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Entanglement topological invariants for one-dimensional topological superconductors
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Entanglement provides characterizing features of true topological order in two-dimensional systems. We show
how entanglement of disconnected partitions defines topological invariants for one-dimensional topological
superconductors. These order parameters quantitatively capture the entanglement that is possible to distill from
the ground-state manifold and are thus quantized to 0 or log 2. Their robust quantization property is inferred
from the underlying lattice gauge theory description of topological superconductors and is corroborated via
exact solutions and numerical simulations. Transitions between topologically trivial and nontrivial phases are
accompanied by scaling behavior, a hallmark of genuine order parameters, captured by entanglement critical
exponents. These order parameters are experimentally measurable utilizing state-of-the-art techniques.
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I. INTRODUCTION

Recently, entanglement has emerged as a groundbreaking
diagnostic to characterize and classify many-body quantum
phenomena in and out of equilibrium [1–4]. An archetypal
example is the possibility of unambiguously detecting topo-
logical order in two-dimensional systems via the topological
entanglement entropy (TEE) [5–7]. The latter spots the pres-
ence of “long-range” entanglement which is not distillable via
local operations; consequently, it defines a genuine entangle-
ment order parameter that distinguishes phases depending on
their quasiparticle content [8]. This insight has been widely
employed in the characterization of topologically ordered
states in numerical simulations [9–11] and has stimulated
the search for experimentally realistic entanglement probes
[12–18].

While the definition of the TEE naturally emerges from
gauge theories in two dimensions, the existence of topological
invariants based solely on entanglement properties in one-
dimensional (1D) topological matter, e.g., in the form of
an order parameter, is presently not clear. In 1D, bipartite
entanglement of connected partitions does not display infor-
mative scaling corrections [2,3]. Its finer structure—captured
by the entanglement spectrum—provides sharp sine qua non
[19–21], but even the entanglement spectrum of single par-
titions is not able to distinguish the topological character of
wave functions [22]. Indeed, at the field-theory level and in
1D, connected bipartite entanglement is strongly influenced
by ultraviolet contributions due to edges and is thus not
immediately linked to “universal” information.
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In this paper, we show how entanglement and Rényi en-
tropies of disconnected partitions provide a set of entangle-
ment order parameters for 1D topological superconductors
(TSCs) [24,25]. These order parameters satisfy the following
properties: (i) they are quantized to 0 or log 2 when the
phase is topologically trivial or nontrivial, respectively, and
are thus able to detect the single entanglement bit—an ebit—
that can be distilled from the ground state manifold; (ii) they
display a scaling behavior when approaching quantum phase
transitions, thus defining entanglement critical exponents that
describe the build-up of nonlocal quantum correlations across
such transitions; (iii) some of them are experimentally mea-
surable in and out of equilibrium, utilizing recently introduced
[14,15] and demonstrated [26] techniques based on random
measurement methods [27].

Following Ref. [28], we consider the F function between
two partitions A, B, which compensate for all edges and
volume contributions in an open chain of length L. These
properties are required to avoid nonuniversal effects: The
significance of our diagnostics relies on an underlying gauge
theory description below, which calls for quantities that are
divergence-free in the continuum limit. To diagnose the pres-
ence of nonlocal correlations in the system, we choose two
partitions with different connectivity, as shown in Fig. 1(a).
The resulting disconnected n-entropies SD

n read

SD
n = SA,n + SB,n − SA∪B,n − SA∩B,n, (1)

where SF,n is the bipartite Rényi entropy of order n of the
partition F = A, B, A ∪ B or A ∩ B. We define Lα as the size
of a given partition and LD as the distance between the two
different parts of B. Unless stated otherwise, we consider
the representative case LA = LB, which provides a cleaner
finite-size scaling analysis.

We denote the case n = 1 as SD, that corresponds to
the von Neumann entropy, and satisfies SD > 0 because of
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FIG. 1. Partitions associated with the entanglement topological
order parameter and the phase diagram of the interacting Kitaev
chain. (a) schematics of the partitions A (shaded, green) and B
(shaded, blue) considered here. Each site of the chain hosts a spinless
fermion degree of freedom, aj , that can be decomposed into two
Majorana fermions c2 j and c2 j+1. The orange circle magnifies the
cut across partitions: Deep in the topological phase, neighboring
Majorana fermions belonging to different physical sites are coupled
(dashed line). The partition cut takes place exactly between the two
coupled Majorana fermions. (b) disconnected von Neumann entropy
SD as a function of μ/t,U/t , at fixed � = 1. Black lines are from
Ref. [23]. The color plot is obtained via interpolation on a 5 x 7
grid. Clearer evidence of the quantization of SD in a phase and the
sharpness of the transition requires a lot of points, as we highlight on
lines I and II in Sec. III B.

strong subadditivity. This entropy improves from Ref. [29]
that uses two systems with different boundary conditions.
It has been considered in Ref. [30], which pointed out a
strong analogy between bosonic symmetry-protected topo-
logical phases (SPTPs) and error-correcting codes. Here, we
focus instead on fermionic phases where topology stems from
an underlying fundamental symmetry (parity) which cannot
be broken by any Hamiltonian perturbation. This condition
plays a crucial role in defining the upcoming gauge-theory
picture describing the entanglement content of such states
while the nonlocal correlations introduced by the fermionic
algebra via the Jordan-Wigner string are responsible for such
analogy.

At a qualitative level, the key in SD
n is the disconnected

partition B: All other terms are complementary, and only re-
quired to eliminate nonuniversal boundary and volume terms.
In Fig. 1(b), we show the finite-size behavior of SD across
the phase diagram of interacting Kitaev chains: This plot il-
lustrates graphically how, even at modest system and partition
sizes, SD clearly distinguishes topological from trivial phases.
We note that Ref. [31] computes a quantity coinciding with SD

n
for the noninteracting Kitaev chain, but it should deviate when
a quantum spontaneous symmetry breaking phase is involved.

