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Environmental bisimulations for probabilistic higher-order
languages

DAVIDE SANGIORGI, University of Bologna and Inria

VALERIA VIGNUDELLI, Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP

Environmental bisimulations for probabilistic higher-order languages are studied. In contrast with
applicative bisimulations, environmental bisimulations are known to be more robust and do not
require sophisticated techniques such as Howe’s in the proofs of congruence.

As representative calculi, call-by-name and call-by-value λ-calculus, and a (call-by-value) λ-
calculus extended with references (i.e., a store) are considered. In each case full abstraction results
are derived for probabilistic environmental similarity and bisimilarity with respect to contextual
preorder and contextual equivalence, respectively. Some possible enhancements of the (bi)simulations,
as ‘up-to techniques’, are also presented.

Probabilities force a number of modifications to the definition of environmental bisimulations in
non-probabilistic languages. Some of these modifications are specific to probabilities, others may
be seen as general refinements of environmental bisimulations, applicable also to non-probabilistic
languages. Several examples are presented, to illustrate the modifications and the differences.

Davide Sangiorgi and Valeria Vignudelli. 2019. Environmental bisimulations for probabilistic higher-

order languages. 1, 1, 62 pages.

1 INTRODUCTION

The general topic of the paper are techniques for proving behavioural equivalence in higher-
order probabilistic languages. Checking computer programs for equivalence is a crucial,
but challenging, problem. Equivalence between two programs generally means that the
programs should behave “in the same manner” under any context. Specifically, two λ-terms
are contextually equivalent if they have the same convergence behaviour (i.e., they do or do
not terminate) in any possible context [32].

Due to the universal quantification on the contexts of the language, it is generally hard to
prove that two terms are contextually equivalent. Such proofs are particularly hard to carry
out if the language under consideration has higher-order features, which allow contexts to
copy and pass around terms.
Bisimulation [34, 43] offers a powerful operational method for proving equivalence of

programs in various kinds of languages, relying on the coinduction proof principle. In
order to qualify as a proof method, bisimulation relations should be sound with respect to
contextual equivalence, i.e., they should induce an equivalence relation - bisimilarity - that
implies contextual equivalence. Ideally, bisimilarity should be fully abstract with respect to
contextual equivalence, i.e., coincide with it.

Bisimulation has been studied in depth in deterministic λ-calculi, e.g., [2, 17, 27, 38, 41].
In contrast, so far, it has been little explored in probabilistic λ-calculi, mainly in the form of
applicative bisimilarity [8, 11] for the pure call-by-name and call-by-value languages.

Applicative bisimulations are known however to have some significant limitations. First,
they do not scale very well to languages richer than the pure λ-calculus. For instance,
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they are unsound under the presence of references, or even just generative names, or data
abstraction; see [24] for an enlightening discussion. Secondly, congruence proofs of applicative
bisimulations are notoriously hard. Such proofs usually rely on Howe’s method [19], which
is, however, fragile outside the pure λ-calculus. Related to the problems with congruence
are also the difficulties of applicative bisimulations with “up-to context” techniques (the
usefulness of these techniques in higher-order languages and its problems with applicative
bisimulations have been studied by Lassen [27]; see also [26, 39, 41]).
To relieve this burden, environmental bisimulations have been proposed [45], refining

earlier proposals in [1, 7, 23, 26, 48]. The distinguishing feature of these bisimulations is
that the pairs of tested terms are enriched with environments, that intuitively collect the
observer’s knowledge about values computed during the bisimulation game. The elements
of the environment can be used to construct terms to be supplied as inputs during the
bisimulation game. The notion has been applied to a variety of languages, including pure
λ-calculi [45, 49], extensions of λ-calculi [3, 4, 25, 26, 48], or languages for concurrency or
distribution [35, 36, 46]. In environmental bisimulations the proof of congruence goes by
induction over the structure of contexts, as in proofs for first-order languages. For this, a
‘small-step’ reduction relation is more handy than a ‘big-step’ reduction: the former allows
one a tigh control over the syntax of the contexts, which is harder with the latter because
in a higher-order language contexts may arbitrarily grow during reduction; moreveor, the
former is better suited to bisimulation enhancements of the ‘up-to techniques (earlier forms
of environmental bisimulation, e.g., [48, 49], place a mild emphasis on up-to techniques and
follow the big-step tradition of the λ-calculus).

With probabilities, the drawbacks of applicative bisimilarity are magnified: full abstraction
with respect to contextual equivalence may fail also in a pure λ-calculus, and Howe’s
technique has to be enriched with non-trivial ‘disentangling’ properties for sets of real
numbers, these properties themselves proved by modeling the problem as a flow network
and then applying the Max-flow Min-cut Theorem.
In this paper, our goal is understanding environmental bisimulations in probabilistic

higher-order languages. As representative calculi we consider call-by-name and call-by-value
λ-calculus, and a (call-by-value) λ-calculus extended with higher-order references. The
computation is made probabilistic by endowing these calculi with a primitive for binary,
fair, probabilistic choice. In each case we derive full abstraction results for probabilistic
environmental similarity and bisimilarity with respect to the contextual preorder and
contextual equivalence, respectively. Below, we discuss the main differences of our proposals
in comparison with ordinary (i.e., non probabilistic) environmental (bi)simulations.

Static and dynamic environments. In ordinary environmental bisimulation the values
produced during the bisimulation game are placed into the environment, so that the observer
can later play them at will during the bisimulation game. This schema is irrespective of
the evaluation strategy (call-by-name or call-by-value), and is the distinguishing feature of
environmental bisimulations over the applicative ones. ‘Playing a term’ means copying it.
However, in the λ-calculus the copying possibilities for call-by-name and call-by-value are
quite different. In call-by-name, evaluation only occurs in functional position and therefore
the term resulting from the evaluation may not be copied. In call-by-value, in contrast, a
term may be evaluated also in argument position, and then given as input to a function;
thus copying is possible also after evaluation. The different copying behaviour is well visible,
for instance, in linear logic interpretations of call-by-name and call-by-value [29].
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Now, the semantics of probabilistic languages is sensitive to the copying operation; for
instance the probability of success of an experiment, if non-trivial, may be lowered by playing
the experiment several times. This has a strong impact on behavioural equivalences for
call-by-name and call-by-value in probabilistic λ-calculi. As an example, using Ω for a purely
divergent term and ⊕ for the binary, fair, probabilistic choice operator,

A
def
= λx.(x⊕ Ω) and B

def
= (λx.x)⊕ (λx.Ω) (1)

are contextually equivalent in call-by-name: if evaluated alone they always terminate; if
evaluated with an argument, they return the argument with the same probability. More
generally, in call-by-name abstraction distributes over probabilistic choice. In contrast,
distributivity fails in call-by-value, exploiting the possibility of copying evaluated terms; e.g.,
the probabilities of termination for A and B are different in the context (λx.x (xλy.y))[·].
In a call-by-value strategy, the term in the hole is first evaluated in argument position, then
the result of the evaluation is copied and executed twice. When put in the context, term A
terminates with probability 1

4 whereas B terminates with probability 1
2 .

To be able to express such behavioural differences, in our environmental bisimulations
the values produced during the bisimulation game are placed into the environment only in
the call-by-value case. We call such a value environment a dynamic environment because it
may grow during the bisimulation game. It is precisely the use of the dynamic environment
that allows us to separate the two terms A and B above. In probabilistic call-by-name,
dynamic environments would break full abstraction for contextual equivalence. The only
environment for call-by-name is static. The static environment for two compared objects
F,G is a pair of λ-terms M,N , which are, intuitively, the initial λ-terms from which, using
evaluation and interaction according to the bisimulation game, the objects F,G have been
derived. This (small) static environment is sufficient to ensure that the congruence proof of
the bisimilarity remains in the style of ordinary environmental bisimulation (i.e., it does not
require sophisticated techniques such as Howe’s). In short, the static environment reflects the
copying possibility for terms before evaluation, whereas the dynamic environment reflects
the copying possibility for values resulting from evaluation.

Formal sums. In our probabilistic relations the objects compared are not plain λ-terms but
formal sums, that are the objects produced by the semantics of a term. These are, intuitively,
syntactic representations of probability distributions. As a consequence, environments are
not just tuples of values, but formal sums of tuples of values. To see why related objects must
be formal sums, consider again the terms A and B in (1): our environmental bisimulation
for call-by-name equates A and B by relating A and the formal sum resulting from the
evaluation of B. None of the components of the formal sum, λx.x and λx.Ω, could separately
be related with A. (A form of bisimulation on formal sums, namely a probabilistic version of
logical bisimulation, is already defined in [11] for call-by-name; its drawbacks are discussed
in Section 6.)
In pure call-by-value λ-calculus, full abstraction for contextual equivalence would also

hold without formal sums (i.e., relating plain λ-terms), for the same reason why, in the same
language, applicative bisimilarity on plain terms is fully abstract [8]. We do not pursue this
simplification of environmental bisimulations because it would be unsound in extensions of
the calculus. For instance, consider the following terms of a probabilistic λ-calculus with
store (again, an instance of distributivity):

H
def
= (ν x :=0)(λ.(M ⊕N)) K

def
= (ν x :=0)((λ.M)⊕ (λ.N))
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where (ν x :=0) indicates the creation of a new reference l, initialized with 0 and substituted
to x, λ.L is a thunk (i.e., λz.L for z not free in L), and where, using L1 seq L2 for the
sequential evaluation of L1 followed by L2,

M
def
= if !x = 0 then (x := 1 seq true) else Ω

N
def
= if !x = 0 then (x := 1 seq false) else Ω .

The terms M and N only differ at their first evaluation, when the new reference l that was
substituted to x is set to 1 and M produces true whereas N produces false; thereafter l
is 1 and both terms diverge. As a consequence, H and K are contextually equivalent: at
their first evaluation they always terminate, each returning true and false with the same
probability, and at later evaluations they always diverge.
To place H and K in a bisimulation, H has to be related with the formal sum obtained

from the evaluation of K; again, the single components alone would be distinguished. Once
more, this is a copying issue, due to the possibility of copying terms but not stores.

Big-step reduction, term closure, and congruence proof. To achieve full abstraction, in the
probabilistic case the bisimulation clauses have to use a big-step, rather than a small-step,
reduction relation. Precisely, we give finitary big-step approximants from which the semantics
of a term is obtained via a least-fixed point construction (a similar semantics is in [12]).
The reason, intuitively, is that while in pure λ-calculi a term converges (i.e., it terminates
its computation) in a finite number of reductions, in the probabilistic calculi there may be
several terminating computation paths, in which the total number of reductions need not be
finitary. An example is given by the terms

P
def
= RR and Q

def
= λ.Ω , for R

def
= λx.((xx)⊕Q) (2)

The terms P and Q are contextually equivalent, intuitively because they both have probability
1 of becoming term Q: after some reductions, P may become Q or may become P again,
with equal probability. Only by exploring the whole computation tree produced by P does
one find out that the infinite number of leaves in the tree makes a probability 1 of obtaining
Q. None of the finite approximants of the infinite tree gives the same information (a formal
sum made of a finite subset of the leaves would not be equivalent to Q).

When the reduction relation is small-step (as in the ordinary environmental bisimulations
in [45]) the related terms need not be values, because a normalizing term need not produce
a value in a single step and bisimulations must be closed under the reduction adopted. In
contrast, as our environmental bisimulations are big-steps, the bisimulation game may be
confined to values.

