
Research Collection

Master Thesis

Creating a web of places and locations for mobile applications

Author(s):
Weiser, Robert

Publication Date:
2008

Permanent Link:
https://doi.org/10.3929/ethz-a-005772943

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-a-005772943
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Creating a web of places and
locations for mobile applications.

Master Thesis

Robert Weiser
<weiserr@ethz.ch>

Supervisor: Benedikt Ostermaier & Philipp Bolliger

Prof. Friedemann Mattern

Distributed Systems Group
Institute for Pervasive Computing
Department of Computer Science

ETH Zurich

September 30, 2008

Copyright c© 2008 Distributed Systems Group.

Abstract

This thesis presents a method on how to represent location-based services using the capabil-
ities of the World Wide Web in a manner, that different parties can easily create, access and
search for these services. It further shows how to access services associated with places in
the proximity of a geospatial postion with a mobile device by utilizing a geospatial search
engine capable of retrieving and ranking the services available in such a Web of Places and
Locations. By enabling arbitrary individuals to provide location-based services to this Web
of Places and Locations the presented solution allows for a vast variety of services neither
tailored to be usable only in a predefined context nor restricted in terms of use.

Zusammenfassung1

Diese Masterarbeit präsentiert eine Methode um Dienste, welche mit geographischen Orten
verknüpft sind, mit Hilfe der vom World Wide Web gebotenen Möglichkeiten so zu repräsen-
tieren, dass verschiedene Nutzer diese Dienste einfach erstellen, verwenden und nach ihnen
suchen können. Desweiteren erläutert diese Masterarbeit wie solche standortbezogene Di-
enste ausgehend von der Position des Anwenders unter Verwendung einer geographischen
Suchmachine gefunden werden können. Diese Suchmachine ist insbesondere in der Lage Di-
enste, die Teil des Web of Places and Locations sind, nach ihrer Relevanz sortiert anzubieten.
Da es jedem frei ist standortbezogene Dienste in diesem Web of Places and Locations bere-
itzustellen, sind diese Dienste weder auf einen besonderen Verwendungszweck zugeschnit-
ten, noch in ihrer Nutzbarkeit eingeschränkt.

1A german summary is required by the department of computer science at ETH for a Master’s Thesis written
in English

iii

iv

Affidavit
I hereby declare that this master thesis has been written only by the undersigned and without
any assistance from third parties. Furthermore, I confirm that no sources have been used in
the preparation of this thesis other than those indicated in the thesis itself.

This thesis has not yet been presented to any examination authority, neither in this form nor
in a modified version.

Place, Date Signature

v

Acknowledgements
I hereby want to thank Prof. Friedemann Mattern, his research group and especially Benedikt
Ostermaier and Philipp Bolliger for their support with my work in the Distributed Systems
Group at the Department of Computer Science at the Swiss Federal Institute of Technology
ETH Zurich.

Contents

1 Overview 1
1.1 Problem Description . 1
1.2 Motivational Example . 2
1.3 Contributions . 3
1.4 Outline . 3

2 Related Work 5
2.1 Presenting Location-Sensitive Information 5
2.2 Spatial Search And Spatial Ranking . 6
2.3 Geospatial Data In The Web . 7

3 Design 9
3.1 Places and Services . 11

3.1.1 Place Model . 11
3.1.2 Service Model . 12
3.1.3 Embedding Structured Data In HTML 13
3.1.4 Location Encoding . 19

3.2 Webcrawler . 21
3.2.1 Regular Crawl . 21
3.2.2 Single Resource Crawl . 22

3.3 Search Engine . 23
3.3.1 Spatial Ranking Assumptions . 23
3.3.2 Place Filters . 24
3.3.3 Spatial Ranking Criteria . 24
3.3.4 Additional Ranking Criteria . 30
3.3.5 Service Ranking Criteria . 31

3.4 Mobile Phone Client . 33
3.5 Frontend . 34

3.5.1 Defining Outdoor Places . 34
3.5.2 Defining Indoor Places . 34

3.6 VBZ Service . 35

4 Implementation 37
4.1 Used Frameworks . 37

4.1.1 Web Applications . 37
4.1.2 Mobile Phone Client . 38

vii

viii CONTENTS

4.1.3 Webcrawler . 39
4.2 Webcrawler . 40

4.2.1 Main Classes . 41
4.2.2 Helper Classes . 43

4.3 Search Engine . 44
4.3.1 Available Formats . 44
4.3.2 Routes . 44

4.4 Mobile Phone Client . 47
4.4.1 Main Classes . 47
4.4.2 Utility Classes . 49

4.5 Frontend . 51
4.5.1 Defining Outdoor Places . 51
4.5.2 Defining Indoor Places . 56

4.6 VBZ Service . 59
4.6.1 Available Formats . 59
4.6.2 Routes . 59

4.7 Testbed . 61

5 Evaluation 63
5.1 Testing With The Testbed . 63
5.2 Testing In The Field . 63

6 Conclusion 65
6.1 Lessons Learned . 65
6.2 Summary . 65
6.3 Future Work . 66

Bibliography 68

A Setup 69
A.1 Databases . 69
A.2 Webcrawler . 71
A.3 Mobile Phone Client . 71
A.4 RoR Projects . 72

B Configuration 75
B.1 Webcrawler . 75
B.2 Search Engine . 75
B.3 Mobile Phone Client . 76
B.4 Frontend . 76

C Ruby On Rails Server API 77
C.1 Search Engine . 77
C.2 Frontend . 78

Abbreviations

AJAX Asynchronous JavaScript and XML

DC Dublin Core

DCMI Dublin Core Metadata Initiative

DCTERMS DCMI Metadata Terms

EBNF Extended Backus Naur Form

JSON JavaScript Object Notation

MBR Minimum Bounding Rectangle

OR/M Object-relational Mapping

RFC Requst for Comments

RoR Ruby on Rails

W3C World Wide Web Consortium

WOPALO Web of Places and Locations

ix

Overview 1
There has been a steady rise in the number of people always carrying a portable device on
their person. These devices have become increasingly more functional over the last few years,
particular ly with regard to embedded GPS receivers or integrated web browsers, which allow
for continuous positioning and enable the user to stay constantly connected to the internet.
Having this at hand, it has become feasible to create a web of places and locations and to link
these places with arbitrary services, thus creating location-based services that are accessible
at specific places. In the past there were several projects exploiting the idea of location-based
services. The most well known are the Cooltown project [14, 7, 6], the GUIDE tourist guide
and navigation system [8] and GeoNotes [17], a location-based information system.

1.1 Problem Description

The location-based services encountered nowadays are typically provided and maintained by
professional service providers. The providers tend to tailor the services offered to a set of
specific needs (e.g., an electronic tourist guide). Besides that, these services are usually only
available to a small group of people and can only be used within a predefined context. An
example would be a printer service, accessible only to people working in the same company.
Relying on such central authorities to maintain information about location-based services has
the drawback that it might not be feasible or even possible for individuals to distribute cus-
tom services. Even if it were possible for arbitrary users to create location-based services and
have them maintained by a central authority, the question remains whether this approach is
scalable assuming that thousands of services are to be managed.
Location-based services, as they are modelled in most systems (e.g., Cooltown, GUIDE), are
made accessible at the representation of the individual places - the place is aware of the ser-
vices it provides (e.g., by representing a place as web page containing the available services).
This is restrictive in the sense that it does not allow different parties to create and add services
to the place without changing the representation of the place itself. For that reason location-
based services need to be modelled in a way that allows individuals to modify existing places
and services without affecting each other.
Current systems are constrained in the way that location-sensitive information can be con-
sumed by the user. Using RFID tags, for example, to identify a spatial location [4] demands
that the user is located in the immediate vicinity of the tag. However, the information that is
provided to the user can be very specific due to the limited range of these tags. On the other
hand, there is a variety of systems, such as GeoNotes or GUIDE, which allow the user to be
located near a certain spatial position to get location-sensitive information about the associ-
ated place. Unfortunately, these systems use WLAN antennas to determine the position of

1

2 1.2. MOTIVATIONAL EXAMPLE

the user and decide which information to present, and therefore the information returned may
not be specific enough.
There is a certain demand for the ability to consume location-based services when located
reasonably near to a place, without the need to be right in front of it. In addition, these places
have to be represented by other means than spatial positions, which are inappropriate for
places with large dimensions. Why not have services belonging, for example, to a forest that
can be used to descry its current humidity or the population of deer?
In order to be able to consume such services, however, the places they belong to have to
be determined first. Furthermore, if there are several places in the neighborhood providing
locations-sensitive information, the one most relevant to the user should be prioritized over
others when presenting the results to the user. One could take the scenario of a person in the
aforementioned forest next to a tavern, providing services such as accommodation. Such a
service will certainly be more valuable for a user in the immediate vicinity of the said tav-
ern than for a user in close proximity to the forest in general, given that this area may cover
several hectars. It therefore should be possible to search for location-based services in the
vicinity of the user and for the search results to be returned in an appropriate way.

1.2 Motivational Example

Giuseppe, the owner of a small Italian restaurant has decided to provide location-based ser-
vices for his restaurant. He has decided upon two services: one to display the menus avail-
able for the current day of the week and one for placing table reservations for the evening.
Giuseppe uses this system to define a place representing his restaurant and creates the two
services which should be available there.
Paul, working across the street, is interested in location-based services available in his vicin-
ity. He uses his mobile device, which in turn asks the system for places and their associated
services. The system detects a shopping mall and Giuseppe’s restaurant in Paul’s neighbor-
hood. Since the shopping mall is very large and has a variety of presumably very general
services related to it, the system ranks Giuseppe’s place as its prime choice and returns the
places found. Paul inspects the places found using his mobile device and decides to check out
the services offered by the Italian restaurant since it is listed first. He selects the "daily menu"
service to browse through the menus and as he is very pleased with what he sees, he decides
to place a dinner reservation for the evening using the dinner reservation service available for
the restaurant.
After having enjoyed a good meal, Paul returns to his flat. He decides to share his insight
about the great meal he had at the Italian restaurant with other people. For that reason Paul
creates a service to write comments for the dishes served and links it with the place repre-
senting Giuseppe’s restaurant.
Three days later Paul inspects the location-based services available at the Italian restaurant
and comes across the service he createad . He invokes it in order to read comments by other
people about dishes he has not tried yet.

CHAPTER 1. OVERVIEW 3

1.3 Contributions

This work presents a solution on how to enable arbitrary users to store and provide location-
based services using the capabilities of the World Wide Web, without the need for a single
central authority to maintain these services. It is shown how to model location-based services
in such a way that different parties are able to manipulate them without interfering with
one another. Besides that, this work presents a search engine which is capable of retrieving
location-based services in the vicinity of a spatial position and ranking the results according to
some metrics intuitive for users. Furthermore, a mobile phone client is provided, representing
a simple interface to the search engine.

1.4 Outline

The next chapter covers related work which has been done in the field of location-sensitive
information and spatial search engines and shows how spatially encoded data can be encoun-
tered in the web today. Chapter 3 covers the design decisions taken for building the system
and the constituent components of the system. Chapter 4 describes the frameworks and pro-
gramming languages used for actually implementing the system and details the main features
of the individual components. Chapter 5 is devoted to a short evaluation of the search en-
gine with respect to spatial queries (the search for places in the vicinity of a spatial position).
Chapter 6 concludes this thesis and suggests how the system could be extended.

Related Work 2
This chapter covers the related work that has been done in the field of location-sensitive
information and location-based services, the work conducted with regard to spatial search
and spatial ranking, and shows how spatial information can be encountered in the World
Wide Web nowadays.

2.1 Presenting Location-Sensitive Information

The following projects strive to bridge the gap between the real and the virtual world by
providing location-sensitive information or services at distinct places in the real world.

HP Labs Cooltown Project

The HP Labs Cooltown Project is a project that tries to connect the virtual world with the real
world and provides context-dependant services for real world entities. The entities model
either people, places or things and each have a "web presence", a virtual counterpart. The
web presence is modelled as a HTML page, therefore making it accessible to a vast variety of
devices, as it only requires a web browser to access its information. The web representations
of people, places and things each have a unique URL and provide access to certain services
(e.g., the web presence of a printer may provide a service to print documents from provided
URLs). Additionally, these representations can provide links to other entities, for instance,
a user’s web presence may list links to the web representation of printers managed by this
individual person, or a room may list a collection of links to the things or people that are
contained within it.
In order to be able to actually attain the virtual representations of real world things or places,
these physical objects have attached identifiers which can be sensed directly or indirectly.
Direct sensing is done with the help of beacons, which emit the URL of the virtual counterpart
of the respective thing or place. Indirect sensing on the other hand is done by tagging the
entities either with a passive RFID tag or with a barcode. The user then has to use the
capabilities of the device to identify the tag and will get the URL of the web resource by
asking a web resolver to resolve the tag. The resolver is queried automatically without a
specific request on the part of the user with the help of a web browser plug-in.
Real world places in the Cooltown Project are identified by beacons or other tagging methods.
Since the web presentation of these places provides a set of services among other things, they
actually enable the user to consume location-based services when the user is within reach of
a beacon or a tag.

5

6 2.2. SPATIAL SEARCH AND SPATIAL RANKING

GUIDE Tourist Guide
GUIDE is an implementation of an intelligent electronic tourist guide with the aim of flexi-
bility; providing tourists with either guided tours or letting them explore the environment on
their own. It provides information both tailored to personal and environmental contexts that
can be viewed and interacted with by utilizing a handheld device with an interface similar to
a web browser.
Environmental contexts include, for example, the time of day and the opening times of the at-
tractions included in the tour. The personal context requires the personal data of the user, such
as his or her technical background and age, to be able to provide context-relevant information
for the individual user. Additionally, to provide the user with context-sensitive information
and services (e.g., ticketing), the personal context also includes information about the user’s
current location, obtained by receiving location messages that are transmitted from strategi-
cally positioned base stations. These stations each form WaveLAN cells that provide the user
with location and dynamic information. However, these cells can be relatively large (having
a diameter up to 300m) and therefore result in a low resolution of positioning information.
The information provided at distinct spatial positions is modelled using location objects (e.g.,
the city’s castle) which can store various attributes (e.g., opening times) and also contain hy-
pertext links to related information. Yet, the information and services are solely provided by
professional providers.

GeoNotes
GeoNotes are notes that can be attached to spatial positions. Compared with other annotation
systems, GeoNotes does not rely on content created by professional providers. This content
typically has a high risk of being too formal and will reflect information the provider believes
to be important, not the user. Hence, GeoNotes can be created and governed by arbitrary
users, allowing anyone to participate and will therefore reflect information valuable to the
users. Created notes can be annotated by a user name but this is not a strict requirement.
When storing a GeoNote the current spatial position is also stored. Unfortunately the WLAN
positioning done by GeoNotes provides rather rudimentary positioning data. This is the rea-
son why each note requires a place label to be provided with the note which can be used to
specify the meant position of the note in natural language (e.g., coffee machine). These labels
can be shared by different users to attach more notes to a spatial position.
Since there can be several hundred notes available at a certain position, GeoNotes ranks the
notes and truncates the results. Ranking is done by observing how many times a label has
been used for a spatial position which also compells users to provide meaningful label names.
Additionally, notes available at a position can be sorted according to user name or content to
provide a better user experience. However, GeoNotes does not offer the possibility to search
for notes contained in a certain region. Only notes in the perceptual space of user (bound by
WLAN positioning) will be listed.

2.2 Spatial Search And Spatial Ranking

Spatial search relates to the retrieval of information associated with geo-spatial positions or
areas. There are comparatively few applications which allow the user to spatially search for
places with associated geo-spatial areas. One of them is stated below.

