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A B S T R A C T

Aims: Current rates of biodiversity loss do not allow for inefficient monitoring. Optimized monitoring maximizes
the ratio between information and sampling effort (i.e., time and costs). Sampling effort increases with the
number and size of sampling units. We hypothesize that an optimal size and number of sampling units can be
determined providing maximal information via minimal effort. We apply an approach that identifies the optimal
size and number of sampling quadrats. The approach can be adapted to any study system. Here we focus on
alpine grassland, a diverse but threatened ecosystem.
Location: Gran Paradiso National Park, Italy.
Methods: We sampled nine 20m×20m-plots. Each plot consisted of 100 2m×2m-subplots. Species richness
and Shannon diversity were quantified for different sizes and quantities of subplots. We simulated larger subplot
sizes by unifying adjacent 2m×2m-subplots. Shannon’s information entropy was used to quantify information
content among richness and diversity values resulting from different subplot sizes and quantities. The optimal
size and number of subplots is the lowest size and number of subplots returning maximal information. This
optimal subplot size and number was determined by Mood’s median test and segmented linear regression, re-
spectively.
Results: The information content among richness values increased with subplot size, irrespective of the number
of subplots. Therefore, the largest subplot size available is the optimal size for information about richness.
Information content among diversity values increased with subplot size if 18 or less subplots were considered,
and decreased if at least 27 subplots were sampled. The subplot quantity consequently determined whether the
smallest or largest subplot size available is the optimal size, and whether the optimal size can be generalized
across richness and diversity. Given a 2m×2m size, we estimated an optimal quantity of 54. Given a size of
4 m×4m, we estimated an optimal number of 36. The optimal number of plots can be generalized across both
indices because it barely differed between the indices given a fixed subplot size.
Conclusions: The information content among richness and diversity values depends on the sampling scale.
Shannon’s information entropy can be used to identify the optimal number and size of plots that return most
information with least sampling effort. Our approach can be adapted to other study systems to create an efficient
in-situ sampling design, which improves biodiversity monitoring and conservation under rapid environmental
change.

1. Introduction

Alpine grassland is diverse in species and equipped with various

functional traits (Körner, 2003). This diversity of species and traits
maintains ecosystem functions and services from which human well-
being profits (Cardinale et al., 2012). Facing the rapid climate-induced
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changes of alpine plant communities (Steinbauer et al., 2018), efficient
surveys and monitoring are urgently needed to explicitly inform cli-
mate-smart conservation management and policy (Rands et al., 2010).
Efficient vegetation sampling represents the most ecological informa-
tion that can be gathered by least sampling effort, i.e., in short time and
at low costs (Stenzel et al., 2017).

Information content of ecological data is strongly dependent on
temporal and spatial scales (Chave, 2013; Levin, 1992; Peterson and
Parker, 1998; Rosenzweig, 1995; Storch et al., 2008; Wiens, 1989).
Patterns of species diversity vary with the spatial scale of observation,
with the species-area relationship being the most fundamental example
(Arrhenius, 1921). Biotic drivers of species diversity generally tend to
be more important at smaller scales, whereas abiotic drivers pre-
dominate at larger scales (Götzenberger et al., 2012; Schweiger and
Beierkuhnlein, 2016).

In vegetation science, a single, well-founded and effective sampling
design is missing so far. The disagreement on an ideal sampling design
can be traced back to the fundamental question of the minimal area
representing plant communities (Hopkins, 1957). In particular, the
quantity, size, shape and spatial configuration of sampling units (i.e.,
plots) control species diversity estimates (Bacaro et al., 2015; Chiarucci
et al., 2001; Dengler, 2009; Güler et al., 2016; Keeley and
Fotheringham, 2005; Kenkel et al., 1989; Stohlgren, 2007). A non-di-
rectional plot shape such as a quadrats is expected to return most
phytosociological richness of homogenous stands with weak ecological
gradients (Bacaro et al., 2015), but recommended sizes still vary by a
factor of 105 (Dengler et al., 2009). Often rules of thumb are used such
as the indication that plot size should be roughly proportional to ve-
getation height (Chytrý and Otýpková, 2003). In view of the difficulties
of finding a consistent sampling design, some authors suggest to have
an operational approach, with sampling scale decided on the basis of
clear and repeatable criteria rather than vegetation characteristics
(Chiarucci, 2007; Palmer and White, 1994).