A more significant consequence of the adoption of big-step reductions is that the induction
over contexts in the proofs of congruence for ordinary environmental bisimulations is replaced
by an induction on the number of small-step reductions with which a big-step approximant
is derived (possibly coupled with an induction on the size of a context), combined with
two levels of continuity arguments. One level stems from the least fixed point construction
employed in the definition of the infinitary big-step semantics on terms. The second level
stems from a characterization of bisimilarity as the kernel of the similarity preorder and,
in turn, as the kernel of a finitary similarity in which (on the challenger side) the big-step
reduction relation employed is finite. The proof of the characterization with the finitary
similarity makes use of least fixed-points via a saturation construction on formal sums where,
intuitively, a formal sum is better than another formal sum if the former conveys more
accurate probabilistic information than the latter.
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Up-to techniques. Our proofs and examples rely on a few enhancements of the bisimulation
proof method (‘bisimulations up-to’), some of which are extensions of common (bi)simulation
enhancements, others are specific to probabilistic calculi. An example of the latter is
‘simulation up-to lifting’, whereby it is sufficient, in the coinductive game, that two derivative
formal sums are in the probabilistic lifting of the candidate relation, rather than in the
candidate relation itself.
While the bisimulations act on formal sums and use infinitary big-step reductions to

values, we also explore coinductive games played on plain λ-terms and on finitary multi-step
reductions to terms (not necessarily values) as sound proof techniques. In particular, we
combine these with up-to context, so to be able to compare terms in the middle of their
evaluation when a common context can be isolated and removed.

Structure of the paper. Section 2 introduces some general definitions and notations for
the paper. Section 3 presents environmental bisimulations for pure call-by-name, establishes
basic properties including full abstraction for bisimilarity and similarity, and develops various
up-to techniques. Section 4 considers pure call-by-value, and Section 5 an extension with
ML-like references. Section 6 discusses additional related work, and Section 7 concludes, also
mentioning possible future work.

2 PRELIMINARIES

We introduce general notations and terminologies for the paper. Familiarity with standard
terminologies (such as free/bound variables, and α-conversion) is assumed.
We use meta-variables M,N,P,Q, . . . for terms, and V,W, . . . for values. We identify

α-convertible terms. We write M{N/x} for the capture-avoiding substitution of N for x in
M . A term is closed if it contains no free variables. The set of free variables of a term M is
fv(M). A context C is an expression obtained from a term by replacing some subterms with
holes of the form [·]i, where for every i there can be multiple occurrences of hole [·]i. We
write C[M1, . . . ,Mn] for the term obtained by replacing each occurrence of [·]i in C with
Mi.

We use a tilde to denote a tuple; for instance M̃ is a tuple of terms, and (M̃)i is its i-th
element. We write tuples as {Mi}i∈I when we want to emphasize the indexing set, and we
sometimes abbreviate this as {Mi}i, implicitly assuming that i ranges over an index set

I. All notations are extended to tuples componentwise. Hence, we often write C[M̃ ] for

C[M1, . . . ,Mn] and M̃RÑ for (M1RN1) ∧ · · · ∧ (MnRNn).
By default, the results and definitions in the paper are (implicitly) stated for closed

terms. They can be generalized to open terms in a standard way for bisimulations in λ-
calculi [26, 45, 48]. Thus the properties between open terms M and N are derived from the
corresponding properties between the closed terms λx̃.M and λx̃.N , for {x̃} ⊇ fv(M)∪ fv(N).
The caveat is proving that any term M with {x̃} = fv(M) is contextually equivalent to its
β-expansion (λx̃.M)x̃. This is done by defining the least congruence relating N and (λy.N)y,
for any N , and then showing that such a relation is preserved by reduction. Adapting the
technique, detailed in, e.g., [26, 45, 48], to probabilistic λ-calculi is straightforward, also
because both in [26, 45, 48] and in the current paper the reduction relation is ‘big-step’ (the
main difference is that the auxiliary congruence relation has to be extended to formal sums).
The pure λ-calculi will be untyped, whereas we will find types convenient to treat the

extension with store.
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3 PROBABILISTIC CALL-BY-NAME λ-CALCULUS

The terms of the probabilistic λ-calculus are generated by the following grammar:

M,N ::= x
∣∣∣ λx.M

∣∣∣ MN
∣∣∣ M ⊕N

We write Λ⊕ for the subset of closed terms. The values are the terms of the form λx.M (the
abstractions). In call-by-name the evaluation contexts (which, in contrast with standard
contexts, may have only one occurrence of a single hole [·]) are:

C := CM | [·]
In probabilistic languages, the semantics of a term is usually a (sub)distribution, that is, a
function that specifies the probabilities of all possible outcomes for that term [12]. We prefer,
by contrast, syntactic representations of distributions, as formal sums, because they allow
us a tighter control on the manipulations of the operational semantics, which is important
in various places of our coinductive definitions and proofs. Formal sums have the form∑

i∈I pi;Mi

where 0 < pi ≤ 1, for each i,
∑

i∈I pi ≤ 1, and I is a (possibly infinite) indexing set. In
a summand pi;Mi of a formal sum, pi is its probability value (or weight), and Mi is its
term. The terms of different summands of a formal sum need not be different. The weight
weight(

∑
i∈I pi;Mi) of a formal sum is the probability value

∑
i∈I pi. We let F,G range

over formal sums, and we write the empty formal sum as ∅ (i.e., the formal sum with no
summands). We write F = G if F and G are syntactically equal modulo a permutation
of the summands. We use ‘+’ for binary sums, in the usual infix form, and sometimes
apply it also to formal sums. Thus, for F =

∑
j∈J qj ;Nj and G =

∑
j′∈J′ q′j′ ;N

′
j′ with∑

j∈J qj +
∑

j′∈J′ q′j′ ≤ 1 we have

F +G
def
=

∑
i∈J∪J′ pi;Mi

with pi;Mi = qj ;Nj for i ∈ J and pi;Mi = q′j′ ;N
′
j′ for i ∈ J ′.

Value formal sums, ranged over by Y,Z are formal sums in which the term of each
summand is a value.

There is an obvious mapping from formal sums to distributions, whereby a formal sum F
yields the distribution in which the probability of a term M is the sum of the weights with
which M appears in summands of F . The mapping is not injective: in general, infinitely
many formal sums yield the same distribution (because of possible duplicates in the terms
of the summands of a formal sum). For instance, 1

2 ;M + 1
4 ;M and 3

4 ;M are two different

formal sums, that correspond to the same distribution assigning probability 3
4 to term M

and probability 0 to any N such that N ̸= M .
We sometimes decompose formal sums using a lifting construction. If Fi =

∑
j∈Ji

pi,j ;Mi,j ,
for i ∈ I, then ∑

i∈I pi·Fi
def
=

∑
i∈I,j∈Ji

pi · pi,j ;Mi,j .

Note that some Fi can be the empty formal sum ∅, in which case the corresponding probability
value pi is lost, i.e.,

∑
i∈I pi·Fi =

∑
i∈I\{j} pi·Fi if Fj = ∅. The semantics of a term M ,

written JMK, is a value formal sum produced as the supremum of the value formal sums
obtained by finite computations starting from M , using a preorder ≤apx on formal sums in
which F1 ≤apx F2 if F1 is an approximant of F2 (in other words F2 conveys more information
than F1); formally, F2 = F1 + G for some G. The semantics is obtained in various steps,
whose rules are presented in Figure 1:
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(1) a single-step reduction relation −→ from terms to formal sums;
(2) a multi-step reduction relation =⇒ from terms and formal sums to formal sums, from

which a relation Z=⇒ to value formal sums is extracted by retaining only the summands
whose term is a value via the function val:

val(
∑

i pi;Mi)
def
=

∑
{i|Miis a value} pi;Mi ;

(3) the semantics J K, mapping terms and formal sums to value formal sums via the
supremum construction.

If M =⇒
∑

i∈I pi;Mi then I is finite, and each i represents a ‘possible world’ of the
probabilistic run of M , with probability pi and outcome Mi. The subset of possible worlds
in which Mi is a value makes for an approximant of M , and from such approximants the
semantics of M is obtained. The definition of the semantics of a term as a supremum requires
formal sums with infinitely many summands. As an example, consider the term P defined in
2 in the Introduction, whose semantics is

∑
n≥1

1
2n ;Q.

Since value formal sums form an ω-complete partial order with respect to the ≤apx preorder,
and for every M the set of those value formal sums Y such that M Z=⇒ Y is a countable
directed set, the semantics JMK of a term M exists and is unique.

Relations =⇒ and Z=⇒ are finitary in the sense that a derivation proof where one of such
relations appears in the conclusion only contains a finite number of ‘small steps’ (relation
−→). When reasoning by induction, sometimes we will need to make such number explicit,
therefore writing =⇒n and Z=⇒n, respectively.

Rule MulT, in contrast with MulFS, does not need a finitary condition on the indexing
set because a formal sum obtained in a small step from a term may have at most two
summands.

Remark 1. If we define a semantics based on probability distributions, rather than on
formal sums, the definition of the multi-step reduction relation F =⇒ F from distributions
to distributions becomes more subtle. In the corresponding rule in Figure 1

MulFS
Mi =⇒ Fi∑

i∈I pi;Mi +G =⇒
∑

i∈I pi·Fi +G
I finite

we have two possibilities (we use here the notation for formal sums as a notation for probability
distributions). If we allow a decomposition of the distribution F =

∑
i∈I pi;Mi +G such

that the same term M can be both in the support of
∑

i∈I pi;Mi and in the support of G,
then we allow uncountably many different reductions from F . Otherwise, such decomposition
is not allowed and a parallel reduction of terms in a probabilistic binary choice M ⊕M is
forced by the semantics whenever the terms in the choice coincide, since the formal sum
1
2 ;M + 1

2 ;M is treated as 1;M . By resorting to formal sums, we thus remain closer to the
syntax of the calculus and to standard definitions of reductions over terms.

Additional notation. We introduce here some additional notation, allowing us to easily
manipulate terms and formal sums. This simplified notation is only used in the proofs
of our results; in the rest of the paper, we use the extended notation defined above. For
Y =

∑
i pi;λx.Mi and F =

∑
i pi;Mi, we define:

- λx.M • P def
= M{P/x} ;

- Y • P def
=

∑
i pi;Mi{P/x} ;

- C[F ]
def
=

∑
i pi;C[Mi] ;

- FP
def
=

∑
i pi;MiP .
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single-step reduction relation from terms to formal sums

Beta
(λx.M)N −→ 1;M{N/x}

Sum
M1 ⊕M2 −→ 1

2 ;M1 +
1
2 ;M2

Eval
M −→

∑
i pi;Mi C is an evaluation context

C[M ] −→
∑

i pi;C[Mi]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

multi-step reduction relation from terms to formal sums

Mul0
M =⇒ 1;M

MulT
M −→

∑
i pi;Mi Mi =⇒ Fi

M =⇒
∑

i pi·Fi
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

multi-step reduction relation from formal sums to formal sums:

MulFS
Mi =⇒ Fi∑

i∈I pi;Mi +G =⇒
∑

i∈I pi·Fi +G
I finite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
multi-step reduction relation from terms and formal sums to value formal sums

MulVT
M =⇒ F val(F ) = Y

M Z=⇒ Y
MulVFS

F =⇒ F ′ val(F ′) = Y

F Z=⇒ Y
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the semantic mapping, from terms and formal sums to value formal sums

JMK def
= sup {Y | M Z=⇒ Y } JF K def

= sup {Y | F Z=⇒ Y }

Fig. 1. Operational semantics for call-by-name

3.1 Environmental bisimulation

In call-by-name, a probabilistic environmental relation is a set of elements each of which is of
the form (M,N) or ((M,N), Y, Z), where M,N, Y, Z are all closed, M,N are Λ⊕-terms and
Y,Z value formal sums. Intuitively, in the former elements M and N are terms that we wish
to prove equal, and in the latter elements Y and Z are value formal sums obtained from M
and N via evaluations and interactions with the environment. We use R,S to range over
probabilistic environmental relations. In a triple ((M,N), Y, Z) the pair component (M,N)
is the static environment, and Y,Z are the tested formal sums. We write R(M,N) for the
relation {(Y,Z) | ((M,N), Y, Z) ∈ R}; we accordingly use the infix notation Y R(M,N) Z,
and similarly for M R N . In the remainder of the paper, when discussing probabilistic
environmental relations, bisimulations, simulations, or similar, we abbreviate ‘probabilistic
environmental’ as ‘PE’, or even omit it when non-ambiguous. Static environments (that is,
pairs of Λ⊕-terms) are ranged over by E . If E = (M,N) then its context closure, written E⋆,
is the set of all pairs of the form (C[M ], C[N ]). We use a similar notation for the context
closure of relations on λ-terms.