CHAPTER 2. RELATED WORK 7

Alexandria Digital Library
The Alexandria Digital Library project (ADL) [12] is a project established with the aim of
developing a lightweight digital library for geo-referenced data. Geo-referenced means that
data items are associated with geo-spatial regions of the earth whenever possible. The geo-
spatial region types are limited to boxes, polylines or simple polygons (non-intersecting and
hole-free); the spatial predicates are limited to intersection, converage and containment.
The user may then search for individual data items by providing a search mask in the form of
a spatial box or a polygon. Although both the search mask and the geographic data contained
in the library may be encoded as polygons, the respective minimum bounding rectangles
(MBRs) are used when testing for spatial relations, and the spatial predicates are restricted
to intersections. The reason for using MBRs is that spatial predicates involving polygons
require specialized algorithms and are typically found only within sophisticated spatial en-
gines. Using MBRs is both simple and mathematically efficient but it performs poorly with
respect to over-estimating the area and misrepresenting the shape of a place. Besides, as
spatial predicates yield only boolean results (either the search mask’s MBR intersects with a
place’s MBR or not) the results returned need to be spatially ranked. ADL proposes a ranking
based on spatial similarity using Hausdorff distances (function of the regions’ size, shape and
location) between two compared regions. Another algorithm, as proposed in [16] computes
spatial similarity using the area of overlap and the shore factor; a factor determining how
much of the area in the search mask’s MBR is onshore, compared with how much of the area
in the region’s MBR is onshore.

2.3 Geospatial Data In The Web

Geospatial information can be found more and more frequently while browsing through the
internet. The most common way is in form of ICBM adresses, that are embedded within web
pages. ICBM adresses consist of a latitude/longitude-pair encoded using the WGS84 world
reference system and are typically used to tag pages containing information about real world
places; this concept is called "Geotagging". Wikipedia for example tags web pages like the
one about Zurich1 in a way visible for both human and machine. There are other formats
which support the encoding of Geotags like for example RSS, that enables Geotagging of its
individual feed items.
Other than that, projects like Wikimapia2 present a user with a map where he or she can de-
fine places in a point-and-click like fashion. These places can be inspected by other users and
can have associated information that can be edited by arbitrary users. The Wikimapia project
is very popular as it is an open system and currently hosts above 8.000 000 places.

1http://en.wikipedia.org/wiki/Zurich (in the upper right corner)
2http://www.wikimapia.org/

http://en.wikipedia.org/wiki/Zurich
http://www.wikimapia.org/

Design 3
Location-based services, as encountered in systems like GUIDE or in the Cooltown project
are created, maintained and offered by professional services providers. Having a central au-
thority in charge to decide who to offer these services to, which parts of the services to make
accessible and under what circumstances, restricts the target audience of these services to
a rather small one. Besides, the maintained location-based services will most likely reflect
content a professional service provider believes to be valuable for a group of users, not al-
lowing content contributions from ordinary users. Furthermore, by prohibiting ordinary users
from creating and publishing new services, the amount of available location-based services
is limited to the number of services provided by the central authority. This number is both
small, in comparison to a system allowing arbitrary users to create custom services, and re-
flects only content supported by professional service providers. Having a central authority in
charge renders it impossible to make location-based services widely available for the public,
which is why a system is envisioned that does not rely on a central authority, and is both
technically open and publicly open - the Web of Places and Locations (WOPALO).
A technically open system means that all the components required to build the system are
inherently replaceable, thus allowing different parties to offer and use custom components
when working with location-based services provided by the Web of Places and Locations.
Publicly open on the other hand, means that arbitrary users are allowed to define custom ser-
vices and can consume any of the available location-based services. Since such a system
will potentially attract a lot of users, location-based services have to be modelled in such
a way that different users can create services for the same location without interfering with
each other. An approach such as the one taken by Cooltown, where the representation of a
place directly contains all accessible services at the very place, therefore is not applicable as
it is impossible to add a service without modifying the representation of the place. Location-
based services are therefore modelled in the form of places and services and can be brought
into relation with each other by using unidirectional links; a services may link a place acces-
sible at. In this way, users are able to reference different services with one particular place
at the same point in time without the need to change the place’s representation. The places
are used to represent geo-spatial areas of interest, and as we want to support a vast variety of
places they are encoded using polygons and may be located either indoors or outdoors. Using
polygons over single spatial positions, like in GeoNotes for example, has the benefit that even
large places (e.g., Switzerland) can be represented accurately. Besides, polygons allow the
representation of arbitrarily shaped places e.g., places such as an "area having a lot of bees".

To further foster the utilization of such a system and make it available to a large group of
users, pre-existing and widely used infrastructures and data formats are used. The platform
determined for storing location-sensitive information is the World Wide Web, as it connects
people around the globe, enabling them to access existing web resources and/or create new
web resources. We use HTML as the representation format for places and services, as it is

9

10

readable by both humans and machines, can present text and other multimedia types and pro-
vides hyperlinks, unidirectional links to other resources in the web. As no central authority
is in charge of maintaining the places or services that are part of the Web of Places and Lo-
cations, the user is free to store the respective HTML pages on any host in the World Wide
Web. The only piece of information required to identify such a place or service is the URL
of the respective HTML page. Unfortunately, there is no standard specifying how to encode
location-based services using HTML pages, which is why an entire section (3.1) is dedicated
to describing how this is achieved by the system proposed in this thesis.

Now that places and services are created and available in the form of HTML pages hosted by
different hosts in the web, it should be possible to consume location-based services located
in the vicinity of a given spatial position. For this reason a search engine has been designed
which is capable of searching and ranking places in the neighborhood of a geo-spatial po-
sition. For each of the places found, the search engine can retrieve the services available at
this place, thus making it actually possible to consume a location-based service. Yet, as the
search engine bases its search on places that have to be known beforehand, the World Wide
Web needs to be indexed to gather the places that are part of the Web of Places and Locations.
Besides, as a user will typically want to consume location-based services while walking in
the streets, an application for smaller, mobile devices has been designed. This application can
be used to list available places with their services and allows a user to access them.

The crucial components of the system have already been outlined, namely: a webcrawler, a
search engine and a mobile phone client. The webcrawler is responsible for indexing web
resources representing places and offered services. The search engine can then use this index
to allow the user to search for available services. The mobile phone client is a frontend for the
search engine providing a comfortable way for the user to actually consume location-based
services. In addition to these components there is a frontend which facilitates the definition
of new location-based services. The components are depicted in figure 3.1 and are covered
more thoroughly in the following sections.

Figure 3.1: System Overview

CHAPTER 3. DESIGN 11

3.1 Places and Services

As already indicated, location-based services as proposed by this thesis consist of services
and places. A place is used to model a geo-spatial area while a service can model anything.
A service can link to a place, which will make the service available at this very place. Sepa-
rating places from services has the advantage that a service can be available at several places
and that different services can link to the same place, thus enabling different parties to share
places.
In order to make location-based services accessible over the internet, places and services have
to be encoded using an adequate representation format. The chosen representation format is
HTML as it has the benefit of being a W3C standard, as well as being widely used. Addition-
ally, it is clear how to render HTML even by smaller integrated web browsers. Places and
services are represented using dedicated HTML pages called place pages and service pages
respectively. The URL of such a HTML page uniquely identifies a place or service. Besides
embedding place or service relevant data, the HTML pages may contain any other data (e.g
dynamic service data).
Two problems arise when using HTML pages to define places and services. The first prob-
lem relates to embedding structured data of places or services in HTML pages. A webcrawler
should be able to extract this data without too much effort. The appearance of the web page
should be influenced as little as possible and the HTML page should still be valid after em-
bedding place or service relevant data. The other problem concerns the method of embedding
geospatial data of places along with other place data into the web page.

In the following sections the place and service models are explained and afterwards it is
shown how to embed structured and geospatial data into a HTML web page.

3.1.1 Place Model

A place can be located indoors or outdoors and may represent either a real world place such
as a building or a park or it may represent an informal region of interest defined, for instance,
by specific characteristics, such as: "the area were a lot of mushrooms grow". Since this poses
no constraints on the form or extend of places, nothing can be said about their hierarchical
structure, i.e., it is not always clear who should be the parent of a place.
Various location models [5, 1] exist for the modeling of the physical environment. Generally,
these models can be categorized [10] as symbolic location models and coordinate location
models. Symbolic location models use symbolic names for places and organize these places
in a hierarchy. The location of a place can be determined by following the place’s parents
since links in the hierarchy are used to model containment (a place is contained by its par-
ent). Coordinate location models on the contrary use a global geographic coordinate system
to model the geo-spatial area of a place. Positions in this coordinate system are usually
encoded in the form of a latitude/longitude pair using the WGS84 world reference system.
WGS84 defines a coordinate system for the earth and is the most widely used global posi-
tioning format, commonly used by GPS devices when returning a spatial position.
The location model effectively used is a hybrid location model. Unfortunately, existing hy-
brid location models as proposed in [2, 13] are unsuitable for this system. In the context of
this work, the geo-spatial area of places is modelled using WGS84 as the coordinate refer-
ence system. Places can consist of one or more polygons encoded as a collection of WGS84

12 3.1. PLACES AND SERVICES

Figure 3.2: Hybrid location model used

coordinates. The benefit of using a global coordinate system is that a search engine can easily
query for places in the neighborhood of a spatial position; a spatial query. Since places can
be situated indoors, each place can symbolically reference a parent place. This is used to
determine the floor a room is located on or the building a floor belongs to. Other than the
parent reference indoor places always have an associated integer value specifying the level of
the building they are on. Figure 3.2 depicts the hybrid location model used.

A place has other properties besides its geo-spatial area (e.g., a name) to make a user’s inter-
action with it more natural. The properties are:

Name The name of the place

Description A short description of the place

Geospatial Area Represents the geo-spatial area of the place

Parent (Optional) Each place may have exactly one parent place assigned. When defining
a place that is located indoors, this property has to be set to identify the floor or the
building, in which this place is contained. The property value is the URL of the parent’s
place page.

Level (Optional) The level property is used to identify indoor places. It is an integer value
which defines the level a place is located on in a building. If the level of the place can
be determined through its parent, then the property value can be omitted.

3.1.2 Service Model

As service pages are ordinary HTML pages they can represent any type of information. These
web pages should be adapted to be viewable with different clients (e.g., with an integrated
browser of a mobile phone). The HTML page might display static or dynamic content like,
for example, timetable data for a train station. One could even think of content requiring user

CHAPTER 3. DESIGN 13

input like a service which could be used to book a table in an Italian restaurant.
As already noted, services reference the places they are accessible at. The service allowing a
person to book a table, as mentioned above, would reference the place defined for the Italian
restaurant.

A service has the following properties:

Name The name of the service

Description A short description of the service

Place References A list of place page URLs defining the places this service should be ac-
cessible at

3.1.3 Embedding Structured Data In HTML

Defining new services and places should be simple. As already mentioned services and places
are represented using dedicated HTML pages called service pages and place pages respec-
tively. Since there are many existing HTML pages it should be possible to turn them into
place or service pages by embedding the respective metadata without to much effort.
Unfortunately it transpires that most methods for embedding structured data inside HTML
pages have certain limitations, thus rendering them inappropriate for representing places or
services.

The possibilities considered are stated below, together with their advantages and disadvan-
tages.

Microformats Microformats1 are a way to express more specialized information within the
structure of a HTML or XHTML page. They piggy-back metadata onto existing HTML
elements mostly using the class, rel or href attributes. An example of a vCard2

[9] embedded using the hcard microformat can be seen in listing 3.1.
<div class="vcard">

Robert
Weiser

weiserr@ethz.ch
<div class="adr">
Zürich,
8032

</div>
</div>

Listing 3.1: vCard embedded using the hcard microformat

What is immediately apparent is that the metadata defined using the microformat is
visible for both human and machine. This might be acceptable for the hcard example
as the data is meant to be visible to the user, but might be inappropriate if encoding the
metadata of a place together with its spatial area (consisting of a collection of WGS84
coordinates). In any case, the hcard microformat sample shown above is quite simple
but one can imagine that the use of more comprehensive microformats could lead to

1http://microformats.org
2A vCard is a format for representing addressbook entries.

http://microformats.org

14 3.1. PLACES AND SERVICES

rather complex and deeply nested HTML code. Another problem of microformats is
the flat namespace which might lead to problems if embedding several microformats
on a single page.

To sum up, the use of microformats, with their inability to enable the clear separation of
metadata from other data and the possibility of namespace collisions disqualifies them
for encoding a place or service.

XML in XHTML Another way of encoding a place or service is to represent it using XML
and embedding this XML inside an XHTML web page. One restrictions of this ap-
proach is that the user has to use an XHTML page for the place or service page as it is
not possible to embed arbitrary XML code inside a HTML page without invalidating
it. The XHTML would have to be well-formed to ensure that a webcrawler visiting
it could extract the valuable information without encountering problems. Moreover,
it is not clear how this web page should be rendered by a client, but it is most likely
that unknown XML tags would be ignored. An example of XML code embedded in an
XHTML page can be seen in listing 3.2.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">

<head>
<title>SVG embedded inline in XHTML</title>

</head>
<body>
<svg:svg version="1.1" baseProfile="full" width="300px" height="200px">
<svg:circle cx="150px" cy="100px" r="50px" fill="#ff0000"
stroke="#000000" stroke-width="5px"/>

</svg:svg>
</body>

</html>

Listing 3.2: SVG image embedded in XHTML

Due to the restrictions listed above this way of embedding place or service data in a
web page is not used either.

eRDF and RDFa Both embeddable RDF (eRDF) and Resource Description Framework at-
tributes (RDFa) allow existing RDF data to be embedded into a web page using ordi-
nary HTML elements. An example can be seen in listing 3.3, which shows a HTML
document with embedded FOAF metadata3.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns:foaf="http://xmlns.com/foaf/0.1/">
<head>
<title>Mark Birbeck’s site</title>
<link rel="foaf:primaryTopic foaf:maker" href="#me" />

</head>
<body>

3FOAF terms are used to describe friends-of-a-friend relations; see: http://www.foaf-project.org/

http://www.foaf-project.org/

CHAPTER 3. DESIGN 15

<div about="#me" typeof="foaf:Person">
Mark Birbeck

XForms and Internet Applications

Ivan Herman

<img src="http://www.formsplayer.com/files/pictures/picture-11.jpg"
alt="Picture of Mark Birbeck" />

</div>

</body>
</html>

Listing 3.3: FOAF relations described using RDFa in HTML

As with microformats, existing HTML code is augmented with metadata, but in con-
trast to microformats both eRDF and RDFa have the concept of namespaces. Addition-
ally there are several tools to help with the extraction of RDF triplets from web pages.
The upside of using either eRDF or RDFa is the possibility to express arbitrary RDF
data in existing HTML documents and to avoid namespace clashes. The downside is
the parsing overhead required to extract the respective RDF triplets and the lack of
capacity to separate the data meant for the machine from the data meant for the user.
These metadata encoding standards are not used either.

META Tags META tags are a simple way of encoding metadata expressible as key/value
pairs inside a HTML page. Nesting of one or more META tags is not possible, which
is why the value type is always a string. An example can be seen in listing 3.4.
<html>
<head>
<title>Nutritional Allocation Increase</title>
<meta name = "DC.Creator" content = "Simpson, Homer">
<meta name = "DC.Title" content = "Nutritional Allocation Increase">
<meta name = "DC.Date.Created" content = "1999-03-08">
<meta name = "DC.Identifier" content = "http://moes.bar.com/homer.htm">
<meta name = "DC.Format" content = "text/html; 1320 bytes">
<meta name = "RC.MetadataAuthority" content = "Springfield Nuclear">
<link rel = "schema.DC" href = "http://purl.org/DC/elements/1.0/">
<link rel = "schema.RC" href = "http://nukes.org/ReactorCore/rc">
<meta name = "DC.Type" content = "Memorandum">

</head>
<body>
:
:

</body>
</html>

Listing 3.4: Web page with a memorandum created by Homer Simpson

The advantage of using META tags to encode place and service relevant data is their
simplicity, readability and clean separation of the encoded metadata from the rest of the
web page. META tags are not visible to the user and are easily parsable by a machine
even if the HTML page is not well-formed. As can be seen in the listing above, META
tags are defined in the <head> section of a HTML page, which is why it is sufficient
for a webcrawler to retrieve only the head of a web page.
Additionally, since using META tags to describe metadata about a web page is no new

16 3.1. PLACES AND SERVICES

concept, there are various tools to generate and extract metadata.

