMes-
sage() method is triggered, which calls the doRouting() method of AbstractFlow.
Responses are sent to the container-queue, where again the JMSFlow instance
is listening for messages. The normalized message is wrapped in a JMS Ob-
jectMessage for delivery.

JCA flow The JCA flow uses JCA 1.5 inbound resource adapters for message routing
among a network of remote containers. The resource adapters encapsulate JMS
functionality.

Detailed class and sequence diagrams can be found on the ServiceMix webpage [4].

ServiceMix, in addition to the implementation of the JBI interfaces, supports facilities
for different kinds of listeners. The interfaces listed below represent an extract of the
listeners available in ServiceMix which is useful for interception.

ExchangeListener This interface has two methods: The ’exchangeAccepted’ method
is called when a message exchange is accepted by a delivery channel (see section
4.1.1), the ’exchangeSent’ method when an exchange is sent by a delivery chan-
nel. Thus, for e.g. one execution of the In-Only-MEP, exchangeSent is called
three times, as well as exchangeAccepted.

EndpointListener This interface has methods which are called when endpoints are
registered or deregistered. They are also called once for each endpoint on startup.

39

Figure 4.4: Procedure for SEDA flow in ServiceMix [4]

40

Figure 4.5: Procedure for JMS flow in ServiceMix [4]

41

ServiceUnitListener As the EndpointListener interface, this interface has methods
called when service units are started, stopped, deployed or undeployed. There
are similar listener interfaces for service assemblies and components.

These listeners can be attached to the JBI container implementation of ServiceMix.
The respective methods of the listeners are then automatically called when appropri-
ate.

The JBI container implementation of ServiceMix holds lists of all relevant entities
of the runtime environment, such as registered endpoints or deployed service units.
This is useful to get an overall view of the current state, for example to generate the
instances for the ontology explained in section 4.2.1, API package.

4.2 Interception in ServiceMix
The implementation of the signaling component prototype written as part of this thesis
is presented in this section. Starting from the ServiceMix specific How-Model from
chapter 3, it should be capable of covering the interception points marked in the model,
or be able to get the same information from another part of the ESB.
The prototype aims at not changing any existing code, but only adding additional ser-
vices by using the interfaces provided. As it uses the JBI interface, it will later be
possible to reuse parts of the code for other JBI based ESBs. However, the listener
functionality provided by ServiceMix, which is heavily used in this prototype, will
have to be implemented when writing a signaling component for other JBI based ESBs.

4.2.1 Architecture
Figure 4.6 depicts the basic units of the signaling prototype. On the top of the fig-
ure, example binding components (BC) and internal services (IS) are shown which
communicate through the normalized message router. The MasterAuditor catches the
message exchanges on the bus and filters them based on the policies handled by the
policy handler. It creates an event per exchange that passed the filter and sends it to a
(list of) endpoint(s), depending on the policies that matched the message exchange. In
the current version, there are two events sinks available as examples. One writes the
events to the file system, the other sends them to a web service that saves them in a
database.
The policies can be updated using a SOAP interface (PI). The SOAP requests are han-
dled by an internal service (PolicyBean), which updates the policy handler accordingly.
The second part of the signaling prototype (OntologyAuditor) is designed in order to
provide an overview of the current state of the ESB. This includes the (static) struc-
ture of the ESB formalized as an ontology. It corresponds to the ServiceMix specific
How-Model presented in chapter 3. Further, it provides the actual state of the ESB by

42

Figure 4.6: Basic architecture of the MasterAuditor

43

listing all endpoints and services currently present as instances of the ontology.
The OntologyAuditor can be controlled, similar to the MasterAuditor, using a SOAP
interface (OCI). These requests are internally handled by the OntologyChangeBean
service. Another SOAP interface (OI) is used to get the current state of the ESB for-
malized as an ontology. Requests sent to this interface are handled by the Ontology-
Bean.
The signaling implementation for ServiceMix is grouped into two packages, which are
both subpackages of the already existing package org.apache.servicemix.jbi.audit.

org.apache.servicemix.jbi.audit.master.interception The interception package con-
tains the part of the signaling prototype responsible for catching the messages
sent by services and generating events out of them. This part also handles the
policies describing which messages have to be observed.

org.apache.servicemix.jbi.audit.master.api The API package contains all classes
needed for the ontology interface.

Interception package

Figure 4.7 illustrates the basic classes of the interception package. The class Master-
Auditor is the central class. It implements (transitively) the ExchangeListener interface
presented in section 4.1.2. As it also implements the InitializingBean interface, the
afterPropertiesSet method is called on initialization. This method registers the Mas-
terAuditor instance as a listener on the container. The MasterAuditor passes message
exchanges it receives to a dispatcher. The dispatcher keeps an ExchangeHandler in-
stance, which is the starting point for a chain of responsibility. The first instance in
this chain is of type PolicyExchangeHandler. It could be used, if necessary, to filter
message exchanges that are sent to set e.g. policies and should thus not be taken into
account for generating an event. With the current implementation of the filter, this is
not needed. The second element of the chain is a MessageExchangeHandler. It parses
the message and generates and sends an event to a list of event sinks. It uses a Poli-
cyHandler to determine which message exchanges to observe (filtering), and where to
send the events to. The currently available PolicyHandler implementation, FilePolicy-
Handler, uses the file system for policy persistence. In listing 4.1, an example policy
is shown. This policy determines that all messages sent by the endpoint denoted in the
EndpointToObserve-Tag have to be observed, and the generated events by sent to the
EndpointToSendTo. The policy id is unique. The fields ’direction’ and ’blocking’ are
reserved for enforcement and not used in the prototype.
Another class in the interception package is PolicyBean. It extends ComponentSupport
and can thus be started by specifying it in the central configuration file of ServiceMix
(servicemix.xml). This is explained in section 4.2.3. The PolicyBean represents the
SOAP interface (ESBSignallingLifecycle.wsdl) for setting and deleting policies. It
parses the SOAP messages and uses a reference to the MasterAuditor instance to set
and delete the policies managed by the PolicyHandler.

