
Research Collection

Report

Flash code description

Author(s):
Kocher, Thomas

Publication Date:
2005

Permanent Link:
https://doi.org/10.3929/ethz-a-005138769

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-a-005138769
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

FLASH

code description

by Thomas Kocher, 08.03.2006
thomas.kocher@alumni.ethz.ch

This document describes the basic principles of continuum mechanics

and the finite element method (FEM) as far as they are necessary to

understand their implementation in the FLASH code. The text presented in

the following forms part of the ETH thesis no. 16413,

‘Flanking structure and single layer fold development in isotropic and

anisotropic rock’,

that was submitted in Dec. 2005 by the author.

The following pages are intended to support readers of publications that

contain results obtained from the FLASH code in understanding and

verifying the results.

The text contains the basics of the FE method as well as print-outs of

Maple code describing the anisotropy formulation. Please be aware that

for the Software, and analogously for the theory described in this text, the

below disclaimer and limitations apply. Please direct any questions or

comments to the above

email-address.

Disclaimer of warranty
Since the Software is provided free of charge, it is provided on an as is

basis, without warranty of any kind, including, without limitation, the

warranties of merchantability, fitness for a particular purpose and non-

infringement. The entire risk as to the quality and performance of the

Software is borne by the user. Should the Software prove defective, the

user will assume the entire cost of any service and repair.

Limitation of liability
Under no circumstances and under no legal theory, tort, contract, or

otherwise, shall the author be liable to the user or any other person for

any indirect, special, incidental, or consequential damages of any

character including, without limitation, damages for loss of goodwill, work

stoppage, computer failure or malfunction, or any and all other

commercial damages or losses.

108

tensor denotes

ε̇II =
1

2
[ε̇iiε̇jj − ε̇ij ε̇ji] . (A.29)

A description and justi�cation of the transformation of Eq. (A.27) to Eq. (A.28) (splitting

of the deviatoric strain rate components) is given by Molnar and Jones (2004).

A.2 A short outline of the Finite Element Method

In this section, the fundamentals of the �nite element method are presented as far they

are necessary to understand the implementation in the FLASH code that was used in

this thesis to investigate di�erent geomechanical problems. A vast amount of literature

exists on the techniques of �nite elements (e.g Cuvelier et al., 1986; Buchanan, 1994;

Kwon and Bang, 2000; Zienkiewicz and Taylor, 2000; Smith and Gri�th, 2004).

A concise summary of the basic equations is given here to enable a clear understanding

of the code that was used, which is crucial for the interpretation of the numerical results.

Symbolic and component notation are mixed in this section. The notation convention

follows the de�nition in subsection A.1.2.

A.2.1 Governing physical equations

The �nite element code FLASH solves the equations for mass and momentum balance,

Eqs. (A.4) and (A.7):

Dρ

Dt
+ ρ∇x ·v = 0 (A.30)

ρ
Dv

Dt
= ∇x ·T + ρk. (A.31)

Assuming that the material is incompressible, Eq. (A.30) can be simpli�ed to

∇x ·v = 0. (A.32)

For geological applications on a large time scale, the velocities involved are usually very

low. For that reason, inertial forces play a minor role and can be neglected by setting

the local derivative on the left hand side in Eq. (A.31) equal to zero:

∇x ·T + ρk = 0. (A.33)

Written out for the two-dimensional case, including gravity g = −9.81 m/s2 as a body

force, and denoting the components of the stress tensor T as σij, the equations for the

A.2 A short outline of the Finite Element Method 109

mass and linear momentum balance read:

(A.32) → ∂u

∂x
+

∂v

∂y
= 0 (A.34)

(A.33) → ∂σxx

∂x
+

∂σxy

∂y
= 0 (A.35)

(A.33) → ∂σxy

∂x
+

∂σyy

∂y
+ ρg = 0 (A.36)

These three equations have to be completed with rheological equations in order to

equal the number of equations to the number of unknowns, and to specify the rheological

behaviour of the material. For the case of an incompressible power-law �uid, the complete

system of equations then reads:

∂σxx

∂x
+

∂σxy

∂y
= 0 (A.37)

∂σxy

∂x
+

∂σyy

∂y
+ ρg = 0 (A.38)

∂u

∂x
+

∂v

∂y
= 0 (A.39)

σxx = −p + 2µeff ε̇xx (A.40)

σyy = −p + 2µeff ε̇yy (A.41)

σxy = µeff ε̇xy, (A.42)

where µeff is again the e�ective viscosity (Eq. (A.28)). Note that the stresses σij are

given in complete and not in deviatoric form. Eqs. (A.37) to (A.42) can be rewritten in

matrix form:

[
∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

]σxx

σyy

σxy

 =

(
0

−ρg

)
, (A.43)

σxx

σyy

σxy

 =

−p

−p

0

+

2µ 0 0

0 2µ 0

0 0 µ

ε̇xx

ε̇yy

ε̇xy

 , (A.44)

where strain rates ε̇ij are related to velocitys:ε̇xx

ε̇yy

ε̇xy

 =

∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

 . (A.45)

110

Combining Eq. (A.43) to (A.45), the full system can now be rewritten in symbolic

notation:

−Ap + AMATd = f (A.46)

Aed = 0, (A.47)

where

A =

[
∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

]
M =

2µ 0 0

0 2µ 0

0 0 µ

 (A.48)

d =

(
u

v

)
p =

p

p

0

 f =

(
0

−ρg

)
e =

1

1

0

 . (A.49)

A.2.2 Discretisation of the unknown parameters

The unknowns velocities u, v and the pressures p are discretized on a �nite element

grid using isoparametric shape functions (see Kwon and Bang, 2000, for a thorough

introduction):

u = Hi(ζ, η)ui v = Hi(ζ, η)vi p = Ni(ζ, η)pi, (A.50)

where Hi and Ni are two di�erent sets of shape functions (and ζ, η the isoparametric

coordinates), and ui, vi and pi the velocities and pressure coe�cients at the respective

nodes of the element. The elements used in FLASH are either 7-node triangular Crouzeix-

Raviart elements, with an enriched quadratic discretisation for velocities, and a linear

3-degrees of freedom pressure approximation (P+
2 − P1), or 9-node bilinear quadratic

elements with the same linear pressure approximation as for the triangular elements

(Cuvelier et al., 1986). These elements proved to give very accurate results for both

velocity/stress and pressure �elds for the given problem setups, as is demonstrated in

section A.5.

A.2.3 The method of weighted residuals

The discretisation of the unknown variables u, v and p causes the di�erential equations

for linear momentum and mass balance to be no longer exactly ful�lled; a residual

remains that depends on the accuracy of the approximation. By multiplying the partial

di�erential equations (PDE) with an arbitrary weighting or test function w, integrating

over the element domain Ω and requiring the resulting functional to be equal to 0, the

A.2 A short outline of the Finite Element Method 111

numerical solution is forced to ful�l the PDE with a residual that is `zero on average'

over the domain. The weighted residual form of the linear momentum balance equation

(A.46) then reads:

−
∫

Ωel

w(Ap)dΩ +

∫
Ωel

w(AMATd)dΩ−
∫

Ωel

wfdΩ = 0. (A.51)

(If �ux boundary conditions were present, they would have to be included in the weighted

residual formulation as well (Zienkiewicz and Taylor, 2000, vol. 1)).

The second term in Eq. (A.51) contains a second order derivative of the velocities d.

This means that the second order derivative of the velocities, and hence of the shape

functions Hi, must be of a �nite, nonzero value, so that the integral can be evaluated at

all points within the domain. A method to relax this condition for the velocity shape

functions is to formulate the weighted residual in a weak form. Through this procedure,

the requirements (with respect to continuity) on the shape functions Hi are relaxed and

`shifted' to the weighting function w.