Remark 2 (Static environment). Our results would also hold admitting arbitrary sets of
pairs of Λ⊕-terms as static environments, rather then single pairs. We have chosen single
pairs so to bring up the minimal requirement on static environments for our proofs to hold
(notably the congruence for bisimilarity).

Definition 3 (Environmental bisimulation, call-by-name). A PE relation R is a (PE)
bisimulation if

(1) M R N implies JMK R(M,N) JNK ;
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(2)
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:

(a)
∑

i pi =
∑

j qj ;

(b) for all (P,Q) ∈ E⋆,
∑

i pi·JMi{P/x}K RE
∑

j qj ·JNj{Q/x}K .

We write ≈ for (PE) bisimilarity, the union of all PE bisimulations.

While ≈ is a PE relation, we are ultimately interested in comparing λ-terms (M ≈ N if
M RN for some bisimulation R).

Remark 4. Using the additional notation defined in Section 3, we can write the bisimulation
clauses for formal sums as follows:

(2) Y RE Z implies:
(a) weight(Y ) = weight(Z) ;
(b) for all (P,Q) ∈ E⋆, JY • P K RE JZ •QK .

Example 5. We have

M
def
= (λ.λ.Ω)⊕ (λ.Ω) ≈ λ.((λ.Ω)⊕ Ω)

def
= N .

This is proved noting that JMK = 1
2 ;λ.λ.Ω+ 1

2 ;λ.Ω and JNK = 1;N , using the bisimulation

R in which M RN , JMK R(M,N) JNK, 1
2 ;λ.Ω R(M,N)

1
2 ;λ.Ω, and ∅ R(M,N) ∅. Terms M,N

could not be equated by a bisimulation that acted only on terms (ignoring formal sums), as
neither λ.λ.Ω nor λ.Ω can be equated to N .

Definition 6 (Simulation). In Definition 3, and in the remainder of the paper for other
definitions of probabilistic bisimulation, the corresponding simulation is obtained by replacing
the equality ’=’ on the weights with ‘≤’; thus in Definition 3, clause (2a) becomes

∑
i pi ≤∑

j qj .

The union of all simulations, similarity, is written ≲.

Theorem 7.

(1) ≈ and ≲ are the largest bisimulation and simulation, respectively.
(2) ≲ is a preorder, and ≈ an equivalence.
(3) ≈ = ≲ ∩ ≲−1.

Proof. (1) IfM ≈ N then there is a bisimulationR such thatM R N . By the definition
of R and ≈ we have ((M,N), JMK, JNK) ∈ R ⊆ ≈. Analogously, if (E , Y, Z) ∈≈ then
(E , Y, Z) ∈R for some bisimulation R and the formal sums have the same weight and,
for all P,Q ∈ E⋆, (E , JY • P K, JZ •QK) ∈ R ⊆ ≈. The same holds for simulation.

(2) Identity is a simulation, hence ≲ is reflexive. If R ,S are simulations, then their
relational composition

R S = {(M,N) | ∃P such that M RP S N}
∪{((M,N), Y, Z) | ∃Y ′, P such that Y R (M,P )Y

′ S(P,N) Z}
is a simulation. If M R P S N then JMK R(M,P ) JP K S(P,N) JNK, hence

JMK(R S)(M,N)JNK .

If Y R (M,P )Y
′ S(P,N) Z then weight(Y ) ≤ weight(Y ′) ≤ weight(Z) and for every C,

JY • C[M ]K R(M,P ) JY ′ • C[P ]K S(P,N) JZ • C[N ]K. Thus ≲ is transitive and reflexive.
Analogously, ≈ is reflexive and transitive, and for any bisimulation R it holds that

R−1 = {(M,N) | N RM} ∪ {((M,N), Y, Z) | ZR (N,M)Y }
is a bisimulation as well
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(3) The result follows from (1) and from the fact that the calculus is deterministic:
(a) if R is a bisimulation then both R and R−1 are simulations;
(b) to prove that ≲ ∩ ≲−1 ⊆≈, we show that ≲ ∩ ≲−1 is a bisimulation. Let R and S

be two simulations. If M R N and N S M then JMK R(M,N) JNK and JNK S(N,M)

JMK, which implies that ((M,N), JMK, JNK) ∈≲ ∩ ≲−1. If ((M,N), Y, Z) ∈ R
and ((N,M), Z, Y ) ∈ S then for all C we have JY • C[M ]K R(M,N) JZ • C[N ]K and

JZ•C[N ]K S(N,M) JY •C[M ]K. Therefore, ((M,N), JY •C[M ]K, JZ•C[N ]K) ∈≲ ∩ ≲−1.
Finally the clause on the weights holds by ((M,N), Y, Z) ∈ R and ((N,M), Z, Y ) ∈ S,
which imply weight(Y ) ≤ weight(Z) and weight(Z) ≤ weight(Y ), respectively.

2

The bisimilarity, or similarity, is directly defined using the semantics of terms, which is a
least-fixed point on top of big-step approximants. When proving properties about bisimilarity
and similarity, therefore, we need to reason about such approximants. For this, we introduce
a finite-step simulation in which the challenge reductions of the simulation game employ
the big-step approximants (the relation Z=⇒ of Figure 1). We cannot have characterizations
of bisimilarity in terms of a finite-step bisimilarity because in general the weights of the
approximants of two bisimilar terms are different, as shown in Example 8, and so we should
allow related formal sums to have different weights. Hence, to reason about bisimilarity we
go through its characterization via similarity (Theorem 7), and then the characterization
of similarity via the finite-step similarity (Corollary 12). In this case, since we are defining
a preorder rather than an equivalence, we can allow related formal sums to have different
weights.

Example 8. Let P and Q be the terms discussed in (2) in Section 1:

P
def
= RR and Q

def
= λ.Ω , for R

def
= λx.((xx)⊕Q)

A bisimulation relating P and Q is

{(P,Q), ((P,Q),
∑

n≥1
1
2n ;Q, 1;Q), ((P,Q), ∅, ∅)} .

We could not prove the equality using finite-step approximants for bisimulation, since those
for P are of the form

∑
1≤n≤m

1
2n ;Q, for some m, and thus have a smaller total weight than

the formal sum 1;Q immediately produced by Q.

Definition 9. A PE relation R is a finite-step simulation if

(1) M RN and M Z=⇒ Y imply Y R(M,N) JNK ;
(2)

∑
i pi;λx.Mi RE

∑
j qj ;λx.Nj implies:

(a)
∑

i pi ≤
∑

j qj ;

(b) for all (P,Q) ∈ E⋆, if
∑

i pi;Mi{P/x} Z=⇒ Y then Y RE
∑

j qj ·JNj{Q/x}K .

We write ≲fin for finite-step similarity. In finite-step simulations, the challenges are
expressed by finitary reductions, since only a finite number of small-steps reductions −→
can occur in the derivation of Z=⇒. Moreover, any result about finite-step similarity ≲fin

on Λ⊕-terms can be established using a finite-step simulation with only finite formal sums
(i.e., formal sums with a finite number of summands) on the challenger side, though this
constraint is not required in the definition. Indeed, finite formal sums can only reach finite
formal sums via the finitary, multi-step relation.
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Remark 10. We do not define clause (2b) of Definition 9 as follows:
for all (P,Q) ∈ E⋆, if Mi{P/x} Z=⇒ Yi for every i
then

∑
i pi·Yi RE

∑
j qj ·JNj{Q/x}K

since we would not know how to prove congruence, and thus soundness, for such proof
technique. This is because, as the index set I, ranged over by i, can be infinite, the challenge
in the simulation game might not be finitary, i.e., it could allow infinitely many summands to
perform a small-step reduction at the same time. By contrast, reduction Z=⇒ on formal sums
(from Figure 1) is finitary. This allows us to perform proofs by induction on the number of
small-steps in a reduction, which is the strategy we use for proving congruence (Lemma 18).

2

We denote by Pairs(R) the set of pairs of terms in a PE relation R . We use two saturation
constructions to turn a simulation into a finite-step simulation and conversely. Given a PE
relation R, its saturation by approximants is

Pairs(R) ∪ {(E , Y, Z) | there is Y ′ with Y ′ RE Z and Y ≤apx Y
′ }

and its saturation by suprema is
⋃

n Rn, where

R0 def
= R

Rn+1 def
= Rn∪ {(E , Y, Z) | there is a countable sequence {Yi}i≥0

with Yi Rn
E Z, Yi ≤apx Yi+1, and Y = sup{Yi}i}.

The saturation by suprema
⋃

n Rn of a relation R is saturated with respect to triples
(E , Y, Z) where Y is the supremum of an ω-chain {Yi}i≥0 with respect to ≤apx such that
there exists an n such that for all i it holds Yi Rn

E Z. However, the relation
⋃

n Rn is not
itself saturated by suprema in the following sense. There might exist an ω-chain {Yi}i≥0

with respect to ≤apx such that for all i it holds Yi(
⋃

n Rn
E )Z (i.e., such that for all i there

exists an n such that it holds Yi Rn
E Z), and yet it does not hold that sup{Yi}i(

⋃
n Rn

E )Z.

Lemma 11.

(1) The saturation by approximants of a simulation is a finite-step simulation.
(2) The saturation by suprema of a finite-step simulation is a simulation.

Proof. The proof of (1) follows from the definition of JMK as the supremum of the set
{Y | M Z=⇒ Y }. For (2), the crux is proving by induction on n that if

∑
i pi;λx.Mi Rn

E∑
j qj ;λx.Nj then:

(1)
∑

i pi ≤
∑

j qj ;

(2)
∑

i pi;Mi{P/x} Z=⇒ Y implies Y Rn
E
∑

j qj ·JNj{Q/x}K, for all (P,Q) ∈ E⋆.

The details of the proof can be found in Appendix A. 2

Corollary 12. The similarity and finite-step similarity preorders, ≲ and ≲fin, coincide.

Proof. The result follows from Lemma 11 and from the fact that a simulation (respectively,
a finite-step simulation) is included in its saturation by approximants (respectively, by
suprema). 2

The following example highlights the differences between simulations and finite-step
simulations, by proving the equality in Example 8 using finite-step simulations.
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Example 13. Terms P and Q of Example 8 can be proved equivalent by exhibiting the

following finite-step simulations, where Y0
def
= ∅ and Ym

def
=

∑
1≤n≤m

1
2n ;Q for m ≥ 1:

R def
= {(P,Q), ((P,Q), ∅, ∅)} ∪ {((P,Q), Ym, 1;Q) | m ≥ 0}

S def
= {(Q,P ), ((Q,P ), ∅, ∅), ((Q,P ), 1;Q,

∑
n≥1

1
2n ;Q)}.