Because of their simplicity, place and service relevant data is embedded into the re-
spective place or service page using META tags. The symbolic links (place-parent
relations and service-place relations) are modelled using META links.
Organizations such as the Dublin Core Metadata Initiative (DCMI) have put quite some
effort into standardizing the meaning of a commonly used subset of metadata vocabu-
lary (e.g name, author, description of a web resource) which can be used together with
META tags [15]. Because of the clearly defined semantics and the wide acceptance of
these metadata terms (DCTERMS), they are used to characterize the embedded meta-
data. To specify that Dublin Core metadata is used within a web page, the appropriate
schemes have to be included.

Listing 3.4 and 3.3 show how place relevant and service relevant metadata is actually
embedded in a place page or service page respectively. Listing 3.5 and 3.6 show a
sample place page and a sample service page as they can actually be encountered in
the Web of Places and Locations.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html>
<head profile="http://dublincore.org/documents/dcq-html/">
<title>Service</title>

<!--tell the search engines to index the current page-->
<meta name="robots" content="index" />

<!--include required schemas-->
<link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />
<link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" />

<!--service title and description-->
<meta name="DC.title" content="__service_name__" />
<meta name="DC.description" content="__service_description__" />

<!--type of page-->
<meta name="DC.type" schema="DTERMS.DCMIType" content="Service" />

<!--uri of a place having this service-->
<!--might be more than one-->
<link rel="DC.relation.references" content="__uri_of_place__" />

</head>
<body>
</body>

</html>

Figure 3.3: Definition of a service page

CHAPTER 3. DESIGN 17

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html>
<head profile="http://dublincore.org/documents/dcq-html/">
<title>Place</title>

<!--tell the search engines to index the current page-->
<meta name="robots" content="index" />

<!--include required schemas-->
<link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />
<link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" />
<link rel="schema.WOPALO" href="http://www.wopalo.org/wopalo/1.0/" />

<!--place title and description-->
<meta name="DC.title" content="__place_name__" />
<meta name="DC.description" content="__place_description__" />

<!--type of page-->
<meta name="DC.type" schema="DCTERMS.DCMIType" content="Place" />

<!--place definition consisting of one or more polygons-->
<meta name="DC.coverage.spatial" schema="WOPALO.polygon"
content="__encoded_polygon__" />

<!--symbolic height used to identify indoor places-->
<!--omitted for outdoor places-->
<meta name="DC.coverage.spatial" schema="WOAPLO.level"
content="__symoblic_height__" />

<!--optional parent relation-->
<link rel="DC.relation.isPartOf" content="__uri_of_parent__" />

</head>
<body>
</body>

</html>

Figure 3.4: Definition of a place page

18 3.1. PLACES AND SERVICES

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html>
<head>
<title>Your next connections from Zurich, Haldenegg</title>
<!--tell the search engines to index the current page-->
<meta content="index" name="robots" />
<!--include required schemas-->
<link href="http://purl.org/dc/elements/1.1/" rel="schema.DC" />
<link href="http://purl.org/dc/terms/" rel="schema.DCTERMS" />

<!--service title and description-->
<meta content="VBZ Timetableinfo" name="DC.title" />
<meta content="Departures from Zurich, Haldenegg" name="DC.description" />
<!--type of page-->
<meta content="Service" name="DC.type" schema="DCTERMS.DCMIType" />
<!--place references-->
<link href="http://places.wopalo.org/places/22" rel="DC.relation.references" />

</head>
<body>

:
</body>

</html>

Figure 3.5: Service page example

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html>
<head profile="http://dublincore.org/documents/dcq-html/">
<title>Central</title>
<!--tell the search engines to index the current page-->
<meta content="index" name="robots" />
<!--include required schemas-->
<link href="http://purl.org/dc/elements/1.1/" rel="schema.DC" />
<link href="http://purl.org/dc/terms/" rel="schema.DCTERMS" />
<link href="http://www.wopalo.org/wopalo/1.0/" rel="schema.WOPALO" />

<!--place title and description-->
<meta content="Central" name="DC.title" />
<meta content="Zurich Central" name="DC.description" />
<!--type of page-->
<meta content="Place" name="DC.type" schema="DCTERMS.DCMIType" />
<!--place definition-->
<meta content=
"8.54337,47.37638 8.54393,47.3763 8.54406,47.37663 8.54441,47.37663
8.54469,47.3768 8.54436,47.37714 8.54402,47.37712 8.54387,47.37706
8.54362,47.37699 8.54349,47.37704 8.54320049285889,47.3770808398525
8.54318,47.37664 8.54328,47.37663 8.54335,47.37651 8.54337,47.37638"
name="DC.coverage.spatial" schema="WOPALO.polygon" />

</head>
<body>

:
</body>

</html>

Figure 3.6: Place page example

CHAPTER 3. DESIGN 19

3.1.4 Location Encoding

It is crucial to choose an appropriate encoding for the geo-spatial area of a place. As al-
ready denoted in section 3.1.1 this area may consist of one or more polygons represented
using WGS84 coordinates. The location encoding should therefore support the definition of
polygons. Additionally, the encoding has to comply with the format chosen for embedding
metadata into HTML, which essentially means that encoded polygons should be representable
as simple strings.

The use of simple geo-tagging methods, which are most likely to utilize ICBM addresses4 is
therefore not sufficient as they can only represent a single spatial position. Other standards
like UPU S42 or OASIS xNAL5 are able to represent real world places but using them would
also be inappropriate as no self-defined regions can be encoded.
RDFGeom provides the means to represent the geo-spatial area of a place using the RDF
vocabulary. It is possible to define polygons which have either a 2 or 3 dimensional represen-
tation. An adequate way of embedding RDFGeom into a web page would be using eRDF or
RDFa, but since META tags are used for embedding metadata the RDF triplets would have
to be represented within a string. The contained triplets would still be easily parsable by a
machine but this location encoding would be unsuitable as it leads to META tags with un-
reasonably long strings. Moreover, there has been no activity around the RDFGeom project6

since 2004.
Other than the encoding standards mentioned above, one could use KML or GML for poly-
gon encoding. Both languages use XML as a representation format but GML is specialized
to encode any type of geographic content (e.g., bridges, roads, vehicles, etc) whereas KML
supports only the more primitive geometric types such as polygons, points and boxes and
focuses on the visualization of the geographic information. The number of nested XML ele-
ments is high if trying to represent geo-spatial regions using one of these encoding standards.
Therefore it can be fairly tedious to write and interpret a polygon encoded using GML or
KML. An example of a polygon using GML is shown in listing 3.5.
<gml:Polygon>
<gml:outerBoundaryIs>
<gml:LinearRing>
<gml:coordinates>0,0 100,0 100,100 0,100 0,0</gml:coordinates>

</gml:LinearRing>
</gml:outerBoundaryIs>

</gml:Polygon>

Listing 3.5: Polygon encoded using GML

This is the reason why GML supports various profiles, including a profile defining a smaller
and more comprehensible subset of available geometry types, as well as reducing the level
of nested XML elements when defining a geometric structure. One of these profiles, namely
GEORSS SIMPLE, provides the means to encode the simplest geometric structures only (e.g.,
closed polygons, points and boxes), however those structures can be represented as a single
strings.

The format actually used is based on the GEORSS SIMPLE profile of GML since it is capable
of encoding a polygon within a single string. In contrast to GEORSS SIMPLE it introduces

4Encoding a latitude/longitude pair using WGS84.
5Postal addressing standard.
6http:// fabl.net/vocabularies/geometry/1.1/

http://fabl.net/vocabularies/geometry/1.1/

20 3.1. PLACES AND SERVICES

a third coordinate for the height, which can be set but is not strictly required. The format
can easily be processed by a search engine and is stripped down to contain only the required
information. Several examples of the format used can be seen in the listings below.
"8.54220807552338,47.3663707741083 8.54200959205627,47.3668285758221
8.54023396968842,47.3665597086304 8.54071140289307,47.3659929030338"

Listing 3.6: 2-dimensional polygon

"8.54220807552338,47.3663707741083 8.54200959205627,47.3668285758221
8.54023396968842,47.3665597086304 8.54071140289307,47.3659929030338 400"

Listing 3.7: Polygon at a height of 400m over sealevel

"8.54220807552338,47.3663707741083,234 8.54200959205627,47.3668285758221,235.7
8.54023396968842,47.3665597086304,231.3 8.54071140289307,47.3659929030338,233"

Listing 3.8: An arbitrary polygon

As can be seen above, the individual polygons are represented as a list of latitude/longitude
pairs separated by a colon. The format supports an additional coordinate for the height,
which can be stated at the end of the string (see listing 3.7) if all vertexes of the polygon
have the same height. If the height is different for all vertexes the polygon is encoded using
latitude/longitude/altitude triplets as can be seen in listing 3.8. The EBNF of the location
encoding format is shown below.
poly ::= poly_2d | poly_3d
poly_2d ::= point_2d, point_2d, {point_2d}+, [number]
poly_3d ::= point_3d, point_3d, {point_3d}+
point_2d ::= number, ",", number
point_3d ::= number, ",", number, ",", number
number ::= ["-"] , (integer | float);
integer ::= nonzero-digit , {digit}
float ::= integer "." digit { digit }
digit ::= nonzero_digit | "0"
nonzero_digit ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Listing 3.9: EBNF of the location encoding format

Dublin Core provides a term which can be used to identify a spatial region of interest,
DC.coverage.spatial. As Dublin Core does not define the format to encode this region, the
format described above is used and characterized by setting the schema attribute of the META
tag to WOPALO.polygon. For specifying the level of a place the DC.coverage.spatial TERM
is used too, but the schema attribute is set to WOPALO.level. To use the WOPALO schema
it has to be included; see listing 3.4 for how this is actually done.

CHAPTER 3. DESIGN 21

3.2 Webcrawler

One of the main focuses of the system is to allow users to define arbitrary places and services
by creating the respective place and service pages. These web pages can be stored on any
host in the World Wide Web and if the embedded places or services should be considered by
a search engine when performing queries, these pages need to be indexed beforehand. There
is a group of programs called spiders, bots or crawlers which wander the web successively
by following the META links and HTML links of known web pages. They collect the data
they are interested in concerning the visited web pages and store this data for various reasons.
Since place and service pages are scattered across the internet a webcrawler is exactly what
is required by the system to gather place and servicerelevant information.
Crawling the internet can be very time-consuming and will probably yield only a handful of
interesting results. But as one of the assumptions is that places and services from the Web of
Places and Locations form some kind of more tightly linked overlay, links encountered on
web pages will only be followed for a certain depth if not leading to any valuable information
(a place or service page).

The webcrawler provides two crawling modes. One usable for re-crawling already indexed
place or service pages and one for quick indexing of newly added or modified place or service
pages. The crawling modes are described below along with the pseudocode.

3.2.1 Regular Crawl

This is the normal crawling mode which will take all place page and service page URLs
stored in the index and process them as described by the pseudocode in the listing below.

global urls;
add_urls(known_urls);

while count(urls) > 0:
process_url(url);

process a single web-page
def process_url(url):
crawl the page and collect interesting data if the
crawl depth hasn’t been reached yet
if crawl_depth_ok(url):
page = crawl_page(url);
links = extract_links(page);

check if the page is a place or service-page
if of_interest(page):
store the page in the index and add all links
store_page(page);
add_urls(links)

else:
add all contained links
add_urls(links);

This crawling mode will usually require some amount of time and given the fact that most
of the already indexed pages will not change too often during their lifetime, there should be
some delay before re-crawling the respective web pages.

22 3.2. WEBCRAWLER

3.2.2 Single Resource Crawl

This crawling mode is designed for the scenario when a single web resource should be
crawled and processed. It is obvious that the webcrawler should be faster when only a single
resource is being crawled. However, the web resource being processed might have several
links (HTML links and META links) to other place or service pages, increasing the number
of pages that will be crawled. In the worst case scenario, the number of crawled resources
might be the same as when doing a regular crawl. To obtain the desired behavior and avoid
the re-crawling of all indexed pages, only the place and service pages which have been mod-
ified in the meantime will be processed. When encountering an unchanged place or service
page the contained links will not be followed. The pseudocode is shown in the listing below.
global urls;
add_urls(single_url);

while count(urls) > 0:
process_url(url);

process a single web-page
def process_url(url):
crawl the page and collect interesting data if the
crawl depth hasn’t been reached yet
if crawl_depth_ok(url):
page = crawl_page(url);
links = extract_links(page);

check if the page is a place or service-page and if
it has been modified recently
if of_interest(page) and modified(page):
store the page in the index and add all links
store_page(page);
add_urls(links)

else:
add all contained links
add_urls(links);

CHAPTER 3. DESIGN 23

3.3 Search Engine

The search engine is the most essential part of the system, connecting real world places with
places from the Web of Places and Locations. If provided with a geo-spatial position the
search engine can be used to query for a list of places in the neighborhood; perform a spatial
query. The places returned are ranked according to their relevance which is computed on the
basis of several criteria discussed in sections 3.3.3 and 3.3.4.
The geo-spatial position provided defines the point of interest and is encoded as a latitude/long-
itude pair using the WGS84 reference system. If the position is indoors the latitude/longitude
pair is supplemented by an integer value specifying the level of the building the floor or room
is currently located on. Henceforth, spatial positions encoded as latitude/longitude pairs are
referred to as outdoor positions and positions encoded as latitude/longitude/level triplets are
referred to as indoor positions.
To limit the number of results returned by a search enginequery and due to the assumption
that places further away are less interesting than places in the vicinity, the size of the neigh-
borhood is limited by a search mask around the point of interest. This search mask is used
to filter all places not intersecting with it, hence these places will not be considered by the
query. Besides that, some additional filters will be applied to places contained in the search
mask, depending on the queried geo-spatial position (see section 3.3.2).
Additionally, the search engine can be used to query for a list of services at a given place. The
services are sorted according to their relevance, with the criteria described in section 3.3.5.
As the search engine is merely used for queries it utilizes the index maintained by the web-
crawler.

In the following section the spatial ranking assumptions are discussed. From these assump-
tions a set of filters and spatial ranking criteria can be derived, see section 3.3.2 and 3.3.3.
Afterwards additional ranking criteria for places are covered (see section 3.3.4) which is fol-
lowed by a section (3.3.5) discussing the used service ranking criteria.

3.3.1 Spatial Ranking Assumptions

To be able to appropriately rank places, the spatial ranking criteria need to be based on a set
of assumptions that correspond well with people’s subjective idea of spatial relevance.
The following assumptions are used for spatial ranking:

• Places which are smaller and/or nearer than others are considered more important.
This is because smaller places tend to provide very specific services and because the
user is typically interested in location-based services in his or her vicinity.

• If the spatial position is an outdoor position, outdoor places are of prime interest; if the
position is an indoor position, places located indoor are of prime interest.
This is based on the fact that services available indoors or outdoors will usually be
different and that the user is usually interested in the ones available either indoors or
outdoors depending on his current location.

24 3.3. SEARCH ENGINE

3.3.2 Place Filters

The place filters are used to filter places which are not relevant in the current context and
are based on the second assumption. Depending on whether the queried spatial position is
located indoors or outdoors, some of the places contained in the respective search mask will
not be considered in the result. The search engine filters outdoor places if the position is
located indoors and filters indoor places if the location is outdoors.

