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Abstract: In this work, material symmetries in homogenized composites are analyzed. Composite
materials are described as materials made of rigid particles and elastic interfaces. Rigid particles
of arbitrary hexagonal shape are considered and their geometry described by a limited set of
parameters. The purpose of this study is to analyze different geometrical configurations of the
assemblies corresponding to various material symmetries such as orthotetragonal, auxetic and
chiral. The problem is investigated through a homogenization technique which is able to carry
out constitutive parameters using a principle of energetic equivalence. The constitutive law of the
homogenized continuum has been derived within the framework of Cosserat elasticity, wherein the
continuum has additional degrees of freedom with respect to classical elasticity. A panel composed of
material with various symmetries, corresponding to some particular hexagonal geometries defined,
is analyzed under the effect of localized loads. The results obtained show the difference of the
micropolar response for the considered material symmetries, which depends on the non-symmetries
of the strain and stress tensor as well as on the additional kinematical and work-conjugated statical
descriptors. This work underlines the importance of resorting to the Cosserat theory when analyzing
anisotropic materials.

Keywords: micropolar theory; anisotropic media; homogenization/coarse graining; Cosserat theory

1. Introduction

In the study of composite materials, symmetries play a very important role in identify symmetry
planes and peculiar material behaviors. It is well-known that composite materials can be investigated
by directly analyzing their constituents in a micromechanical model or by homogenizing them as an
equivalent continuum. For composites made of particles and matrix, for instance, the analysis of the
single constituents might require high computational cost [1,2]. On the contrary, homogenization is
faster and more efficient, but the effectiveness of such a way has to be validated and modeled using
proper continuum theories [3—6]. In particular, the homogenization of complex interaction effects
in composite materials needs internal scale parameters which are not negligible compared to the
structural length scale.

The paper [7] describes a historical overview of different homogenization techniques which have
been extended to non-classical continua. As it is well known in the literature, the classical continuum,
by lacking in internal lengths, leads to ill-posed problems. This calls for the need of non-local
descriptions which include internal length parameters in different ways; or by adding extra degrees
of freedom, thus obtaining the so-called implicit/weak non-local descriptions, or by adding extra
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parameter as internal variables, obtaining the so-called explicit/strong non-local descriptions [8,9].
The latter aim to account for material nonlocality without modifying classical kinematics [10-13].

Multiscale computational homogenization proposed in [14-21] used non-local or higher order
deformation gradient theories in composite materials. In addition, non-local explicit modeling in elastic
composites were presented in [22-25]. Non-local models with gradient elasticity can be used to study
one-dimensional structures such as beams [26-28] and rods [29,30].

On the other hand, within the framework of implicit non-local theories concerning models with
additional degrees of freedom [7-9], micromorphic continua, in particular continua with rigid local
structures (micropolar), have been satisfactorily applied to various composites [31-41].

All the aforementioned non-local models are then defined as non-local because the governing
equations contain one or more parameters that inherit a micro-structural character which affects
the macroscopic behavior and because of dispersion properties in wave propagation [42-46].
Numerical simulations can be performed by fitting numerical experiments which have a physical
evidence of the presence of such non-locality.

When classical kinematics are enriched with extra degrees of freedom, in many cases,
homogenization procedures have been shown to provide more reliable models than in the case of
classical local continua [43,47]. In the present work, micropolar theory is considered which introduces
the rotation of the material point, termed microrotation, to be distinguished with the macrorotation
of the body (local rigid rotation). The effects of this local rotation have been widely investigated
in [38,39,48-50] for masonry-like materials.

In the recent literature, the couple-stress theory has been widely used for several
applications [35,51,52], however, in this theory, micro and macro rotation coincide and when couple
stresses are negligible, classical elasticity theory is derived (see appendix in [31]). As it has been
also recently analyzed by [53], micro-polar effects become prominent when geometrical or load
singularities are present in the reference problem, such as concentrated loads, voids or material
inclusions. These effects have been also compared to those of of explicit non-local continuum
descriptions [8,9].