By R we have P≲finQ, and by S we have Q≲finP . Since the saturation constructions
used in Lemma 11 allow us to freely move from simulations to finite-step simulations and
vice versa, this is equivalent to showing that P ≲ Q and Q ≲ P , which in turn coincides
with proving bisimilarity. Relation R can be turned into a simulation by saturating it by
suprema, i.e., by adding the triple ((P,Q), supm Ym, 1;Q). Indeed, we have supm Ym = JP K.
Conversely, we can obtain the finite-step simulation R out of the simulation

{(P,Q), ((P,Q),
∑

n≥1
1
2n ;Q, 1;Q), ((P,Q), ∅, ∅)}

by saturating it by approximants, i.e., by adding to the simulation all pairs

((P,Q),
∑

i∈I
1
2i ;Q, 1;Q)

where I is a finite subset of natural numbers (we assume that
∑

i∈I
1
2i ;Q = ∅ if I is empty).

2

Given a relation R , we say that R is saturated by approximants if for every pair
((M,N), Y, Z) in R , if Y ′ ≤apx Y ′ then ((M,N), Y ′, Z) ∈ R . Example 13 also shows
that finite-step simulations do not have to be saturated by approximants: relation S is a
finite-step simulation but it does not contain, e.g., the triple ((P,Q), 1

4 ;Q, 1;Q). However,
given a finite-step step simulation, we can always build a finite-step simulation saturated by
approximants that contains it, by taking its saturation by approximants.

To derive the substitutivity properties of the similarity, and hence of the bisimilarity, we
also need an up-to technique for the finite-step similarity. Specifically, we need an up-to lifting
technique whereby, in the simulation game, two derivative formal sums can be decomposed
into ‘smaller’ formal sums and it is then sufficient that these are pairwise related. We write
lift(S) for the probabilistic lifting of a relation S to another relation on formal sums:

lift(S) def
= {(F,G) | there are I, pi, Fi, Gi, for i ∈ I, with

Fi S Gi and F =
∑

i pi·Fi and G =
∑

i pi·Gi}.

Definition 14. A PE relation R is a finite-step simulation up-to lifting if

(1) M RN and M Z=⇒ Y imply Y lift(R(M,N)) JNK ;
(2)

∑
i pi;λx.Mi RE

∑
j qj ;λx.Nj implies:

(a)
∑

i pi ≤
∑

j qj ;

(b) for all (P,Q) ∈ E⋆, if
∑

i pi;Mi{P/x} Z=⇒ Y then Y lift(RE)
∑

j qj ·JNj{Q/x}K.

Lemma 15. If R is a finite-step simulation up-to lifting then R ⊆ ≲fin.

Proof. Let R be a finite-step simulation up-to lifting. Then S is finite-step simulation:

Sdef
= Pairs(R ) ∪ {((M,N), Y, Z) | Y lift(R (M,N))Z}

If M S N then M RN , which implies that if M Z=⇒ Y then Y lift(R (M,N)) JNK. Hence,
Y S(M,N) JNK.
Let Y S(M,N) Z, i.e., Y =

∑
i pi·Yi, Z =

∑
i pi·Zi and Yi R (M,N)Zi. For every i, weight(Yi) ≤

weight(Zi), hence weight(Y ) ≤ weight(Z).
For every i we have Yi • C[M ] Z=⇒ Y ′

i implies Y ′
i lift(R (M,N)) JZi • C[N ]K by the defi-

nition of R. Since Y • C[M ] Z=⇒ Y ′ implies that Y ′ =
∑

i pi·Y ′
i , for some Y ′

i such that
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Yi • C[M ] Z=⇒ Y ′
i , and JZ • C[N ]K =

∑
i pi·JZi • C[N ]K, then Y ′ lift( lift(R (M,N)) ) JZ •

C[N ]K. The result follows from lift( lift(R (M,N)) ) = lift(R (M,N)) . 2

Example 16. Let P
def
= λ.Q, Q

def
= λ.Ω, and

M
def
= (P ⊕ P )⊕ (Q⊕Q) , N

def
= (P ⊕Q)⊕ (P ⊕Q) .

The following finite-step simulation up-to lifting shows M≲finN :

{(M,N), ((M,N), 1;P, 1;P ), ((M,N), 1;Q, 1;Q), ((M,N), ∅, 1;P ), ((M,N), ∅, 1;Q), ((M,N), ∅, ∅)}

For this example, the ‘up-to lifting’ technique allows us to have a relation with only empty
or Dirac formal sums (i.e., a single summand with probability 1).

Remark 17. We have seen in Example 8 that the terms P and Q defined as follows:

P
def
= RR and Q

def
= λ.Ω , for R

def
= λx.((xx)⊕Q)

cannot be proved equivalent using a bisimulation with small-step, finitary clauses. We could
prove the terms equivalent by using a bisimulation with small-step clauses if we allowed the
reached formal sums to be decomposed into equally weighted formal sums (formally: using
the up-to-distribution-and-lifting technique discussed in Section 3.3). In this case, it would
be sufficient to define a bisimulation relating P and Q and their Dirac formal sums, and
we would only need to consider the formal sum 1

2 ;P + 1
2 ;Q (reached by P in one step) and

decompose 1;Q (the formal sum reached in zero steps by Q) as 1
2 ;Q+ 1

2 ;Q.
However, such a bisimulation would not be complete, since the same reasoning would not apply

to the terms M and N defined below, where R1
def
= λx.((xx)⊕λ.Q) and R2

def
= λx.((xx)⊕Q)

M
def
= (R1R1)⊕ λ.λ.Q N

def
= λ.((R2R2)⊕ λ.Q)

Terms M and N are contextually equivalent, but cannot be proved equivalent using a
small-step, finitary bisimulation. Indeed, 1;N is only equivalent to the semantics of M ,
which is not reachable in a finite number of steps. No decomposition of 1;N can be matched
with a decomposition of any approximation of the semantics of M .

We can now prove that ≲fin is a precongruence on terms.

Lemma 18. If M≲finN then C[M ]≲finC[N ], for any context C.

Proof. Given a a finite-step simulation R saturated by approximants, we prove that the
PE relation

{(C[M ], C[N ]) | M RN}
∪{((C[M ], C[N ]), 1;λx.C ′[M ], 1;λx.C ′[N ]) | M RN}
∪{((C[M ], C[N ]), Y, Z) | Y R (M,N)Z}
∪{((M,N), ∅, Z) | for some M,N,Z}

is a finite-step simulation up-to lifting. The details of the proof can be found in Appendix
A. 2

Hence, (pre)congruence results for bisimilarity and similarity follow from Lemma 18,
Corollary 12 and the fact that ≈ = ≲ ∩ ≲−1 (Theorem 7).

Corollary 19. On Λ⊕-terms, ≈ is a congruence, and ≲ a precongruence.
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3.2 Contextual equivalence

Let M ⇓ def
= weight(JMK) be the probability of termination of M .

Definition 20 (Contextual preorder and equivalence). M and N are in the contextual
preorder, written M ≤ctx N , (resp. in contextual equivalence, written M =ctx N), if
C[M ] ⇓ ≤ C[N ] ⇓ (resp. C[M ] ⇓ = C[N ] ⇓), for every context C.

Remark 21. We pointed out in Section 2 that all our definitions and results are for closed
terms. The definitions above of contextual preorder and equivalence could actually be used
also for open terms. In contrast, the definitions of simulations and bisimulations (and alike
relations) are on closed terms only (they are extended to open terms by considering closing
λ-abstractions, see the discussion in Section 2).

Lemma 22 (Completeness). On Λ⊕-terms, ≤ctx ⊆ ≲.

Proof. We prove that the following is a simulation:

R def
= (≤ctx) ∪ {((M,N), JC[M ]K, JC[N ]K) | M ≤ctx N}

We have M R N if and only if M ≤ctx N , which by definition of R implies JMK R(M,N) JNK.
If Y R(M,N) Z then Y = JC[M ]K and Z = JC[N ]K for some context C. Hence, for any C ′ we
have JY •C ′[M ]K = JJC[M ]K•C ′[M ]K = JC[M ]C ′[M ]K and JZ •C ′[N ]K = JJC[N ]K•C ′[N ]K =
JC[N ]C ′[N ]K (we refer the reader to Appendix A for a proof of these properties) and by the
definition of R we have JC[M ]C ′[M ]KR (M,N)JC[N ]C ′[N ]K.

2

Corollary 23 (Full abstraction). On Λ⊕-terms:

(1) relations ≤ctx and ≲ coincide.
(2) relations =ctx and ≈ coincide.

Proof. Completeness of the simulation preorder holds by Lemma 22. The converse, i.e.,
soundness, follows from the fact that ≲ is a precongruence (Corollary 19) and that M ≲ N
implies weight(JMK) ≤ weight(JNK) (by clause (2a) of simulation). Hence, M ≲ N implies
C[M ] ≲ C[N ] implies weight(JC[M ]K) ≤ weight(JC[N ]K).
Completeness and soundness for ≈ follow from (1) and the fact that ≈ (respectively, =ctx)
is the kernel of ≲ (respectively, ≤ctx), by item (3) of Theorem 7. 2

3.3 Up-to techniques

We have pointed out (Example 5 and 8) that our simulations (and bisimulations) have to be
based on formal sums and cannot employ finitary reductions, as in ordinary environmental
bisimulations, in order to faithfully represent contextual equivalence. However every one
of these features is sound and can therefore be used in proof techniques. In this section we
show examples of such techniques. These techniques are very limited and we leave for future
work the development of more conclusive ones.

Finitary reductions — the possibility of stopping the evaluation of a term after a few β-
reductions — are interesting in enhancements with up-to context (the ability of isolating and
removing common contexts in derivative terms) because sometimes such common contexts
appear in the middle of a reduction. For applicability, up-to context is usually combined with
further up-to techniques that allow us to bring up the common contexts. In the first up-to
technique, where the coinduction game still uses formal sums, we combine up-to context
with up-to lifting, so to be able to decompose related formal sums into pieces with different
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common contexts. In the technique, the context closure of the up-to context is only applied
onto λ-terms. The closure could probably be made more powerful by applying it also on
formal sums, at the price of a more complex proof, but its usefulness is unclear.

In clause (2b) below, and in the remainder of the paper, we use the function dirac that
takes a set of pairs of λ-terms (M,N) and returns the set of pairs of their (Dirac) formal
sums (1;M, 1;N).

Definition 24. A PE relation R is a finite-step simulation up-to lifting and context if:

(1) M RN and M Z=⇒ Y imply Y lift(R (M,N)) JNK ;
(2)

∑
i pi;λx.Mi RE

∑
j qj ;λx.Nj implies:

(a)
∑

i pi ≤
∑

j qj ;

(b) for all (P,Q) ∈ E⋆, one of the following holds:
• there are F,G such that

∑
i pi;Mi{P/x} =⇒ F and

∑
j qj ;Nj{Q/x} =⇒ G

with F lift(dirac(E⋆))G ;
• if

∑
i pi;Mi{P/x} Z=⇒ Y then

Y lift( dirac(E⋆) ∪ RE )
∑

j qj ·JNj{Q/x}K .

The following lemma proves the soundness of the up-to lifting and context technique.

Lemma 25. If R is a finite-step simulation up-to lifting and context then R ⊆ ≲fin.