3.3.3 Spatial Ranking Criteria

The spatial ranking criteria determine the relevance of a place for a given geo-spatial position
and are derived from the first assumption.
There is a single ranking criterion used to rank the size of a place which is based on its area.
The criteria for the proximity of a place to the point of interest are based on the minimum
object distance, the maximum object distance, the position of the centroid and the level of the
place if it is indoors. All the criteria influence the overall spatial rank of a place by introduc-
ing a small number of penalties each. The penalty is used to penalize places not conforming
to the spatial ranking assumptions (e.g.: large places and places that are far away from the
point of interest). Places that have smaller penalties than others will be ranked higher.
The penalty values for the mentioned criteria are computed using penalty functions; the over-
all spatial penalty is computed by computing a weighted sum of the individual penalty values:

penalty = [warea, wmin, wmax, wcentroid, wlevel] ∗ [farea, fmin, fmax, fcentroid, flevel]T

The penalty functions are unconstrained, meaning that the resulting penalty value can be ar-
bitrary high. This is done so that if a place performs poorly for some ranking criterion, it will
have a poor overall spatial rank (e.g.: standing directly next to a place covering the area of
Switzerland). If one constrained the penalty functions to return penalty values between zero
and one, a place could be ranked better in comparison with a given other one by compensat-
ing for one high penalty value with other low ones. However, this is undesirable as a place
should not be able to compensate for being way too large or too far away, hence the penalty
functions are unconstrained. The individual penalty functions are of the following form:

f = f(~x,~c)

The values computed by the penalty functions f depend on the queried spatial position ~x and
a set of constants ~c used to tune the behavior of the penalty function and thus the resulting
penalty value.
The weights w used to compute the overall spatial penalty and the constants ~c used in the
individual penalty functions had been determined using various scenarious, see chapter 4.7.

On the following pages the spatial ranking criteria are discussed in turn. For each criterion it
is explained why it was chosen and the used penalty function is depicted along with an ap-
plication scenario. The curve shapes of the penality functions are based on design decisions,
the constants ~c for the functions are merly used for tuning their behaviour. The constants for
the penalty functions are set to the values that turned out best when training the individual
penalty functions with the testbed (see chapter 4.7); the weights used are set to 1.
A preliminary evaluation of the search engine with respect to spatial queries can be seen in
chapter 5.

CHAPTER 3. DESIGN 25

3.3.3.1 Area

A place is considered to be more important the smaller it is. The reason for this is that
information or services associated with a place tend to be more specific if it is small compared
to a place covering a larger area. An example of this would be a tram station probably having
more specific services compared than a place covering the region of Switzerland.

0 200 400 600 800 1000

0

5

10

15

Area (in m2)

P
en

al
ty

(fl
oa

t
va

lu
e)

Function:

f =
√

area

c1

Chosen constant values:

c1 = 2

Figure 3.7: Area penalty function

Penalty Function The area penalty which can be seen in figure 3.7 is invariant because it
is completely independent of the proximity of the polygon to the point of interest or the size
of the search mask. The penalty function grows with the square root of the area so that it will
not increase too rapidly. This is done so that extending a place in one direction, which will
increase its area by a multiple, will not influence the penalty too much.

Figure 3.8: Area rank application scenario

Application Scenario Both places in figure 3.8 have the same minimum and maximum
object distances to the point of interest, marked with a blue cross. The spatial ranking of the
green place will be better as its area is smaller.

26 3.3. SEARCH ENGINE

3.3.3.2 Centroid

The centroid penalty is used to penalize places with large perimeter and comparably small
area . Usually the shape of a place having these properties has some sort of extension(s) (e.g.,
the red place in figure 3.10). The smaller the area of such an extension, the less important
proximity to the area is.

0 20 40 60 80

0

10

20

30

40

Centroid distance relative to
max-min-distance (in %)

P
en

al
ty

(fl
oa

t
va

lu
e)

Function:

f =
c1

e
d
c2

d = 100 ∗ CB

AB
c3

Chosen constant values:

c1 = 200
c2 = 10
c3 = 1.2

Figure 3.9: Centroid penalty function

Penalty Function The penalty, depicted in figure 3.9, depends on the distance of the cen-
troid from the point of interest compared to the minimum and maximum object distance. The
nearer the centroid is to the maximum distant point the higher is the penalty.
In most cases this penalty will not influence the overall spatial penalty too much.

Figure 3.10: Centroid rank application scenario

Application Scenario The red place in figure 3.10 has a worse spatial ranking than the
green one as its centroid is nearer to the maximum distant point. The area, the minimum and
maximum distance of both polygons from the point of interest are the same.

CHAPTER 3. DESIGN 27

3.3.3.3 Minimum Object Distance

This penalty depends on the distance from the point of interest to the nearest point of a place’s
polygon. As expected, places further away are considered less important than places in the
vicinity of the centroid.
If the point of interest lies within a polygon of a place the minimum distance penalty equals
zero which is reasonable as one could not possible get any nearer to that place.

0 20 40 60 80 100

0

50

100

150

Minimum distance (in m)

P
en

al
ty

(fl
oa

t
va

lu
e)

Function:

f = min + c1 ∗
minc2

mask_radius

Chosen constant values:

c1 = 1.2
c2 = 2

Figure 3.11: Minimum distance penalty function

Penalty Function This penalty function (figure 3.11) grows more or less linearly and ad-
ditionally increases if a place is located nearer the search mask boundaries. This is done as
places situated near the search mask boundaries will hardly be of interest for a reasonably
large search mask.

Figure 3.12: Minimum distance rank application scenario

Application Scenario The places in figure 3.12 cover the same area and have the same
maximum distance. The green place will be ranked higher as it is nearer to the point of
interest.

28 3.3. SEARCH ENGINE

3.3.3.4 Maximum Object Distance

This penalty depends on the distance from the point of interest to the furthest point of a
place’s polygon. Places which are more compact than others will get a smaller penalty. This
criterion is useful to penalize places distributed over a lot of territory, but covering a rather
small area (e.g., a long road).

0 20 40 60 80 100

0

10

20

30

40

50

Maximum distance (in m)

P
en

al
ty

(fl
oa

t
va

lu
e)

Function:

f =
√

max ∗ c1

c2

Chosen constant values:

c1 = 100
c2 = 2

Figure 3.13: Maximum distance penalty function

Penalty Function This penalty function (see figure3.13) decreases slightly the further it
is from the maximum distant point of the polygon. As a result the other spatial ranking
criteria get increasingly more important, which to some extent tolerates nearby places having
extensions in one or more directions (e.g., standing near position B in figure 3.10).

Figure 3.14: Maximum distance rank application scenario

Application Scenario Figure 3.14 shows two places of the same size and with same dis-
tance to the point of interest. The spatial rank of the green polygon is better as it more
compact.

CHAPTER 3. DESIGN 29

3.3.3.5 Level

This penalty applies to indoor places only. Places which are on the same floor will be pre-
ferred over places which are a floor higher or lower than the current one. This makes sense
as places on the same level are nearer and therefore usually easier to reach.

0 1 2 3 4

0

100

200

300

400

Difference in levels

P
en

al
ty

(fl
oa

t
va

lu
e)

Function:

f = c1 ∗ |levelposition − levelplace|

Chosen constant values:

c1 = 100

Figure 3.15: Level penalty function

Penalty Function The penalty function for the level which can be seen in figure 3.15 grows
linearly as there is no reason to increase or decrease it if the level difference grows. The
penalty value per level was selected in such a way that it can be compared to the penalty of a
place located on the same floor in a certain distance away of the point of interest.

Figure 3.16: Level rank application scenario

Application Scenario The green place in figure 3.16 will get a better spatial rank as it is on
the same floor and an acceptable distance from the point of interest. The size of the places in
the figure are the same.

30 3.3. SEARCH ENGINE

3.3.4 Additional Ranking Criteria

There are cases when spatial ranking alone is not enough. A good example for this would
be a user located in France near the Château de Versailles, surrounded by a large number of
booths selling food, souvenirs and other items of interests to the visitor. If all these real world
places had a virtual counterpart in form of a place page a search engine query using spatial
ranking would, of course, only favor all near and small places possibly ranking Versailles as
the least important place.
What has not been taken into account so far is the "popularity" of a place which should
increase its overall rank. Since it is difficult to tell which place is popular and which is
not, the Google PageRank [3] of the respective place page is used as a metric. The Google
PageRank is a measure determining the citation importance of a web page. If a web page
contains valuable data, it will be cited (linked) by a large number of web pages spread across
the internet thus having a high PageRank. The PageRank ranges from 0 to 9, with 9 denoting
the highest rank. Depending on the PageRank a fixed percentage of the area penalty of the
place is ignored, thus artificially shrinking the size of it. One could argue that it would be
better to decrease the overall penalty of a popular place but this would penalize less popular
places being in the immediate vicinity.
As already stated, this additional ranking criterion is applied after all places are spatially
ranked and because it depends on the area penalty.

The function defining the area penalty percentage reduction to be applied is depicted in figure
3.17.

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

PageRank

A
re

a
re

du
ct

io
n

(i
n

%
)

Function:

f = area_rank ∗ 1
c1

9−page_rank

Chosen constant values:

c1 = 2

Figure 3.17: Advantage through high PageRank

A typical web page has a PageRank of about 5. Assuming that a typical place page will also
have a PageRank about 5, the corresponding place should not profit too much from its rank.
This is the reason for not having a linear function, but only a function rewarding place pages
with a PageRank above normal.

CHAPTER 3. DESIGN 31

3.3.5 Service Ranking Criteria

A place may be referenced by several services which need to be ranked as well. The ranking
criteria for services can be mainly categorized into two classes, one based on user behavior
(e.g., the number of visits to a certain service page) and one based on the link graph of service
pages (e.g., Google PageRank). The problem with the first class of ranking criteria is that they
can be easily manipulated by a user and are therefore not of any practical use.

A few criteria of both classes have been analyzed and the results are discussed below.

Page Visits The ranking criterion is based on the number of page visits of the service page
since it was indexed by the webcrawler; a service page visited more often has a better
rank. A disadvantage of this criterion is that newly indexed services have to be treated
specially because of their low initial rank. One could also change the criterion to be
based on the number of page visits per month or day which would be a bit better.
The main problem of this ranking criterion is that it can be manipulated easily by
repeatedly visiting the same service page and therefore it is of limited value.

Page Follows This criterion is based on the number of page visits of a service page when
a particular place page was visited beforehand. It has the same disadvantages as the
criterion described above and therefore is not used either.

Page Rank This criterion is based on the Google PageRank of the page. The PageRank
determines the citation importance of a web page; the higher this rank the better.

Page References This criterion is based on the number of place pages a service page refer-
ences. Since most services are expected to be designed for exactly one place the rank
gets worse the more place pages a service page links. This is done to avoid spamming
by a single service that is linking a large number of places.

The services are ranked using the last two criteria as they are independent of individual user
behavior. A service receives a certain advantage over other services if either having a high
PageRank or if it references only a few places. As only two criteria are used, the overall
rank is computed using a function combining both criteria. This function is biased in such a
way that a service page with a higher PageRank will be penalized less for referencing more
than one place page (see figure 3.18). This is based on the assumption that a page with high
PageRank is more important and trustworthy than one having a low PageRank and linking a
lot of places. Besides, as it is exponentially harder to get a good PageRank, service pages
having a good PageRank will have an exponential advantage over service pages with a lower
PageRank.

32 3.3. SEARCH ENGINE

PageRank = 3

PageRank = 7

2 4 6 8 10

0

20

40

60

80

100

120

Places referenced

A
dv

an
ta

ge
(fl

oa
t

va
lu

e)

Function:

f =
page_rankc1

|referenced_places|
Chosen constant values:

c1 = 2.5

Figure 3.18: Combined service penalty

CHAPTER 3. DESIGN 33

3.4 Mobile Phone Client

The mobile phone client is a frontend for the search engine tailored for a specific set of mo-
bile phones. The reason for having a frontend for the search engine is twofold. On one hand,
a user should be able to consume location-based services through a minimum amount of in-
teraction with the system. On the other hand, the geo-spatial position of the user should be
determined automatically by the client.
When located in the neighborhood of a place a user can use the mobile phone client to search
for it. The client can determine the spatial position by using the capabilities of a mobile
phone. It uses GPS to retrieve the current position in form of a latitude/longitude pair en-
coded in WGS84. If GPS positioning is successful the mobile phone client automatically
queries the search engine for places in the vicinity of the confirmed position and presents
these places to the user. The user can then choose to view the services accessible at one of
the returned places. Again, a search engine query is performed in the background by the
mobile phone client. The query returns a ranked set of services for the selected place which
are then presented to the user. By clicking on one of the displayed services the user is taken
to the corresponding service page, thus actually consuming a location-based service.
It is not possible to determine the GPS position of a user at all times. The user could be
located indoors and therefore beyond the reach of any satellites used by GPS. As a result, the
mobile phone client can try to determine its position by sensing for Bluetooth devices in its
vicinity. Since the indoor positions for some Bluetooth devices are known a priori, the mo-
bile phone client can use these positions to query the search engine for places located either
indoors or outdoors.

34 3.5. FRONTEND

3.5 Frontend

The frontend is an optional component of the system and has the aim of simplifying the
addition of places to the Web of Places and Locations. It displays a scrollable and zoomable
map and enables the user to point-and-click to define the geo-spatial area of a place on the
map. By clicking on the map, the vertexes of a place’s geographic shape are defined at
the clicked geospatial positions. This way the user does not need to specify the collection
of latitude/longitude pairs a place’s geographic shape consists of manually and can actually
observe the place while defining it. In addition to this place, the frontend renders previously
defined places onto the map. This is done for informational purposes and to minimize the
probability of a user creating a place which has already been defined by another user.
The frontend provides the means to store the created places. Each of the stored places has
its own dedicated place page hosted by the frontend, therefore making it accessible for a
webcrawler. Places can be stored at the frontend as the typical user is neither able to host a
place page nor actually wants to do so. On the other hand if the user decides to host the place
page by him- or herself, the frontend can generate the required HTML code for the place
page of the respective place.
The place model used (see section 3.1.1) distinguishes between indoor and outdoor places
which can both be defined using the frontend. As the creation of outdoor and indoor places
is different, they are discussed in separate sections below.

3.5.1 Defining Outdoor Places

The user is presented with a map which can be used to define the geo-spatial area of a place.
This area may consist of one or more polygons and the user can define the vertexes of these
polygons by simply clicking on the map. When the user has defined the geographic shape
of the place, he or she has to specify its name and description. At this point the user can
choose to let the frontend store the place or if the user decides to host the place personally,
the frontend can output the HTML code for the place’s place page.

3.5.2 Defining Indoor Places

The frontend can be used to create indoor places that define either a room or a floor of a
building. To start the definition of indoor places the user is required to select the building
they should be contained in. The user may then add floors to the building and for each floor
the user may add zero or more rooms. When defining a floor the user has to specify its name,
description and most importantly its level so that it is clear that the respective place is located
indoors. The user can then add rooms to a floor by defining their geo-spatial area on top of a
map in the same manner as when defining outdoor places and is required to provide a name
and description for the corresponding place.
As it is difficult to identify the vertexes of the geographic shape of a room, a user can provide
a floor image which will then be rendered on top of the map. The frontend provides an
additional view to appropriately position, scale and rotate this image. This view consists of
two regions, one showing the uploaded image and the other showing a map and rendering
the respective floor polygon on top of it. The regions have two draggable reference markers
which can be used to position the floor image. If finished, the user can choose to save the
floor image together with its position.