The present study is divided into the theoretical part Sec. II
and the computational part Sec. III. The first part introduces
shortly the Kitaev model (Sec. II A). Then, it both derives and
gives an intuitive picture of entanglement and the topological
order parameter SD in the deep topological or trivial regime
(Sec. II B) and using lattice gauge theories (Sec. II C). The
computational part displays the efficiency of SD as a topolog-
ical detector (Sec. III A), reveals its universal behavior at the
transition (Sec. III B), shows its response to quenches which is
typical of a topological invariant (Sec. III C), and confirms its
robustness to symmetry-preserving disorder (Sec. III D). We
then discuss the existing experimental relevancy of the detec-
tor in Sec. IV A before concluding. The Appendices mirror
the main structure of the paper and add miscellaneous details
referred to in the text. In particular, Appendix A 1 provides
a longer introduction on the Kitaev wire for the unfamiliar
reader while Appendix A 3 attempts a proof of the equivalence
between all SD

n as topological detecting quantities.

II. DISCONNECTED ENTROPY OF THE INTERACTING
KITAEV WIRE

The Kitaev wire gives a prime example of a topological
phase in 1D, with well-known behavior deep into either the
topological or trivial phase. There, a topological signature is
more easily extracted and identified from the entanglement
of a ground state. An analytical treatment is possible and
presented here.

A. The model Hamiltonian

We consider the interacting version of a Kitaev p-wave
superconductor, whose Hamiltonian reads

H =
L−1∑
j=1

[
−t (a†

j a j+1 + H.c.) + (�a ja j+1 + H.c.)

+ 4U

(
n j − 1

2

)(
n j+1 − 1

2

)]
− μ

L∑
j=1

n j, (2)

where a†
j (a j) are the creation (annihilation) operators of

the spinless fermion on site j, n j = a†
j a j , t is the hopping

amplitude, � is the superconducting amplitude, U is the
nearest-neighbor interaction, and μ is the chemical poten-
tial. The phase diagram of the model is known [23,32] and
displays a TSC phase, in addition to topologically trivial
phases, including a band insulator, a Mott insulator, and an
incommensurate charge-density-wave (ICDW) phase. For any
state in the Hilbert space, the bipartite properties of a simply
connected partition are equivalent to the ones of the XYZ spin
chain obtained from Eq. (2) after applying a Jordan-Wigner
transformation. As such, they are uninformative about the
topological origin of a given phase.

B. Disconnected entropies at exactly soluble points

Therefore, the goal is to find a combination of entropies
able to both unambiguously capture the influence of nonlocal-
ity in the ground-state properties and identify the amount of
information—in this case, a single ebit—that can be stored
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in the ground-state manifold. The goal is reached for SD,
which contains the simplest nontrivial disconnected partition,
SB while all other terms only compensate possible volume and
edge effects.

For conformal phases, SD
n is immediately given by confor-

mal field theory [2,33,34] and vanishes in the thermodynamic
limit. For gapped phases, one has to distinguish between
topologically trivial and nontrivial phases. We analyze here
the limiting cases.

(i) t = � = U = 0, μ > 0: The system is a band insulator,
and the density matrix of arbitrary partitions has rank 1 both
in fermionic and spin systems. This immediately gives SD

n =
0. The same result holds in the Mott insulator phase. Thus,
the thermodynamic limit of SD

n cannot distinguish conformal
phases and trivial phases. Only the finite size correction of SD

n
may distinguish them.

(ii) t = � = 1 � |μ|,U = 0: This regime is representa-
tive of the TSC phase. Its correspondent in the XYZ model is
a ferromagnetic phase, which we analyze first as a representa-
tive of a symmetry-broken phase. There, the lowest energy
states at any finite size are equal weight superpositions of
the two ferromagnetic states, |�XY Z〉 = (|↑ ↑↑ ...〉 ± | ↓↓↓
...〉/√2, separated by a gap δ ∝ e−L. For both states, any
reduced density matrix of an arbitrary spatial partition is
equivalent, and thus SD

n = 0.
For the TSC, the situation is different. While SA, SA∩B, SA∪B

are the same as in the spin model, SB has a sharply different
behavior. In this regime, the ground state is twofold degener-
ate (again, up to a gap δ ∝ e−L): Each of the two states |�〉±
can be written as an equal weight superposition of states with
a given parity |ψ〉±, i.e., |�〉± = (1/2L−1)

∑
ψ |ψ〉±. The

proper fermionic trace evaluates the entanglement structure
of arbitrary partitions so we obtain SB = 2 log 2. This returns
a disconnected entropy SD = log 2. A full derivation is given
in Appendix A 2.

The behavior of these cartoon wave functions sharply
distinguishes the TSC phase with respect to all other phases.
We need to go beyond these cartoons to understand if this
behavior is a property of a phase, and if the value of SD

remains quantized in the whole TSC phase. Before present-
ing numerical results in support of these findings, we now
illustrate how the quantization of SD emerges naturally when
utilizing a lattice gauge theory (LGT) description of the
Kitaev chain.

C. Gauge theory characterization of entanglement properties.

The starting point is the exact relation [35] between Eq. (2)
and a Z2 LGT, that we schematically review. The Z2 LGT
describes the coupling between the Z2 gauge fields residing
on bonds (represented here by Pauli matrices, σα

j, j+1), and

the hard-core Higgs fields ϕ j , with n j = ϕ
†
j ϕ j , defined on the

vertices. The gauge-invariant Hilbert space is defined as the
set of states where the local parity Pj = (1 − 2n j )σ z

j−1, jσ
z
j, j+1

is fixed to 1 (see Fig. 2). Under open boundary conditions
(OBCs), we fix to σ z

0,1 = 1 the value of the first gauge field
without loss of generality. The value of the last gauge field
σ z

L,L+1 = P gives the total parity of the system due to gauge
invariance.

FIG. 2. Schematics of the correspondence between the Kitaev
chain and Z2 lattice gauge theories. (a) Hilbert space structure and
gauge-invariant building blocks. (b) Three examples of the mapping
between states in the fermionic (left), gauge theory (center), and
string representation (right). (c) String representation of |�〉+.

The ground-state wave functions |�〉± can be described in
terms of either fermionic or gauge fields, since, in 1D, those
are mutually fixed by Gauss law. In terms of LGT, the ground
states are equal-weight superpositions of all possible string
states of arbitrary length and compatible with the boundary
conditions: A sample of those are depicted in Fig. 2 for the
case P = 1. This picture describes a 1D gauge theory in a
phase with strongly fluctuating gauge fields, and is strongly
reminiscent of the loop description of 2D quenched Z2 LGT
[8,36,37].