Proof. Let R be a finite-step simulation up-to lifting and context. We prove that

R′ def
= Pairs(R)

∪ {((M,N), Y, Z) | Y ′ R (M,N)Z and Y ≤apx Y
′, for some Y ′}

∪ {((M,N), 1;λx.C[M ], 1;λx.C[N ]) | M R N}
∪ {((M,N), ∅, Z) | for some M,N,Z}

is a finite-step simulation up-to lifting, from which the result follows by R ⊆ R′. The details
of the proof can be found in Appendix A. 2

Example 26. The up-to lifting and context technique allows us to prove that terms A,B
defined in (1) in Section 1 are bisimilar. We prove A ≲ B using the PE relation

{(A,B), ((A,B), JAK, JBK)} .

Indeed, JAK = 1;A and JBK = 1
2 ;λx.x+ 1

2 ;λx.Ω and, for any pair of arguments of the form

(C[A], C[B]) used to test the formal sums, we have 1;C[A]⊕ Ω −→ 1
2 ;C[A] + 1

2 ; Ω and the

pair ( 12 ;C[A] + 1
2 ; Ω,

1
2 ;C[B] + 1

2 ; Ω) is in lift(dirac({(A,B)}⋆)) . Analogously, we prove
B ≲ A using the relation {(B,A), ((B,A), JBK, JAK)} ∪ {((B,A), ∅, Z) | for any Z}. In this
example, we have only used the option given by the first bullet for case (2b) in the definition
of the up-to technique. The option given by the second bullet for case (2b) can be useful for
dealing with analogous examples but with terms having an infinitary behavior (see Example
13 and Remark 17), which might force the opponent side in the bisimulation game to directly
evaluate to its semantics in order to reply to the challenger.

In the second up-to technique, the game is entirely played on terms, without appeal to
formal sums. We present the technique in combination with forms of up-to context, up-to
distribution, up-to reduction, and up-to lifting. This technique will allow us to prove the
equivalence of two probabilistic fixed-point combinators in Section 3.4.
A term relation is a relation T(M,N) on values of Λ⊕ and the index (M,N) is a pair of

Λ⊕-terms. The index corresponds, intuitively, to a static environment of an environmental
bisimulation. We use the notation T ⋆−

(M,N) for T(M,N) ∪ {(M,N)}⋆.
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A term M deterministically reduces to G (notation:
d

=⇒) if M =⇒ G and only the last
reduction in the sequence may be derived using rule Sum. We write M �M ′ if M and M ′

deterministically reduce to the same formal sum, but M ′ takes fewer steps. That is, there

are G,m,m′ with m ≥ m′ and with M
d

=⇒m G, and M ′ d
=⇒m′ G (where

d
=⇒m denotes as

usual that m ‘small steps’ are performed, i.e., that m reductions −→ occur in the derivation

of
d

=⇒). Thus, in Definition 27, �⋆ T ⋆−
(M,N) is the set

{(P,Q) | P �⋆ P ′ for P ′ with P ′(T(M,N) ∪ {(M,N)}⋆)Q} .

We write F =dis F
′ if F and F ′ represent the same probability distribution. In the up-to

technique below, � gives us the ‘up-to reduction’, and =dis the ’up-to distribution’. We use
up-to distribution to manipulate formal sums, which are purely syntactic objects. Finally,
d

=⇒=dis is the composition of the two relations, i.e., M
d

=⇒=dis F if there is F ′ with

M
d

=⇒ F ′ and F ′ =dis F .

Definition 27. Let T(M,N) be a term relation. Then {(M,N)} is a bisimulation up-to context
closure, distribution, reduction, and lifting if

(1) JMKdirac(T(M,N))JNK ;
(2) if λx.M ′ T(M,N) λx.N

′ then for all (P,Q) ∈{(M,N)}⋆,

M ′{P/x} d
=⇒=dis lift(dirac(�⋆ T ⋆−

(M,N))) =dis
d⇐= N ′{Q/x} .

We first establish the soundness of the up-to distribution and lifting technique. For
a relation R on formal sums, we write dislift(R) for the set of pairs F,G such that
F =dis lift(R) =dis G. The up-to distribution and lifting technique is obtained by
substituting lift(·) with dislift(·) in definition 14.

Lemma 28. If R is a finite-step simulation up-to distribution and lifting then R ⊆ ≲fin.

The proof follows as the one for the up-to lifting technique (Lemma 15), and exploits the
fact that dislift(dislift(·)) = dislift(·). Then, by exploiting this result, we can derive
the soundness of the full technique in Definition 27. An environmental relation has two
kinds of components, i.e., it contains pairs of terms and it contains triples, each containing a
pair of terms and two formal sums. In a bisimulation up-to context closure, distribution,
reduction, and lifting we have only allowed the first kind of component, and the soundness
proof exhibits the missing triples (the proof can be found in Appendix A).

Lemma 29. If there is a term relation T(M,N) such that {(M,N)} is a bisimulation up-to
context closure, distribution, reduction, and lifting then (M,N) ∈ ≈.

The restriction to deterministic transitions
d

=⇒ (i.e., to transitions where only the last
reduction in the sequence may be derived using rule Sum) in the definition of the up-to
technique is used in the proof of soundness, in order to carry out an induction over the
number of small-steps reductions.

Remark 30. The first clause of the up-to technique in Definition 27 is not sound if T(M,N)

is substituted by T ⋆−
(M,N): in this case, for any pair of values V,W , relation T(V,W )

def
= ∅ would

satisfy the definition, since JV K = 1;V , JW K = 1;W and 1;V dirac({(V,W )}⋆) 1;W . 2
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3.4 Fixed-point combinator example

In the reductions of this example, we write a Dirac formal sum 1;M as M , so to have
reductions between λ-terms. We exploit the up-to technique of Definition 27 to prove the
equivalence between two fixed-point combinators. One of the combinators is Υ:

Υ
def
= λy.y(Dy(Dy))

whereD
def
= λy.λx.y(xx) .

For any term L we have

ΥL −→ L(DL(DL))
and then DL(DL)−→−→L(DL(DL)) .

(3)

The other combinator at any cycle can probabilistically decide whether to behave differently
(i.e., as Turing’s fixed-point combinator) or to turn for good into the previous Υ combinator:

Υ′ def= D′D′

where D′ def= λx.λy.((y(Dy(Dy)))⊕ (y(xxy))) .

Thus the computation of Υ′L will unveil, for a while, some L’s while computing as Turing’s
combinator, and then will continue unveiling L’s by computing as Υ. Indeed, for

Υ′
1
def
= λy.((y(Dy(Dy)))⊕ (y(D′D′y))) ,

we have

Υ′L −→ Υ′
1L−→ (L(DL(DL)))⊕ (L(D′D′L))

−→ 1
2 ;L(DL(DL)) + 1

2 ;L(D
′D′L) .

(4)

We can establish Υ ≈ Υ′ using the term relation

T(ϒ,ϒ′)
def
= {(Υ,Υ′

1)} .

The interesting case is the bisimulation clause for (Υ,Υ′
1). Take any M {(Υ,Υ′)}⋆ N . By (3),

we have ΥM −→ M(DM(DM)), whereas by (4), Υ′
1N

d
=⇒ 1

2 ;N(DN(DN))+ 1
2 ;N(D′D′N).

Now we could conclude, up-to context closure, distribution, reduction, and lifting, if we can
show that the pairs

(M(DM(DM)), N(DN(DN)))
and (M(DM(DM)), N(Υ′N))

are in �⋆ T ⋆−
(M,N) This holds because: the first pair is in {(Υ,Υ′)}⋆; for the second pair, by

(3) we deduce DM(DM)�ΥM , and then we have

M(DM(DM)) �⋆ M(ΥM) {(Υ,Υ′)}⋆ N(Υ′N).

The example also shows the usefulness of static environments (whose terms need not be
values) for context closures in ‘up-to context’ techniques.

4 PROBABILISTIC CALL-BY-VALUE λ-CALCULUS

In call-by-value, the static environments are not anymore sufficient. As in ordinary envi-
ronmental bisimulations, we need a dynamic environment to record the values produced
during the bisimulation game. In ordinary environmental bisimulations we can see such
environments as tuples of values. In the probabilistic case formal sums come into the picture.
Environment formal sums are terms of the form∑

i pi; Ṽi
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(i.e., sums of weighted tuples) in which all tuples Ṽi have the same length and, as for
ordinary formal sums, 0 < pi ≤ 1 for each i and

∑
i pi ≤ 1. We call the length of the

tuples Ṽi’s the length of the environment formal sum. In case the index set I of the formal
sum is empty, i.e., if there are no summands, we assume to have an empty formal sum
∅n for any length n. This index will be generally omitted when clear by the context.

The tuples Ṽi represent the dynamic environment: the knowledge that an observer has

accumulated during the bisimulation game. There may be several such elements Ṽi, reflecting
the possible worlds produced by the probabilistic evaluation. During the bisimulation game,
the environment formal sum is updated. Viewing the environment formal sum as a matrix,

in which Ṽi represents the i-row and the elements (Ṽ1)r, (Ṽ2)r, . . . (the r-th element of each
row) represent the r-th column, a column is a set of values that the various possible worlds
have produced at the same step of the bisimulation game. (This explains why the tuples

Ṽi’s of the sum have the same length.)
More precisely, in the bisimulation game at each possible world i a term Mi (constructed

from the Ṽi’s using a context closure discussed below) is evaluated. The evaluation of Mi

yields, probabilistically, a multiset of values (as a formal sum). This multiset is empty when
all evaluations from Mi diverge; in this case the whole row i disappears, meaning that in the
i-th possible world the observer never receives an answer. When the multiset is non-empty,
the row i is split into as many possible worlds as the values in the multiset. For instance if
the evaluation of Mi produces V with probability 1

2 and V ′ with probability 1
3 then the row

pi; Ṽi is split into the two rows 1
2 · pi; Ṽi, V and 1

3 · pi; Ṽi, V
′.

This splitting operation is captured by the following multiplication of an environment

formal sum
∑

i∈I pi; Ṽi and a tuple of formal sums Yi =
∑

j∈Ji
pi,j ;Vi,j :∑

i∈I pi; Ṽi · Yi
def
=

∑
i∈I,j∈Ji

pi · pi,j ; Ṽi, Vi,j .

We use Y,Z to range over environment formal sums, and we sometimes treat a formal sum
as a special case of environment formal sum in which all tuples have length one.
The view of environment formal sums as matrices is illustrated in Figure 2, for an

environment formal sum Y
def
=

∑
1≤i≤3 pi; Ṽi of length 4. The figure also illustrates the

extraction of the column r of the formal sum, written Y⇂r, that yields the tuple of values
along the same column, and the multiplication of an environment formal sum with formal
sums resulting from the semantics of terms, one per row (where I = λx.x is the identity
function).

The dynamic environment of two environment formal sums of the same length
∑

i∈I pi; Ṽi

and
∑

j∈J qj ; W̃j is the pair of tuples (of tuples of the same length) ({Ṽi}i∈I , {W̃j}j∈J).
In environmental bisimulations, the input for two higher-order functions is constructed as
the context closure of their environments. In call-by-value, the environments have both
a static and a dynamic component and the inputs are constructed accordingly. Given a

static environment (M,N) and a dynamic environment ({Ṽi}i, {W̃j}j), their context closure,
written

({M, Ṽi}i, {N, W̃j}j)⋆̂

is the set of all pairs of tuples ({Ti}i, {Uj}j) for which there is a context C such that for

every i we have Ti = C[M, Ṽi], and for every j we have Uj = C[N, W̃j ]. Thus every Ti is
obtained from the same context C by filling its holes with the first element M of the static

environment and the dynamic environment Ṽi. Similarly for Uj , using N , the tuple W̃j and
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Y⇂1 Y⇂2 Y⇂3 Y⇂4

p1; V1,1 V1,2 V1,3 V1,4

p2; V2,1 V2,2 V2,3 V2,4

p3; V3,1 V3,2 V3,3 V3,4

Y =
∑ Ṽ1

Ṽ2

Ṽ3

p1; V1,1 V1,2 ·JI ⊕ ΩK
p2; V2,1 V2,2 ·JI ⊕ λ.ΩK

∑ p1

2 ; V1,1 V1,2 I
p2

2 ; V2,1 V2,2 I
p2

2 ; V2,1 V2,2 λ.Ω

=
∑

Fig. 2. Formal sums as matrices

the same context C. Moreover, as we are in call-by-value, C should be a value context, that
is, terms Ti and Uj are values for all i, j. Hence, if M or N are not values then C ̸= [·]1.