Here we aim to identify an optimal size and number of plots that
return the most information about species diversity with the least
sampling effort. We do not analyze the relationship between sampling
design and species diversity, but between sampling design and the in-
formation content among species diversity estimates. Diversity is
thereby quantified for quadratic plots of different size and quantity. We
define the optimal size and number of plots as the smallest size and
lowest quantity at which a maximum of information among species
diversity values can be obtained by a minimum of sampling effort

(Fig. 1). It is hypothesized that with increasing plot size and quantity
information content first increases and then levels off, following the
causation of the species-area relationship (W. R. Turner and Tjørve,
2005): An increasing sampling area expressed by increasing plot size or
quantity means that a higher relative proportion of diversity is recorded
that would result in an increasing redundancy among diversity values.
Information content subsequently levels off. Sampling effort is basically
determined by the number and size of plots. The more and the larger
the plots are, the higher is the sampling effort in terms of time and
costs. As a case study, we sampled alpine grassland communities. We
used Shannon’s information entropy as a measure of information con-
tent captured in diversity metrics. Two fundamental metrics of biodi-
versity were applied, which express different types of information:
Species richness and Shannon diversity (i.e., including species abun-
dances). To our knowledge, information entropy has not been used like
this before, but see Bogaert et al. (2005) for an entropy-based analysis
of landscape fragmentation or Turner et al. (1989) describing a rapid
loss of information for rare and dispersed land cover types with in-
creasing sampling size. We applied a methodological approach that can
be easily adapted to any study system. This makes our investigation of
general interest for ecologist and conservationists.

2. Methods

2.1. Study area and sampling design

The study area is located in the Gran Paradiso National Park in
northwestern Italy (Fig. 2a). This alpine environment is characterized
by low human impact due to the long history of protection. The sam-
pling covers three vegetation subtypes of alpine grassland that were
identified with the support of the CORINE Land Cover map from 2012
(available at https://land.copernicus.eu/pan-european/corine-land-
cover) and expert knowledge: ‘Pure’ natural grassland, sparsely vege-
tated ‘rocky’ grassland (on rocks, scree or gravel) and ‘wet’ grassland
(wetlands). Each vegetation subtype was sampled in three valleys
(Bardoney, Colle de Nivolet, Levionaz) between 2200 and 2700 meters
a.s.l. (Fig. 2b), which resulted in one plot per vegetation subtype and
valley. Subsequently, nine plots were sampled in total.

We applied quadrats because we did not observe strong ecological
gradients at any plot location (Bacaro et al., 2015). For that reason,
quadrats mitigate the confounding effect of environmental hetero-
geneity on species diversity (Dengler, 2008). The plots were established
on flat terrain. Each of the nine plots had an extent of 20m×20m
(400m2) and was subdivided into 100 subplots measuring 2m×2m
(Fig. 2c). The percentage cover (abundance) of each plant species (in-
cluding mosses and lichens) was estimated for each subplot. Cover es-
timates reflect the mean of two independent estimates by two people to
reduce observer bias (Klimeš, 2003). The vegetation survey was con-
ducted at the peak of the yearly vegetation development during August
2015. Species were identified using ‘Flora Helvetica’ (Lauber and
Wagner, 1998), ‘Flora Vegetativa’ (Eggenberg and Möhl, 2009), ‘Flora
Alpina’ (Aeschimann et al., 2004) and ‘Guida alla flora della Valle
d’Aosta’ (Bovio et al., 2008).