CHAPTER 3. DESIGN 35

3.6 VBZ Service

The VBZ service was designed to have a useful sample service for the system. The idea of the
service is to display electronic timetables for trams departing at distinct stations, i.e. trams
departing from a station within the next few minutes are displayed.
To actually make this electronic timetable available at certain places the VBZ service pro-
vides several service pages. A service page renders the departures from a single tram station
and references the place page of the corresponding tram station, therefore being available at
the very place (e.g.: electronic timetable page for Haldenegg referencing the place page of
Haldenegg).
Since a person consuming such a service will usually be located near to a tram station and
carrying some sort of handheld running the mobile phone client (see section 3.4), the service
pages are optimized for smaller displays.

Implementation 4
This chapter covers the implementation of the components described in chapter 3 and de-
picted in figure 4.1. Besides these components, this chapter also covers the implementation
of the testbed, which was designed to train the penalty functions used by the search engine
when doing spatial queries.
As several components were implemented as web applications, a separate section (section
4.1) is dedicated to the design decisions made, regarding the chosen frameworks and pro-
gramming languages.

Figure 4.1: Component Overview

4.1 Used Frameworks

4.1.1 Web Applications

The search engine, the frontend and the VBZ service have been developed as web applica-
tions to be accessible in the World Wide Web. PHP and the Ruby on Rails (RoR) framework
were the choices which have been considered for implementing the respective applications.

37

38 4.1. USED FRAMEWORKS

RoR was actually used as it provides certain advantages over PHP in terms of facilities. RoR
forces a programmer to structure his program according to the MVC (model-view-controller)
architecture [11]. The MVC architecture separates the application logic from the user inter-
face and a set of model classes, resulting in an application which is easier to modify (e.g.,
one can modify the visual appearance of the application without affecting the application
logic). RoR allows a programmer to create templates for the individual views and allows dif-
ferent views to share parts of these templates. Additionally, RoR automatically maps model
classes to database tables (OR/M) and allows the programmer to easily store and retrieve
model specific data within the application. Besides that, RoR offers the possibility to map
URLs to arbitrary controllers, actions and parameters. The mapping of an URL to such a con-
troller/action pair is called a route in the context of RoR. One could have used PHP together
with Smarty1 (provides view templates), Propel2 (provides OR/M) and Apache mod_rewrite3

(provides rewriting of URLs) to get the same behavior as when using RoR but the configura-
tion overhead would have been much larger.
Furthermore, there exist several RoR plugins and RubyGems4 which facilitate programming
and project management when developing with RoR. The ones used for all web projects are
Piston5, which is a tool for managing rails plug-ins and the Haml plug-in6. The Haml plug-in
is used to parse view templates written in Haml. Haml is a markup language that enables
a programmer to write shorter and more comprehensible code and is used to describe the
XHTML of a web document.
The web applications use PostgreSQL as their database backend. The reason for using Post-
greSQL is that it can be used together with PostGIS7, which is a spatial database extension
that allows one to store geometric objects such as polygons in the database. PostgreSQL itself
could have been used for storing simple geometric objects as it provides the capabilities to do
so, but PostGIS has the benefit of a spatial index which can tremendously speed up certain
queries. Moreover, PostGIS provides a comprehensive set of geometric methods (e.g., spatial
intersection, spatial overlap) and geometric constructors.

4.1.2 Mobile Phone Client

There were two decisions to be made for the mobile phone client: one concerning which mo-
bile phone to use and another concerning the programming language.
The iPhone was one of the mobile phones reviewed. The main problem of the iPhone gener-
ation available at time when the mobile phone client was developed, was the lack of a GPS
receiver. The only way to retrieve the spatial position of a user was by means of WLAN
or Cell-IDS. WLAN positioning is impossible at certain geospatial positions, whereas posi-
tioning using CELL-IDS is not very accurate. The other disadvantages of the iPhone were
the small user base, actually writing applications for it, and the limited number of available
libraries, being rather new at that point in time.
The other mobile phone considered and actually used was the NokiaN95 8GB. The NokiaN95

1http://www.smarty.net/
2http://propel.phpdb.org/ trac/
3http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
4A gem is a package containing e.g., a ruby library.
5http://piston.rubyforge.org/
6http://haml.hamptoncatlin.com/
7http://postgis.refractions.net/

http://www.smarty.net/
http://propel.phpdb.org/trac/
http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
http://piston.rubyforge.org/
http://haml.hamptoncatlin.com/
http://postgis.refractions.net/

CHAPTER 4. IMPLEMENTATION 39

8GB uses the S60 Platform, which is a software platform for mobile phones that runs on top
of SymbianOS. The NokiaN95 8GB has an integrated GPS receiver and can be programmed
using either SymbianOS C++, J2ME or Python. Symbian OS’s flavor of C++ is very special-
ized and has a rather high learning curve, which is also the reason why it was disregarded
as a possible programming language. J2ME enables a programmer to write applications for
smaller devices using a subset of the Java programming language. Due to time constraints
and the need to write quite a bit of Java code even for simple programs, the mobile phone
client was not implemented using Java. The mobile phone client was developed in Python as
it emphasizes programming productivity. To be more specific: the mobile phone client was
developed in Python for S60 (PyS608) which is Nokia’s port of the Python language for the
S60 Platform. PyS60 comes with a Python interpreter that can be used to run Python scripts
located on the mobile phone. PyS60 allows a programmer to use the default widgets of the
mobile phone when writing applications and comes with libraries that allow one to easily
perform GPS inquiries or do Bluetooth sensing.
As incremental program-and-test cycles while developing the mobile phone client would have
necessitated copying the respective Python script to the mobile phone each time by using an
USB cable, the Batoo Rapid Prototyping Environment was used. The Batoo Rapid Prototyp-
ing Environment is an application environment that can be used when writing Python scripts
for the S60 platform. It allows the synchronization and execution of Python scripts located
on a computer with a mobile phone. Synchronization is done by sending the code differ-
ences of the Python script to the mobile phone using Bluetooth communication. Besides
that, the Batoo Rapid Prototyping Environment provides a remote console that can be used
for simple debugging when remotely executing a Python script on the mobile phone. The
Batoo Rapid Prototyping Environment was developed by Robert Adelman at the Distributed
Systems Group of ETH Zurich.

4.1.3 Webcrawler

The webcrawler was developed using Java as the programming language of choice because
of existing experience and because of easy integration with a database using the appropriate
JDBC (Java DataBase Connectivity) driver.

8http://opensource.nokia.com/projects/pythonfors60/

http://opensource.nokia.com/projects/pythonfors60/

40 4.2. WEBCRAWLER

4.2 Webcrawler

The webcrawler is responsible for indexing place and service pages available in the World
Wide Web. It has been developed using Java and shares its database with the search engine so
that the search engine can utilize the indexed places and services when performing queries.
A schematic overview of the database layout can be seen in figure 4.3 on page 44.
As already noted in section 3.2, the webcrawler provides two modes of execution: one tai-
lored for indexing newly added or modified resources and one that visits previously indexed
place and service pages and is intended to be used for regular crawling. Both modes are
explained more thoroughly in this section.

The class hierarchy of the webcrawler, which can be seen in figure 4.2, is subdivided into a
set of model classes, database connector classes, utility classes and classes that work tightly
together with the application’s main class, the Crawler.

Figure 4.2: Class diagram of the webcrawler

The model classes are used to model web pages and can either represent a regular web page
not containing any valuable information with respect to location-based services, a place page
or a service page. They store relevant information about the respective web resource such as
hyperlinks, for instance. Each of the model classes references its corresponding peer class,
which is responsible for handling database specific operations like storing the page or retriev-
ing it.

Since the model- and database-related classes do not contain specific implementation details,
only the classes working together with the Crawler and the helper and utility classes are
discussed in the following sections. The crawl modes are discussed with the Crawler class.

CHAPTER 4. IMPLEMENTATION 41

4.2.1 Main Classes

CrawlerData

The CrawlerData class keeps track of all crawler relevant data. It stores a list of URLs
to web pages not yet crawled and provides methods to manipulate this list. Web resources
already processed will not be added to it to avoid infinite recursion.
The CrawlerData class additionally provides a method of checking whether the web-
crawler is permitted to crawl a specific resource. This can be determined by parsing the
robots.txt file of the host contained in the host’s web root directory. The robots.txt defines
disallow-paths, instructions for webcrawlers about paths and files that should be omitted when
crawling web pages from that host; this is called the Robots Exclusion Protocol. Unfortu-
nately, there is no official standard or RFC9 for the Robots Exclusion Protocol but all well-
known webcrawlers follow the instructions defined in the robots.txt file. A sample robots.txt
file can be seen in the listing below.
robots.txt for http://www.example.com/

disallow-paths for all agents
User-agent: *
Disallow: /cyberworld/map/
Disallow: /tmp/
Disallow: /foo.html

no disallows for samplebot
User-agent: samplebot
Disallow:

Listing 4.1: Sample content of http://www.example.com/robots.txt

If a host does not have a robots.txt file contained in its root directory, a webcrawler is basi-
cally allowed to crawl all hosted pages. If the file is present and contains a user-agent entry
matching the name of a webcrawler, the disallow-paths defined in the respective section are
to be used by that crawler (e.g., according to listing 4.1 samplebot is allowed to crawl all
web resources from http://www.example.com). Otherwise, the disallow-paths defined for all
webcrawlers are to be used, matching the "User-agent: *" entry.
The WoPaLo webcrawler, named wopaloC, conforms to the Robots Exclusion Protocol and
proceeds, as outlined above, to decide if a specific web resource can be crawled. For each
host the robots.txt file is processed once and the disallow-paths are stored and reused by the
CrawlerData class.

Crawler

The Crawler is the main class of the application and contains the main method. Upon
invocation of the main method it checks whether the CrawlerProperties are valid and
tests if an argument has been provided with the command line. It creates an instance of
the Crawler, initiates the database connection using the DBManager class and starts a
regular crawl if no argument was provided and a single resource crawl otherwise. Crawling
is terminated if all resources are processed.
Independent of the crawl mode, the Crawler visits the web resources in a breadth-first
fashion. Links found on crawled web pages are added to a list of not yet processed resources

9The RFC draft can be found at: http://www.robotstxt.org/norobots-rfc.txt

http://www.robotstxt.org/norobots-rfc.txt

42 4.2. WEBCRAWLER

and are crawled in turn. The reason for traversing web resources in this manner is to avoid
stack overflows due to deep recursions. However, sometimes it is important to process certain
links right away. This is the case for service pages and place pages that have META links
which reference other place pages (e.g., a service page referencing a place page or a place
page referencing its parent place page). The META links are processed right away to check
whether the referenced resource represents a valid place page, before modelling this reference
in the database. Moreover, to model this reference it is required to have both the referencing
and the referenced web resource stored in the database, which is another reason to follow the
reference first.

The crawl modes are discussed in more detail below.

Regular Crawl The Crawler retrieves a list of previously indexed web resources from the
CrawlerData class and starts crawling them in turn. The Crawler sleeps for a pre-
defined amount of time, before actually processing a resource from the list to limit the
number of requests per minute for a host. It checks whether the resource has already
been processed in this run or if the resource has been crawled within a certain interval.
If any of these criteria is true the web resource will not be crawled in this iteration.
The Crawler checks if it is allowed to process the resource conforming to the Robots
Exclusion Protocol and crawls the web page with the help of the HTMLUtil class. It
determines the Google PageRank of the resource, retrieves the MetaTags and Meta-
Links and creates the appropriate Page instance. If this instance represents a regular
web page it adds the contained HTML links to the list of web resources not yet crawled
and starts processing the next web resource.
If the web resource is either a place or service page, the Crawler resolves existing de-
pendencies (e.g., a service page linking a place page) by crawling these web resources
right away. It then stores the resource currently being crawled using the corresponding
peer object. The HTML links are added to the list of resources to process and the next
resource is crawled.

Single Resource Crawl The Crawler checks whether the provided command line argu-
ment represents a valid URL. It sleeps for a predefined amount of time and checks if the
resource has already been processed and if the resource can be processed based on the
Robots Exclusion Protocol. It then crawls the page, extracts the available MetaTags
and MetaLinks and creates the appropriate Page instance. If the Page has not
changed with respect to the place or service relevant metadata, crawling of this web
resource is terminated.
If the Page is a regular web page, the Crawler adds the HTML links found on the
web page to the list of web resources to process and considers the next resource. The
HTML links will only be followed for a certain depth if not referencing any place or
service pages. If the Page represents a place page or a service page, the Crawler
resolves existing dependencies by immediately crawling the respective web resources.
When the required metadata is present and valid, the Page is stored in the database.
The HTML links are added to the list of resources to process and the next resource is
crawled.

CHAPTER 4. IMPLEMENTATION 43

4.2.2 Helper Classes

DCUtil

The DCUtil class can be used to determine whether the type of MetaTag or MetaLink
encountered on a web page represents a DC element one is actually interested in (e.g., name,
description) and the type of the element. The DCMI proposes a method of embedding el-
ements of the DC vocabulary using META tags on a webpage. However, the webcrawler
is tolerant if a web page does not specify certain things (e.g, the absence of the DC- and
DCTERMS-schema definitions).

HTMLUtil

The HTMLUtil class is used for parsing web pages. It provides methods for retrieving a web
page and its MetaTags and MetaLinks. When downloading a web page using the method
provided by the HTMLUtil class, a request-header is send with the property "user-agent" set
to the name of the webcrawler, called wopaloC. This is done so that the host is aware of the
webcrawler it is visited by.

GeomUtil

This utility-class is used for parsing strings encoded in the location format described in sec-
tion 3.1.4 on page 19.

PageRankUtil

This utility-class can be used to determine the Google PageRank of a web page. This metric
is used both for place and service-ranking as described in sections 3.3.4 and 3.3.5.

CrawlerProperties

The CrawlerProperties class contains all constants used by the webcrawler. The con-
stants are defined in a configuration file provided by the system and may be overridden by a
user configuration file; see appendix B.1.

44 4.3. SEARCH ENGINE

4.3 Search Engine

The search engine enables a user to query for a ranked set of places in the vicinity of a geospa-
tial position and for a ranked set of services associated with a place. The search engine has
been developed using RoR and utilizes the same database as the webcrawler (for a schematic
database view, see figure 4.3).

Figure 4.3: Schematic overview of the database used both by the webcrawler and the search
engine

The search engine can return search results in various formats. These formats and the inter-
esting rails routes are described below. The possible input parameters for the shown routes
are covered in appendix C.1.

4.3.1 Available Formats

Currently there are only two formats available, namely:
HTML This is the default format that will also be used if the format argument is not set for
a route.
compact The result returned when using this format is of MIME type text/plain and is re-
turned in a representation that is both compact and simply parsable. This format is used by
the mobile phone client, which does not need a HTML representation of the query result as it
renders the result using the mobile phone’s default widgets.
The text format returned for spatial and for service queries is explained with the individual
routes in appendix C.1.