The present work investigates the behavior of hexagonal lattices with elastic interfaces
homogenized as equivalent Cosserat continua [54,55]. According to the hexagonal geometry selected
for a generic tile (e.g., orientation of the interfaces and internal angles of the hexagonal geometry),
distinct material symmetries can be derived [56,57]. With reference to the hexagonal parametrization
available in [58], classes of hexagonal geometries are investigated. Among these, six geometries are
analyzed; they all have different peculiarities such as those pertaining to orthotropic, orthotetragonal,
auxetic and chiral aspects. These geometries are defined as rectangular, hourglass, diamond,
regular (hexagonal), skew and tip. All these shapes derive from the regular hexagonal geometry
with equal edges by changing two internal angles.

First, contour maps of the possible hexagonal configurations are displayed in order to globally
analyze mechanical properties of the equivalent solids. Second, a solid wall made of six selected
hexagonal tiles is analyzed under a concentrated load in order to achieve micropolar behavior of the
wall as a function of the microstructure.

This paper is divided into the four sections described below. First, the Cosserat continuum
model is briefly presented in order to introduce current quantities and symbols. Second, a parametric
hexagonal geometry based on four parameters is presented and the investigated patterns are shown
and defined. Third, an in-house finite element implementation is presented using linear finite elements
with reduced integration. Finally, numerical applications are discussed by comparison among the six
considered geometries and physical deduction from the contour plots are given. Paper conclusions
and remarks are given in the conclusion section.
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2. Framework of Cosserat Theory

In the present work, a two-dimensional framework is considered for simplicity. The Cosserat
kinematics take into account an additional degree of freedom of particle rotation w other than classical
displacement components 11 and u5.

The kinematic compatibility equations in matrix form are

J
€11 ox g 0
c22 (a) % ) U
€12 _ oy 0 1 ” (1)
. 2

€1 0 3% 1 w
k 9

1 0 0 4
ko i 0 0 % |

where ¢;;,1,j = 1,2 and k;,i = 1,2 are the strain components: axial, angular and curvature ordered
in the strain vector {e}” = {e11exm e €21 k1 k2}. Note that the angular strain components are not
reciprocal, €15 # €31. In general in the micropolar model the microrotation, w, is different from the local
rigid rotation (macrorotation), 6, defined as the skew-symmetric part of the gradient of displacement,
and the difference between the two rotations, 6 — w, defines the strain measure of the relative rotation
that corresponds to the skew-symmetric part of the strain. When the relative rotation equals zero,
0=w,e;p =6y = % (aa% + %) , the micropolar continuum becomes a continuum with constrained
rotations [31,59]. In the following, we focus on § — w as a peculiar strain measure of the micropolarity
of the model under study.

The work conjugate stress vector to {e} is written in the form {¢'}T = {011 023 013 021 p1 2 }, Where
ojj fori,j = 1,2 represent the normal and shear stress components, and y;, i = 1,2 the microcouples.
The stress components are not reciprocal, 015 # 071, and the couple stress components, y1, y2, have to
be introduced in order to satisfy the moment equilibrium of the micropolar body. The Principle of

Virtual Works can be written as
_ T _ T _ T _
SU+6V = /V{(Ss} {o}adV /V{éu} {f}1dv /S{éu} {p}dS =0 (2)

where {f} and {p} are the vectors of body forces and boundary tractions, respectively. Balance
equations and correspondent boundary conditions can be carried from Equation (2).

011
9 9 log
A SRR | A I AN
Oaiyoaggf721+f2:0 ®)
001—15@;41 0 0

Ha

For the sake of conciseness, boundary terms are not reported. For further details and reading,
strong form equations can be found in [50,60,61].
The micropolar constitutive equations take the compact form

{o} =C{e} @)
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and extended matrix form

011 (A1 At Aniz Auzt B Buz| (en
02 Ao A1z Axot Boxi Box| | e
o2\ _ A2z At Bizt Biz| Jen2 5)
091 A1 Boni Boz| | e
H1 D11 Dy kq
H2 | sym Dy | k

Due to hyperelasticity, the constitutive matrix C in Equation (5) is symmetrical. This matrix is
obtained via an energetic homogenization technique presented in [47]. Such homogenization starts
from the definition of a Representative Volume Element (RVE) in which orientation and location of
elastic interfaces are defined according to a hexagonal geometry selected and described in Section 4.
Further details on constitutive elastic terms are given in the following sections.