44

Figure 4.7: Basic classes of package org.apache.servicemix.jbi.audit.master.interception

45

Listing 4.1: Example policy
< esb : a d d P o l i c y >

<Id > po l i cy ID </ Id >
<Endpoin tToObserve > se rv i cename_namespace ;

s e r v i c e n a m e _ l o c a l p a r t ; endpoin tname </ Endpoin tToObserve >
<EndpointToSendTo > se rv i cename_namespace ;

s e r v i c e n a m e _ l o c a l p a r t ; endpoin tname </ EndpointToSendTo >
< D i r e c t i o n > r e q u e s t < / D i r e c t i o n >
< b l o c k i n g > f a l s e < / b l o c k i n g >

</ esb : a d d P o l i c y >

The class Policy represents a signaling policy, the class MEF an event in the event
format specified by MASTER.
Figure 4.8 illustrates the workflow of processing a message exchange. The delivery
channel of the service sending a message calls the exchangeSent() method of Master-
Auditor1. This passes the message exchange to the MessageExchangeHandler. The
MessageExchangeHandler first checks if there are policies that match the source end-
point of the exchange. The policies are available in a HashMap, so this is checked
in constant time. If there are such policies, an event (appendix A) has to be created.
This must be done immediately, as some values of the event may change later (es-
pecially the time the event is created). Creating the event consists of setting fields
of a MEF object, including the payload (content) of the message. This content is of
type javax.xml.transform.Source. So, it is either a DOMSource, a StreamSource or a
SAXSource. When the message’s source endpoint is the CXF-component, then the
content is of type DOMSource. To embed the content in the event, it must be trans-
formed to a String, which is expensive. After serializing the event, it is sent to an
event sink. This involves creating a normalized message and setting the event as its
content. For this, the event (as String) has to be transformed back to an object of type
javax.xml.transform.Source.
Several improvements could make the described process faster:

• The content of the message can be attached to the MEF object as an object of
type javax.xml.transform.Source, and the message put in a queue. Several other
threads can then transform the content to a String. This implies new problems
according to message ordering, especially important for enforcement.

• Sending the events is, depending on which component is used, a bottleneck. If
the events are e.g. sent to the filesystem, then one approach to make it faster is
sending bunches of events, as this reduces file accesses.

1The exchangeSent() method is called four instead of three times as expected for the in-out MEP.
This is a known bug, workarounds and patches are available on the ServiceMix website [5]

46

Figure 4.8: Message processing workflow

API package

The basic classes of the API package are depicted in figure 4.9. The class MasterOn-
tology implements (transitively) the interface Ontology, which represents the main
interface used by clients that want to obtain information about the current state of the
ESB, or the instances of the ontology, respectively (ServiceMix specific How-Model,
chapter 3). The instance of MasterOntology also holds a reference to an Ontology-
Observable. This class implements the java.util.Observable interface. Instances of
classes that extend the abstract class OntologyObserver can be registered on the On-
tologyObservable as listeners, and will be informed in case of a change of the ESB
status. The class OntologyEventsSender is a listener on this observable. It sends a
MetaDataChangeNotification instance to a list of endpoints.
The class OntologyChangeBean is, similar to PolicyBean of the interception package,
used to update the list of endpoints metadata change notifications are sent to via a
SOAP interface (sigmetadatachange.wsdl). Another SOAP interface serves the pur-
pose to get the current state of the ESB (Signaling-Metadata.wsdl). An instance of
OntologyBean parses these requests and uses the Ontology interface (the instance of
MasterOntology implementing this interface respectively) to answer them.

4.2.2 Further implementation steps
The next implementation step for the signaling component is to integrate MXQuery
[6] to use its stream processing mechanisms. This was initially planned to be part of
this thesis.
For two reasons, I could not implement this step anymore:

• It was planned for the thesis to make a classification of ESBs to see common-
alities among them and determine how to use them. It was then demanded by
MASTER to extend this specification and create ontologies describing the sig-
naling process, which led to the models presented in chapter 3. When later
coming to the integration of ServiceMix into the testbed, the testbed was not yet

47

Figure 4.9: Basic classes of package org.apache.servicemix.jbi.audit.master.api

48

set up by the responsable participant of MASTER.

• Messages created by components are always subtypes of type javax.xml.
transform.Source. The CXF component creates messages of type DOMSource.
MXQuery currently does not accept this type of Source. This needs to be imple-
mented first.