4.3.2 Routes

GET /places(.:format)

This route is used for spatial queries and requires at least a position parameter to be passed
along as an argument with the request. The position consists of a latitude/longitude pair
encoded using WGS84 and an optional level coordinate. An example request can be seen in
the listing below.
GET /places.compact?p=47.3802847176866,8.54478836059571&count=8&from=0

The passed position defines the point of interest and is used as the center of the search mask.
The search mask constrains the size of the neighborhood considered when a query on the

CHAPTER 4. IMPLEMENTATION 45

database is performed and has dimensions about 200m*200m. It is used to limit the amount
of considered places to a handful of places useful to the user (e.g., a user will probably not
benefit much from services bound to a place at a distance of 1km when on foot). Optionally
it is possible to provide the lower left and upper right position (encoded using WGS84) of a
custom search mask as an argument, which will replace the default mask.
The search mask is then used to construct the SQL query for retrieving all places spatially
intersecting with it. More precisely, the query will return all places having a bounding box
which intersects spatially with the search mask. The advantage of using bounding boxes is
that the query can utilize the spatial index defined for the geometric objects in the database,
resulting in a tremendous speedup.
The places returned by the SQL query are filtered. If the geographic position provided rep-
resents an indoor position, the outdoor places are filtered out; if the position represents an
outdoor position, indoor places are filtered out.
Each of the remaining places is then ranked according to the criteria discussed in section 3.3,
depending on the geometric properties of the place and its location compared to the point of
interest (e.g., minimum object distance). Some of these properties could be computed using
the capabilities of the PostGIS extension for PostgreSQL, but since neither the maximum
object distance nor the distance to a polygons centroid can be computed by the PostGIS ex-
tension, the properties are computed lazily by the search engine when being accessed for the
first time.
The places are sorted according to their rank and the list of returned places is truncated if a
certain threshold is reached. The remaining places are returned in the requested format; the
places returned for the sample request can be seen below.10

25,1,8
ETHZ IFW,ETH Informatikgebäude,http://places.wopalo.org/places/17
IFW Dachterasse,Dachterasse IFW Gebäude ETH Zürich,http://places.wopalo.org/places/132
RZ-Building,RZ-Building of ETH Zurich,http://places.wopalo.org/places/32
Gangway between IFW and RZ,Connection between IFW and RZ buildings,http://places.wopalo.org/places/33
Test Building,Test of an indoor building,http://places.wopalo.org/places/24
Crosswalk,Crosswalk,http://places.wopalo.org/places/135
Church of Liebfrauen,http://de.wikipedia.org/wiki/Liebfrauenkirche_...,http://places.wopalo.org/places/28
Haldenegg,Trambahnhaltestelle Haldenegg,http://places.wopalo.org/places/22

GET /services(.:format)

This route can be used to query for service pages referencing a place page with the given
URL. A sample request can be seen below.

GET /services.compact?url=http://places.wopalo.org/places/22

If a place with the provided URL is contained in the database, an SQL query is performed
retrieving all services referencing this place. The services are ranked according to the criteria
described in section 3.3.5 and sorted after their rank values. The list of ranked services is
truncated to limit the size of the result and can be further adjusted by providing parameters
for result mask (see appendix C.1 for the API description).
The services are rendered in the requested format; the services returned for the sample request
can be seen in the listing below.
1,1,1
VBZ Fahrplaninfo,Anschlüsse ab Zürich Haldenegg,http://vbzservice.wopalo.org/station/299915

10Some of the URLs have been replaced with "..." for the sake of readability.

46 4.3. SEARCH ENGINE

GET /hint

This route can be used to inform the search engine about a place or service page which might
have been updated and should be re-indexed by the webcrawler. A sample request can be
seen below.
GET /hint?url=http://places.wopalo.org/places/3

The route requires the URL of the web page as an argument and creates an instance of the
webcrawler, passing the URL as an input argument to it. The crawler proceeds as outlined in
section 3.2 and described more thoroughly in section 4.2.

CHAPTER 4. IMPLEMENTATION 47

4.4 Mobile Phone Client

The mobile phone client has been developed to allow the user to consume location-based
services when being in-situ. It has been implemented for the Nokia N95 8GB using Python
and uses the mobile phone’s default widgets to fit with its look and feel.

The sections below describe the main classes and the existing utility classes of the mobile
phone client. The class diagram of the mobile phone client can be seen in figure 4.4. Since
all user interactions are handled by the WoPaLoClient class, the possible user interactions
are described there.

Figure 4.4: Class diagram of the mobile phone client

4.4.1 Main Classes

WoPaLoClient

This is the application’s main class which is responsible for handling user input and executing
the appropriate actions.
When run for the first time, the WoPaLoClient displays the main menu. Currently the main
menu allows the user to select from two possible actions: display a list of outdoor places or
display a list of indoor places. A screenshot displaying the applications main menu can be
seen in figure 4.5(a).

When a user requests to view outdoor places, the GPSUtil class is asked to perform a GPS
query and return the spatial position. If this query is not successful, it is assumed that the
mobile device is located indoors. Bluetooth devices in the vicinity are then sensed is by
the BluetoothUtil class which will try to determine the spatial position as well (see the
BluetoothUtil class for more details on how this works). If the spatial position can not
be determined the application’s main menu is re-rendered. Otherwise the WoPaLoQuery
class is used to retrieve a list of places for the spatial position.

48 4.4. MOBILE PHONE CLIENT

(a) Main Menu (b) Places

Figure 4.5: Main views of the mobile phone client

The returned list is extended by "Next results" buttons and "Previous results" buttons by the
WoPaLoClient depending on the number of results returned by the query and is displayed
on the screen (see figure 4.5(b)). For each of the returned places a context-sensitive menu
can be displayed, which allows the user to go back to the main menu, show the place page
of the selected place using the internal web browser, query for the associated services or quit
the application. A screenshot showing the context-sensitive menu displayed for places can be
seen in figure 4.6(a).
If the user chooses to view the services associated with a place by either clicking on the place
or selecting the respective entry in the context-sensitive menu, the WoPaLoClient uses
the WoPaLoQuery class to query the search engine. Again, "Next results"- and "Previous
results"-buttons are added to the list depending on the number of returned results and the list
is displayed on the screen. When the user clicks on a service, the WoPaLoClient opens
the external browser and dispays the corresponding service page, thus enabling the user to
actually consume a location-based service.
The context-sensitive menu displayed for a service lets the user decide to display the main
menu of the application or to go "Back" (see figure 4.6(b)). As the WoPaLoClient keeps
track of recently retrieved places, selecting "Back" will re-render the previously displayed
places without querying the search engine again.

When the user chooses to view indoor places, the WoPaLoClient will only use the Blue-
toothUtil class for performing spatial positioning. If a list of places is returned, the
rendered menus and the behavior of the application is the same as when querying for outdoor
places, hence the same actions as described above are available to the user.

CHAPTER 4. IMPLEMENTATION 49

(a) Places (b) Services

Figure 4.6: Context-sensitive menus of the mobile phone client

WoPaLoQuery

This class is responsible for performing search engine queries. Depending on the query type
(e.g., a place query or a service query), it assembles the appropriate query string and queries
the search engine using the HTTPUtil class. It requests the search engine to return the
query results in the compact format (see section 4.3.1) as it uses the mobile phone’s default
widgets to render the results.

4.4.2 Utility Classes

HTTPUtil

This utility class can be used to open the internal web browser for a given URL or to retrieve
the content from a web page. The quirk with the latter is that the content of a web page can
not be read directly due to limitations of PyS60. The web page is downloaded and stored in a
temporary file first and then read from there.

GPSUtil

The GPSUtil class can be used to determine the spatial position by using GPS. It is used
to limit a GPS inquiry in time, as there are cases when no GPS positioning is possible (e.g.,
being indoor) and as a user should not have to wait longer than a certain amount of time. The
inquiry is automatically terminated after reaching the timeout. Additionally, the user may
terminate the GPS inquiry if he decides to.
The GPSUtil class informs the user of any ongoing GPS inquiry and offers the option to
abort the inquiry. A screenshot showing an ongoing inquiry can be seen in figure 4.7(a).

50 4.4. MOBILE PHONE CLIENT

BluetoothUtil

The BluetoothUtil class can be used to determine the spatial position by Bluetooth sens-
ing. The method for identifying the position is quite simple: it tries to match the MAC address
of a sensed device with a list of known MAC addresses. Each of these MAC addresses has
an associated geospatial position, and therefore the entries in the list are encoded as tuples of
(MAC address, geospatial position). The positions represent indoor positions (latitude/longi-
tude/level) as it is assumed that Bluetooth devices are encountered indoors. The list is stored
in a file on the device which is processed when creating an instance of the BluetoothUtil
class. An example mapping file can be seen in the listing below.
00:1F:3A:FC:05:84 47.3802847176866,8.544788360595703,0
00:1F:3A:FC:05:84 47.3802847176866,8.544788360595703,0

Just like the GPSUtil class, the time used for spatial positioning is limited. Bluetooth sens-
ing is terminated when the timeout is reached or if the user opts to terminate it.
The BluetoothUtil class informs the user of ongoing Bluetooth sensing and the option
to abort it. For a screenshot showing ongoing Bluetooth sensing see figure 4.7(b).

(a) GPS inquiry (b) Bluetooth sensing

Figure 4.7: Notification windows of the mobile phone client

UIUtil

This utility class provides methods for displaying a dialog and temporarily setting the on-
screen menu. It is used to inform the user about ongoing spatial positioning and is used by
the GPSUtil and BluetoothUtil classes.

CHAPTER 4. IMPLEMENTATION 51

4.5 Frontend

The main purpose of the frontend is to simplify the definition of places for the user. It en-
ables the user to define both outdoor and indoor places on a map displayed in the birds-eye
perspective. Additionally, it offers the possibility to store the created places as the user does
not typically want to host the associated place pages. The frontend was developed as a web
application using RoR at the sever backend and JavaScript together with the Google Maps
JavaScript API at the client side to visualize defined places.

Since outdoor and indoor places are defined differently they are covered in separate sections.

4.5.1 Defining Outdoor Places

Outdoor places can be created and modified on top of a scrollable and zoomable Google Map
displaying satellite images of the Earth and can be shown in fullscreen. To aid the user in
defining new places a context-sensitive help is always displayed in the lower right-hand cor-
ner of the map. An image showing the outdoor view can be seen in figure 4.8.

Figure 4.8: Outdoor view of the frontend

Interactions with the map are handled on the client side, which is why a great portion of the
application logic is written in JavaScript (see section 4.5.1.1). Communication with the server
is implemented with AJAX requests11 to the appropriate routes, discussed in section 4.5.1.2.
The responses are processed at the client side and depend on the returned HTTPResponse
status.

11Using the Prototype library which works with all common browsers and is included by default with RoR.

52 4.5. FRONTEND

4.5.1.1 JavaScript Classes

As already indicated, the JavaScript classes handle interactions with the map. The classes of
interest and the application level methods of the main JavaScript class are discussed below.
An overview of the implemented JavaScript classes can be seen in figure 4.9.

Figure 4.9: JavaScript class hierarchy

MapControl

This is the main JavaScript class responsible for controlling objects on the map, user inter-
actions with these objects by registered event handlers, and handling communication with the
server backend. It contains a set of methods which are triggered by different user actions.
These actions are:

update map This action is triggered when moving or zooming the map. It removes previ-
ously visible places that go out of sight and renders other places as they become visible.
Compared to redrawing all places contained in the current viewport this approach has
the benefit of reducing the amount of data required to be transmitted by the server. The
client sends a request to the server retrieving all places in KML format that are not yet
contained in the current viewport. These places are then parsed locally by the client
using the GeoXml library and are rendered onto the map. The GeoXml KML parser
is used instead of the default KML parser provided with the Google Maps JavaScript,
as the latter tends to do certain optimizations expressing itself in places not being re-
moved correctly from the map.
Updating the map is an expensive and resource consuming operation with respect to the
amount of server requests to the frontend and the time required to parse the returned
places. As zooming the map by more than one zoom level will triggers an event for
every zoom level, places contained in the current viewport will be re-rendered several
times within a second. The same applies to the scenario where a user moves the map
from point A to point B by dragging it incrementally by a short distance. Actually, it

CHAPTER 4. IMPLEMENTATION 53

is not necessary to display the places while a user is still moving or zooming the map,
since the user would not be interacting with the map if interested in places contained
in the currently displayed area. Therefore all server requests regarding place updates
are cancelled, while a user is still interacting with the map. A single request is sent to
the frontend after the user has stopped interacting with the map for half a second. The
DelayedFunctionObject was used to implement the desired behavior.

create place The user can create a polygon by defining vertexes when clicking on the map.
If the polygon is closed by either clicking on the last or the first vertex, another polygon
can be added to the current place in the same manner or the user may select to finish the
creation of the place by clicking the "Home" button. This sends a request to the server
which returns a dialog where the user may type in a name and description for the place.
At this point the user can store the place (see image 4.10(a)) or alternatively request
the display of an on-screen window containing metadata representing the defined place
(see image 4.10(b)) which can be copied into a HTML page.

(a) Store place (b) Generate place metadata

Figure 4.10: Create a place

When a newly defined place has not yet been stored, clicking on it will always bring
up the save dialog. Therefore accidentally closing the save dialog does not have any
consequences.

modify place The MapControl class displays vertexes for each point of the selected poly-
gon. Between each two neighboring vertexes a ghost vertex is rendered (see image
4.11(a)). The vertexes can be dragged around by the user; dragging a ghost vertex re-
sults in a new vertex for the polygon (see image 4.11(b)).

When the user clicks the "Home" button the server returns a dialog allowing the user
to confirm the changes.

set parent The user can define a place’s parent by first selecting the place and clicking on
the parent place afterwards. If the user has finished and clicks the "Home" button, the
server returns a dialog to save the changes.

54 4.5. FRONTEND

(a) Edit place (b) Edited place

Figure 4.11: Modify the place boundaries by dragging normal or ghost vertexes

PlaceManager

The PlaceManager is used to manage all places currently rendered on the map. It remem-
bers the currently selected place and polygon and provides methods to set the behavior of
managed places when clicking on them.
The default behavior when clicking on a place on the map is to show an information dialog
for it. Besides showing the summary for the place, this dialog enables the user to generate
metadata for a service page that should reference the place page of the selected place (see
image 4.12(a)). The metadata is displayed using an on-screen window and can be copied into
the definition of a HTML page (see image 4.12(b)).

(a) Define service (b) Generated metadata

Figure 4.12: Create a service for a place

GUIControl

The GUIControl class is used to create and manage the GUI buttons.

CHAPTER 4. IMPLEMENTATION 55

4.5.1.2 Routes

Since most of the server side routes return HTML code for dialogs to be rendered on the map,
only the interesting ones are listed below.

GET /map/viewport(.:format)

This route is used to query for places intersecting (contained or overlapping) with the current
viewport of the map and hosted by the frontend. Besides the viewport parameters consist-
ing of a latitude/longitude pair for the lower-left and one for the upper-right corner of the
viewport, it additionally accepts a semicolon separated list of place ids which determines the
places that will be removed from the result set. This can be used to avoid the retrieval of
places already displayed on the map. An example request can be seen in the listing below.
GET /map/viewport.kml?ne=47.39;8.58&sw=47.36;8.50&blacklist=1;81;83;23;41

Since there may be a lot of places intersecting with the current viewport, the places are filtered
according to their size. Places filling the whole viewport or places hardly visible will not be
returned. The reason for this is to limit the returned results to an appropriate subset (e.g.,
it makes no sense to display the place representing Switzerland if the map is zoomed in on
Zurich, Central).
The server can return the collection of places in two different formats: JSON and KML.
JSON is a human readable format for representing simple data structures that can be easily
processed and used with JavaScript. KML is an XML based language and is the location-
encoding standard preferred by Google Maps. Besides geographic data, KML may contain
rendering specific information such as border- and fill-colors of polygons or iconstyles for
markers.

GET /places/:id

This route is used for the place page of a place hosted by the frontend and will typically be
crawled by a webcrawler. The metadata of the place is encoded as described in section 3.1.

56 4.5. FRONTEND

4.5.2 Defining Indoor Places

The frontend enables a user to create two types of indoor places. An indoor place may either
be a floor or a room located on a previously defined floor.
It would have been desirable to render indoor places using the same map as for outdoor places
and to provide a button to switch from the outdoor view to the indoor view and vice versa
(e.g., select a building and click the button to switch to the indoor view only displaying indoor
places). Besides that, the use of a scroll bar capable of switching between the displayed floors
and contained rooms would have been convenient. However, due to time constraints indoor
places have been created as follows.