Evaluating entanglement entropies in this phase is straight-
forward by exploiting gauge invariance:

(i) The entropy of each connected partition is log 2. Indeed,
let us define σ z

L, σ z
R as the two boundary spins of the partition.

Their product is equal to the parity of the partition: The den-
sity matrix of the partition is block-diagonal in this conserved
quantum number. If the correlation length is much smaller
than the partition length, both positive and negative parities
are equally probable and all states count with equal weight.
The corresponding von Neumann entropy is thus log 2.

(ii) The entropy of disconnected partitions is (Nc −
1) log 2, where Nc is the number of partitions such that Nc = 2
corresponds to the standard bipartition of the chain into two
halves. Indeed, let us define as σ z

L,h, σ
z
R,h the gauge fields at

the boundaries of the partition h. As long as the length of each
partition is larger than the correlation length, each patch is
an equal-weight superposition of all possible states, under the
condition that Ph = +1 or −1 for partitions with or without an
outcoming flux, respectively. For a fixed total parity, there are
2Nc−1 finite, equal values of the corresponding density matrix,
which returns an entropy equal to (Nc − 1) log 2.

We emphasize that the gauge theory description enables
a simple calculation of the entropies (by replacing fermionic
statistics with a Z2 gauge field) and, at the same time, provides
a simple, compelling physical picture, that might be extended
to more exotic types of order.

III. SD AS A TOPOLOGICAL INVARIANT
ORDER PARAMETER

SD is efficient as a topological order parameter even for
modest system sizes. Indeed, we simulate the quantity and
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obtain a sharp phase diagram of the Kitaev wire. Sharp,
because close to the phase transition, it displays universal
behavior typical of an order parameter and allows definition
of critical entanglement exponents. Its characteristics as a
topological invariant are confirmed by its invariance after a
quench as expected from Sec. II C and by its robustness to
disorder.

A. Scaling of SD and phase diagram

We therefore turn to the numerical investigation of Eq. (2).
We used free fermion techniques [38] to investigate the non-
interacting case U = 0 and density-matrix-renormalization
group (DMRG) [39,40] for U 
= 0. Since DMRG does not
give immediate access to SB, we performed separate simu-
lations to obtain this quantity by modifying the lattice con-
nectivity (cf. Appendix B 3). We kept at least 1200 states
after truncation and performed at least 30 sweeps. Typical
discarded weights at the end of the simulation were of order
10−8.

The phase diagrams in Figs. 1(b) and 3(a) (with and
without interactions) show how, even at very modest partition
sizes, SD is large and finite only the TSC phase. Comparison
between Figs. 3(a) and 3(b) shows the equivalence between SD

and SD
2 . In Fig. 4(a), we show the finite-size-scaling behavior

of SD for representative points in the TSC (μ/t = 1.0, 1.5)
and topologically trivial (μ/t = 4) phase. The asymptotic
values are quantized within numerical accuracy of our fits to
log 2 and 0, respectively, in agreement with the theoretical
discussion above. Fig. 4(b) shows how, in the TSC phase,
quantization is approached exponentially fast in system size;
the same holds true for SD

n .

B. Universal behavior and entanglement critical exponents.

Since SD captures universal properties of each phase, it
is natural to wonder whether such quantities can display
universal scaling behavior when crossing a quantum phase
transition. Here, we focus on the transition between TSC and
band insulator, which belongs to the Ising universality class.

Similar to conventional quantum critical behavior, we fit
SD using a phenomenological finite-size scaling ansatz,

SDL
a
b = λ

(
L

1
b (α − αc)

)
, (3)

where α = μ or U is the varying parameter chosen, a and b
(a priori different depending on the chosen parameter) take
place of the usual critical exponent β and ν, and λ(x) is
a scaling function. We extract these parameters using curve
intersections and collapse shown in Figs. 5 across the tran-
sition indicated in Fig. 1 with the yellow arrows (I) and
(II). The results of the collapse scaling locates correctly the
transition point (with errors 10−4). Most surprisingly, we find
that the entanglement critical exponents satisfy a = b = 1
irrespectively of where the transition line is crossed, a sharp
signature of universal behavior. The quality of the collapse
scaling in the interacting case is already good for modest
system sizes, further corroborating such universal behavior.
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FIG. 3. Color plot of the disconnected n entropies, SD
n , of the

Kitaev wire without interaction, U = 0, for (a) n = 1 and (b) n = 2.
The results are obtained with the free-fermion technique. The y
axis represents the chemical potential, μ/t , while the x axis the
superconducting amplitute, |�|/t . A grid with 16 × 30 points is
considered. The two theoretically expected phase transition lines
occur for |�| = 0 and μ/t = 2, respectively. Using the definitions
of Fig. 1(a), L = 50, LA = LB = 12, and LD = 32. The diagrams
coincide with the results obtained in Ref. [31].

C. Invariance of SD under coherent dynamics.

In the thermodynamic limit, topological invariants cannot
change under unitary evolution (as long as specific symme-
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FIG. 4. Finite-size scaling properties of SD in (a) normal scale,
(b) log scale, for a chain with LA = LB = (LA∩B + LA∪B)/2, and
U = 0, �/t = 1. In the topologically trivial phase, SD quickly van-
ishes. In contrast, in the topological phase (μ = 1.0, 1.5), SD in-
creases as a function of system size, and approaches its thermody-
namic value exponentially fast when increasing LA, as shown in (b).
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FIG. 5. Finite size scaling of SD (in units of log2) along lines (I)
and (II) of Fig. 1 as a function of LD and μ or U using DMRG.
In all plots, LA = LB = 12. (a) SDL as a function of μ for different
sizes: The critical value μc is the intersection of all curves; we
obtain μc = 1.978. (b) Scaling of λ(x) for different system sizes:
Curve collapse. The collapse is best realized for a = b = 1, values
that also minimize the square root of the residual sum of squares.
(c) SDL as a function of U for different sizes: The critical value
is here Uc(12) = −0.314. (d) The collapse is again best realized
for a = b = 1. Simulations with more sites (especially using free
fermion techniques) only confirm these results.

tries are not broken explicitly [41–43]). To check that SD

is a true topological invariant, we performed an extensive
investigation based on quantum quenches within and across
the topological phase.