Weak formulation of the weighted residual

The weighted residual can be reformulated by applying the Green's Theorem � the

generalization of 1-D partial integration to higher dimensions � to the �rst two terms in

Eq. (A.51):

−
∫

Ωel

w(Ap)dΩ =

∫
Ωel

(wA)p−
∮

Γ

. . . (A.52)∫
Ωel

w(AMATd)dΩ = −
∫

Ωel

(wA)MATd +

∮
Γ

. . . . (A.53)

The third term describing the body force is left as is. If no Neumann (or �ux) boundary

conditions are applied, and if the Dirichlet boundary conditions are enforced (by imposing

them on the sti�ness matrix), the boundary integrals can be dropped (see Zienkiewicz

and Taylor, 2000, vol. 1, pg. 45). The force balance can then be written in the weak

formulation: ∫
Ωel

(wA)p−
∫

Ωel

(wA)MATd−
∫

Ωel

wfdΩ = 0 (A.54)

A.2.4 Galerkin's formulation of the weighted residual

The weighting function w is only restricted so far by the requirement that w = 0 on the

boundaries of the domain (then the boundary integrals can be dropped in Eq. (A.52)

and (A.53)). Following Galerkin's approach (Kwon and Bang, 2000) and replacing the

weighting function w by the shape functions of the velocities, hi (h = (H1, H2, . . .)), a

112

system of equations can be set up for each element:

−
∫

Ωel

BTNdΩp +

∫
Ωel

BTMBdΩd +

∫
Ωel

HfdΩ = 0, (A.55)

where

B =

∂H1

∂x
0 ∂H2

∂x
0 · · ·

0 ∂H1

∂y
0 ∂H2

∂y
· · ·

∂H1

∂y
∂H1

∂x
∂H2

∂y
∂H2

∂x
· · ·

 =
[
H1A

T H2A
T . . .

]
(A.56)

N =

N1 N2 . . .

N1 N2 . . .

0 0 . . .

 M =

2µ 0 0

0 2µ 0

0 0 µ

 H =

H1 0

0 H2

...
...

 (A.57)

d =

u1

v1

...

 p =

p1

p2

...

 f =

(
0

−ρg

)
. (A.58)

The integrals are evaluated numerically using Gaussian integration points ip and

weights l (Kwon and Bang, 2000):

−
∑
ip

BTN |J | lp +
∑
ip

BTMB |J | ld +
∑
ip

Hf |J | l = 0. (A.59)

Regarding the mass balance equation, some extra considerations are required. Since the

pressure p does not occur in the equation of mass conservation, the mass balance merely

puts constraints on the velocity solution that is sought. As was shown by Cuvelier et al.

(1986), the force balance equation can be formulated as a minimization problem, and the

compliance with the mass balance constraint ∇x = 0 is e�ected by imposing a penalty

term. The penalty function method solves this problem by transforming the system of

equations into an unconstrained minimization problem, which is solved iteratively. In

the present case, a large penalty parameter τ is introduced, linking the pressure p to the

divergence of the velocity:

1

τ
p = ∇x ·d, (A.60)

where τ is a large (penalty) parameter. The weak formulation of the weighted residual

of the mass balance is then:

1

τ

∫
Ωel

wn dΩp = −
∫

Ωel

weB dΩd, (A.61)

A.2 A short outline of the Finite Element Method 113

where

n =

N1

N2

...

T

p =

p1

p2

...

 e =

1

1

0

T

, (A.62)

and B as before. Replacing the weighting function w by the pressure shape functions n

according to Galerkin gives

1

τ

∫
Ω

G dΩp = −
∫

Ω

NTB dΩ d, (A.63)

where G = nn. (A.64)

The same numerical integration scheme is applied as for the force balance equation:

1

τ

∑
ip

G |J | l p = −
∑
ip

NTB |J | ld, (A.65)

The full system of equations of mass and linear momentum balance equations can now

be written in matrix form:

[
Evv Evp

Epv Epp

](
d

p

)
=

(
F

0

)
, (A.66)

where

Evv =
∑
ip

BTMB |J | l (A.67)

Evp = −
∑
ip

BTN |J | l (A.68)

F = −
∑
ip

Hf |J | l (A.69)

Epv = −
∑
ip

NTB |J | l = Evp
T (A.70)

Epp =
1

τ

∑
ip

G |J | l. (A.71)

114

In this system, the pressure can be eliminated as follows:

Epvd + Eppp = 0 (A.72)

p = −E−1
ppEpvd (A.73)(

Evv − EvpE
−1
ppEpv

)
d = F, (A.74)

which is equivalent to eq. (8.1.22) in Cuvelier et al. (1986).

A.2.5 Powell/Hestenes iterations

Eq. (A.74) must be iterated in order to guarantee an accurate ful�lment of the incom-

pressibility condition. Following the Powell & Hestenes method (Cuvelier et al., 1986),

this is done in the following way:

(
Evv − EvpE

−1
ppEpv

)
dnew = F− Epvpold (A.75)

pnew = pold + τEvpdnew, (A.76)

where subscripts new and old indicate values from the previous and actual iteration step.

This procedure allows the incompressibility condition to be approximated up to machine

precision.

A.3 Dimensional analysis: mechanical model of

power-law �uid

Dimensional analysis is a powerful tool to reduce the number of independent parameters

of a given physical problem based on the principle of homogeneity of physical equations.

Barenblatt (1996) gives a thorough introduction to the topic. The scaling which results

from bringing all equations into nondimensional form can furthermore enhance the accur-

acy of the numerical calculations of Stokes Flow in �nite element codes (Pelletier et al.,

1989). For that reason, all calculations in the FLASH code are done in a nondimensional

form. In the following, the nondimensionalization for the two-dimensional Stokes �ow

equations for two domains with di�erent physical properties is described, pointing out

the di�culties that arise when dealing with power-law viscous material.

A.3 Dimensional analysis: mechanical model of power-law �uid 115

A velocity-pressure formulation of the Stokes equations for two domains of a nonlinear

�uid contains parameters of the following dimensions (Eqs. (A.28), (A.30), and (A.31)):

[x] = L

[u] = [v] = L ·T−1

[c1] = M ·L−1 ·T
�

1
n1

−2
�

[c2] = M ·L−1 ·T
�

1
n2

−2
�

[n1] = [n2] = []

[p] = M ·T−2L−1

[ρg] = M ·L−2 ·T−2,

(A.77)

where L is the dimension of length, M of mass, and T of time. Note that the parameter

ci is not a quantity that is directly measurable in the laboratory, because its dimension

is not a polynomial of integral multiples of the basic dimensions L, M and T . Instead,

the unit of this parameter varies depending on the stress exponent n (see Turcotte and

Schubert, 2002, pg. 321 for numerical examples).

Assuming the �rst three quantities x, u and c1 to be independent, the quantities can

be nondimensionalised in the following way (with ε̇c = uc/xc, and nc = n1):

x∗ = x/xc

u∗ = u/uc

c∗1 = c1/cc

p∗ = p/

(
ccε̇

�
1

n1

�

c

)
c∗2 = c2/

(
ccε̇

�
1

n1
− 1

n2

�

c

)
(ρg)∗ = (ρg) /

(
ccx

−1
c ε̇

�
1

n1

�

c

)
(A.78)

where the numerical values of xc, uc and cc can be arbitrarily chosen. As can be seen in

Eqs. (A.78), the complications vanish if n1 = n2.