Figure 4.13: Creating indoor places

Each place page provides a HTML link to a separate web page which can then be used to
define indoor places (see figure 4.13). Depending on the type of place page (e.g., a floor) the
linked web page will render different content.

The types distinguished are:

Building The returned web page displays HTML links to all floors contained within a given
building and lets the user define new floors. In order to define a floor, its name, descrip-
tion and level need to be provided. An image showing the HTML page returned for a
building can be seen in figure 4.14(a).
Newly created floors have the same boundaries as the building.

Floor The returned web page contains a Google Map showing the floor and the rooms be-
longing to this floor. A user may add new rooms to the floor in a point-and-click like
manner using the displayed map. When the user closes the polygon defining the spatial
whereabouts of the place he may specify its name and description and store it on the
server. Figure 4.14(b) shows the HTML page returned for a floor.
It is possible for a user to upload a floor image for the current floor, which will be
displayed below the places on the map; see section 4.5.2.1 for details.

Room For a room the same content is returned as for the floor the room is in.

CHAPTER 4. IMPLEMENTATION 57

(a) Create floors for the building (b) Create rooms for the floor

Figure 4.14: Create indoor places

4.5.2.1 Floor Image

There is a dedicated web page for each floor which can be used to upload the floor image.
If the image has been uploaded, the same web page allows the user to position the image to
fit his or her needs. To position the image two maps are displayed, one showing the image
in its original size (right region of image 4.15(a)) and one showing the floor polygon and a
scaled down version of the uploaded image (left region of image 4.15(a)). Both maps have
draggable reference markers which can be used to position the image (see image 4.15(b)). The
map showing both the floor and the scaled image is updated each time a marker is dragged to
reflect the changes made. Since it is not possible to rotate an image using the Google Maps
API, this is done by the frontend which can return arbitrarily rotated and scaled images with
the help of RMagick12. When the user is satisfied with the position, he or she can save the
changes made and, by doing so, he or she is automatically redirected to the indoor view of
the floor.

4.5.2.2 Routes

The following routes are the most important when working with the indoor view of a place.

GET /place/:id/indoor

This renders a web page enabling the user to define indoor places routed at the place with
the given id. If the place is either a floor or a room, the returned web page contains a map
displaying the floor and the rooms contained on the floor. Otherwise the web page displays a
list of floors contained in the building and lets the user add floors.

12Ruby ImageMagick bindings.

58 4.5. FRONTEND

(a) Begin of image positioning (b) Finished image positioning

Figure 4.15: Setting a floor image

GET /place/:id/image

This route is used for returning the image belonging to a place. Images can only be uploaded
for floors and are stored in the database.
The route accepts paremeters that can be used to return a scaled and/or rotated image. An
example request is shown in the listing below.
GET /places/18/image?rot=338.5946917230823&scale=0.27128718187291617

CHAPTER 4. IMPLEMENTATION 59

4.6 VBZ Service

The VBZ service has been implemented in order to have a useful showcase of a service. It has
been developed as a separate web application and provides service pages for tram stations
located in Zurich. These pages display electronic timetables for trams departing at certain
stations and reference the corresponding place pages. The service pages will be crawled by
the webcrawler in the same manner as any other web page.

The timetable data for the VBZ service has been kindly provided by the VBZ. The VBZ raises
no claims about the accuracy of the supplied data.

The database layout can be seen in Appendix A.1, the available formats and the interesting
rails routes are described below in more detail.

4.6.1 Available Formats

There are two available formats:
HTML The default format which will be used if no format is specified. It renders a HTML
page designed for access by a generic client.
nokiaN95 A format also returning content of MIME type text/html but adapted for the
screen size and font types supported by the Nokia N95 8GB.

4.6.2 Routes
GET /station/:city/:station(.:format)
GET /station/:id(.:format)

These routes are used to display timetable data for certain stations. Depending on the route
used, the corresponding stations are retrieved from the database. A station stored in the
database has a unique id but no unique name. The reason for that is that there are places in
Zurich where trams depart in more than two ways (e.g., Central) and the respective stations
share the same name. Therefore the route taking an id as parameter has to be used if the
timetable data for the specific station is requested. The route accepting city and station names
as parameters returns timetable data for stations with the same name.

The example below shows two requests returning the same result.
GET /station/101278
GET /station/Zürich/Hölderlinstrasse

If the name or id entered are known to the system, a database query is performed which
retrieves the chronologically next 10 tram departures for the respective station(s). These de-
partures are dynamically rendered using a HTML page.
As the route taking an id as parameter uniquely identifies a station, these HTML pages rep-
resent the service pages of the VBZ service. Their metadata is set as defined in section 3.1.3,
but only if the service pages actually reference a place page. This is the case if the URL of a
place page is associated with a station in the database13. The place pages for the respective
places have been created using the frontend.

Figure 4.16 shows the service page for "Zürich, Bahnhofsquai", rendered by the mobile phone
client.

13These entries have been set manually using a database management tool.

60 4.6. VBZ SERVICE

Figure 4.16: Service page for "Zürich, Bahnhofsquai"

GET /bootstrap

This route can only be called locally and will initialize the database. This is done by parsing
station, tram, operating days and stops data available in the HAFAS raw format14 with respect
to their dependencies (e.g., parsing station data before stops data). When processing one
of these files, all SQL statements are encapsulated in a single transaction to accelerate the
process as a file may hold up to 5MB of raw data.

GET /referenced

A request to this route retrieves all stations having service pages that reference place pages
and returns a web page displaying a collection of HTML links to these service pages.

The purpose of this route is to provide a start page for the webcrawler.

14The HAFAS format is used to exchange timetable data between different information retrieval systems.

CHAPTER 4. IMPLEMENTATION 61

4.7 Testbed

The testbed was designed to determine the constants and weights for the individual penalty
functions used by the search engine when performing spatial queries.
The testbed was realized as a HTML page and displays a Google Map. By clicking on the
map it dynamically generates a HTML link and appends it to the page (see image 4.17(a)).
The HTML link represents a search engine query using the spatial position clicked on as the
required position parameter. By clicking on the link, the search engine will do the spatial
query and present the ranked results (see image 4.17(b)).

(a) Testing a spatial query (b) Results returned for the query

Figure 4.17: Evaluation of spatial queries using the testbed

To be able to compare the returned results of the query with the ones expected, the places
in the vicinity of the clicked spatial position are rendered onto the map together with a box
having the same dimensions as the search mask of the search engine (see image 4.17(a)). The
places displayed are the ones defined when using the frontend and are retrieved by using the
viewport route.

The constants for the spatial penalty functions were determined by evaluating the spatial
ranking results using various scenarios, e.g. near and large place vs. small and far away
place. The constants were incrementally adjusted to return results intuitive for a user when
considering the ranking assumptions: the smaller and nearer a place to a queried spatial
position the better (see section 3.3.1).

Figure 4.18 shows one possible ranking scenario and displays two places: a gray one and a
black one. For spatial positions located in a certain area it is intuitively clear which places
should be ranked better. For the gray and the black place in the figure these areas are displayed
in yellow and orange colors respectively. Outside of this area however, it is difficult to tell
which place should be ranked better, even if arguing based on the assumptions. For this
reason the constants were optimized for spatial positions inside of the denoted areas.

62 4.7. TESTBED

Figure 4.18: Evaluation Scenario

The constants which were determined and are actually used are the ones depicted besides the
individual penalty functions described in section 3.3.3 on page 24 and following. The weights
used for weighting the penalty functions are set to 1.

Evaluation 5
This chapter is devoted to a preliminary evaluation of the results returned by the search engine
when doing spatial queries. To evaluate these queries, about 140 new places were defined in
the region of Zurich. However, it is difficult to tell whether the set of used places corresponds
to a set of places as they would be defined by individual users.

Please note that at the point in time when spatial queries, as performed by the search engine
were evaluated, there were no other comparable search engines retrieving and ranking poly-
gons for a geospatial position nor was there a Web of Places and Locations!

Spatial queries have been tested using the testbed that is described in section 4.7 and have
been tested in the field, using the developed mobile phone client. The individual results are
described below.

5.1 Testing With The Testbed

Spatial queries were tested for various, randomly selected spatial positions in Zurich; the
places used in the evaluation are differed than the places used for training the spatial penalty
functions. The ranking of the results returned for the different geospatial positions corre-
sponds to the one expected most of the time. But when comparing the rank of two designated
places and a position located in a geospatial area where both spatial ranking assumptions
level about equally (e.g., a large place in the direct vicinity of the position and a smaller
place further away), the ranking of the results might sometimes deviate from the one ex-
pected. However, this will typically not influence the ranking of other returned places, e.g
two places struggling over ranks 2 and 3 will not influence other place’s ranks.

5.2 Testing In The Field

Spatial queries were tested in the field using the mobile phone client and doing spatial po-
sitioning using GPS. A position returned by GPS may deviate up to several meters and may
additionally deviate due to walking around while using the mobile phone client and therefore
passing by the returned position. However, even if the position deviates by several meters,
places conforming to the spatial ranking assumptions (e.g., small and near) and in the near
vicinity of the users position, not the one returned by GPS, will still be ranked among the first
results.

63

Conclusion 6
This chapter concludes the work carried out with respect to the lessons learned while imple-
menting the system, presents a small summary and outlines future work that could be done to
enhance the built system.

6.1 Lessons Learned

Several of the system components were built as web applications using the Ruby on Rails
framework which turned out to be a good choice. It was very convenient to work with due
to the automatic separation of model, view and controller classes (MVC architecture), which
enabled one to implement the application level methods before dedicating oneself to the view
templates. Besides that, RoR provides facilities such as the route concept, automatic OR/M,
view templates, good support by the community expressing itself in many nice plug-ins and
reasonable debugging primitives. Furthermore the RoR framework and Ruby itself is pretty
nice to work with due to the syntactic sugar provided in many different locations. The only
drawback with the RoR framework was the utilization of a rather new version (2.0) at that
point in time, which was the reason for the scarce availability of documentation, working
tutorials and support.

Another application that proved to be very practical was the Batoo Rapid Prototyping Environ-
ment, which enabled fast shipment of code from computer to a mobile device without the need
of using a USB cable. The Batoo Rapid Prototyping Environment was developed by Robert
Adelmann (Distributed Systems Group of the ETH Zurich) and was not publicly available at
the time this work was conducted.

6.2 Summary

The concept presented regarding how to represent and constitute location-based services in
this thesis is both simple and powerful. It allows arbitrary users hosting one or more web
pages to surplus the value of existing web pages by just embedding metadata into their web
page. As META tags are used for enhancing a web page, its appearance stays the same.
Besides, as services are represented using ordinary web pages, anything that can be modelled
using a web page can represent a service - there are no limits to creativity.
Furthermore, thanks to the clean separation of the individual components and as the presented
system is technically open, it is easily possible to exchange single components. One could,
for example, use an alternative search engine to query for places.
One limitation of this system though is that it is not possible to search for specific places when
doing spatial queries, e.g. places representing restaurants. The same applies when searching
for services belonging to a place. It would certainly be useful if places and services could be

65

66 6.3. FUTURE WORK

tagged to filter the uninteresting ones.

However it is difficult to say at the moment, whether the system proves itself valuable, since
this depends on the quality of user-defined services and places.

6.3 Future Work

Following some ideas on how the system could be extended to enhance its quality:

Tagging
By assigning tags to places or services it would be possible for users to retrieve types of places
or services in which they are interested. This could be realized by allowing individuals to tag
a place or service directly with exactly one tag to minimize tag abuse. On the other hand, one
could use the API of, for instance, delicious bookmarks1 to retrieve tags for a specific web
page. delicious bookmarks is available as a browser plug-in that enables users to bookmark
individual web pages and assign custom tags to them. The tags can be retrieved and could be
categorized by using an ontology for example.

Self-governance
As the system is open to anyone it is not secure from abuse. One could create many small
places (e.g., 3 ∗ 3m) and position them in a way to cover larger areas, hence outruling other
places when doing spatial queries. It would be useful to have a community-based solution to
prevent abuse.

1http://delicious.com/

http://delicious.com/

Bibliography

[1] Martin Bauer, Christian Becker, and Kurt Rothermel. Location models from the per-
spective of context-aware applications and mobile ad hoc networks. In Personal and
Ubiquitous Computing, pages 322–328, 2002.

[2] Christian Becker and Frank Dürr. On location models for ubiquitous computing. Per-
sonal Ubiquitous Comput., 9(1):20–31, 2005.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Comput. Netw. ISDN Syst., 30(1-7):107–117, 1998.

[4] Gregor Broll, John Hamard, Massimo Paolucci, Markus Haarländer, Matthias Wagner,
Sven Siorpaes, Enrico Rukzio, Albrecht Schmidt, and Kevin Wiesner. Mobile inter-
action with web services through associated real world objects. In MobileHCI ’07:
Proceedings of the 9th international conference on Human computer interaction with
mobile devices and services, pages 319–321, New York, NY, USA, 2007. ACM.

[5] Barry Brumitt and Steven Shafer. Topological world modeling using semantic spaces.
In In UbiComp 2001 Workshop on Location Modeling for Ubiquitous Computing, 2001.

[6] Debbie Caswell. Uniform web presence architecture for people, places, and things.
IEEE Personal Communications, 8:46–51, 2001.

[7] Deborah Caswell and Philippe Debaty. Creating web representations for places. In HUC
’00: Proceedings of the 2nd international symposium on Handheld and Ubiquitous
Computing, pages 114–126, London, UK, 2000. Springer-Verlag.

[8] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos Efstratiou.
Developing a context-aware electronic tourist guide: Some issues and experiences.
pages 17–24. ACM Press, 2000.

[9] F. Dawson and T. Howes. vcard mime directory profile, 1998.

[10] Svetlana Domnitcheva. Location modeling: State of the art and challenges. Workshop
on Location Modeling for Ubiquitous Computing, 2001.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[12] Greg Janée and James Frew. Spatial search, ranking, and interoperability.

67

68 BIBLIOGRAPHY

[13] Changhao Jiang and Peter Steenkiste. A hybrid location model with a computable lo-
cation identifier for ubiquitous computing. In UbiComp ’02: Proceedings of the 4th in-
ternational conference on Ubiquitous Computing, pages 246–263, London, UK, 2002.
Springer-Verlag.

[14] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Gita Gopal,
Marcos Frid, Venky Krishnan, Howard Morris, John Schettino, and Bill Serra. People,
places, things: web presence for the real world. In In proceedings WMCSA2000. Avail-
able as http://www.cooltown.hp.com/papers/webpres/webpresence.htm, pages 365–376,
2000.

[15] J. Kunze. Encoding dublin core metadata in html, 1999.

[16] Ray R. Larson and Patricia Frontiera. Ranking and representation for geographic infor-
mation retrieval.

[17] Per Persson, Fredrik Espinoza, Petra Fagerberg, Anna Sandin, and Rickard Cöster.
Geonotes: a location-based information system for public spaces. pages 151–173, 2003.

Setup A
This chapter covers the software and library dependencies of the components of this system
and depicts the database layouts used by the web applications.

A.1 Databases

PostgreSQL was used for storing data of the distinct web applications. The database layouts
of the frontend, the webcrawler/search engine and the VBZ service can be seen in figures A.1,
A.2 and A.3 respectively.