4.2.3 How to install and use the signaling prototype
For simplicity, the two subpackages of the prototype can be packaged in a jar-file con-
taining the whole org.apache.servicemix.jbi.audit package. Thus, the existing audit-
package (apache-servicemix-xxx.jar) can be exchanged with a new jar-file also con-
taining the interception and API subpackages. If the new package has the same name
as the old one, no more changes need to be made in the configuration of ServiceMix
to integrate the new classes.
However, to start interception, the appropriate entries have to be set in the file ser-
vicemix.xml. There are separate entries for the interception part and for the API (on-
tology part). If required, the beans implementing the SOAP interfaces (PolicyBean,
OntologyChangeBean, OntologyBean) can be set there as well.
A complete checklist on how to compile and install a pure ServiceMix instance as well
as how to use the prototype and modify the ServiceMix configuration can be found in
appendix B.

49

50

Chapter 5

Performance

5.1 Goal of performance experiments

The performance experiments’ goal is to check how the signaling prototype performs,
and which steps of interception are bottlenecks for throughput. This information is
then used to determine what needs to be changed, and how a next version of the sig-
naling component needs to be designed. The interception steps, as explained in section
4.2.1, are illustrated in figure 5.1. This diagram is referenced by the experiment de-
scriptions in this chapter.
The most important question concerns message throughput peaks, and how they can

be handled. Latency is important for enforcement, where messages are blocked while
deciding what should happen.
The test infrastructure is built on the testbed proposed by MASTER. It uses web ser-
vices installed for this testbed, which are accessed by a soap client via the ESB.
The baseline for the tests is a bare ServiceMix instance with components that imple-
ment a SOAP bridge for the web services. These results are compared to performance
test results from another test [17]. Then, the impact of the steps performed in order to
generate events is evaluated.

Figure 5.1: Message processing workflow with interception steps

51

5.2 Test infrastructure

5.2.1 Testbed
To test the signaling prototype, the testbed as proposed by MASTER is used. It con-
sists of three web services that can be accessed via the ESB. For this purpose, six
services are deployed on ServiceMix. They use the CXF-binding-component to con-
vert the SOAP requests and responses to the Normalized Message format and back.
The configuration of the CXF-components is given in appendix C.1. Two services are
needed per web service. One, the consumer service, is on the client side. It converts
SOAP requests to Normalized Messages and sends them to the internal endpoint of
the second service, the provider. This service converts the message back to a SOAP
request and sends it to the external web service. The response is transmitted vice versa.
The testbed is illustrated in figure 5.2. It also depicts the basic units of the signaling
prototype used for message interception. The six binding services (BC) used for prox-
ying the web services are shown at the top of the figure. The MasterAuditor instance
catches the message exchanges and filters them based on the policies managed by the
PolicyHandler. The payload of the message is, in the case of a web service brigde, the
body of the SOAP request. It has to be transformed to a String to embed it in the event
created for the exchange. After the event is converted to a String, it is attached to a
newly created message exchange and sent to a (list of) endpoint(s), depending on the
policies available for the corresponding source endpoint.

5.2.2 Setting
For testing the performance of the signaling prototype embedded in the testbed as
explained in section 5.2.1, Apache Bench [7] is used. Apache Bench is an HTTP
server benchmarking tool. It can be used to send bunches of SOAP requests and check
if the response is valid. The following options of Apache Bench are used in the tests:

-n The number of requests being sent

-c The number of concurrent connections used to send the requests

-k Perform multiple requests within one HTTP session (keep alive)

-p The XML file containing the SOAP message

The command

ab −n 1000 −c 100 −k −p h o s t r e q u e s t . xml h t t p : / / h o s t : p o r t / H o s t S e r v i c e

thus starts Apache Bench, which sends 1000 requests containing the content of the file
hostrequest.xml to the web service on http://host:port/HostService, using 100 concur-
rent connections, and not closing the HTTP connection.
The tests are performed by sending 5000 requests for warm up, and then sending 5

52

Figure 5.2: Testbed for performance evaluation

53

times 1000 requests to measure throughput and latency. For throughput measurements,
100 concurrent connections are used, as this leads to the best tradeoff between concur-
rency benefit and overhead. The requests to measure the latency are sent in sequence
(with 1 connection). The final values are then determined by calculating the mean of
the five values measured (for the latency test, this corrensponds to the mean of 5000
values).

The following settings have been made on the services, on ServiceMix and on the
machine that hosts the ServiceMix instance:

JBI Wrapper The useJBIWrapper attribute of the CXF binding services is set to
false. This makes message exchange faster.

Listener All listeners not belonging to signaling are commented in the file
servicemix.xml, and thus not started.

Log level The log level is set to INFO. This is done by setting the value for org.apache.
servicemix in the file log4j.xml.

Local disc If a persistent flow is used (e.g. JMS flow), ServiceMix must have the
possibility to write on a fast, local hard drive.

OS settings On linux, values are set concerning file system limitations. See appendix
C.2 for the correct values.

The ESB is running on a linux machine with an Intel Xeon CPU, 2.33GHz, 8 cores
and 4096 KB cache. The Java VM is started with 2048 MB initial and maximum heap
size.