3. Finite Element Implementation

A standard finite element implementation is considered for the numerical solution of the
present Cosserat problem. The numerical framework follows the previous contributions of the
authors [50,60,61]. An in-house finite element MATLAB code has been developed as an extension of a
classical two-dimensional elastic continuum as given in [62].

A linear finite element model is considered with quadrilateral (Q4) elements. Linear Lagrange
interpolation functions are used; thus, the approximation takes the form {u} = N{d°}, where {u} is
the vector of degrees of freedom of the model, N is the matrix of shape functions (of size 3 x 12) and
{d®} the vector of nodal displacements.

By inserting the finite element approximation in the strain definitions (1) and in the variational
form of the equilibrium (2) the stiffness matrix and load vectors can be derived as

K] = /A B]TC[B]dA

(6)
{Fy = [ NT{fyav+ [ NT{p}ds
A S
where [B] is the matrix which includes the derivatives of the shape functions. Note that selective
Gauss integration is performed on the shear terms due to different differentiation orders among
displacements and rotational approximation. In the present work, body forces are neglected {f} and
this is why they do not appear in the force vector definition above.
The present finite element approximation is based on displacements; therefore, derivative
quantities are post-computed according to a 2 x 2 Gauss—Legendre grid, and inter-element averaging
is done in the nodes without any extra weight [60].

4. Numerical Applications

The hexagonal pattern of Figure 1 has been defined according to the parametrization [58].
The single tile is defined by the relative length [, which identifies the unit parallelogram. The selected
RVE is highlighted within the centroids of the tiles and outward unit normal vectors at the block
interfaces used for computing the constitutive matrix according to the procedure presented by [47].
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K3 = 30°

_ 100 ~
I, = V3 63.3975

Figure 1. Present hexagonal pattern and single tile geometry.

100

In the following, relative length [, = - T = 63.3975 and the angles &, a3 are variable (Figure 1).

The relative length defines the ratio between AB = DE and BD = AE. The single tile is defined by
a rectangle and two isosceles triangles with the base attached to BD and AE edges of the rectangle.
The nodal coordinates of the single tile are given by:

e A=(0,0),

° B = (11,0),

° CE(11+Z5,12/2),

[ ] D = (11,12),

° E = (0, 12),

° F = (—14,12/2)

where [, = ﬁ, Ii =1—1Iy, 14 = 0.5l tanay, Is = 0.5]; tan az. Due to this definition, the geometric

range of parameters a, and a3 is [-90°,90°].

Thus, by keeping the relative length I, constant and varying a, and a3, all possible configurations

(not self-intersecting hexagons) are depicted in Figure 2. Note that the main diagonal represents the
case wherein ap = &3 and the horizontal and vertical lines represent a3 = 0 and «y = 0, respectively.
The two orthogonal lines divide the space in four areas:

1.

The upper-right area has ay > 0 and a3 > 0 where any combination is theoretically possible in
the given domain range. In this area, regular hexagons are present as well as diamond shaped
ones (according to Figure 3).

The lower-left area has a; < 0 and a3 < 0 where not all shapes are achievable due to some
self-intersections of hexagons. In this area, hourglass shaped hexagons are present (symmetric
and not-symmetric ones) according to Figure 3.

The upper-left and lower-right areas have ay < 0 and a3 > 0 and ap > 0 and a3 < 0, respectively.
These shapes might be characterized by an asymmetric shape (according to Figure 3).
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ay = a3 = —20°, (c) diamond &y = a3 = 70°, (d) regular ap = a3 = 30°, (e) skew ap = —a3 = 70°,

(f) tip ay = 70°, a3 = 0°.
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Figure 3. Hexagonal patterns given [, =

(a) rectangular ay = a3 = 0°, (b) hourglass

The constitutive matrices of several hexagonal configurations are considered in the following.
The homogenization procedure follows the approach described by [47], where the adopted spring
stiffness values at the elastic joint interfaces are Ky = 785. Energetic equivalence is used to carry out
rotational stiffness as:
d d? a3

ki = KNEI ky = kt? = KNZ ()

where d is the current interface length between two rigid particles in contact, for which the interactive
stiffness is computed. Note that the definition of k; is a particular choice which depends on the Poisson
coefficient of the heterogeneous medium.