116

A.4 Derivation of the �nite element formulation of

the constitutive laws for viscous anisotropic

material

This section is a commented listing of a Maple 8.0 �le that performs the derivation of

the �nite element formulation of the constitutive equations for viscous (Newtonian or

power-law) transversely anisotropic material in two dimensions, which were implemen-

ted in the FLASH code. In contrast to the isotropic case (Eq. (A.23)), the viscosity

tensor Λmnop contains two di�erent non-zero entries η and µ for the normal and shear

viscosity respectively if the material is transversely anisotropic (incompressibility is as-

sumed). These parameters describe the normal and shear viscosity parallel to a plane of

anisotropy, which is itself described by the vector normal to it, the so-called `director' ~n

(following the nomenclature of Mühlhaus et al., 2002). The orientation of the plain of

anisotropy at each material point can be described by the angle θ between the director

~n and the y-axis of the global coordinate system.

The parameters η and µ are given in the coordinate system (~s, ~n), that is locally

parallel/perpendicular to the plane of anisotropy. However, stresses and strainrates in

the �nite element code are calculated in global (~x, ~y) coordinates. The tensor Λmnop must

therefore be rotated into the global coordinate system, which will be done component-

wise in the following (lines containing Maple commands start with an >).

Start with cleaning the workspace and loading the required packages:

> restart;

> with(LinearAlgebra):

> with(linalg):

The coordinates of the strain rate tensor ε̇ij are given in global coordinates (~x, ~y).

Because the material properties are described in local coordinates (~n,~s), the strain rate

tensor must be rotated by an angle θ in order to calculate the local stresses. The

rotation matrix R is de�ned as:

> R:=Matrix([[cos(theta),sin(theta)],[-sin(theta),cos(theta)]]):

However, R can also be expressed in terms of the components of the director ~n of the

anisotropy: n1 = − sin θ , n2 = cos θ

> R:=Matrix([[n2,-n1],[n1,n2]]):

The global strain rate vector and matrix are initialized by:

> strr_v_xy:=Vector([epsilon11,epsilon22,epsilon12]):

> strr_xy:=Matrix([[strr_v[1],strr_v[3]],[strr_v[3],strr_v[2]]]):

A.4 Finite element formulation for anisotropic �uids 117

The material matrix M is de�ned locally, i.e. with respect to the coordinates (~n,~s):

> M_ns:=Matrix([[2*eta,0,0],[0,2*eta,0],[0,0,2*mu]]):

where eta is the normal viscosity parallel to ~n or ~s, and mu the shear viscosity.

Two auxiliary arrays are de�ned:

> R_transpose:=Matrix([[R[1,1],R[2,1]],[R[1,2],R[2,2]]]):

> epsi:=Vector([epsilon11,epsilon22,epsilon12]):

The strain rates in (~x, ~y)-coordinates can now be rotated to the (~n,~s) system:

> strr_ns:= R_transpose.strr_xy.R:

... and be reshaped to a vector:

> strr_v_ns:=Vector([strr_ns[1,1],strr_ns[2,2],strr_ns[1,2]]):

In the local (~n,~s) coordinate system, the stresses are calculated as:

> stress_v_ns:= Multiply(M,strr_v_ns):

... and can be reshaped to a matrix:

> stress_ns :=

> Matrix([[stress_v_ns[1],stress_v_ns[3]],[stress_v_ns[3],stress_v_ns[2]

>]]):

The stress matrix is then rotated back into the (~x, ~y) coordinate system:

> stress_xy:=simplify(R.stress_ns.R_transpose):

Reshape the stress matrix to a vector:

> stress_v_xy:=

> Vector([stress_xy[1,1],stress_xy[2,2],stress_xy[1,2]]):

Now the `isotropic' part of the stress can be calculated and subtracted from the total

stress vector:

> M_iso:= Matrix([[2*eta,0,0],[0,2*eta,0],[0,0,2*eta]]):

> stress_iso_v_xy:=M_iso.strr_v_xy:

> stress_aniso_v_xy := stress_v_xy-stress_iso_v_xy:

The coe�cients of the strain rate components ε̇ij in the anisotropic part

stress_aniso_v_xy of the constitutive equation can now be extracted:

118

> M_aniso:=Matrix([[0,0,0],[0,0,0],[0,0,0]]):

> for i from 1 to 3 do;

> for j from 1 to 3 do;

> M_aniso[i,j]:= factor(coeff(stress_aniso_v_xy[i],epsi[j])):

> end do;

> end do;

> L:

In the �nite element formulation used in the FLASH code, the shear strain rate is

formulated as:

ε̇xy := (∂
∂y

u) + (∂
∂x

v)

...whereas we assumed throughout this analysis that

ε̇xy := 0.5
(
(∂

∂y
u) + (∂

∂x
v)
)

.