5.3 Experiments
The first experiment tests the testbed without signaling turned on, and compares
throughput and latency of the requests to results of a test performed by WSO2 [17]
in june 2008. The second experiment gives an overview of the costs of the whole sig-
naling process. In the following experiments, the signaling steps performed to generate
an event are applied one by one and the impact measured. This identifies which steps
of signaling have the highest impact on latency and throughput. The last experiments
determine the impact of using a persistent flow, and point out heap size and CPU usage
for the experiment runs.
All tests are run with two different web services (Host, Agency), and two different
SOAP requests per web service. One request is the original one, the second request is
extended with comments to simulate a ten times bigger request. The original request
for the Host service has a size of 450 bytes, the one for the Agency service 1400 bytes.

54

Table 5.1: Results for experiment 1: Bare web services
Host service Agency service

Throughput
[req/sec]

Latency
[msec]

Throughput
[req/sec]

Latency
[msec]

bare service,
small request
message

2844 1.11 3145 1.04

bare service,
big request
message

1655 1.77 3082 1.44

5.3.1 Experiment: Baseline

The goal of this experiment is to check the testbed. For this purpose, throughput and
latency for a bare ServiceMix installation (without any signaling) are compared to
throughput and latency results of a test made by WSO2 [17].
To estimate the influence of the processing of the web service request, throughput and
latency for the web services are also measured.

Results

In table 5.1, results for throughput and latency for the two web services used without
ServiceMix are shown.
Table 5.2 lists throughput and latency results for the baseline experiment (bare Ser-
viceMix). For ServiceMix, only suitable values for throughput are available from the
WSO2 tests. The size of the message used for this experiment is 570 bytes. The mes-
sage size for the ’small message’ variant for the Host service is encreased by adding
comments to it. As no significant difference was measured, only the results for the
tests using the original message (450 bytes) are given.

Interpretation

The latency of the requests sent through the ESB is much higher than the latency for
the bare web services. However, it changes depending on the request size. This has to
be taken into account when interpreting the results of the further tests. As throughput
is anyway higher than with ServiceMix, the web services are not a bottleneck.
The performance of the testbed is worse both for latency and throughput then the per-
formance of the WSO2 testbed. As they used a service with a simulated latency of
10 milliseconds, and the services used in this test have lower latency values, this does
not explain the degradation. The WSO2 test uses, however, the ServiceMix’ HTTP
component to transmit SOAP requests, which is faster. Although, it is proposed to use
the CXF component instead, which supports more SOAP features.

55

Table 5.2: Results for experiment 1: Baseline
Host service Agency service

Throughput
[req/sec]

Latency
[msec]

Throughput
[req/sec]

Latency
[msec]

bare
ServiceMix,
small request
message

569 7.07 574 6.81

bare
ServiceMix,
big request
message

567 7.14 547 7.44

Echo service
Throughput

[req/sec]
Latency
[msec]

ServiceMix in
WSO2 test

1380 ?

To prove that the CXF-component is the bottleneck leading to the throughput mea-
sured above, another test was performed which used two internal services that directly
sent messages to each other. Using the SEDA flow and a payload corresponding to
the small request messages, about 155 000 messages are transmitted per second. This
corresponds to a throughput of about 52 000 requests per second, as each web ser-
vice request leads to three Normalized Messages on the bus. With the higher payload
(big request message), about 148 000 messages are transmitted. Using the JMS flow
decreases these numbers significantly to 2300 and 1800, respectively.

5.3.2 Experiment: Signaling

This experiment tests the impact of the whole signaling process (steps 1 to 5 in figure
5.1) on throughput and latency as an overview.

Results

Table 5.3 and table 5.4 list throughput and latency values for the whole signaling pro-
cess depending on the web service used and the message size, and compares them to
the numbers for a bare ServiceMix installation (from baseline experiment).
Figure 5.3 shows a chart displaying the throughput numbers measured in the experi-
ments for the Agency service. For this service, the difference in size between the big
and the small request message is more significant. The x-axis displays the signaling
steps as in the experiments, the y-axis the throughput in requests per second. In figure

56

Table 5.3: Results for experiment 2: Whole signaling process, throughput [req/sec]
Host service Agency service

bare SM signaling bare SM signaling

small request
message

569 196 574 188

big request
message

567 174 547 106

Table 5.4: Results for experiment 2: Whole signaling process, latency [msec]
Host service Agency service

bare SM signaling bare SM signaling

small request
message

7.07 14.37 6.81 13.92

big request
message

7.14 18.62 7.44 19.58

5.4, the y-axis displays the latency in milliseconds. The intermediate steps measured
in the following experiments are already sketched.

Interpretation

The results of the above experiment show that the signaling process has a big impact
on throughput and latency. The values depend on the messages size, which is more
significant for the Agency service, where the messages are bigger. The following
experiments will identify the most expensive steps.

5.3.3 Experiment: Intermediate steps
This experiments goal is to understand the impact on throughput and latency of the
individual steps taken to catch and transform a message (steps 1 to 3 in figure 5.1) and
generate and send the event to a file endpoint (steps 4 and 5 in figure 5.1). The services
and request messages used are the same as in the last experiment.