Considering all the possible geometric configurations illustrated in Figure 2 the equivalent
mechanical properties of the equivalent micropolar material can be carried out according to the
constitutive matrix (5) as in [50,61]. The nonzero components of the classical constitutive matrix A
are depicted in Figure 4. Please note that for all possible hexagonal combinations, A1112 = Aj121 =
A1y = Appp1 = 0. Similar trends are observed for Aq111 and Dj1, as well as the couples A112, and
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A1pp1, finally for Az and Ajp1p as shown in Figure 4. Note that stiffnesses on the main diagonal
are related (as well as off-diagonal terms which are related to Poisson effect and shear asymmetry).
A1111 and Ajip1 increase as ap or a3 increase on the contrary Apoo and Aqy12 have an opposite behavior
(they increase when the two angles decrease). Off-diagonal terms A11p and Ajpp1 are positive when
ay = «3 > 0; they have negative values otherwise. Positive or negative values are also observed when
xy = —a3 > 0 and vice versa. The latter occur for asymmetric configurations of the tiles according to
the nomenclature introduced in [60].

Coupling between stresses/curvatures and microcouples/strains are observed when chiral
material behavior is present. As presented in [60], chiral behavior occurs when asymmetric tiles
are considered for ay = —u3. As a matter of fact, Bjjx components are zero for wp = a3 as depicted in
Figure 5a-d. Positive or negative values of B;j; are observed only if ap = —a3, larger for large values of
angles, thus for high skewness of the tiles. Finally, in Figure 5e,f the micro-couple stiffness are shown
which are high for large values of ap and a3, no matter their sign.

A1 122

2 “3 (b)

1400 1400
1200 1200
& 1000 ~ 1000
N 800 & 800
< 600 < 600
400 400

3 (d)

Figure 4. Stress/strain elastic stiffness variation with aq = 0: (a) A1111, (b) A1122, (¢) A222, (d) A1212,
(e) A1a21, (£) A1z
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(b)

(d)

Figure 5. microcouple/strain elastic stiffness variation with a1 = 0: (a) By12, (b) Ba21, (¢) Bi21, (d) Ba11,
(e) D11, (f) D2p.

Thus the constitutive relations for the present case are always in the form

011 (A Auz 0 0 0 Bz [en]
022 Appn 0 0 0 By |e2
ol _ Az A1 B 0 €12 (®)
021 Axiz1 Bon 0 €21
I} Dy 0 kq
2] Lsym Dy ] Lk

Given the aforementioned presentation of the constitutive configurations, the results for the
following material configurations are shown:

1. rectangular: ap = a3 = 0°
2. hourglass: ap = a3 = —20°
3. diamond: ay = az = 70°
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4. regular: ap = a3 = 30°
5. skew: ar, = —az = 70°
6. tip:ap =70° a3 =0°

And their reference RVE is depicted in Figure 6. The constitutive matrices of the configurations
selected and depicted in Figure 6 are listed below. For the rectangular configuration, it is

[287.3 0 0 0 0 0
0 711.8 0 0 0 0
0 0 710.0 0 0 0
Crea =1 0 0 2855 0 0 ©)
0 0 0 0 144 0
L O 0 0 0 0 442]
An orthotropic nature of the material is observed when rectangular tiles are considered [31,47]
(Figure 6a).
2 2 2
1 1 1
0 0 0
-1 -1 -1
2 -2 2
2 1 0 1 2 2 1 0 1 2 2 -1 0 1 2
(a) (b) ()
2 2 2
1 1 1
0 0 0
-1 1 1
2 -2 2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
(d) (e) ()
Figure 6. Hexagonal RVEs with geometric parameters ay = 0° and [, = I /1})% I (a) rectangular
ay = a3 = 0°, (b) hourglass ay = a3 = —20°, (c) diamond ay = a3 = 70°, (d) regular ay; = a3 = 30°,
(e) skew ap = —az = 70°, (f) tip ap = 70°, a3 = 0°.
The constitutive matrix for the hourglass configuration (Figure 6b) is
[209.2 —0.5 0 0 0 0 ]
—-0.5 1059.7 0 0 0 0
0 0 1056.8 —05 0 0
pr— 1
Chour 0 0 —05 282 0 0 10
0 0 0 0 119 0
. 0 0 0 0 0 67.7]