The operational semantics of call-by-value is defined as in call-by-name, provided that the
rule for β-reduction and the evaluation contexts are redefined thus:

BetaV
(λx.M)V −→ 1;M{V/x}

Evaluation contexts C = [·]
∣∣∣ CM

∣∣∣ V C

The probabilistic lifting of a relation S on environment formal sums is defined as for
call-by-name:

lift(S) def
= {(F,G) | there are I, pi,Fi,Gi, for i ∈ I, with

Fi S Gi and F =
∑

i pi·Fi and G =
∑

i pi·Gi}.

4.1 Environmental bisimulation

In call-by-value, a probabilistic environmental relation (that we still abbreviate as PE
relation) is like for call-by-name, except that formal sums are replaced by environment
formal sums. That is, each element of the relation is either of the form (M,N) (a pair of
Λ⊕-terms) or Y RE Z (two environment formal sums, collecting the dynamic environment,
with a static environment).
If E = (M,N) is a static environment, then E1 and E2 denote the projections, i.e., the terms
M and N , respectively.
In a PE relation, related environment formal sums are compatible, meaning that they

have the same length. In the remainder, compatibility of environment formal sums is tacitly
assumed.

In clause (1) below we see formal sums as special cases of environment formal sums.

Definition 31 (Environmental bisimulation, call-by-value). A PE relation is a (PE) bisim-
ulation if

(1) M R N implies JMK R(M,N) JNK ;

(2)
∑

i pi; Ṽi RE
∑

j qj ; W̃j implies:

(a)
∑

i pi =
∑

j qj ;
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(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂ we have∑
i pi; Ṽi · JMi{Ti/x}K RE

∑
j qj ; W̃j · JNj{Uj/x}K ;

(c)
∑

i pi; Ṽi · JE1K RE
∑

j qj ; W̃j · JE2K .

(PE) bisimilarity, ≈, is the union of all PE bisimulations, and the corresponding similarity
is ≲.

The structure of the above definition is similar to that of ordinary environmental bisimu-
lations. There are three main differences: first, the appearance of formal sums and of the
probability measures (notably in clause (2a)); second, the use of an (infinitary) big-step
semantics, rather than a small-step, which shows up in the function J K in clauses (1),
(2b) and (2c); thirdly the appearance of a static environment, that is used in the context
closure and in clauses (1) and (2c). In clause (2b), the related environment formal sums,
viewed as matrices, grow by the addition of a new column resulting, on left-hand side,

from the multiplication of each row pi; Ṽi with the formal sum JMi{Ti/x}K, and similarly
on the right-hand side. Thus the compatibility between related environment formal sums
is maintained. Clause (2c) allows to re-evaluate the static environment at any time. This
clause and other features are necessary in order to achieve full abstraction in the imperative
case (see Section 5.1); they could be removed in pure call-by-value, following [8].

Remark 32. Clause (1) could be substituted by

(1′) M R N implies 1; ∅ R(M,N) 1; ∅
where 1; ∅ is the Dirac formal sum with empty environment. Clause (2c) then guarantees
that JMK R(M,N) JNK. We did not use this definition for continuity with the call-by-name
case, and since it is not needed for pure calculi. By contrast, a modification of clause (1)
analogous to (1′) is used in Definition 42 of bisimulation for imperative calculi (see Example
43).

Example 33. We have seen in Example 5 that the following terms M and N are equivalent
in call-by-name:

M
def
= (λ.λ.Ω)⊕ (λ.Ω) N

def
= λ.((λ.Ω)⊕ Ω) .

In call-by-value, the presence of the dynamic environment in the definition of bisimulation
allows us to distinguish the terms. A call-by-value bisimulation relating these terms should
contain the formal sums JMK = 1

2 ;λ.λ.Ω+ 1
2 ;λ.Ω and JNK = 1;N , with static environment

E = (M,N), and thus the triple (E , 1
2 ;λ.λ.Ω, λ.Ω,

1
2 ;N,λ.Ω) would be in the relation as well.

However, the values in the first column of the dynamic environment can be tested again, by
clause (2b) of bisimulation, leading to the triple

(E , 1
2 ;λ.λ.Ω, λ.Ω, λ.Ω,

1
4 ;N,λ.Ω, λ.Ω) ,

which does not satisfy clause (2a).
We want the bisimulation to distinguish the terms in call-by-value since M and N are
not contextually equivalent in a call-by-value setting, in contrast with call-by-name. In

call-by-value, the context C
def
= (λx.x (xλy.y))[·] separates the two terms. The context first

evaluates the given term in argument position, and then copies the value resulting from
the evaluation and executes it (i.e., feeds it with an argument) twice. We have that C[M ]
has probability one half of returning a value, and C[N ] has probability a quarter. In the
first case, both value λ.λ.Ω and value λ.Ω are copied with probability one half, and thus
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C[M ] has probability one half of converging (i.e., one half times the probability that λ.λ.Ω
converges two times in a row when applied to an argument, which is one) and one half of
diverging (i.e., one half times the probability that λ.Ω converges two times in a row when
applied to an argument, which is zero). In C[N ], the term N itself is copied with probability
one, so C[N ] converges with probability one quarter (i.e., one times the probability that
N converges two times in a row when applied to an argument, which is one half times one
half).

The main results for environmental bisimilarity and similarity in call-by-value (congruence
and full abstraction with respect to contextual preorder and equivalence) are as for call-by-
name, and the structure of the proofs is similar. The details are however different due to the
presence of dynamic environments. As for call-by-name, so in call-by-value to reason about
bisimilarity and similarity we need a finite-step simulation, with challenges produced by the
finitary big-step approximants. To make sure that the challenges are finite-step, we define
extended environment formal sums, i.e., terms∑

i pi; Ṽi;Mi

in which the environment formal sum
∑

i pi; Ṽi is extended with an additional column of

arbitrary Λ⊕-term (not necessarily values). Intuitively, an element Ṽi;Mi indicates that the

λ-term Mi has to be run with an observer whose knowledge is Ṽi. Extended environment
formal sums are ranged over by F,G and val(F) is defined analogously to formal sums:

val(
∑

i pi; Ṽi;Mi)
def
=

∑
{i|Miis a value} pi; Ṽi,Mi .

Extended environment formal sums allow us to define the multi-step reduction relation from

extended environment formal sums to environment formal sums: for F =
∑

i∈I pi; Ṽi;Mi+G,
where I is a finite set, we set

Mi Z=⇒ Yi for every i

F Z=⇒
∑

i∈I pi; Ṽi · Yi + val(G)

This intuitively corresponds to the multi-step reduction relation from formal sums to

value formal sums. For an extended environment formal sum F =
∑

i pi; Ṽi;Mi, we let

JFK def
= sup{Y | F Z=⇒ Y}, and we have

∑
i pi; Ṽi · JMiK = JFK.

Additional notation. As we shall now describe, we extend to (extended) environment
formal sums the notations for β-reduction, contexts, and application on formal sums, and
introduce a notation for extending the dynamic environments. We use r to range over
indexes of columns of environment formal sums, and we let | Y | denote the length of an
environment formal sum Y. Abusing notation, we sometimes write | Y | also for the index

set {1, ..., | Y |}. Let Y =
∑

i pi; Ṽi and F =
∑

i pi; Ṽi;Mi and P be a term.

- for any r, if (Ṽi)r = λx.Mi we let Y;Y⇂r • P
def
=

∑
i pi; Ṽi;Mi{P/x} ;

- for any r, if (Ṽi)r = λx.Mi and C is a context with holes with indexes ranging over

| Y | +1 we let Y;Y⇂r • C[P,Y]
def
=

∑
i pi; Ṽi;Mi{C[P, Ṽi]/x} ;

- Y;P
def
=

∑
i pi; Ṽi;P ;

- for any context C, we let C[F]
def
=

∑
i pi; Ṽi;C[Mi] ;

- for Fj =
∑

i∈Ij
pj,i;Mj,i, we let

∑
j qj ;Cj [Fj ]

def
=

∑
j,i∈Ij

qj · pj,i;Cj [Mj,i].

Using this notation, the call-by-value bisimulation clauses for environment formal sums
become as follows:
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(2) Y RE Z implies:
(a) weight(Y) = weight(Z) ;
(b) for all r and for all contexts C, JY;Y⇂r • C[E1,Y]K RE JZ;Z⇂r • C[E2,Z]K ;
(c) JY; E1K RE JZ; E2K .

As for call-by-name, we will use this additional notation only for proofs.
We first establish the basic properties of similarity and bisimilarity.

Theorem 34.

(1) ≈ and ≲ are the largest bisimulation and simulation, respectively.
(2) ≲ is a preorder, and ≈ an equivalence.
(3) ≈ = ≲ ∩ ≲−1.

Proof. The proof follows analogously to call-by-name, except for transitivity (item (2)),
which requires some modifications. Clause (2b) of (bi)simulation allows M,N to be given
as argument to functions (using context C = [·]1) if and only if they are both values;
thus when one of them is not a value we cannot use them as arguments. This prevents us
from concluding that, given relations R(M,N) and R′

(N,P ) satisfying the simulation clauses,

their relational composition is a simulation. Indeed, whenever M,P are values and N is
not a value, we want to build a relation SM,P on environment formal sums such that the
context C = [·]1 can be applied in clause (2b). If N is not a value, however, the simulations
R(M,N) and R′

(N,P ) do not allow us to use this context. The issue can be solved by noticing

that whenever M,P are values we can apply clause (2c) to R(M,N) and R′
(N,P ), which

adds M and P as a column of the respective dynamic environments, and then allows us
to use them as arguments. In other words, we have to work with a relation that allows
environments to be extended with new columns. Adding columns is safe because it means
enlarging the dynamic environment: terms that are equal in the larger environment are
also so in the smaller environment as the tests that can be built (when playing the bi-
simulation game) with the latter environment are a subset of those that are obtained
from the former environment. Define the following preorder ≤env on pairs of formal sums
(where, for each pair, the formal sums in the pair have the same length): (Y,Z) are below
formal sums (Y′,Z′) if, in the second pair, the dynamic environment of the first pair is
extended and the columns have been possibly permuted. Formally, (Y,Z) ≤env (Y

′,Z′) if

Y =
∑

i pi; Ṽi,Z =
∑

j qj ; W̃j ,Y
′ =

∑
i pi; Ṽ

′
i ,Z

′ =
∑

j qj ; W̃
′
j and for every index r in | Y |

there is an index r′ in | Y′ | such that Y⇂r = Y′⇂r′ and Z⇂r = Z′⇂r′ . Let R(M,N) and R′
(N,P )

be relations on environment formal sums satisfying the simulation clauses. We show that

relation S(M,P )
def
=≥env (R(M,N) ◦ R′

(N,P )), that is,

{(Y,Z) | ∃Y′,X′,Z′ such that Y′ R(M,N) X
′ and X′ R′

(N,P ) Z
′ and (Y,Z) ≤env (Y

′,Z′)}

satisfies the simulation clauses. The interesting case is proving clause (2b) when M,P
are values and N is not. In this case, if the context used is different from C = [·]1 then
the we can directly appeal to clause (2b) for R(M,N) and R′

(N,P ). If C = [·]1 then we

have Y′ R(M,N) X′ and X′ R′
(N,P ) Z′ and (Y,Z) ≤env (Y′,Z′), and we want to show

JY;Y⇂r•MK S(M,P ) JZ;Z⇂r•P K. By applying clause (2c) toY′ R(M,N) X
′ and X′ R′

(N,P ) Z
′

we have Y′′ R(M,N) X
′′ and X′′ R′

(N,P ) Z
′′, for Y′′ = JY′;MK, X′′ = JX′;NK, Z′′ = JZ′;P K.