Results

Table 5.5 lists the results for throughput of the requests sent. Column ’listener’ con-
tains the values measured when MasterAuditor is started and registered as listener
(step 1 in figure 5.1), and thus it’s exchangeAccepted() method called on a message
exchange. Column ’filter’ depicts the values when the filter is turned on, and column

57

Figure 5.3: Results summary: Throughput depending on message size and signaling
step

Figure 5.4: Results summary: Latency depending on message size and signaling
step

58

Table 5.5: Results for experiment 3: Content transformation, throughput [req/sec]

listener filter
filter

30000
transform generate send

Host service
small
request
message

588 591 586 342 239 196

big
request
message

568 579 568 321 215 174

Agency service
small
request
message

574 577 584 339 238 188

big
request
message

555 553 538 283 152 106

’filter 30000’ when the filter contains a huge amount of policies (30 000 policies, step
2 in figure 5.1). The next column, ’transform’, shows the impact of transforming the
message content from a DOMSource to a String (step 3 in figure 5.1). The values in
column ’generate’ are measured when the event object is serialized to a String, and the
last column (’send’) when the event is sent to a file endpoint.
Table 5.6 is organized alike, but shows the results for latency.

Interpretation

For the first three columns, no significant difference compared to the bare ServiceMix
installation is found. This implies that attaching the listener and filtering (on one prop-
erty) does not affect performance significantly. Even when a lot of policies are reg-
istered, filtering does not consume more ressources, as the policies are accessible in
constant time. Transformation of the messages, though, is much more expensive, and
is dependent on the message size. Generating the event again needs a message transfor-
mation (from String to StreamSource), and saving the event has filesystem limitations.
For the design of the signaling component, this means, that it should be checked if it is
possible to delay transformation of the content. As the message is never changed after
creation, from the view of monitoring, this would be a valid solution. For enforcement,
however, the message content must be available instantly, as other messages might be
blocked. Sending to the file component could be made much faster be allowing to store
bunches of events. For enforcement, this solution would introduce new challenges.

59

Table 5.6: Results for experiment 3: Content transformation, latency [msec]

listener filter
filter

30000
transform generate send

Host service
small
request
message

7.02 6.81 6.32 8.39 11.88 14.37

big
request
message

7.33 7.12 6.35 9.44 12.85 18.62

Agency service
small
request
message

6.89 7.05 6.89 8.83 10.89 13.92

big
request
message

7.44 7.15 6.74 9.96 15.10 19.58

5.3.4 Experiment: Message persistence

The persistent JMS queues ServiceMix uses for the JMS flow could be used to achieve
reliable message transport. This experiment points out the effects of using JMS instead
of the in-memory flow.
For these tests, the bare ServiceMix installation without MasterAuditor activated is
tested as well as the full signaling process.

Results

Table 5.7 shows the throughput results for both web services using the persistent JMS
queues and compares it to the values determined when using the in-memory queues
(SEDA-flow).
Table 5.8 lists the same results for latency.

Interpretation

The results show that if persistency is required, it will have a major impact on the
performance. Especially the message size degrades the results. This is best shown
with the results for the Agency service, where the request message is about three times
bigger than for the Host service.

60

Table 5.7: Results for experiment 4: in-memory and persistent queueing, throughput
[req/sec]

Host service Agency service
in-memory persistent in-memory persistent

bare SM, small
request
message

569 313 574 270

bare SM, big
request
message

567 290 547 176

signaling, small
request
message

196 96 188 74

signaling, big
request
message

174 68 106 45

Table 5.8: Results for experiment 4: in-memory and persistent queueing, latency
[msec]

Host service Agency service
in-memory persistent in-memory persistent

bare SM, small
request
message

7.07 10.82 6.81 12.49

bare SM, big
request
message

7.14 12.30 7.44 14.83

signaling, small
request
message

14.37 30.77 13.92 33.84

signaling, big
request
message

18.62 39.39 19.58 48.61

61

Figure 5.5: Results for experiment 5: CPU usage during experiments [%]

5.3.5 Experiment: Heap size and CPU usage
In this section, Java VM heap size and CPU usage values measured during the experi-
ments are presented.

Results

Figure 5.5 depicts CPU usage depending on the message size and the signaling steps
performed. The x-axis shows the steps, the y-axis the CPU usage in percent.
Figure 5.6 shows the same for the Java VM heap size. The y-axis displays the heap

size in MegaBytes.

Interpretation

Figure 5.5 shows that the CPU usage only increases significantly when the file com-
ponent sends the events to the file system. There is no significant dependency on the
message size.
For the heap size, the dependency on the message size is very significant. Main mem-
ory is consumed when sending the events, as they are transmitted to the file component
using a flow with an in-memory queue.