2.2. Species diversity indices

The first fundamental measure of diversity that we applied is species
richness R. The second index is the Shannon diversity index (Shannon,
1948) that incorporates species richness and abundance. The non-ex-
ponential version with the natural logarithm that we utilized is given by
formula 1:

∑= −
=

H p ln p( )
i

R
i i1 (1)

The number of species is given by R and the relative abundance of
the ith species by pi. The Shannon diversity H quantifies the uncertainty
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Fig. 1. Theoretical background to identify the optimal size and number of
sampling plots. The plot size and quantity determines the sampling effort be-
cause the size and number of plots mainly determines the time and financial
ressources needed for sampling. The optimal plot size or quantity retrieves a
maximum of information content by minimal sampling effort.
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of selecting any species from the plot by chance. The Shannon diversity
is maximal when each species within a plot is equally abundant. Here
the percentage cover of each species was used as a measure of the re-
lative abundance because the number of individuals cannot be recorded
for clonal plants without destruction. Plants with a cover of less than
1% were set to 0.5% cover for simplification of statistical analyses.
Species-specific mean cover was used to calculate the Shannon diversity
H. We used the diversity-function within R package “vegan” (Oksanen
et al., 2018) to calculate the Shannon diversity H.

2.3. Shannon’s information entropy of species diversity indices

Information theory, of which Shannon’s information entropy is an
integral part, is widely applied in the scientific fields of mathematics,
statistics and system dynamics. The seminal work of Shannon
(Shannon, 1948) has gained broad application in these fields and is
widely applied in ecology as a metric of species diversity (Shannon
diversity, see Section 2.2). Shannon’s information entropy is a central
term in information theory. It quantifies the amount of information
given by a number of entities (Shannon, 1948). Information entropy
increases with decreasing redundancy among entities. Ecologists and
conservationists prefer to apply the size and number of sampling plots
that provide most information about species diversity. If information
entropy saturates with plot size and quantity, the smallest size and
lowest number of plots would be preferred that still provide most in-
formation (Fig. 1) because sampling effort in terms of time and costs
increases with the number and size of plots.

The Shannon’s information entropy H is originally calculated by
formula 2 including the common logarithm to base 10 instead of the
natural logarithm (formula 1):

∑= −
=

H p log p( )
i

R
i i1 (2)

with pi being the frequency of occurrence of entity i of R unique entities.
Shannon’s information entropy was derived from the idea to quantify
information content given by letters (i.e., entities) within a text mes-
sage. Shannon species diversity incorporates species abundances in-
stead of letter abundances. Here we used the different values of a di-
versity index (species richness or Shannon diversity) as entities i. The
value of entropy (i.e., information content) depends on the number of

unique entities (e.g. letters, species or unique values of a diversity
index) and their frequencies of occurrence. Entropy is positive and
maximizes when the abundance of each entity (e.g. a unique index
value) was equal.

With increasing decimal digits of the values of diversity indices, less
equal index values may be found and entropy increases giving rise to
bias in our analyses. Since the measurement accuracy of species cover
was limited to the accuracy of 2 decimal digits (e.g. 25%), we con-
sidered 2 decimal digits to be a reasonable measurement accuracy
throughout the entire entropy analysis. Furthermore, the absolute va-
lues of information entropy cannot be directly compared between dif-
ferent diversity indices because of the different scaling of indices. For
valid comparison, which is not the intention of this study, metrics must
be standardized before computing information entropy. The entropy
was calculated using the entropy-function in R-package “entropy”
(Hausser and Strimmer, 2014).