Since M and P are values, they are respectively the only terms appearing in the last columns
of Y′′ and Z′′, and we can use them to mimic context C = [·]1. Moreover, by (Y,Z) ≤env

(Y′′,Z′′) there is a column r′ of (Y′′,Z′′) such that Y⇂r = Y′′⇂r′ and Z⇂r = Z′′⇂r′ . Hence,
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there are r′ and C ′ (specifically, with C ′ being the context hole which gives the last column
of Y′′ and Z′′) such that

(JY;Y⇂r •MK, JZ;Z⇂r • P K) ≤env (JY′′;Y′′⇂r′ •MK, JZ′′;Z′′⇂r′ • P K)

= (JY′′;Y′′⇂r′ • C ′[M,Y′′]K, JZ′′;Z′′⇂r′ • C ′[P,Z′′]K)

and, by clause (2b),

JY′′;Y′′⇂r′ • C ′[M,Y′′]K R(M,N) JX′′;X′′⇂r′ • C ′[N,X′′]K

JX′′;X′′⇂r′ • C ′[N,X′′]K R′
(N,P ) JZ′′;Z′′⇂r′ • C ′[P,Z′′]K.

Then the results follows, i.e., JY;Y⇂r •MK S(M,P ) JZ;Z⇂r • P K. 2

Definition 35. A PE relation is a finite-step simulation if

(1) M RN and M Z=⇒ Y imply Y R(M,N) JNK ;

(2)
∑

i pi; Ṽi RE
∑

j qj ; W̃j implies:

(a)
∑

i pi ≤
∑

j qj ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂ we have∑
i pi; Ṽi;Mi{Ti/x} Z=⇒ Y implies Y RE

∑
j qj ; W̃j · JNj{Uj/x}K ;

(c)
∑

i pi; Ṽi; E1 Z=⇒ Y implies YR E
∑

j qj ; W̃j · JE2K .

We write ≲fin for the union of all finite-step simulations. Analogously to call-by-name, we
use a saturation by approximants and a saturation by suprema to move from a simulation
to a finite-step simulation and conversely, and exploit this to prove that similarity and
finite-step similarity coincide.

Lemma 36. Relations ≲ and ≲fin coincide.

The proof follows as in call-by-name. We prove that the saturation by approximants of a
simulation is a finite-step simulation and that the saturation by suprema of a finite-step
simulation is a simulation. Clause (2c) is treated analogously to clause (2b).
As in call-by-name, we derive congruence for bisimilarity and similarity by first proving

the property for finite-step similarity. We also exploit a combination of two up-to techniques
for finite-step simulation, namely up-to lifting and up-to environment. Up-to lifting is defined
analogously to call-by-name, using the lifting operation on environment formal sums. Up-to
environment is based on the preorder ≤env on pairs of formal sums, as defined in the proof of
Theorem 34, which allows us to exchange columns of environment formal sums (when these
are viewed as matrices as in Figure 2) and to add new columns. In the up-to lifting and
environment technique, we combine this preorder with the probabilistic lifting of a relation.
Then, Y lift(≥env (R))Z holds if there are pi, Yi and Zi, for i ranging over some index
set, such that Y =

∑
i pi·Yi and Z =

∑
i pi·Zi, and for every i there are Y′

i,Z
′
i such that

Y′
i R Z′

i and (Yi,Zi) ≤env (Y
′
i,Z

′
i).

Definition 37. A PE relation is a probabilistic finite-step simulation up-to lifting and
environment if:

(1) M RN and M Z=⇒ Y imply Y lift(≥env (R(M,N))) JNK ;
(2)

∑
i pi; Ṽi RE

∑
j qj ; W̃j implies:

(a)
∑

i pi ≤
∑

i qi ;
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(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂ we have∑
i pi; Ṽi;Mi{Ti/x} Z=⇒ Y implies Y lift(≥env (RE))

∑
j qj ; W̃j · JNj{Uj/x}K ;

(c)
∑

i pi; Ṽi; E1 Z=⇒ Y implies Y lift(≥env (RE))
∑

j qj ; W̃j · JE2K .

We now prove that the up-to lifting and environment technique is sound.

Theorem 38. If R is a finite-step simulation up-to lifting and environment then R ⊆
≲fin.

Proof. Let R be a finite-step simulation up-to lifting and environment. Then the
following is a finite-step simulation:

S= Pairs(R ) ∪
⋃

E lift(≥env (RE))

If M S N then M RN , which implies that if M Z=⇒ Y then Y lift(≥env (R(M,N))) JNK.
Hence, Y S(M,N) JNK.
Let Y S(M,N) Z, i.e., Y =

∑
i pi·Yi, Z =

∑
i pi·Zi and for every i there are Y′

i R(M,N) Z
′
i

such that (Yi,Zi) ≤env (Y
′
i,Z

′
i).

Clause (a) holds since for every i, weight(Y′
i) ≤ weight(Z′

i). Therefore, weight(Y) ≤
weight(Z).
To prove clause (b), suppose that Y;Y⇂r • C[M,Y] Z=⇒ W. Then W =

∑
i pi·Wi, for some

Wi such that Yi;Yi⇂r • C[M,Yi] Z=⇒ Wi. Analogously, we have

JZ;Z⇂r • C[N,Z]K =
∑

i pi·JZi;Zi⇂r • C[N,Zi]K.

Suppose that Yi;Yi⇂r • C[M,Yi] =
∑

j qj ; Ṽj ;Mj and Zi;Zi⇂r • C[M,Zi] =
∑

k q
′
k; W̃k;Nk.

Then it follows from the definition of the environment preorder ≤env that there are ri and Ci

such that Y′
i;Y

′
i⇂ri • Ci[M,Y′

i] =
∑

j qj ; Ṽ
′
j ;Mj and Z′

i;Z
′
i⇂ri • Ci[N,Z′

i] =
∑

k q
′
k; W̃

′
k;Nk.

Therefore, there is a W′
i such that Y′

i;Y
′
i⇂ri • Ci[M,Y′

i] Z=⇒ W′
i and

(Wi, JZi;Zi⇂r • C[N,Zi]K) ≤env (W
′
i, JZ

′
i;Z

′
i⇂ri • Ci[N,Z′

i]K)

with W′
i lift(≥env (R(M,N))) JZ′

i;Z
′
i⇂ri • Ci[N,Z′

i]K), since R is a finite-step simulation
up-to lifting and environment and Y′

i R(M,N) Z
′
i. Hence, we have

W lift(≥env ( lift(≥env (R(M,N))) )) JZ;Z⇂r • C[N,Z]K

and the result follows from lift(≥env ( lift(≥env (R(M,N))) )) = lift(≥env (R(M,N))) .
Finally, clause (c) follows analogously to clause (b).

2

Having these up-to techniques, we derive the result by showing that the context closure
(which, differently from call-by-name, is now applied both to terms and to the environments of
formal sums) of a finite-step simulation saturated by approximants is a finite-step simulation
up-to lifting and environment.

Lemma 39. If M≲finN then for every context C we have C[M ]≲finC[N ].

Proof. We first define, for any pairs of terms (M,N), the preorder ≤cce(M,N) (context
closure of environments) on pairs of environment formal sums: (Y,Z) ≤cce(M,N) (Y

′,Z′)

if Y =
∑

i pi; Ṽi, Z =
∑

j qj ; W̃j with | Y |=| Z |, Y′ =
∑

i pi; Ṽ
′
i , Z

′ =
∑

j qj ; W̃
′
j with

| Y′ |=| Z′ | and
• for every index r in | Y | there is an index r′ in | Y′ | such that such that Y⇂r = Y′⇂r′
and Z⇂r = Z′⇂r′
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• for every index r′ in | Y′ | there is a value-context C whose indexes range over

| Y | +1 such that for every i, j, (Ṽ ′
i )r′ = C[M, Ṽi] and (W̃ ′

j)r′ = C[N, W̃j ] (i.e.,

(Y′⇂r′ ,Z′⇂r′) ∈ ({(M, Ṽi}i, {N, W̃j}j)⋆̂).
Intuitively, these requirements corresponds to considering all finite subsets of the context

closure of a relation: given formal sums (Y,Z), related elements are columns of their
environments that have the same indexes, and (Y′,Z′) expands (Y,Z) (up-to permutation
of columns of the pair) with columns that are obtained by filling the same context with
related columns and with the static environment. The first requirement ensures that the
original relation is included in the context closure, and the second requirement says that
new elements are obtained by applying the same context.

Let R be a finite-step simulation saturated by approximants such that M R N . We can
assume without loss of generality that this is the only pair of terms in R and that for any E
such that R E ⊆ R we have E = (M,N). We can also assume that R(M,N) contains all pairs
in {(∅,Y) | Y is an environment formal sum}, and that it contains the pair of Dirac formal
sums with empty environment (1; ∅, 1; ∅), since these pairs trivially satisfy the finite-step
simulation clauses.

Let Rcce
(M,N)

def
=≤cce(M,N) (R(M,N)), which is turn denotes the set

{(Y,Z) | ∃Y′,Z′ such that (Y′,Z′) ≤cce(M,N) (Y,Z) ∧ Y′ R(M,N) Z
′}

We prove that the following is a finite-step simulation up-to lifting and environment:

Sdef
= {(C[M ], C[N ] | M R N} ∪ {((C[M ], C[N ]),Y,Z) | Y Rcce

(M,N) Z}

We require R(M,N) to contain the pair (1; ∅, 1; ∅) in order to include triples such as

((λx.C[M ], λx.C[N ]), 1;λx.C[M ], 1;λx.C[N ])

which must be in S since λx.C[M ] S λx.C[N ].
We assume ∅ R(M,N) Z for any Z since, for any C that is not a value context, we have
C[M ] Z=⇒ ∅, so we want to derive ∅ lift(≥env (Rcce

(M,N))) JC[N ]K.
Finally, relation R must be saturated by approximants since, as showed in Example 13, a
finite-step simulation need not be so, and it might contain, e.g., the triple ((P,Q), 1

2 ;Q+
1
4 ;Q, 1;Q) but not the triple ((P,Q), 1

4 ;Q, 1;Q). However, if C = I [·] then 1
2 ;C[Q] +

1
4 ;C[Q] Z=⇒ 1

4 ;Q and it might be the case that there are no Y,Z such that Y R(P,Q) Z and

( 14 ;Q, 1;Q) ≤cce (Y,Z).
The proof follows the same steps as the congruence proof for the imperative λ-calculus, and
we thereby refer the reader to Appendix A, proof of Theorem 52. 2

4.2 Contextual equivalence

The definitions of the contextual preorder and equivalence, ≤ctx and =ctx, are as for call-by-
name.

Theorem 40 (Completeness). If M≤ctxN then M≲N .