62

Figure 5.6: Results for experiment 5: Heap size during experiments [MB]

63

64

Chapter 6

Conclusion

This thesis presents the design, implementation and evaluation of a protoype for the
signaling process required by the MASTER project.
For this purpose, an overview of the current ESB landscape is given. As this landscape
turned out to be very heterogeneous, a more concrete classification was required. The
MASTER project demanded the classification to be in the form of ontologies. The
models thus describe the ESB landscape, the signaling process and the mapping from
concrete ESB interfaces to the signaling interface as ontologies.
The prototype is built on the basis of the ESB implementation Apache ServiceMix. It
is an ESB based on the JBI specification, which represents a large group of ESBs. The
prototype performs the individual signaling steps to show their practibability.
The performance evaluation revealed the weaknesses of the current design. Messages
have to be transformed from different XML-representations to Strings and back, which
is very expensive. Also, sending the events to an external service (as well as to the file
system) is expensive, as it includes message transformation again and has limitations
from the external system. In the following versions of the protoype, some of these
steps can be parallelized, by still complying with constraints of monitoring and en-
forcement.
In a future step, MXQuery is integrated in the prototype to test its applicability for
processing the events. More complex filtering and processing is then possible, by us-
ing XQuery’s windowing features. The current MXQuery version does not accept the
XML representation used by the ESB in the testbed. This feature has to be imple-
mented first.

65

66

Bibliography

[1] http:
//www.ibm.com/developerworks/web/library/wa-soaesb/.

[2] http://sunset.usc.edu/GSAW/gsaw2007/s7/hohwald.pdf.

[3] http://servicemix.apache.org/servicemix-cxf-bc.html.

[4] http://servicemix.apache.org/how-stuff-works.html.

[5] https://issues.apache.org/activemq/browse/SM-1712.

[6] http:
//www.dbis.ethz.ch/research/current_projects/MXQuery.

[7] http://httpd.apache.org/docs/2.0/programs/ab.html.

[8] Apache ServiceMix. http://servicemix.apache.org.

[9] Apache Synapse. http://synapse.apache.org/.

[10] BEA Aqualogic. http://www.oracle.com/bea/index.html?CNT=
index.htm&FP=/content/products/aqualogic/.

[11] Java Business Integration specification. http://jcp.org/aboutJava/
communityprocess/final/jsr208/index.html and
http://jcp.org/en/jsr/detail?id=312.

[12] MASTER: Managing Assurance, Security and Trust for sERvices.
http://www.master-fp7.eu/.

[13] MuleESB. http://www.mulesource.org/display/MULE/Home.

[14] Petals ESB. http://petals.ow2.org/.

[15] Progress Sonic ESB. http:
//www.sonicsoftware.com/products/sonic_esb/index.ssp.

[16] Sun OpenESB. https://open-esb.dev.java.net/.

67

[17] WSO2 ESB Performance testing, round 3.
http://wso2.org/library/3740.

[18] Ron Ten-Hove. JBI Components: Part 1 (Theory). Technical report, Sun
Microsystems, 2006.

[19] Volkmar Lotz, Emmanuel Pigout, Dr. Peter M. Fischer, Prof. Donald Kossmann,
Prof. Dr. Fabio Massacci, Dr. Alexander Pretschner. Towards Systematic
Achievement of Compliance in Service-oriented architectures: The MASTER
approach, 2008. Available at: http://www.wirtschaftsinformatik.
de/index.php;do=show/site=wi/sid=
88285986849bd5ffd02df4373318728/alloc=12/id=2285.

68

Appendix A

Example MEF event

Example event in Master Event Format: the payload of the MasterEvent element con-
tains the request message (<in>) and the response message (<out>).
<cbe : CommonBaseEvent xmlns : cbe =" h t t p : / / www. ibm . com /AC/ commonbaseevent1_1 "

xmlns : mef =" h t t p : / / www. mas te r−fp7 . eu / mas te rcommonbaseevent1_0 "
xmlns : x s i =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "
x s i : s chemaLoca t ion =" cbe . xsd ">

< sourceComponen t Id a p p l i c a t i o n =" Serv iceMix " l o c a t i o n = " 1 0 . 1 1 0 . 6 4 . 5 "
subComponent ="subComp " component =" Se rv iceMix # S e r v i c e E n d p o i n t [s e r v i c e =
{ h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / c e s c e / agency }Agency , e n d p o i n t =
AgencyHt tpSoap11Endpoin t]# AgencyHt tpSoap11Endpoin t " l o c a t i o n T y p e =" IPV4 "
componentIdType =" idType "/ > < r e p o r t e r C o m p o n e n t I d a p p l i c a t i o n =" Serv iceMix "
l o c a t i o n = " 1 0 . 1 1 0 . 6 4 . 5 " subComponent ="subComp " component=
" Se rv i ceMix ESB S i g n a l i n g s e r v i c e f o r MASTER" l o c a t i o n T y p e =" IPV4 "
componentIdType =" idType "/ > < s i t u a t i o n I n f o r m a t i o n c r e a t i o n T i m e =
"2009−03−13T17 : 2 1 : 2 1 " / >

<mef : Mas t e rEven t x s i : s chemaLoca t ion =" mef . xsd ">
< payload >< m e t a d a t a / > < message >
<in >< soap : Enve lope xmlns : soap =" h t t p : / / schemas . xmlsoap . o rg / soap / e n v e l o p e /" >
<soap : Body>< a x i s 2 n s 2 : i n f o r m a t i o n R e q u e s t xmlns : a x i s 2 n s 2 =

" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / c e s c e / agency " xmlns=
" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / c e s c e / agency " xmlns : agy=
" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / c e s c e / agency ">