A representative sample of our results is presented in
Fig. 6. In panel (a), we plot the time evolution of SD for a
quench from an initial value of the superconducting amplitude
� = 0.5 to a final value � = 1.5. Different lines correspond
to different system sizes. For each size, one can sharply
distinguish two regimes. At short times, SD does not change
with time and exhibits a plateau up to a time tc that depends on
LA. After this timescale, quantization is lost, and the dynamics
is dictated by nonuniversal dynamics. To understand whether
quantization is a robust feature, we perform a finite-size
scaling analysis in Fig. 6(d): Our results show that tc (defined
as the time when SD = 0.95) grows approximately linearly
with system size and will diverge at the thermodynamic limit.
This behavior confirms the topological invariant nature of SD.
Figures 6(b), 6(c), 6(e), and 6(f) confirm these results for
the quench μ0 = 1.0 to μ = 3.0 (from topological to trivial)
and μ0 = 3.0 to μ = 1.0 (from trivial to topological). For
Fig. 6(f), tc is the time when SD = 0.05.

D. Robustness of SD to disorder

In 1D, the effect of disorder is the most drastic: Localiza-
tion of the wave function occurs as soon as disorder exists,
and not even diffusive transport is possible [44]. Topological
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FIG. 6. Time evolution of SD after a quantum quench from
(a) �0 = 0.5 to � = 1.5, (b) from μ0 = 1.0 to μ = 3.0, and (c) from
μ0 = 3.0 to μ = 1.0 with U = 0, μ = 0, L = 8LA. Finite-size
scaling of tc or t ′

c for two values of (d) �, (e) μ0, and (f) μ of the
quenched Hamiltonian. In all cases, the width of the plateau diverges
linearly with system size, as expected for topological invariants. The
threshold lines of SD according to the definition of tc are depicted as
a dashed line.

insulators and superconductors escape the effect, in the sense
that their extended edge states stay robust against symmetry-
preserving disorder. The same disorder should also preserve
SD that relies on these edge states. Numerical simulations
indeed confirm the robustness of SD to disorder for the nonin-
teracting Kitaev wire.

We introduce finite Anderson-like disorder using

μi = μ + δi, δi ∈ [−W/2;W/2], (4)
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FIG. 7. Scaling in system size of the mean value of SD for
t = � = μ = 1, U = 0, LA = LB = (LA∩B + LA∪B)/2 and for three
amplitudes of disorder: W = 1 and 3 in the topological phase and
W = 12 for the trivial disordered phase (200 realizations of the
disorder for each point). The inset provides a logarithmic scale for
the axis of SD: The scaling is exponential. The standard deviation
is smaller than 10−6 for each point. The same study using Rényi-2
entanglement entropies leads to the same results quantitatively. The
phase transition is expected at Wc ∼ 11 for these parameters [45,46].
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where μi is now the position-dependent (i) chemical potential
in the Hamiltonian Eq. (2) (with U = 0). δi is a random
variable of uniform distribution and W is the amplitude of the
disorder. This potential breaks the translation symmetry, but
not the protecting symmetries of the topological phase that
persists for a reasonable amplitude of the disorder. In Fig. 7,
we draw the mean value of SD over realizations of disorder
for different W as we increase the system size L. SD scales
exponentially in system size toward the quantized value of
log 2 for the topological phase, 0 otherwise.

IV. DISCUSSION AND CONCLUSIONS

A. Experimental measurement and comparison
to other diagnostics.

The probes SD
n are experimentally relevant because they are

already informative for modest partition sizes, and because
Rényi entropies can be measured. The proposals in Ref. [14]
discuss how to perform measurements of Rényi-2 entropies
in synthetic quantum systems: The complexity of the mea-
surements is not sensitive to the connectivity of the partition
itself, but only to its total size. Given that a large LD allows the
distillation of the correct information from the wave function,
measuring SD is as complex as measuring its largest partition
A. We note that partitions of sizes up to ten spins have already
been probed in experiments [26].

Finally, we comment on the relation between SD and other
diagnostics. Topological invariants such as the many-body
Chern number [4,47] are unrelated to bipartite entanglement
properties, as they do not depend solely on the spectrum of
density matrices but also on their eigenfunctions. For specific
symmetries, specific topological invariants can be defined
[37,48–52] (and potentially experimentally measured [53])
also utilizing the matrix-product-state (MPS) classification of
SPTPs; these quantities are genuinely sensitive to the response
of a state to specific (symmetric) operations and not imme-
diately connected to entanglement. From a theoretical view-
point, all these diagnostics represent complementary tools that
give access to qualitatively different features characterizing
topological matter. Examples now include response of wave
functions under changing boundary conditions (Chern num-
ber), properties with respect to protecting symmetry (MPS
order parameters), and nonlocal entanglement content of wave
functions (disconnected entropies).

B. Conclusions

We have shown how the entanglement of disconnected
partitions uniquely distinguishes topological superconducting
phases in 1D systems. This distinction is naturally interpreted
within a lattice gauge theory framework and leads to key foot-
prints both at the ground state level and in quantum quenches.
Entanglement order parameters display universal scaling be-
havior when crossing phase transitions, characterized by en-
tanglement critical exponents. Our findings show that modest
partition sizes—of the order of what has been already exper-
imentally demonstrated—are sufficient to uniquely character-
ize topological superconductors via entanglement. It would
be intriguing to investigate whether other forms of quantum
correlations between disconnected partitions, such as discord

[54] or quantum coherences [55], display similar character-
istic features and if entanglement topological invariants can
be used to characterize the real-time dynamics of interesting
topological matter [43].
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APPENDIX A: ADDITIONAL INFORMATION
ON THE KITAEV MODEL

In this Appendix, we briefly present the Kitaev model and
detail the derivation of all the analytical results mentioned
in the main text. More specifically, we focus on the regime
described in Kitaev’s original paper [24] whose algebra is sim-
pler while containing important features on the entanglement
properties of the whole model when it displays a topological
phase.