As it was already observed in [60], an auxetic (negative Poisson ratio) nature of the material is
observed when hourglass tiles are considered.
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The constitutive matrix for the diamond configuration (Figure 3c) is
[ 2823  1.4894 0 0 0 0 ]
1.4894 333.57 0 0 0 0
0 0 331.73 1.4894 0 0
I 11
Caiam 0 0 1.4894 2836.9 0 0 ()
0 0 0 0 1219.3 0
| 0 0 0 0 0 89.941 |

The diamond configuration results to be similar (but with higher stiffness coefficients for A1111
and Aji1p1 due to the elongated shape) with respect to the regular one (see below or [60]) with positive
Poisson contraction and uncoupled condition between classical and micro-couple quantities.

The constitutive matrix for the regular configuration (Figure 3d) is

[ 496.88  0.79247 0 0 0 0
0.79247  496.88 0 0 0 0
0 0 49529 0.79247 0 0
= 12
Creg 0 0 079247 49529 0 0 12
0 0 0 0 33.338 0
L O 0 0 0 0 33.338 ]
the regular configuration results to be like an isotropic material as described already in [60].
The constitutive matrix for the skew configuration (Figure 3e) is
[835.37 0 0 0 0 0 ]
0 1127.3 0 0 0 —216.71
0 0 1121 0 0 0
pr— 1
Cakew 0 0 0 83947 0 0 (13)
0 0 0 0 360.81 0
.| O -216.71 0 0 0 303.95 |

The skew configuration, as indicated above, has a chiral behavior due to the coupling of stresses
and curvatures and microcouples and strains. Large values of coupling stiffness are present due to the

large angles for |a,| and |a3].

The constitutive matrix for the tip configuration (Figure 3f) is

(1123 0.6714 0 0 0 30.03 T
0.6714 419.94 0 0 0 —88.869
0 0 4181 0.6714  30.03 0
Cyp = 14
tip 0 0 06714 11242 —103.94 0 (14)
0 0 30.03 —103.94 340.19 0
13003 —88.869 0 0 0 79.488 |

Note that the present configuration has all the constitutive components of the matrix in
Equation (8) not zero. In other words, a Poisson effect is present as well as a coupling between
stresses/curvatures and microcouples/strains. Given the present hexagonal geometry with elastic
interfaces which interact only through normal stiffnesses, this is the most general configuration possible.
Table 1 lists in compact form all the nonzero constitutive stiffnesses according to the geometry selected.
It is clear from this table that tiles with a vertical symmetry (rectangular, hourglass, diamond, regular)
do not correspond to a chiral material as B;j; = 0.
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Table 1. This is a table caption. Tables should be placed in the main text near to the first time they

are cited.
Rect Hour Diam Reg Skew Tip
A1 2873 2092 2823  496.88  835.37 1123
A 0 —05 14894 0.79247 0 0.6714
Ao 7118 1059.7 333.57  496.88 1127.3 419.94
A 710 1056.8 331.73  495.29 1121 418.1
A1 0 —05 14894 0.79247 0 0.6714
App1 2855 2082 28369 49529  839.47 1124.2
Bi1p 0 0 0 0 0 30.03
By 0 0 0 0 —216.71 —88.869
Bin 0 0 0 0 0 30.03
Bo11 0 0 0 0 0 —103.94

D1y 14.4 11.9 12193  33.338 360.81 340.19
Doy 442 67.7 89941 33.338 303.95 79.488

In the following, for all the six configurations depicted in Figure 6, an elastic problem is solved
via the finite element method. A square panel of side L = 4 is considered and subjected to a top
pressure on a limited area a = L/4 with a resulting equivalent concentrated force of P = 103 pointing
downwards. The panel is clamped at the bottom. The problem is symmetrical for geometry and
loads so only half of the domain is investigated. A regular squared finite element mesh of 16 x 32 Q4
elements is considered and depicted in Figure 7.