Therefore the third column of the matrices Miso and Maniso must be multiplied by 0.5:

> M_aniso[1..3,3] := L[1..3,3]*0.5:

> M_iso[1..3,3] := L[1..3,3]*0.5:

The �nite element formulation of the constitutive equation for transversely anisotropic

viscous material then reads:

σij = (Miso − (2η − 2µ) ·Maniso) ε̇ij, (A.79)

where Miso =

 2η 0 0

0 2η 0

0 0 η

 , Maniso =

 −δ0 δ0 −δ1

δ0 −δ0 δ1

−δ1 δ1 −1
2

+ δ0

 , (A.80)

δ0 = 2n2
1n

2
2 and δ1 = (n1n

3
2 − n3

1n2). This formulation is equivalent to the one presented

by Mühlhaus(2002a); the notations have been aligned for reasons of easy reference. In

the case of three dimensions and/or more complicated material properties (e.g.

orthotropic or monotropic behaviour), the demonstrated component-wise derivation

soon becomes too circumstantial, and the use of the full tensor notation is then advised.

A.5 Code benchmarks 119

A.5 Code benchmarks

Even when taking utmost care in writing a numerical code, syntax errors or typing mis-

takes occur all too easily. It is therefore of key importance to test the code against

analytical solutions in order to validate the results and to prove that the code is capable

of reproducing standard modeling setups. In the following, three test setups are dis-

cussed against which the FLASH code was benchmarked. Testing the code against these

benchmark examples provides a trustworthy basis for the interpretation of numerical

results obtained in the frame of this thesis.

A.5.1 Test I: Folding of a Newtonian layer embedded in

Newtonian matrix material

The setup of a linear viscous layer embedded in linear viscous material is well suited for

the testing of numerical codes, since an analytical solution exist (Fletcher, 1974, 1977)

which predicts the growth rate of an instability arising from an initial perturbation of the

matrix-layer interface. Fletcher (1977) derived an analytical solution for this setup by

linearising the complete thick-plate formulation of the problem. This analytical solution

is suitable to test the precision and convergence of the numerical code. According to

Fletcher (1977), the dimensionless growth rate αd of a perturbed matrix-layer interface

is given by

α(k) = −2 (1−R)
1

(1−R2)− ((1+R)2ek−(1−R)2e−k)
2k

, (A.81)

where α(k) denote the growth rate, R = µm

µl
the inverse viscosity contrast between the

layer and the matrix, k = 2π
λ

h the dimensionless wave number, h is the thickness and

λ the wavelength of the initial perturbation of the competent layer. The dominant

wavelength, which grows fastest, maximizes Eq. (A.81).

Fig. A.1(a) shows the setup of the test and the applied boundary conditions.

Fig. A.1(b) displays the resulting growth rates α for viscosity contrasts of 10, 20 and

100 between layer and matrix. The numerical growth rates match the analytical growth

rates and converge toward the analytical solution for decreasing time step dt, decreasing

amplitude of the initial perturbation, and increasing numerical resolution.

A.5.2 Test II: Folding of a power law viscous layer embedded in

power law viscous matrix

The analytical solution for a layer of nonlinear viscous material embedded in nonlinear

viscous matrix was also derived by Fletcher (1974). He performed a linear stability

analysis of the thick plate formulation and developed a solution that describes the growth

120

(a) Setup of the folding benchmark test:
a competent layer of viscosity µl is embed-
ded in a matrix of lower viscosity µm. The
layer�matrix interface is perturbed by a
cosine function. A pure shear background
�ow �eld is applied.