1. The Kitaev model without interaction

We give here a brief reminder of the Kitaev wire of Kitaev’s
seminal paper [24] for the unfamiliar reader. The Kitaev wire
is a chain of L spinless fermions with OBCs described by the
Hamiltonian

H =
L−1∑
j=1

(
−t (a†

j a j+1 + a†
j+1a j )

−μ

(
a†

j a j − 1

2

)
+ �a ja j+1 + �∗a†

j+1a†
j

)
, (A1)

where t is the hopping amplitude, μ is the chemical
potential, and � = |�|eiθ the induced superconducting gap.
It is convenient to absorb the complex phase of the latter
in a (completely local) redefinition of the local creation and
annihilations operators a†

j and a j such that

(a†
j , a j ) → (e−iθ/2a†

j , eiθ/2a j ), (A2)

and consider Eq. (A1) with � real only. It is then useful
to introduce the Majorana fermions operators c j (for j =
1, ..., L),

c2 j−1 = a j + a†
j , c2 j = a j − a†

j

i
, (A3)

such that

{cm, cl} = 2δm,l , c†
m = cm, (A4)
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where δm,l is the Kronecker delta. The Hamiltonian Eq. (A1)
then becomes

H = i

2

L−1∑
j=1

(−μc2 j−1c2 j + (t + |�|)c2 jc2 j+1

+ (−t + |�|)c2 j−1c2 j+2
)
.

(A5)

In the special regime of parameters when |�| = t > 0 and
μ = 0 (which we call the stereotypical regime), the Hamil-
tonian Eq. (A5) becomes

H = it
L−1∑
j=1

c2 jc2 j+1, (A6)

where it is important to note that the Majorana operators
appearing in each term of the sum are not from the same
sites. One can define local fermionic creation and annihilation
operators on the link such that (for j = 1, ..., L − 1 only)

ã j = c2 j + ic2 j+1

2
, ã†

j = c2 j − ic2 j+1

2
, (A7)

that only mixes two neighboring sites. The Hamiltonian
Eq. (A6) becomes diagonal,

H = 2t
L−1∑
j=1

(
ã†

j ã j − 1

2

)
, (A8)

and has two degenerate ground states, each pairing a Majorana
fermion of one edge with a Majorana fermion of the other
(cf. Fig. 8). Defining the nonlocal operators,

b = c2L + ic1

2
, b† = c2L − ic1

2
, (A9)

the two ground states |0〉 and |1〉 satisfy

∀ j ∈ �1, L − 1�, ã j |0〉 = 0, (A10a)

∀ j ∈ �1, L − 1�, ã j |1〉 = 0, (A10b)

b|0〉 = 0, (A10c)

b†|0〉 = |1〉. (A10d)

In the case of periodic boundary conditions, |0〉 becomes
the only ground state.

∃

%! %∀ %& %∋ %∀∃(! %∀∃###

∃(!)M M M M M MMMMM

c1 c2 c3 c4 ... c2L−1 c2L

1
1̃ 2̃

... L
L̃ − 1

2

FIG. 8. The Kitaev chain with L sites and open boundary condi-
tions. Each site i (denoted by a dashed circle) can be occupied by one
spinless fermion and can be decomposed into two Majorana fermions
(denoted by black dots) in 2i − 1 and 2i. Associating the Majoranas
2i and 2i + 1 allows the construction of a quasilocal fermionic basis
denoted with tildes. The ground states in the topological stereotypical
regime will see its neighboring Majorana fermions pairing up, so, in
the tilded basis, each site is unoccupied. Only the two Majorana on
the edges do not need to pair up.

2. The entanglement properties of the topological phase
in the stereotypical regime

To understand the entanglement properties of this topologi-
cal phase and analytically compute the disconnected entangle-
ment entropy SD, it is useful to compute any reduced density
matrices for the ground states |0〉 and |1〉 obtained in the
stereotypical regime when |�| = t > 0 and μ = 0. To do so,
it is useful to rewrite these states in the “second quantization”
formalism, but in the tilted basis, where

∀ j ∈ �1, L − 1�, ñ j = ã†
j ã j, (A11a)

nb = b†b, (A11b)

where the index b stands for boundary. In that case, the two
ground states can be rewritten as

|0〉 = |ñ1 = 0, ñ2 = 0, . . . , ñ j−1 = 0, nb = 0〉, (A12a)

|1〉 = |ñ1 = 0, ñ2 = 0, . . . , ñ j−1 = 0, nb = 1〉, (A12b)

which is a quasilocal basis in the sense that each ñ j can be
expressed in terms of operators acting only on sites j and j +
1. For a connected bipartition of the system, as illustrated in
Fig. 9, the ground states [Eqs. (A12)] cannot be written as a
product state, due to both the presence of edge states and the
way Majorana fermions are linked in the bulk of the system
(for instance, see link c ∈ �1, L − 1� of Fig. 9).

To properly do the partial trace and obtain the reduced
density matrix ρA, it is better to express the ground states
in terms of a local basis for both A and B. This becomes
possible when rewriting the two parts of the open Kitaev wire
as two open Kitaev wires connected into a singlet on the link
c. Calling LA the size of A, and LB the size of B, such that
LA + LB = L, we define a fermionic basis, local in A and B,

aA = 1
2 (c2LA + ic1), (A13a)

a†
A = 1

2 (c2LA − ic1), (A13b)

aB = 1
2 (c2LA+2LB + ic2LA+1), (A13c)

a†
B = 1

2 (c2LA+2LB − ic2LA+1), (A13d)

ãc = 1
2 (c2LA + ic2LA+1), (A13e)

ã†
c = 1

2 (c2LA − ic2LA+1), (A13f)

b = 1
2 (c2L + ic1), (A13g)

b† = 1
2 (c2L − ic1), (A13h)

so aA and aB (and Hermitian conjugate) act as boundary opera-
tors for the subchains A and B, respectively. Hence, in second
quantization, and after dropping the redundant mentions of