<companyName>ACME</ companyName>
< i n f o r m a t i o n > E l v i r a < / i n f o r m a t i o n >

</ a x i s 2 n s 2 : i n f o r m a t i o n R e q u e s t > </ soap : Body > </ soap : Envelope > </ in >
<out >< soap : Enve lope xmlns : soap =" h t t p : / / schemas . xmlsoap . o rg / soap / e n v e l o p e /" >

<soap : Body><ns : i n f o r m a t i o n R e q u e s t R e s p o n s e xmlns : ns=
" h t t p : / / www. i a a s . u n i s t u t t g a r t . de / m a s t e r / c e s c e / agency ">

<ns : r e t u r n >ok </ ns : r e t u r n > </ ns : i n f o r m a t i o n R e q u e s t R e s p o n s e > </ soap : Body>
</ soap : Envelope > </ out >
</ message > </ pay load >
< t r u s t I n f o r m a t i o n > </ t r u s t I n f o r m a t i o n >< g e n e r a l P r o p e r t i e s / >
</ mef : Mas te rEven t >
</ cbe : CommonBaseEvent >

69

70

Appendix B

ServiceMix configuration

B.1 Installation checklist
Bare ServiceMix:

• Download the binary distribution of ServiceMix (apache-servicemix-3.3.zip from:
http://servicemix.apache.org/download.html)

• Unzip it to a local folder (%SERVICEMIX_ROOT%)

• Run ServiceMix

• Add wsdl files from ServiceMixMaster.zip to %SERVICEMIX_ROOT%

• add cfx-sa.jar to hotdeploy folder

The wsdl files of the services (i.e. http://localhost:8192/AgencyConsumer/?wsdl) should
be accessible now.
Making ServiceMix MASTER-aware:

• Shut down ServiceMix

• Add jaxen.jar to %SERVICEMIX_ROOT%/lib

• Replace servicemix-audit-xxx.jar in %SERVICEMIX_ROOT%/lib by the MASTER-
aware version of it

• Replace servicemix.xml by the MASTER-aware version

• Run ServiceMix

• Add the corresponding wsdl files for policy manager service (ESBSignallingLife-
cycle.wsdl) to %SERVICEMIX_ROOT%, adjust soap-address in wsdl if neces-
sary

71

• Copy the policy manager component to the hotdeploy folder (policy-sa-1.0-
SNAPSHOT.jar)

• Repeat the last two steps for:

– Ontology interface: Signaling-Metadata.wsdl, ontology-sa.jar,
http://0.0.0.0:8192/Signaling-MetadataService/?wsdl

– Ontology change interface: sigmetadatachange.wsdl,
ontology-change-sa.jar, http://0.0.0.0:8192/sigmetadatachange/?wsdl

• To set up a collector for generated events there are two options:

– Writing them to the file system: copy filesaver-sa-xxx.jar to the hotdeploy
folder

– Sending them to an event logger service: copy Event.wsdl to
%SERVICEMIX_ROOT%, copy eventLog-sa-XX.jar to hotdeploy

• To set up a collector for generated events from the ontology (e.g. endpoint
unregistered): copy ontology-filesaver-sa.jar to hotdeploy (saves events to the
filesystem)

• Use retrieveSourceInstances operation in Signaling-MetadataService to get all
registered endpoints and services

• Use addPolicy operation in policyManager service to bind listener to some active
endpoints

• Use addChangeListener operation in sigmetadatachange to add listener for end-
point or service events

B.2 servicemix.xml configuration file
Specifying active flows:

<sm : b roke r >
<sm : s e c u r e d B r o k e r a u t h o r i z a t i o n M a p ="# a u t h o r i z a t i o n M a p ">

<sm : f lows >
<sm : sedaFlow / >
<sm : jmsFlow jmsURL=" ${ a c t i v e m q . u r l }" / >

<sm : j caF low con ne c t i o nM ana ge r ="# co nn ec t i o nM an ag e r "
jmsURL=" ${ a c t i v e m q . u r l }" / >

</sm : f lows >
</sm : s e c u r e d B r o k e r >

</sm : b roke r >

Adding beans for signaling:

72

<sm : a c t i v a t i o n S p e c s >
<sm : a c t i v a t i o n S p e c componentName =" E S B S i g n a l l i n g L i f e c y c l e B e a n "

s e r v i c e =" p o l i c y : E S B S i g n a l l i n g L i f e c y c l e B e a n "
e n d p o i n t =" E S B S i g n a l l i n g L i f e c y c l e B e a n ">

<sm : component >
<bean c l a s s =

" org . apache . s e r v i c e m i x . j b i . a u d i t . m a s t e r . i n t e r c e p t i o n . P o l i c y B e a n ">
</ bean >

</sm : component >
</sm : a c t i v a t i o n S p e c >
<sm : a c t i v a t i o n S p e c componentName =" ESBOntologyBean "

s e r v i c e =" o n t o l o g y : ESBOntologyBean " e n d p o i n t =" ESBOntologyBean ">
<sm : component >

<bean c l a s s =
" org . apache . s e r v i c e m i x . j b i . a u d i t . m a s t e r . a p i . OntologyBean ">