2.4. Simulating plot size and quantity

First, to analyze the relationship between the information entropy of
diversity indices and the plot size, we unified adjacent 2m×2m (i.e.,
1× 1) subplots within the 20m×20m (10×10) plot to simulate
larger subplots sizes. Subplot sizes from 1×1 (2m×2m) to 10×10
(20m×20m) were considered. Accordingly, the largest subplot size of
10× 10 unified 100 gridded 1×1-subplots. The larger the simulated
subplot size, the less subplot-unions n existed that unified adjacent
1×1-subplots to a larger subplot size. For a subplot size of 2×2
n=81 different quadratic subplots could be generated within the
10× 10-plot; for 3×3 n=64, for 4×4 n=49, for 5×5 n=36, for
6× 6 n=25, for 7×7 n=16, for 8×8 n=9, for 9×9 n=4 and for
10× 10 n=1.

We calculated the information entropy H of a given diversity index
and subplot size on the basis of m*9 randomly selected subplots, i.e., m
from each of the nine 10× 10-plots. By varying m, we simulated dif-
ferent numbers of sampled subplots. Thereby, we only selected the
subplot-unions within a 10×10-plot that do not share any 1×1-
subplot to guarantee independent values for the entropy calculation.
Subsequently, max(m) equals 100 for subplot size 1×1; max(m)= 25
for 2×2, max(m)= 9 for 3×3, max(m)= 4 for 4×4 and 5×5, and
max(m)= 1 for 6× 6, 7×7, 8× 8, 9×9 and 10× 10. Furthermore,

Fig. 2. Geographical location of the study area. a)
Gran Paradiso National Park is located in the
European Alps, northwestern Italy. b) Nine sampling
plots were established, three in each of the three
alpine grassland subtypes inside each of three val-
leys (Colle del Nivolet, Levionaz and Bardoney). c)
The sampling plot was designed as a 20m×20m
quadratic square (size 10×10), subdivided into
100 subplots of 2m×2m (size 1× 1). Different
plot sizes from 1×1 to 10× 10 were simulated by
unifying adjacent 2m×2m-subplots.
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given n subplot-unions within a 10×10-plot, there are
∏k=0

m−1(n− k)9 possibilities to combine m subplots from each of the
nine 10× 10-plots. We consequently repeated this random subplot
selection procedure 10,000 times to represent an appropriate propor-
tion of the number of possible combinations. However, repetitions of
the random selection procedure were not necessary for subplot size
1× 1 and m=100, for 2× 2 and m=25, and for 5×5 and m=4,
because these configurations already incorporated all independent
subplot-unions available within a 10×10-plot by one single selection
run. We finally computed 10,000 entropy values for each diversity
index (species richness and Shannon diversity), for each subplot size
(from 1×1 to 10×10) and for varying m: From m=1 to m=24 as
well as for m=30, m=36, m=42, m=48, m=60, m=72, m=84,
m=96 and m=99; we did not calculate entropy values of subplot size
1× 1 for all subplot quantities m due to long computation time. Each of
the 10,000 entropy values were thus calculated on the basis of m*9
values (entities) of a diversity metric (species richness or Shannon di-
versity).

In addition, the effect of the spatial dispersion of sampling units
onto sampling outcomes is often neglected (but see Chiarucci et al.,
2009; Dengler and Oldeland, 2010). The larger the spatial area of
sampling units becomes or the larger the distance between (i.e., extent
among) sampling units is, the more species will be detected due to the
distance-decay of similarity between species communities (Steinbauer
et al., 2012). We accounted for the effects of the species-area re-
lationship (Dengler, 2008) and the species-extent relationship (Güler
et al., 2016) onto the sampling results by randomly selecting a given
number of subplot m from each of nine plots that cover a constant area
and extent. As aforementioned, we repeated this probabilistic sampling
procedure 10,000 times to take the large variety of available subplot
combinations into consideration.