)∗∃+%!∀#∃)%&

M M M MMMMM MM

link c

site c site c + 1

A B

FIG. 9. A physical cut can only be done between sites, here, on
the link c, partitioning the chain into two subsets: A and B.
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the ñ j , j ∈ �1, L − 1� \ {c = LA}, the two ground states of
the full chain are |nb = 0, ñc = 0〉 and |nb = 1, ñc = 0〉. The
local basis of A and B is {|nA, nB〉}, where nA = a†

AaA and
nB = a†

BaB take the values 0 or 1. Using Eqs. (A10) and (A13),
we find

|nb = 0, ñc = 0〉 = − 1√
2

(|nA = 1, nB = 0〉

− |nA = 0, nB = 1〉),

( = |0〉) (A14a)

|nb = 1, ñc = 1〉 = 1√
2

(|nA = 1, nB = 0〉

+ |nA = 0, nB = 1〉), (A14b)

|nb = 1, ñc = 0〉 = 1√
2

(|nA = 0, nB = 0〉

+ |nA = 1, nB = 1〉),

( = |1〉) (A14c)

|nb = 0, ñc = 1〉 = 1√
2

(−|nA = 0, nB = 0〉

+ |nA = 1, nB = 1〉). (A14d)

Tracing over B is immediate, as the only vectors of the basis of
B with possible nonzero contributions are |nB = 0〉 and |nB =
1〉. In particular,

ρA(|nb = 0, ñc = 0〉〈nb = 0, ñc = 0|)
= 1

2 (|nA = 1〉〈nA = 1| + |nA = 0〉〈nA = 0|), (A15)

of entanglement entropy SA = log 2. The same happens for the
other ground state.

Notice that the partial trace for fermions can induce a
change of sign compared to the bosonic case. For example,

TrB (|nA = 1, nB = 1〉〈nA = 0, nB = 1|)
= −|nA = 1〉〈nA = 0|. (A16)

Using Eqs. (A14), it is possible to get the expressions of
the ground states in the local basis of an arbitrary partition.
Additionally, taking a partition where all sites are their own
individual subsets leads to the expression of the ground states
in the original basis, up to a phase. The general expression
of the reduced density matrix for an arbitrary partition of the
system is obtained recursively, by considering the partition
A1, A2, . . . , An of connected subsets Ai that are next to each
other like in Fig. 10. Calling A = A1 and B = B1 = ∪n

i=2Ai

allows use of Eqs. (A14) to express the two ground states in
the local basis of A and B instead of A ∪ B. The recurrence
follows. Naming ci the link between subsets Ai and Ai+1 and
constructing the “local boundary operators” aAi and a†

Ai
for

! ! # ! ∃ ! ! %A1 A2 A3 An−1 An...

FIG. 10. A partition of the chain into n consecutive connected
subsets A1, A2,..., An.

the subset Ai and aBj and a†
Bj

for Bj = ∪n
i= j+1Ai, similarly to

Eqs. (A14), the recurrence can be written as (∀n � 2)

un(A1, . . . , An), (A17a)
.= ∣∣nb = 0, ñc1 = 0, . . . , ñcn−1 = 0

〉
(= |0〉), (A17b)

= 1√
2

(∣∣nA1 = 0, nB1 = 1, ñc2 = 0, . . . , ñcn−1 = 0
〉

− ∣∣nA1 = 1, nB1 = 0, ñc2 = 0, . . . , ñcn−1 = 0
〉)
,

(A17c)

= 1√
2

(∣∣nA1 = 0
〉 ⊗ vn−1(A2, . . . , An)

− ∣∣nA1 = 1
〉 ⊗ un−1(A2, . . . , An)

)
, (A17d)

vn(A1, . . . , An), (A17e)
.= |nb = 1, ñc1 = 0, . . . , ñcn−1 = 0(= |1〉)〉, (A17f)

= 1√
2

(∣∣nA1 = 0, nB1 = 0, ñc2 = 0, . . . , ñcn−1 = 0
〉

+ ∣∣nA1 = 1, nB1 = 1, ñc2 = 0, . . . , ñcn−1 = 0
〉)
,

(A17g)

= 1√
2

(∣∣nA1 = 0
〉 ⊗ un−1(A2, . . . , An)

+ ∣∣nA1 = 1
〉 ⊗ vn−1(A2, . . . , An)

)
. (A17h)

Calling

Un = un + ivn, (A18a)

Vn = un − ivn, (A18b)

|+ j〉 = 1/
√

2(i|nAj = 0〉 − |nAj = 1〉), (A18c)

|− j〉 = 1/
√

2(−i|nAj = 0〉 − |nAj = 1〉), (A18d)

these relations become

Un(A1, . . . , An) = |+1〉 ⊗ Vn−1(A2, . . . , An), (A19a)

=
{| +1 −2 · · · −n−2〉 ⊗ U2(An−1, An) if n is even

| +1 −2 · · · +n−2〉 ⊗ V2(An−1, An) if n is odd,

(A19b)

Vn(A1, . . . , An) = |−1〉 ⊗ Un−1(A2, . . . , An), (A19c)

=
{| −1 +2 · · · +n−2〉 ⊗ V2(An−1, An) if n is even
| −1 +2 · · · −n−2〉 ⊗ U2(An−1, An) if n is odd,

(A19d)

where

u2(An−1, An) = 1√
2

(∣∣nAn−1 = 0, nAn = 1
〉

− ∣∣nAn−1 = 1, nAn = 0
〉)
, (A20a)

v2(An−1, An) = 1√
2

(∣∣nAn−1 = 0, nAn = 0
〉

+ ∣∣nAn−1 = 1, nAn = 1
〉)
, (A20b)

so

U2(An−1, An) =
√

2i| +n−1 −n〉, (A21a)

V2(An−1, An) =
√

2i| −n−1 +n〉. (A21b)
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Therefore, in a local basis of A1, . . . , An, the ground states
become

|nb = 0〉 = un(A1, . . . , An) (A22a)

= i√
2

(| +1 −2 . . . 〉 + | −1 +2 . . . 〉), (A22b)

|nb = 1〉 = vn(A1, . . . , An) (A22c)

= i√
2

(| +1 −2 . . . 〉 − | −1 +2 . . . 〉). (A22d)