</ bean >
</sm : component >

</sm : a c t i v a t i o n S p e c >
<sm : a c t i v a t i o n S p e c componentName =" ESBOntologyChangeBean "

s e r v i c e =" o n t o l o g y : ESBOntologyChangeBean "
e n d p o i n t =" ESBOntologyChangeBean ">

<sm : component >
<bean c l a s s =

" org . apache . s e r v i c e m i x . j b i . a u d i t . m a s t e r . a p i . OntologyChangeBean ">
</ bean >

</sm : component >
</sm : a c t i v a t i o n S p e c >

</sm : a c t i v a t i o n S p e c s >

73

74

Appendix C

Testbed settings

C.1 CXF configuration

xbean.xml file for cxf-consumer services:

< beans xmlns : c x f b c =" h t t p : / / s e r v i c e m i x . apache . o rg / c x f b c / 1 . 0 "
xmlns : agen =" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / c e s c e / agency "
xmlns : h o s t =" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / s c e n a r i o s /

c e s c e / h o s t "
xmlns : s t o r =" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / c e s c e / S t o r a g e / "
xmlns =" h t t p : / / www. s p r i n g f r a m e w o r k . o rg / schema / beans "
xmlns : x s i =" h t t p : / / h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "
x s i : s chemaLoca t ion =" h t t p : / / s e r v i c e m i x . apache . o rg / h t t p / 1 . 0

h t t p : / / s e r v i c e m i x . apache . o rg / schema / s e r v i c e m i x−h t t p −3 . 2 . 2 . xsd
h t t p : / / www. s p r i n g f r a m e w o r k . o rg / schema / beans
h t t p : / / www. s p r i n g f r a m e w o r k . o rg / schema / beans / s p r i n g−beans −2 .0 . xsd ">

< c x f b c : consumer
t a r g e t S e r v i c e =" agen : Agency "
t a r g e t E n d p o i n t =" AgencyHt tpSoap11Endpoin t "
wsdl = " / myAgency . wsdl "
useJBIWrapper =" f a l s e " / >

< c x f b c : consumer
t a r g e t S e r v i c e =" h o s t : Host "
t a r g e t E n d p o i n t =" Hos tH t tpSoap11Endpo in t "
wsdl = " / myHost . wsdl "
useJBIWrapper =" f a l s e " / >

< c x f b c : consumer
t a r g e t S e r v i c e =" s t o r : S t o r a g e "
t a r g e t E n d p o i n t =" S t o r a g e H t t p S o a p 1 1 E n d p o i n t "
wsdl = " / myStorage . wsdl "
useJBIWrapper =" f a l s e " / >

</ beans >

75

xbean.xml file for cxf-provider services:
< beans xmlns : c x f b c =" h t t p : / / s e r v i c e m i x . apache . o rg / c x f b c / 1 . 0 "

xmlns : agen =" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / c e s c e / agency "
xmlns : h o s t =" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / s c e n a r i o s /

c e s c e / h o s t "
xmlns : s t o r =" h t t p : / / www. i a a s . uni− s t u t t g a r t . de / m a s t e r / c e s c e / S t o r a g e / "
xmlns =" h t t p : / / www. s p r i n g f r a m e w o r k . o rg / schema / beans "
xmlns : x s i =" h t t p : / / h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "
x s i : s chemaLoca t ion =" h t t p : / / s e r v i c e m i x . apache . o rg / h t t p / 1 . 0

h t t p : / / s e r v i c e m i x . apache . o rg / schema / s e r v i c e m i x−h t t p −3 . 2 . 2 . xsd
h t t p : / / www. s p r i n g f r a m e w o r k . o rg / schema / beans
h t t p : / / www. s p r i n g f r a m e w o r k . o rg / schema / beans / s p r i n g−beans −2 .0 . xsd ">

< c x f b c : p r o v i d e r s e r v i c e =" agen : Agency "
e n d p o i n t =" AgencyHt tpSoap11Endpoin t "
wsdl =" Agency . wsdl "
useJBIWrapper =" f a l s e " / >

< c x f b c : p r o v i d e r s e r v i c e =" h o s t : Host "
e n d p o i n t =" Hos tH t tpSoap11Endpo in t "
wsdl =" Host . wsdl "
useJBIWrapper =" f a l s e " / >

< c x f b c : p r o v i d e r s e r v i c e =" s t o r : S t o r a g e "
e n d p o i n t =" S t o r a g e H t t p S o a p 1 1 E n d p o i n t "
wsdl =" S t o r a g e . wsdl "
useJBIWrapper =" f a l s e " / >

</ beans >

C.2 Operating system settings
Additional settings in file /etc/sysctl.conf on linux:
n e t . i pv4 . i p _ l o c a l _ p o r t _ r a n g e = 1024 65535
n e t . i pv4 . t c p _ f i n _ t i m e o u t = 30
f s . f i l e −max = 2097152
n e t . i pv4 . t c p _ t w _ r e c y c l e = 1
n e t . i pv4 . t c p _ t w _ r e u s e = 1

Additional settings in file /etc/sysctl.conf on linux:
/ e t c / s e c u r i t y / l i m i t s . con f
∗ s o f t n o f i l e 4096
∗ ha rd n o f i l e 65535

76