2.5. Statistical analyses

To identify the optimal subplot size for a given number of subplots,
we compared the 10,000 entropy values between subplot sizes via
Mood’s median test (pairwiseMedianTest-function in R package
“rcompanion”; Mangiafico, 2016). The optimal number of subplots for a
given subplot size was quantified using breakpoint analyses via piece-
wise regression. The segmented-function inside R-package “segmented”
(Muggeo, 2003) was used to apply piecewise regression to the 5th, 50th

and 95th-percentile of the entropy distributions. The segmented linear
regression fits two separate yet contiguous linear regression lines to the
sampling points before and after an estimated breakpoint, which is
based on the maximum likelihood of model parameterization. The
breakpoint analyses onto the 5th, 50th and 95th-percentile provided a
confidence interval for the median breakpoint. As mentioned above, we
did not calculate entropy values of subplot size 1×1 for all subplot
quantities m due to long computation time. However, breakpoint esti-
mation is sensitive to the amount of points involved. To include the
entire range of m from 1 to 99, we applied breakpoint analysis for
subplot size 1×1 onto predicted entropy values from a local poly-
nomial regression model (loess-function in R-package “stats”; R
Development Core Team, 2016). The local regression model precisely
fitted a regression line onto the points. Each subplot m from 1 to 99
could thus be related to an accurately predicted entropy value. These
predicted entropy values were then used to detect the breakpoint along
the relationship between the predicted entropy values and the subplot
quantities m. The R-code is given in the appendix. The dataset is stored
at the Dynamic Ecological Information Management System - Site and
Dataset Registry (DEIMS-SDR; Wohner et al., 2019) under the UUID
b549ff14-f40f-4749-8e2f-f16f6e523753 (see https://deims.org/
dataset/b549ff14-f40f-4749-8e2f-f16f6e523753).

3. Results

3.1. Species richness and Shannon diversity

Species assemblages within the plots were generally representative
for alpine grasslands, but specific dominance and abundance patterns
were observed in the three valleys and vegetation subtypes. At
Bardoney, pure grasslands were dominated by Nardus stricta, Trifolium
alpinum and Carex curvula, whereas the wetlands were dominated by
Nardus stricta, Carex bicolor and Salix herbacea. At Colle del Nivolet,
Oxytropis helvetica was the dominating species in the rocky subtype
along with Silene acaulis and Festuca alpina, whereas the most abundant
species in the pure grassland were Anthoxanthum alpinum, Carex curvula
and Geum montanum. In the wetlands, Carex nigra, Eriophorum
scheuchzeri and Eleocharis quinqueflora were occurring the most. The
rocky plot in Levionaz was dominated by Salix breviserrata, Plantago
alpina and various grasses. Plantago alpina was abundant in the pure
grassland along with Festuca melanopsis and Hieracium pilosella agg. The
wetlands were dominated by Carex flacca and five moss species.

Species richness and Shannon diversity of the 1× 1-subplots con-
siderably varied within and between the nine 10×10-plots, re-
presenting diversity of alpine grassland (Fig. 3). Among all nine plots,
247 plant species were recorded. Herbaceous plants were most promi-
nent, comprising 180 species. Up to 50 species of plants were recorded
per 10×10-plot. A maximum of 33 species was recorded inside a
single 1× 1-plot of pure grassland in the Levionaz valley (Fig. 3a); a
minimum of three species was identified inside a single 1×1-plot in
the wetland of the Colle del Nivolet valley. The Shannon diversity did
not necessarily increase with species richness (Fig. 3b); species can be
unequally abundant, compensating the positive effect of species rich-
ness on Shannon diversity.

3.2. Information entropy and subplot size

The information entropy of species richness R generally increased
with increasing subplot size irrespective of the number of subplots
considered (Fig. 5a). Given that nine subplots are considered in total
(m=1, Fig. 5a), the information entropy between subplot sizes 4×4
and 7× 7 was similar; increasing subplot size did not necessarily in-
crease the information entropy within this range of subplot sizes. For all
other m, the entropy significantly increased with growing subplot size.