The results are reported according to the contour plots of displacements, 17 (horizontal) and up
(vertical), stresses, 011 (horizontal), oy, (vertical), relative rotation 8 — w and shear strains €15 and €51
are shown.

Horizontal displacement u; is depicted in Figure 8. It is evident that rectangular and regular
hexagons correspond to orthotropic and orthotetragonal behaviors which in this case are very similar;
the only difference between these two configuration is that orthotropic configuration has no Poisson
effect. The hourglass configuration, which is auxetic (Poisson negative), has a stronger contraction of
the material (larger horizontal displacement) close to the applied load as it is expected from auxetic
materials. The other configurations that have all horizontally elongated tiles display very small
horizontal motions, either positive or negative.

y
NNANGANNNNNNNNN

Figure 7. Current mesh used 16 x 32 Q4 elements with displayed applied load and boundary conditions.
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14
12
10
8
6
4
2
0
-2

TV : (a) rectangular ay = a3 = 0°, (b) hourglass
w = a3 = —20°, (c) diamond &y = a3 = 70°, (d) regular ay = a3 = 30°, (e) skew @y = —az = 70°,
(f) tip ap = 70°, a3 = 0°.

d

~—

(e

Figure 8. Horizontal displacement u; for I, =

~—

100

Vertical displacement u; is depicted in Figure 9. Rectangular and regular hexagons also have
a similar behavior (except for the Poisson effect). The effect of negative Poisson ratio is visible in
the hourglass configuration which displays concentrated vertical displacements and is close to zero
displacements far from the applied load. This is due to the horizontal contraction of the material.
Diamond and tip configurations, one not-chiral and one chiral, respectively, show similar behavior due
to the horizontally elongated tiles. On the contrary, the smallest vertical displacements are measured
for the skew configuration due to the engagement of tiles.
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I

-30

- -40

-50

-60

(b)

-70

20
-30
-40

-50

(d) (e)
Figure 9. Vertical displacement u; for I, = A
ay = a3 = —20°, () diamond ap = a3 = 70°, (d) regular ap = a3 = 30°, (e) skew ap = —a3 = 70°,
(f) tip ap = 70°, a3 = 0°.

(f) 0

100 .

(a) rectangular ap = a3 = 0°, (b) hourglass

The horizontal stress 01 is shown in Figure 10 does not reflect the map given by the horizontal
displacement (Figure 8) due to the coupling between classical and micropolar quantities in the skew and
tip configurations. In fact, the diamond configuration which registers small horizontal displacements
has very localized horizontal stresses. Rectangular, auxetic and regular configurations have behaviors
expected and already shown in [60]. Note that tip configuration, to which corresponds a small
horizontal displacement, has a high and localized horizontal stress wherein the maximum value of the
stress does not lay upon the symmetry axis as in all the other configurations. This translation of the
maximum horizontal stress is due to the coupling between the horizontal stress ¢q; and the curvature
k2 due to B112 75 0.
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-1000
-2000
- -3000

- -4000

-5000

(b)

-1000
-2000
- -3000

- -4000

-5000

-6000

-7000

I
(c)
'
(d) (e) ()

Figure 10. Horizontal stress o471 for I, = 100 .

1/V/3+1"
a3 = —20°, () diamond ay = a3z = 70°, (d) regular ay = a3 = 30°, (e) skew ap = —a3 = 70°, (f) tip

Ny = 700, N3 = 0°.

(a) rectangular &y = a3 = 0°, (b) hourglass ay =

Vertical stress 0,y is shown in Figure 11. Stress percolation due to micropolar effect is shown by
rectangular, auxetic, regular and skew configurations. Diamond and tip configurations display highly
concentrated vertical stresses with stress fields that are negligible and close to the bottom boundary
condition. The more evident stress percolation is observed in the hourglass configuration due to the
higher Dy, /Dy ratio with respect to the others. The diamond configuration which has the smallest
Dy; /Dy ratio observes a higher vertical stress concentration close to the applied load.
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-1000
-2000

-3000

-7000

-1000
-2000
-5000

-7000

a@ (b)
d@ (e)

()

(a) rectangular ay = a3 = 0°, (b) hourglass ay = a3 =

-9000

100 .