These states are not Néel states because they are made
out of fermions. It becomes clear in the basis of the subsets
{⊗|nAj 〉} j up to the global phase change:

|0̃ j〉 .= (−1) j i|0Aj 〉 and |1̃ j〉 .= |1Aj 〉. (A23)

In that case,

| +1 −2 . . . 〉 =
(

− 1√
2

)n

⊗n
i=1 [|0̃i〉 + |1̃i〉], (A24a)

=
(

− 1√
2

)n ∑
{nAi }i∈�1,n�=0,1

|{nAi}i∈�1,n�〉,

(A24b)

| −1 +2 . . . 〉 =
(

− 1√
2

)n

×
∑

{nAi }i∈�1,n�=0,1

(−1)n−∑
nAi |{nAi}i∈�1,n�〉,

(A24c)

so

SA1∪A3∪A5∪... =
⌊

n + 1

2

⌋
log 2, (A25)

where �. . . � is the floor function, and n the number of par-
tition. This last equation proves the exact additivity of the
entropy in this case independently of the position of the cuts,
which, in addition to the non-nullity of the contribution of
the individual subsets, ensure the non-nullity of SD for any
superposition of the ground states. Indeed, for n = 4,

SD = SA1∪A2 + SA2∪A4 − SA2 − SA1∪A2∪A4 , (A26)

becomes the net contribution of one connected subset only:
log 2. Alternatively, it is the contribution of two cut Bell pairs
of Majorana fermions. This result is valid for both the von
Neumann and the Rényi entropies.

3. Equivalence of the SD
n

For 1D gapped systems, all SD
n can be used interchange-

ably, with n � 1 and finite the index of the Rényi entropy:
(i) The property of minimum value shared by all Sn imply

that if Sn1 
= 0, then Sn2 
= 0 and vice versa, so both are
simultaneously nonzero.

(ii) The property of monotonicity and the fact that all
gapped 1D phases have finite von Neumann entanglement
entropy imposes all Sn to also be finite for 1D gapped systems,
so no SD

n can diverge.

(iii) For a given n entropy, translation invariance further
imposes that all connected entropy will have the same value
for big subset size, i.e., if Ai+t is the subset translated from Ai,
then Sn(Ai+t ) = Sn(Ai ) up to finite size effects.

(iv) The property of additivity is shared by all Sn.

4. Comparison between the topological and nontopological
phases away from the phase transition

In the topological superconductor phase, away from any
phase transition, both the von Neuman and Rényi entangle-
ment entropies for large enough partitions (i.e., LA, LB, LD �
ξ for the definitions of Fig. 1(a), or LAi � ξ for all i for
Eq. (A26) are nonzero and additive as demonstrated above in
the stereotypical regime (in addition, see next section). If A
is a simply connected subset of a partition of the chain (inde-
pendent of its position), then, SA = 2�, where � = (log 2)/2
is the contribution of one (Majorana) Bell pair. Eq. (A26) then
gives

SD = 2� + 2 × 2� − 2� − 2� = 2�. (A27)

In that regard, SD is not unique: Combinations such as
SA1∪A3 + SA2∪A4 − SA1∪A4 − SA2∪A3 would have also work as
detectors, but with less experimental relevance and a more
complicated interpretation in terms of mutual information.
The quantitative equality SD = SD

2 is here coincidental and is
not a generic feature for other systems.

For the band insulator phase and for large enough parti-
tions, the contribution of each term of Eq. (A26) is propor-
tional to the number of boundaries of the partition, as we
expect from the so-called area law. For the 1D OBC systems,
one can argue that SD = 0 by simply counting the number
of boundaries of the partitions shown in Fig. 1(a), which
gives

SD = � + 3� − 2� − 2� = 0, (A28)

where � is the contribution for the entanglement of a single
boundary. While � is model-parameter depending, the ratios
between each terms are constant in the limit LA, LB, LD � ξ ,
ensuring SD = 0. In the limit μ → ∞, each term is identically
zero. The result SD = 0 in the nontopological phase is backed
up by numerical simulations.

We also discuss the behavior of SD for other nontoplogical
phases. For the case of a gapped phase displaying ground
state equivalent to, e.g., a maximally entangled Néel state, the
entanglement entropy becomes nonzero for each term, but is
not additive, such that (calling � the contribution of the only
Bell pair of spin 1/2)

SD = � + � − � − � = 0. (A29)

For a critical phase, conformal field theory predicts
a vanishing contribution. This is in agreement with all
of our microscopic simulations. For critical, nonconfor-
mal points, we are not aware of any field theoretical
prediction.

Finally, for the case of a rigorously dimerized phase, SD

is well-defined and can be considered additive, but is not
translation invariant. More precisely, let us define εi j , where
i, j = 1, 2, 3, 4, such that εi j = 1 if the cut between Ai and
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Aj is on a dimer, and εi j = 0 otherwise. Then, if � is the
contribution of one dimer:,

SD = �(ε41 + ε23 + ε12 + ε23 + ε34 + ε41

− ε12 − ε23 − ε23 − ε34)

= 2�ε41, (A30)

which is always zero if A1 and A4 are subsets at both ends of
the open chain. SD is not translation invariant in the case of
periodic boundary conditions.

APPENDIX B: ADDITIONAL INFORMATION
ON THE NUMERICAL METHODS

1. Computation using free-fermion correlation
functions at equilibrium

The main challenge of the numerical analysis consists of
calculating the four von Neumann entanglement entropies that
are included in the definition of the disconnected TEE SD

of Eq. (1). We recall that each of these four quantities is
associated with a specific possibly disconnected bipartition of
the chain, following the scheme shown in Fig. 1(a).