The information entropy of Shannon diversity H increased with
subplot size (Fig. 5b), but only for m≤ 2. For m=1, the entropy
formed again a plateau along intermediate subplot sizes. For m=2, the
entropy marginally varied between subplot size 1×1 and 3× 3. For
m≥ 3, however, the relationship between entropy and subplot size
changed from positive to negative; the information entropy then de-
creased with increasing subplot size. For m≥ 4, the information en-
tropy was significantly different between all subplot sizes.

3.3. Information entropy and subplot quantity

For subplot size 1× 1 and 2×2, the relationship between in-
formation entropy and number of subplots showed a saturating beha-
vior with an increasing number of subplots (Fig. 5). Concerning the
information entropy of species richness R and subplot size 1×1
(Fig. 5a), the segmented regression analyses determined a median
breakpoint of m=5.5 (95%-confidence interval: 5.1–5.8), a 5th-per-
centile breakpoint of m=7.4 (6.9–7.9) and a 95th-percentile break-
point of m=5.3 (5.0–5.6). We estimated a median breakpoint of
m=6.3 (5.9–6.7), a 5th-percentile breakpoint of m=6.4 (6.0–6.8) and
a 95th-percentile breakpoint of m=4.5 (4.2–4.8) for the information
entropy of Shannon diversity H and subplot size 1× 1 (Fig. 5b). The
segmented regression resulted in a median breakpoint of m=4.4
(3.9–4.8), a 5th-percentile breakpoint of m=4.4 (4.0–4.9) and a 95th-
percentile breakpoint of m=3.5 (3.1–3.9) for the information entropy
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of species richness R and subplot size 2× 2 (Fig. 5c). For the in-
formation entropy of Shannon diversity H and subplot size 2× 2
(Fig. 5d), we calculated a median breakpoint of m=4.3 (3.9–4.7), a
5th-percentile breakpoint of m=4.3 (3.9–4.7) and a 95th-percentile
breakpoint of m=3.3 (3.1–3.6). In a nutshell, we estimated a median
subplot quantity of 6 across the diversity metrics after which the in-
formation entropy of subplot size 1×1 leveled off (Fig. 5a, b). For the
subplot size 2× 2, we estimated a median subplot quantity of 4 across
both indices (Fig. 5c, d).

4. Discussion

As hypothesized, information content levels off with an increasing
number of subplots for both diversity indices and subplot sizes (1× 1
and 2×2). Accordingly, the shape of the relationship between the
information entropy and the plot quantity might be universal across
plot sizes and diversity indices. In our study on alpine grassland, 54 (6
from each of the nine 10×10-plots) was estimated to be the optimal
number of 1×1-plots that cover the most information about species
richness and diversity values by the minimal sampling effort. Regarding
2× 2-plots, 36 (4 from each of the nine 10× 10-plots) was the optimal
number of plots. Interestingly, the optimal plot quantity did not differ

between the species richness and diversity indices. The optimal number
of plots can consequently be generalized across both indices given a
constant plot size of 1× 1 or 2×2.