(b) Numerical (symbols) vs. analytical
(dashed lines) results for viscosity contrast of
µc = 10, 20 and 100. The numerical growth
rates converge towards the analytical solution
for decreasing initial perturbation amplitude,
time step, and element size.

Figure A.1. Folding benchmark test

rate α of the layer�matrix interface:

α(k) = 2nL(1−R)
1

− (1−Q2) +
√

nL − 1
[(1−Q2)eaLk−(1−Q2)e−aLk]

2 sin(βLk)
)
, (A.82)

where again R = µM/µL is the inverse viscosity contrast, k = 2π/λ is the wave number,

λ is the wavelength, and Q = (nL/nM)1/2R. This setup is well suited to test a code that

incorporates power law rheology in order to check the correctness of the implementation.

The same setup as shown in Fig. A.1(a) was used with the only di�erence that two

additional material constants nL and nM appear, which represent the power law stress

exponents of the layer and the matrix respectively (Eq. (A.28)). Fig. A.2 displays the

Figure A.2. Nonlinear folding benchmark test

numerical growth rates and the corresponding, analytically calculated growth rate for

A.5 Code benchmarks 121

di�erent matrix/layer power law exponents and for di�erent viscosity contrasts. The

numerically calculated values correspond to the analytical values for the whole range of

initial perturbation wavelengths. An important variation of the test presented above is

the case in which unequal stress exponents nL, nM are used. In this case, an error in the

nondimensionalisation of the code should become apparent, which is hidden in the case

of equal exponents. The code nondimensionalisation applied to the FLASH code can be

found in the appendix A.3.

The tests presented here focus primarily on the accuracy of the velocity �elds for dif-

ferent rheologies. However, for geological problems it is of key importance that also stress

and pressure �elds are calculated correctly, as demonstrated in the following benchmark

sample.

A.5.3 Test III: Stress distribution around a Newtonian elliptical

inclusion embedded in Newtonian matrix material

Complex pressure and stress �elds develop around an elliptical inclusion embedded in

a Newtonian material when this material is subjected to a general shear �ow (Schmid,

2002). The numerical results for stress and pressure �elds obtained from a �nite element

approximation of this problem are very sensitive to the type of element that is chosen

for the discretisation of the pressure p and the velocities u, v (Cuvelier et al., 1986).

For example, the choice of linear approximations of both pressure and velocity leads to

chessboard patterns in stress and pressure �elds (Zienkiewicz and Taylor, 2000).

Schmid (2002) and Schmid and Podladchikov (2003) derived an analytical solution

that describes pressure, stresses, and velocities of both matrix and inclusion for an ar-

bitrary viscosity contrast. This analytical solution allows accurate benchmarking of the

numerical results for this truly two-dimensional problem.

Fig. A.3 shows a comparison of numerically and analytically calculated values of the

e�ective stress (second invariant of the stress tensor) in a matrix that surrounds a very

thin weak elliptical inclusion (aspect ration R = 150), where the viscosity contrast

between matrix and inclusion was µc = 1e5. Seven-node enriched triangular Crouzeix-

Raviart elements were used for the discretisation (Cuvelier et al., 1986).

122

Figure A.3. E�ective stress �eld (= second invariant of the stress tensor as de�ned in
Eq. (A.29)) in the matrix around a weak Newtonian inclusion embedded in Newtonian
matrix material, subjected to a dextral simple shear �ow. The e�ective stress values are
normalized against the background e�ective stress. The numerical results are displayed
in (a), the analytical results in (b). Length scales are missing because the problem was
calculated in a nondimensional form. The di�erences in the e�ective stress �eld near the
tips of the inclusion in (a) compared to (b) originate from the numerical resolution that
cannot be made in�nitesimally small. The ellipticity of both inclusion is R = 150, which
is the approximate limit that can be successfully meshed by the MATLAB PDE Toolbox
mesh generator that is used in the FLASH code.