To be able to use the PostGIS extension for PostgreSQL in a reasonable way, a database tem-
plate can be generated (see listing A.1). The databases using the PostGIS extension (frontend
and webcrawler) can then be created using the "template_postigs" template.
$ psql template1
\c template1
CREATE DATABASE template_postgis with template = template1;

-- set the ’datistemplate’ record in the ’pg_database’ table for
-- ’template_postgis’ to TRUE to indicate that it is a template
UPDATE pg_database SET datistemplate = TRUE where datname = ’template_postgis’;
\c template_postgis
CREATE LANGUAGE plpgsql;
\i /usr/share/postgresql/contrib/lwpostgis.sql
\i /usr/share/postgresql/contrib/spatial_ref_sys.sq

-- set role based permissions in production env.
GRANT ALL ON geometry_columns TO PUBLIC;
GRANTALL ON spatial_ref_sys TO PUBLIC;

-- vacuum freeze: it will guarantee that all rows in the database are
-- "frozen" and will not be subject to transaction ID wraparound
-- problems.
VACUUM FREEZE;

Listing A.1: Creation of the "template_postgis" database template

69

70 A.1. DATABASES

Figure A.1: Database layout used by the frontend

Figure A.2: Database layout used by the webcrawler and the search engine

Figure A.3: Database layout used by the VBZ service

APPENDIX A. SETUP 71

A.2 Webcrawler

An Apache ant file has been provided with the webcrawler that can be used to build an
executable jar file containing all required libraries (package-all target). Listing A.2 shows the
provided targets.

$ ant -p

Buildfile: build.xml

Main targets:

clean Cleans the target-directory
compile Compiles the project
copy-metafiles Copies all metafiles into the builddirectory
copy-resources Copies all resources from sourcedirectory to the builddirectory
package Creates a jar-package of the project
package-all Creates a jar-package containing all required libraries
run Compiles and executes the web-crawler
Default target: compile

Listing A.2: Ant targets of the webcrawler

This ant file, for example, can be used for adjusting the webcrawler properties via the user.properties
file located in the resources directory of the webcrawler project path.
The executable jar file should be placed in the "external" directory of the search engine’s RoR
project root, since the search engine will invoke the webcrawler to index newly detected or
modified web resources.

The required libraries are listed below:

Library Description
log4j-1.2.11.jar Logging facility.
postgresql-8.3-603.jdbc3.jar PostgreSQL database connector.
postgis_1.3.2.jar Used for being able to store geometric datatypes in the

PostgreSQL database.

A.3 Mobile Phone Client

As the mobile phone client was written in Python, it requires a Python environment to be
installed together with a Python script shell. This client is provided as a single Python script
that can be copied onto the mobile phone and executed using the Python script shell. How-
ever, this script shell needs to be signed, since the mobile phone’s GPS capabilities can not
be used by unsigned components; the same applies to the used Bluetooth library.

The follwing software components need to be installed on the mobile phone:

Library Description
PythonForS60_1_4_4_3rdEd.sis Python interpreter.
PythonScriptShell_1_4_3_3rdEd.sis (signed) Python script shell used to execute Python

scripts.
lightblue-0.3.2-s60-3rdEd.sis (signed) Used for Bluetooth device sensing.

72 A.4. ROR PROJECTS

A.4 RoR Projects

Each of the RoR projects comes with an integrated web server. These servers can be started
when being in the command line inside the projects root directory by invoking:
./script/server

However, it is recommended to use a server like Apache to run the individual web applica-
tions.

The databases used by the individual RoR web applications must be setup and running be-
forehand, as the RoR application will terminate otherwise. The database connections are
configured in the database.yml file located in the config directory of the RoR projects.

Used Versions
Following a list of software components used for developing the RoR web applications. Each
of the components is categorized depending on how it has been installed which can be one of
the following:

gem A gem is a software package, containing a Ruby library, for instance. Gems can be
installed by using RubyGems, a package manager used for administrating available
gems. An installed gem is usable by all RoR projects.

plug-in Plug-ins are installed for individual RoR projects by invoking:
./script/plugin install <SVN_path>

Since plug-ins are taken from SVN the revision number is listed besides the plug-in in
the table below. The SVN locations of the used plug-ins are:
ym4r_gm: SVN://rubyforge.org/var/SVN/ym4r/Plugins/GM/trunk/ym4r_gm
spatial_adapter: svn://rubyforge.org/var/svn/georuby/SpatialAdapter/trunk/spatial_adapter

system This means that the needed software components should be installed using the un-
derlying system (e.g., Linux).

APPENDIX A. SETUP 73

Component Inst.Type Used by Description
rails-2.0.2
rake-0.8.1
activesupport-2.0.2
activerecord-2.0.2
actionpack-2.0.2
actionmailer-2.0.2
activeresource-2.0.2

gem all The Ruby On Rails base components.

ruby-postgres-
0.7.1.2006.04.06

gem all RoR PostgreSQL bindings.

GeoRuby-1.3.3 gem frontend,
search
engine

GeoRuby provides geometric data
types from the OGC "Simple Features"
specification.

haml-1.8.2 gem all Haml can be used to parse view tem-
plates written in the Haml markup lan-
guage.

piston-1.4.0 gem all RoR plug-in management utility.
rmagick-2.5.2 gem frontend Ruby ImageMagick bindings. Used for

manipulation of images.
spatial_adapter-r116 plug-in frontend,

search
engine

A plug-in for Rails which manages
PostGIS geometric columns in a trans-
parent way. Depends on GeoRuby.

ym4r_gm-r103 plug-in frontend Used to facilitate the use of Google
Maps from a RoR application.

imagemagick-
R6.4.0.6

system frontend ImageMagick is used for the manipula-
tion of images.

ruby-R1.8.6_p287-r1 system all Ruby language.

Configuration B
B.1 Webcrawler

The webcrawler provides a set of properties used to configure database related settings and
properties that can be used to adjust its behavior with respect to crawling web pages. The
default properties are defined in the system.properties file in the resources directory. These
properties can be overridden by a user.properties file that should be placed in the same direc-
tory as the system.properties file.The default properties are listed in listing B.1 and explained
below.
crawler.initialLink = localhost
crawler.name = wopaloC
crawler.request.timeout = 60000
crawler.request.sleepTime = 20000
crawler.request.recrawlDelay = 14400000
crawler.db.url = jdbc:postgresql://localhost:5432/wopalo_index
crawler.db.username = wopalo
crawler.db.password = wopalo

Listing B.1: The system.properties file of the webcrawler

crawler.initialLink Defines the URL of the resource which will be crawled if no command
line parameters have been provided and no places or services are indexed yet.

crawler.name Name of the webcrawler which will be used as user-agent parameter when
doing requests to web resources.

crawler.request.timeout Timeout to use when trying to connect to a web server or download
a web resource.

crawler.request.sleepTime Time to sleep before processing the next web resource.

crawler.request.recrawlDelay Timeout to use before re-crawling already indexed web re-
sources. This can be used to get behavior like: re-crawl the resource at most every 2
days.

crawler.db.* Database specific settings.

B.2 Search Engine

The search engine provides a set of properties that can be set in the environment.rb file in
the configuration directory of search engine’s RoR project root. The important ones are the
following:

75

76 B.3. MOBILE PHONE CLIENT

MASK_VERTICAL Height of the search mask in terms of longitude.

MASK_HORIZONTAL Height of the search mask in terms of latitude.

PLACES_VIEW_COUNT Determines the maximum number of places to return for a spa-
tial query.

SERVICES_VIEW_COUNT Determines the maximum number of services to return when
querying for services accessible at a given place.

B.3 Mobile Phone Client

The properties of the mobile phone client are defined at the beginning of the respective Python
script. A example is shown in listing B.2; the most important properties are explained below:
HTTP_PREFIX = u’http://’
HOST = HTTP_PREFIX + u’129.132.75.250:4000’
PLACES_SEARCH_PATH = HOST + u’/places.compact?’
SERVICES_SEARCH_PATH = HOST + u’/services.compact?’
MAX_GPS_QUERY_TIME = 35
MAX_BLUETOOTH_SENSING_TIME = 35
MAPPINGFILE = u’e:\\wopalo.map’
TEMPFILE = u’e:\\wopalo.tmp’
LOGFILE = u’e:\\wopalo.log’
PLACES_VIEW_COUNT = 8
SERVICES_VIEW_COUNT = 8

Listing B.2: Constants of the mobile phone client

HOST The host where the search engine is accessible at.

MAX_GPS_QUERY_TIME Defines the timeout after which an ongoing GPS inquiry is
aborted.

MAX_BLUETOOTH_SENSING_TIME Defines the timeout after which ongoing Blue-
tooth sensing is aborted.

MAPPINGFILE Determines the location of the file that associates Bluetooth hardware ad-
dresses with indoor positions.

PLACES_VIEW_COUNT The number of places to display at once. Used for pagination.

SERVICES_VIEW_COUNT The number of services to display at once. Used for pagina-
tion.

B.4 Frontend

The frontend requires a configured HOST parameter, specifying the host the RoR application
is running on. This parameter has to be set in the environment.rb file located in the configu-
ration directory and in the application.js file located in the public/javascript directory.
Additionally, a GoogleMaps key must be generated for the the host the application is run-
ning on and be assigned to the GMAPS_HOST parameter in the environment.rb file and set
in the gmaps_api_key.yml file located in the configuration directory. The key is required as
otherwise no map will be displayed when accessing the frontend.

Ruby On Rails Server API C
This section covers the possible parameters that can be used when invoking different RoR
routes that are part of the public API. Parameters for the following routes are annotated with
a "req", whereas optional parameters are annotated with "opt". The routes are covered sepa-
rately for the individual web applications. For every route a valid sample invocation is shown
at the beginning.

C.1 Search Engine

GET /places(.:format)

GET /places.compact?p=47.380284717,8.5447883605&count=8&from=0&filter=contained

This route is used for spatial queries and accepts the following parameters:

p (req) A spatial position encoded as latitude/longitude pair using WGS84 representation

h (opt) Integer value specifying the floor the user is located on. Providing this parameter
will tell the search engine to filter places which are located outdoors.

ne (opt) North-east spatial position of a custom set search box; encoded as latitude/longitude
in WGS84. This parameters requires the "sw" parameter to be set.

sw (opt) South-west spatial position of a custom set search box; encoded as latitude/longi-
tude in WGS84. This parameters requires the "ne" parameter to be set.

filter (opt) If set to "contained" only places the provided spatial position is contained in will
be returned.

from (opt) Integer value specifying the offset of a custom result mask. This can be used for
pagination.

count (optl) Number of results that should be returned. This can be used for pagination.

Besides these parameters this route is capable of returning results in two different formats:
HTML or compact. The requested format can be specified when invoking the route. The first
of the two server requests listed below will return the results in HTML format, the third will
return the results in compact format which is of MIME type text/plain.
GET /places?p=47.3802847176866,8.54478836059571
GET /places.html?p=47.3802847176866,8.54478836059571
GET /places.compact?p=47.3802847176866,8.54478836059571

The result returned in compact format has the following form:

77

78 C.2. FRONTEND

number_of_places_found,result_mask_offset,result_mask_count
place_name,place_description,place_url
place_name,place_description,place_url

:

A typical result looks like follows:
25,1,8
ETHZ IFW,ETH Informatikgebäude,http://129.132.75.250:3000/places/17
IFW Dachterasse,Dachterasse IFW Gebäude ETH Zürich,http://129.132.75.250:3000/places/132
RZ-Building,RZ-Building of ETH Zurich,http://129.132.75.250:3000/places/32
Gangway between IFW and RZ,Connection between IFW and RZ buildings,http://129.132.75.250:3000/places/33
Test Building,Test of an indoor building,http://129.132.75.250:3000/places/24
Crosswalk,Crosswalk,http://129.132.75.250:3000/places/135
Church of Liebfrauen,http://de.wikipedia.org/wiki/Liebfrauenkirche_...,http://129.132.75.250:3000/places/28
Haldenegg,Trambahnhaltestelle Haldenegg,http://129.132.75.250:3000/places/22

GET /services(.:format)

GET /services.compact?url=http://places.wopalo.org/places/17&from=2

This route can be used to search for services that reference the place with the provided URL.
The route accepts the following parameters:

url (req) The URL of the place for which to retrieve services.

from (opt) Integer value specifying the offset of a custom result mask. This can be used for
pagination.

count (opt) Number of results that should be returned. This can be used for pagination.

The route can return results in HTML or compact format. The result returned when requesting
services in compact format has the following form:
number_of_services_found,result_mask_offset,result_mask_count
service_name,service_description,service_url
service_name,service_description,service_url

:

A typical result would look as follows:
1,1,1
VBZ Fahrplaninfo,Anschlüsse ab Zürich Haldenegg,http://vbzservice.wopalo.org/station/299915

C.2 Frontend

GET /map.viewport(.:format)

GET /map/viewport.kml?ne=47.39;8.58&sw=47.36;8.50&blacklist=1;81;83;23;41

This route can be used to retrieve places hosted by the frontend and contained in a provided
viewport. It accepts the following parameters:

ne (req) North-east spatial position of the viewport; encoded as latitude/longitude in WGS84.

sw (req) South-west spatial position of the viewport; encoded as latitude/longitude in WGS84.

blacklist (opt) A semicolon separated list of place ids for places which should not be re-
turned in the result.

This route can return results in the following formats: GML or JSON. If no format is specified
the result will be returned in JSON.

APPENDIX C. RUBY ON RAILS SERVER API 79

GET /places/:id/image

GET /places/18/image?rot=338.5946917230823&scale=0.27128718187291617

This route requires an id to be provided which identifies the place. If no other parameters
besides the id are provided the route returns the image belonging to the place in its original
size. However, the route accepts optional parameters:

rot Float value determining the angle by which the image should be rotated. The default
value is 0◦. The image will be rotated clockwise.

scale Float value determining the factor by which the image should be scaled. The default
value is 1.0.

width Integer value specifying the width of the returned image in pixels.

height Integer value specifying the height of the returned image in pixels.

If the image should be both rotated and scaled, it is first rotated and then scaled.

	Title
	1 Overview
	1.1 Problem Description
	1.2 Motivational Example
	1.3 Contributions
	1.4 Outline

	2 Related Work
	2.1 Presenting Location-Sensitive Information
	2.2 Spatial Search And Spatial Ranking
	2.3 Geospatial Data In The Web

	3 Design
	3.1 Places and Services
	3.1.1 Place Model
	3.1.2 Service Model
	3.1.3 Embedding Structured Data In HTML
	3.1.4 Location Encoding

	3.2 Webcrawler
	3.2.1 Regular Crawl
	3.2.2 Single Resource Crawl

	3.3 Search Engine
	3.3.1 Spatial Ranking Assumptions
	3.3.2 Place Filters
	3.3.3 Spatial Ranking Criteria
	3.3.4 Additional Ranking Criteria
	3.3.5 Service Ranking Criteria

	3.4 Mobile Phone Client
	3.5 Frontend
	3.5.1 Defining Outdoor Places
	3.5.2 Defining Indoor Places

	3.6 VBZ Service

	4 Implementation
	4.1 Used Frameworks
	4.1.1 Web Applications
	4.1.2 Mobile Phone Client
	4.1.3 Webcrawler

	4.2 Webcrawler
	4.2.1 Main Classes
	4.2.2 Helper Classes

	4.3 Search Engine
	4.3.1 Available Formats
	4.3.2 Routes

	4.4 Mobile Phone Client
	4.4.1 Main Classes
	4.4.2 Utility Classes

	4.5 Frontend
	4.5.1 Defining Outdoor Places
	4.5.2 Defining Indoor Places

	4.6 VBZ Service
	4.6.1 Available Formats
	4.6.2 Routes

	4.7 Testbed

	5 Evaluation
	5.1 Testing With The Testbed
	5.2 Testing In The Field

	6 Conclusion
	6.1 Lessons Learned
	6.2 Summary
	6.3 Future Work

	Bibliography
	A Setup
	A.1 Databases
	A.2 Webcrawler
	A.3 Mobile Phone Client
	A.4 RoR Projects

	B Configuration
	B.1 Webcrawler
	B.2 Search Engine
	B.3 Mobile Phone Client
	B.4 Frontend

	C Ruby On Rails Server API
	C.1 Search Engine
	C.2 Frontend