In contrast to our hypothesis, the information entropy did not show
such saturating behavior with an increasing plot size by keeping the
number of plots constant. The information content of the richness es-
timates clearly increased with increasing plot size. The optimal plot size
in terms of richness information is, therefore, the largest plot size that
was considered (9×9). However, the information content among
richness values did not considerably change between the intermediate
plot sizes from 4×4 to 7×7. In other words, information contents
significantly differed between the extremely small and between the
extremely large plot sizes. Subsequently, the smaller plot sizes do not
necessarily provide more information about species richness. This is all
the more relevant as mistakes in species sampling have a stronger im-
pact at small plot sizes with less species diversity (Klimeš et al., 2001).
Moreover, the amount of information covered by the diversity estimates
increased with an increasing plot size up to 18 plots (i.e., 2 subplots
were taken from each of the nine 10× 10-plots), but decreased if more
than 27 plots (i.e., 3 subplots were taken from each of nine 10×10-
plots) were considered. Hence, the number of plots determines whether
the smallest or largest available plot size is the optimal size for
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Fig. 3. Species diversity within and between the nine 10× 10-plots. a) Species richness R and b) Shannon diversity H of individual 1×1-subplots considerably
varied among the three vegetation subtypes (pure, wet and rocky) and valleys (Bardoney, Colle del Nivolet and Levionaz). The horizontal black line within the grey
box represents the median. The grey box ranges from the 1st to the 3rd quartile. The upper whisker delimits the 3rd quartile plus 1.5 times the interquartile distance
(3rd quartile – 1st quartile). The lower whiskers mark the 1st quartile minus 1.5 times the interquartile distance.
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information about diversity. A trade-off between the optimal plot size
and quantity has been detected regarding information obtainable about
diversity. Turner et al. (M. G. Turner et al., 1989) showed that in-
formation content on the diversity of land cover types grows with an
increasing spatial resolution of sampling units. Since that study partly
confirms our findings, the general shape of the information-plot scale
relationship might be consistent across study objects (e.g. species or
land cover types). Our results, however, indicate that the relationship
between information entropy and plot size given constant plot quantity
is not universal across plot quantities and diversity indices. The optimal
plot size for any given number of plots cannot be generalized across
both diversity indices. The optimal plot size seems to depend on the
number of plots considered and the diversity index applied.

Differences in the scaling of information content with plot size and
quantity are driven by different factors. These include the spatial con-
figuration of sampling units (Bacaro et al., 2015; Güler et al., 2016;
Schweiger et al., 2016), dispersal mechanisms (Dengler, 2008), species
density effects (Condit et al., 1996) and small-scale heterogeneity of
environmental conditions (Dengler, 2008). Even at the local scale,
species diversity increases with increasing distance between sampling
units because habitats and environmental conditions are expected to

become more similar with decreasing distance (Chiarucci et al., 2009;
Dengler, 2008, 2009; Kunin, 1997; Stohlgren, 2007). Species richness
also increases with decreasing dispersal limitations (Hubbell, 2001).
Therefore, it is not guaranteed that our findings are simply applicable to
other systems of similar diversity levels because resource availability
(Olszewski, 2004; Ugland et al., 2003; Wilson and Gitay, 1995) and
population dynamics (Pannell, 2012) may idiosyncratically control the
spatial distribution of species abundances at small scales. In addition,
the regional species pool size may differ, which causes differences in the
proportion of the pool that can be detected by local sampling units
(Chao and Jost, 2012).

We additionally highlight that the measurement of species abun-
dance (here cover) adds substantial information about the species di-
versity as opposed to measure species richness only (Gosselin, 2006).
The shape of the relationships between information content and plot
size differed between both diversity metrics given any constant number
of plots (Fig. 4). The reason is that the species richness index weighs all
species equally. Species richness responds equally to each additional
species occurring, even if species have very low cover (Stohlgren,
2007). Abundance-based measures are less sensitive to rare species
whose relative coverage is marginal. Recording species richness only

Fig. 4. Information entropy versus plot size given a constant number of plots. In a) Shannon’s information entropy of species richness R was seperately calculated for
different quantities of subplots m (number inside grey boxes) that were randomly selected from each of the nine 10×10-plots. This random selection procedure was
repeated 10,000 times, so that 10,000 entropy values were calculated per subplot size for a given constant number of subplots (see Methods section for details). In b)
Shannon’s information entropy of the Shannon diversity H was calculated. Boxplots as in Fig. 3. The letters illustrate significant differences (p < 0.05) between
entropy distributions using Mood’s median test. “All sig.” indicates that all entropy distributions are significantly different from each other. For the subplot size 1×1
and m=100 and for 5×5 and m=4, repetitions of the random selection procedure were not reasonable because these configurations already incorporated all
independent subplot-unions available within a 10× 10-plot by one single selection run. They were excluded from Mood’s median test.
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may be less laborious, but Shannon diversity offers additional in-
formation about species diversity by incorporating species abundances.
We therefore recommend to record species abundances, especially
when it comes to monitoring community composition. Because time
and funds are limited for conservation management, surveys and
monitoring programs should be conducted that maximize the prob-
ability of recording most species diversity with least sampling effort
(Abella and Covington, 2004). Comprehensive conservation action
should always be informed by a variety of diversity metrics because
different metrics represent different conservation values that are given
by areas of conservation concern (Hoffmann et al., 2018a).