The starting point for evaluating von Neumann or Rényi
entanglement entropy SA of a generic bipartition A and B
(not necessarily simply connected) is the computation of
the reduced density matrix ρA = TrB|ψ〉〈ψ |, where |ψ〉 is a
ground state of the whole system. For the Kitaev wire without
interactions, i.e., when U = 0, the Hamiltonian Eq. (A1)
is a free-fermion Hamiltonian that only conserves fermion
number parity. It can be diagonalized by a Bogoliubov
transformation. The reduced density matrix ρA of a generic
partition can be interpreted as the thermal density matrix
at temperature T = 1 for an entanglement Hamiltonian HA.
Then ρA = Z−1

A e−HA with ZA = Tr[e−HA ] [56–58]. It is then
possible to compute ρA of a generic partition by following the
well-established approach of Ref. [38]. The first step of this
very general procedure is the computation of the correlation
matrices in the original ground state: Cnm = 〈ψ |a†

nam|ψ〉 and
Fnm = 〈ψ |a†

na†
m|ψ〉, where n and m run over the sites of the

subset A. At equilibrium, Fnm is real, so the spectrum of the
entanglement Hamiltonian can be determined by numerically
solving the eigenvalue problem [38]:

(2Ĉ − 2F̂ − 1)(2Ĉ + 2F̂ − 1)φl = tanh2
(εl

2

)
φl . (B1)

εl are the eigenvalues of the entanglement Hamiltonian
with eigenvectors φl . Once the spectrum εl is obtained,
we can easily compute the reduced density matrix ρA

and the entanglement entropy of any bipartition, connected
or not.

We carried out these numerical calculations with arbitrary
precision by using MPMATH Python library [59]. Two require-
ments arise: Avoiding numerical precision problems when the
eigenvalues of the left side of Eq. (B1) are approximately
0 and avoiding divergence problems when they are very
close to 1. These issues are fixed by taking a number of
digits proportional to the total size of the system L: We set
mp.dps = 20 × L (number of digits in the Python library).
While the approach allows generation of a lot of data with
relatively little cost, the interaction case, as well as the bilinear

biquadratic model remain inaccessible with this algorithm.
Instead, we have to switch to the DMRG technique presented
Appendix B 3.

2. Sudden quenches using free-fermion correlation functions

We check that SD is a topological invariant by looking at
its time evolution after sudden quenches. The system starts
in its ground state before the quench, for a given set of
parameters of the Hamiltonian. At t = 0, we change the value
of one of these parameters. We then let the system evolve in
time.

The generic interacting case is very challenging to follow
because the interacting term induces a time evolution of an
extensive number of eigenstates of the spectrum. For the
free-fermion case, the same previous numerical approach of
Appendix B 1 still applies with the same efficiency. The
matrix Fnm is, however, complex during the time evolution
of the system so Eq. (B1) is not valid anymore. We follow
instead Ref. [60] and use the definition of the Majorana
fermions of Eq. (A2). The relevant 2L × 2L correlation matrix
is this time Mnm = 〈cncm〉, rewritten as Mnm = δnm + �nm

with n, m the (half-)site indices spanning only the relevant
subset studied. The eigenvalues of �nm are ± tanh εl/2, with
εl the entanglement energies of the reduced density ma-
trix associated with the subset. The time dependent matrix
�nm is directly linked to the time-dependent Hamiltonian
analytically, and then diagonalized numerically, similar to
Ref. [61].

We performed several quenches of different amplitudes in-
side both the TSC and the band insulator, as well as across the
phase transition, as seen in Fig. 6. SD is plotted as a function
of time for different chain lengths L with L/LA = 4, LA =
LB, using the same definition of Fig. 1(a) for the partitions.
Figs. 6(a)–6(c) exhibit a quantized finite plateau depending on
LA. We define the time size of the plateau with tc: The time at
which SD deviates from log 2 to 0.95 log 2. t ′

c is time of revival,
when SD increases from 0 to 0.05 log 2. We plot 1/tc or 4/t ′

c in
Figs. 6(d)–6(f) as a function of 1/L. The linear extrapolations
of the length of the plateau show divergences of both time
sizes when L → ∞ for each kind of quench: SD stays quan-
tized in the thermodynamical limit because the drops/revivals
are only finite-size effects. Thus, SD does not change un-
der coherent time evolution and behaves as a topological
invariant.

We used the same implementation as in Appendix B 1 with
mp.dps = 3 × L, enough to get reliable results.

3. Computation using DMRG

For the case of the interacting Kitaev wire with U 
= 0
[Eq. (2)], the numerical study is now carried out with the
DMRG algorithm formulated in the MPS language [62].

The main challenge is again the computation of von
Neumann or Rényi entanglement entropies of disconnected
bipartitions of the chain to determine the behavior of SD of
Eq. (1). For DMRG, however, only the standard connected
bipartition of the MPS state into two halves is very efficient.
This efficiency comes from the intimate structure of an MPS
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state and the use of left-/right-orthogonality condition [62].
The MPS tensors themselves already give the eigenstates of
the reduced density matrix of a block of sites starting from
either the left or the right edge of the system. Instead, for
generic bipartitions of the chain, such as partitions B, A ∪ B,
or A ∩ B of Fig. 1(a), the calculation of the reduced density
matrix is highly nontrivial as it involves several multi-index
tensor contractions. As a result, the computational cost scales
exponentially with the size of the subset.

We circumvent this numerical problem by reordering the
MPS sites appropriately, thus considering a long-range Hamil-
tonian reproducing the original model. Two rearrangements
are necessary, as shown in Fig. 11. (i) is a circular permutation
of the original multipartitions to efficiently calculate S(ρA),
S(ρA∪B), and S(ρA∩B) because all these quantities are now re-
lated to the rightmost bipartitions of the chain. In the process,
we only reindex the sites while their respective connectivity
is left unchanged. (ii) allows computation of S(ρB). In this
way, we efficiently obtain the four entanglement entropies
composing SD.

$A B C A
B

(i)

(ii)

FIG. 11. Scheme of the partitions. Two “tricks” are used to
compute only standard bipartition of the chain: (i) a circular per-
mutation of the partition used for S(ρA), S(ρA∪B), and S(ρA∩B) and
(ii) reindexing the sites, thus making the Hamiltonian long range, but
making the subset B connected and used for S(ρB).

In our numerical analysis with DMRG algorithm, we used
a bond dimension up to 1200, a truncation error of 10−8, and
at least 30 sweeps to reach the convergence and to ensure
stability of our findings. We noticed that along the Peschel-
Emery line of Ref. [23] in the TSC phase, SD converge even
faster to its quantized value of log 2.
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