Figure 11. Vertical stress oy for I, = VA
—20°, (c) diamond ay = a3 = 70°, (d) regular ap = a3 = 30°, (e) skew ap = —a3 = 70°, (f) tip ay = 70°,
N3 = 0°.

Similar to what has been observed in the previous works [50,60], the relative rotation, represented
in Figure 12 is affected by not symmetric classical stiffnesses Ajp12 # Ap121, chiral behavior Bijk #0
and micropolar stiffnesses D11, D;. As an example, the rectangular configuration, which has an
orthotropic behavior, shows a higher relative rotation than the skew and tip configurations, which are
chiral. The same can be said if the rectangular configuration is compared to the regular one, which is
orthotetragonal, and results in having a smaller relative rotation. As for the vertical stress case, once
again, the hourglass configuration has the more evident relative rotation and on the contrary, the
diamond configuration has almost zero relative rotation.
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aI (b)
(d) (e) (f) 0

(a) rectangular ap = a3 = 0°, (b) hourglass

100 .

Figure 12. Relative rotation 0 — w for I, = VA
ay = g = —20°, (¢) diamond ay = a3 = 70°, (d) regular ap = a3 = 30°, (e) skew ap = —az = 70°, (f)

tip ap = 70°, a3 = 0°.

In the following unsymmetrical shear strains, €1p and ey are discussed and displayed in
Figures 13 and 14. Classical behavior should be retrieved if €15 = €51; in other words, no micropolar
effect should be observed. €1, and €51 include

Although with some (in some cases small) variations, a micropolar effect is always observed for
all configurations due to the fact that D;; # 0 in all cases and also A1212 # As121 and Bijk # 0 for some
cases. As expected, the configurations that observed a relative rotation close to zero in most of the
solid (diamond, skew and tip) have €15 = €1 = % (% + %) that is a classical continuum. At the
same time, the highest micropolar effect is observed in the auxetic behavior which had the largest
variation of the relative rotation contour plot.
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0
l I I —1
-2
- -3
-5
-6
-7
-8
-9
I (e) I I

Figure 13. Shear strain ¢, for I,
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(d) (e) #
100

Figure 14. Shear strain ¢51 for [, = TV (a) rectangular ay = a3z = 0°, (b) hourglass ay = a3 = —20°,

(c) diamond ay = a3 = 70°, (d) regular ay = a3 = 30°, (e) skew ay = —a3 = 70°, (f) tip ap = 70°,
K3 = 0°.

5. Conclusions

This paper investigated the static behavior of materials with hexagonal microstructures.
A homogenization approach is applied to selected lattice assemblies in order to obtain a micropolar
constitutive relation which results to be a function of two geometric parameters. Up to twelve nonzero
elastic constants have been activated with the present procedure and the particular behavior of six
material configurations (termed rectangular, auxetic, diamond, regular, skew and tip) have been
presented. The selected patterns correspond to the so-called orthotropic, orthotetragonal, auxetic and
chiral material symmetries. In particular, chirality occurs when asymmetric tiles are selected and an
auxetic solid is derived when rehentrant corners are used.

Different levels of nonlocality, that in the case of micropolar media are of the “implicit’ type,
that are related to the geometric configuration, have been observed to be due to the bending moduli
ratio, D7y / D1; ratio, and to chiral terms (B;jx # 0). However, chiral materials did not show the larger
degree of micropolarity given by the auxetic configuration. None of the configurations correspond
to classical continua, because no configuration has zero micropolar terms; however, the so-called
diamond and tip configurations result in the ones with largest contour areas of zero relative rotation,
that is, areas with strain that is quite symmetric, and then behave in a way that is similar to a classic
material. Future developments of this work will be oriented to wider investigations of the effect of the
relative rotations with a reliable measure of nonlocality.
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