Our sampling design is restricted to a particular spatial configura-
tion and shape of sampling units. Since the spatial configuration and

shape of plots control the species diversity that is sampled (Bacaro
et al., 2015; Güler et al., 2016; Schweiger et al., 2016), information
entropy of diversity estimates may be affected by the plot shape and
spatial arrangement. Moreover, assuming the nine 10× 10-plots (i.e.,
an area of 3600 m2) well represent the regional diversity of alpine plant
communities, this study provides first estimates of the optimal plot size
and number to sample alpine grassland at this regional extent. Never-
theless, it is desirable to enlarge the study area, extent and plot scale –
towards larger plots and smaller subplots – in order to prove our results
for alpine grassland in general. The optimal sampling design ultimately
depends on the study objectives (Bacaro et al., 2015; Baffetta et al.,
2007; Yoccoz et al., 2001). While we focused on the information about
local diversity (i.e., alpha diversity sensu Whittaker, 1972) in alpine
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Fig. 5. Information entropy versus plot quantity given constant plot size. a) The information entropy of species richness R given the subplot size 1×1. b) The
information entropy of Shannon diversity H given the subplot size 1× 1. c) The information entropy of species richness R given the subplot size 2×2. d) The
information entropy of Shannon diversity H given the subplot size 2× 2. The curves show the local polynomial regression fits. The solid vertical lines indicate the
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reasonable because these configurations already incorporated all independent subplot-unions available within a 10×10 plot by one single selection run.
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grassland of the regional extent, a general assessment of the informa-
tion-scale relationship should consider different scales (from local to
global), biotic units, information types (e.g. differentiation diversity
sensu Jurasinski et al., 2009) and study objects (e.g. plant functional
traits) - such as Whittaker et al., 2001 for the diversity-scale relation-
ship. More data points will allow for a more accurate assessment of the
optimal plot size and quantity, even by other methods such as change
point analysis (Killick and Eckley, 2014). However, due to the general
fact that species diversity is monotonically increasing with increasing
sampling area, Hopkins (Hopkins, 1957) already concluded that a
minimal area representing maximal diversity is, from an objective point
of view, unlikely to exist for any vegetation type. It remains an open
question whether this is true for information content.

5. Conclusion

Understanding the scale-dependence of information content of di-
versity metrics is crucial for efficient research, monitoring and con-
servation programs, especially for alpine ecosystems vulnerable to
rapid environmental changes. An optimal sampling design should al-
ways be considered for reasons of temporal and financial efficiency.
Apart from that, an optimal in-situ sampling design may also improve
biodiversity assessment via Earth observation technique (Hoffmann
et al., 2018b): Small-scale in-situ information can be projected to larger
extents on the basis of remote sensing data with relatively low effort
(Stenzel et al., 2017).

The information content among species diversity estimates is scale-
dependent as we demonstrated for alpine grassland at regional extent.
Our approach can be adapted to other study systems. Yet, for some
diversity indices and plot quantities, a clear saturation of information
content with increasing plot size might not emerge. In that case, the
smallest or largest plot size is the optimal one. The generality of our
results is restricted to a single vegetation type, a particular sampling
design, two diversity metrics, and a limited study area and extent.
Hence, research on the scale-dependence of information entropy still
offers great potential.
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