Proof. We prove that the relation

R = {((M,N),
∑

i pi;V
i
1 , ..., V

i
n ,

∑
j qj ;W

j
1 , ...,W

j
n) |

M ≤ctx N ∧ ∃C such that JC[M ]K =
∑

i pi;λx.xV
i
1 ...V

i
n

∧ JC[N ]K =
∑

j qj ;λx.xW
j
1 ...W

j
n}
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is a simulation. Then we derive the result as follows: let M ≤ctx N and P = (λyλx.xy).
Then if JMK =

∑
i pi;Vi and JNK =

∑
j qj ;Wj then JPMK =

∑
i pi;λx.xVi and JPNK =∑

j qj ;λx.xWj , which implies that JMK R(M,N) JNK. Hence, M ≲ N .
To prove that R is a simulation, suppose that there are M,N and C such that M ≤ctx N ,

JC[M ]K =
∑

i pi;λx.xV
i
1 ...V

i
n and JC[N ]K =

∑
j qj ;λx.xW

j
1 ...W

j
n. Let Y =

∑
i pi;V

i
1 , ..., V

i
n

and Z =
∑

j qj ;W
j
1 , ...,W

j
n. We want to prove that for any r ∈ {1, ..., n} and for any context

C ′′,

JY;Y⇂r • C ′′[M,Y]K R(M,N) JZ;Z⇂r • C ′′[N,Z]K

which is equivalent to saying that there is a context D such that

JD[M ]K=
∑

i pi;λx.(xV
i
1 ...V

i
nJV i

r • C ′′[M,V i
1 , ..., V

i
n]K)

JD[N ]K=
∑

j qj ;λx.(xW
j
1 ...W

j
nJW j

r • C ′′[N,W j
1 , ...,W

j
n]K).

Let C ′ be any context and let

PM,C′ = λx1, ..., xn.(λz, x.xx1...xnz)C
′[M,x1, ..., xn]

and PN,C′ the same term with M substituted to N . It follows from M ≤ctx N that
C[M ]PM,C′ ≤ctx C[N ]PN,C′ . We have:

JC[M ]PM,C′K= JJC[M ]KPM,C′K
= J

∑
i pi; (PM,C′V i

1 ...V
i
n)K

= J
∑

i pi; (λz, x.xV
i
1 ...V

i
nz)C

′[M,V i
1 , ..., V

i
n]K

=
∑

i pi; (λz, x.xV
i
1 ...V

i
nz)JC ′[M,V i

1 , ..., V
i
n]K

=
∑

i pi; (λx.xV
i
1 ...V

i
nJC ′[M,V i

1 , ..., V
i
n]K)

and analogously for N :

JC[N ]PN,C′K =
∑

j qj ; (λx.xW
j
1 ...W

j
nJC ′[N,W j

1 , ...,W
j
n]K)

Then by the definition of R , for any context C ′,∑
i pi;V

i
1 , ..., V

i
n · JC ′[M,V i

1 , ..., V
i
n]K R(M,N)

∑
j qj ;W

j
1 , ...,W

j
n · JC ′[N,W j

1 , ...,W
j
n]K

This holds in particular for any context of the form C ′ = [·]r+1C
′′, for r ∈ {1, ..., n} and

C ′′ a value-context, which implies the clause (b) of simulation on formal sums.
Clause (c) is proved using the same result, by taking C ′ = [·]1.
The first clause of simulation on formal sums follows since M ≤ctx N implies C[M ] ≤ctx

C[N ], which in turn implies weight(JC[M ]K) ≤ weight(JC[N ]K). 2

Theorem 41 (Full abstraction). On Λ⊕-terms:

(1) relations ≤ctx and ≲ coincide;
(2) relations =ctx and ≈ coincide.

Proof. ≲ is complete by Theorem 40. The soundness follows from the fact that it is a
congruence, which is obtained by exploiting the characterization ≲ = ≲fin and Lemma 39.
The result for the equivalences follows from ≈ = ≲ ∩ ≲−1 and =ctx = ≤ctx ∩ ≤−1

ctx. 2
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5 PROBABILISTIC IMPERATIVE λ-CALCULUS

In this section we add imperative features, namely higher-order references (locations), to
the call-by-value calculus, along the lines of the languages in [26, 45]. The syntax of terms
and values is:

M ::= x variables

| c constants

| λx.M functions

| M1M2 applications

| l locations

| (ν x :=M1)M2 new location

| !M dereferencing

| M1 := M2 assignments

| op(M1, ...,Mn) primitive operations

| if M1 then M2 else M3 if-then-else

| #i(M) projection

| (M1, ...,Mn) tuples

| M1 ⊕M2 probabilistic choice

V ::= c | λx.M | l | (V1, ..., Vn)

We use s, t to range over stores, i.e., mappings from locations to closed values, and l, k
over locations. Then s[l → V ] is the update of s (possibly an extension of s if l is not in the
domain of s). The locations that occur in a term M are Loc(M). We assume that the set
of primitive operations contains the equality function on constants, and write unit for the
unit value (i.e., the nullary tuple).
The language is typed — a simply-typed system with recursive types — to make sure

that the values in the summands of a formal sum have the same structure (e.g., they are all
abstractions). We allow recursive types to maintain the peculiar possibility of probabilistic
languages of having infinite but meaningful computation trees. Whenever possible, we omit
any mention of the types. For instance, in any store update s[l → V ] it is intended that V
has the type appropriate for l; in this case we say that the type of V is consistent with that
of l. We require that in a term (ν x :=M1)M2, the variable x cannot occur free in M1. For
similar reasons, we assume that the type syntax is constrained in some way that ensures
that for any location type RefT there exists a closed location-free term M with type T .
There are various ways of achieving this — the specific syntax is not relevant for this work.

In examples, M1 seq M2 denotes term (λ.M2)M1, i.e., the execution of M1 and M2 in

sequence. Reduction is defined on terms with a store, i.e., configurations of the form ⟨s ; M⟩;
hence such configurations appear also in formal sums (where we omit brackets). The small-
step reduction and the evaluation contexts are defined in Figure 3, where we assume that the
semantics of primitive operations (which take as input n terms of ground type and return
a ground type term) is already given by the function Prim. The rules for the semantic
mapping, J K, and the multistep reductions relations, =⇒ and Z=⇒, remain those of Figure 1,
with the addition of a store. In all semantic rules, any configuration ⟨s ; M⟩ is well-formed,
in that M is closed and all the locations in M and s are in the domain dom(s) of s. As in
the previous calculi, it is easy to check that the semantics of a term exists and is unique.
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Beta
⟨s ; (λx.M)V ⟩ −→ 1; s;M{V/x}

Sum
⟨s ; M1 ⊕M2⟩ −→ 1

2 ; s;M1 +
1
2 ; s;M2

Assign
⟨s ; l := V ⟩ −→ 1; s[l → V ]; unit

Deref
s(l) = V

⟨s ; !l⟩ −→ 1; s;V

New
l not in the domain of s

⟨s ; (ν x :=V )M⟩ −→ 1; s[l → V ];M{l/x}

IfTrue
⟨s ; if true then M1 else M2⟩ −→ 1; s;M1

IfFalse
⟨s ; if false then M1 else M2⟩ −→ 1; s;M2

Proj
⟨s ; #i(Ṽ )⟩ −→ 1; s; (Ṽ )i

PrimOp
Prim(op, c̃) = c′

⟨s ; op(c̃)⟩ −→ 1; s; c′

Eval
⟨s ; M⟩ −→

∑
i pi; si;Mi C is an evaluation context

⟨s ; C[M ]⟩ −→
∑

i pi; si;C[Mi]

Evaluation contexts C := [·] | CM | V C | if C then M1 else M2 | op(c̃, C, M̃)

| (Ṽ , C, M̃) | #iC | !C | C := M | l := C | (ν x :=C)M

Fig. 3. Single-step reduction relation for imperative probabilistic λ-calculus

Notations and terminology for (environment) formal sums are adapted to the extended
syntax in the expected manner. We only recall the multiplication of an environment formal

sum Y
def
=

∑
i pi; si; Ṽi and formal sums Yi

def
=

∑
j∈Ji

pi,j ; si,j ;Vi,j which is defined as:

∑
i pi; Ṽi · Yi

def
=

∑
i,j∈Ji

pi · pi,j ; si,j ; Ṽi, Vi,j .

An environment formal sum now has not only a specific length, but it also has an associated
sequence of types of that length. These types are the types of the terms in the corresponding
columns, i.e., all terms in Y⇂r have the r-th type in the type sequence associated to Y. In the
definition of dynamic environment we then assume that the pairs of environment formal sums
have not only the same length, but also the same associated sequence of types. The context

closure of an environment, ({M, Ṽi}i, {N, W̃j}j)⋆̂, is defined as in the previous section, but
now contexts are location-free, i.e., no locations occur in the contexts. This constraint,
standard in environmental bisimulations for imperative languages, ensures well-formedness
of the terms, and is not really a limitation because locations may occur in terms of the
environments and may thus end up in the terms of the context closure. Hence, restricting
to location-free values in the bisimulation game makes the proof technique simpler while
maintaining full abstraction results with respect to contextual equivalence, which allows
arbitrary contexts (Section 5.2).
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5.1 Environmental bisimulation

The notion of environmental relation is modified to accommodate stores, which are needed
to run terms. The elements of an environmental relation are now well-formed pairs of
configurations (⟨s ; M⟩, ⟨t ; N⟩) or well-formed triples

(E ,
∑

i pi; si; Ṽi,
∑

j qj ; tj ; W̃j) .

Well-formedness on triples ensures that the store si of the possible world i defines all locations

that appear in (the range of) si, in Ṽi, and in E1, and similarly for tj , W̃j and E2. Further,
the triples must be compatible: the related environment formal sums should have the same
length, and should respect the types, that is, corresponding columns of the environment
formal sums should contain terms that have the same type.
Since locations could occur in the terms we want to prove equivalent, we parametrize

bisimulations with respect to a set {l̃} of locations so that the pairs of terms in the relation

must have stores with domain {l̃}. This allows us to put these locations in the dynamic
environment of the relation (clause (1)), which reflects the fact that the locations occurring
in the terms are public (i.e., contexts can access them). In what follows, when we write

{l̃} we assume that no repetitions of the same location occur in the sequence l̃. For a pair
({si}i, {tj}j) of (tuples of) stores, we say that locations ({li}i, {kj}j) are ({si}i, {tj}j)-fresh
if for every i, j we have li ̸∈ dom(si) and kj ̸∈ dom(tj).

Definition 42 (Environmental bisimulation, imperative). A PE relation is a (PE) {l̃}-
bisimulation if

(1) ⟨s ; M⟩R ⟨t ; N⟩ implies dom(s) = dom(t) = {l̃} and 1; s; l̃ R(M,N) 1; t; l̃ ;

(2)
∑

i pi; si; Ṽi RE
∑

j qj ; tj ; W̃j implies:

(a)
∑

i pi =
∑

j qj ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂,∑
i pi; Ṽi · J⟨si ; Mi{Ti/x}⟩K lift(RE)

∑
j qj ; W̃j · J⟨tj ; Nj{Uj/x}⟩K ;

(c) for all r, if (Ṽi)r = li and (W̃j)r = kj then

•
∑

i pi; si; Ṽi, si(li) lift(RE)
∑

j qj ; tj ; W̃j , tj(kj) ,

• for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂,∑
i pi; si[li → Ti]; Ṽi RE

∑
j qj ; tj [kj → Uj ]; W̃j ;

(d) for any ({si}i, {tj}j)-fresh locations ({li}i, {kj}j),
and for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂,∑

i pi; si[li → Ti]; Ṽi, li RE
∑

j qj ; tj [kj → Uj ]; W̃j , kj ;

(e) for all r, if (Ṽi)r = ci and (W̃j)r = cj then all constants in the two columns are the
same (i.e., there is a c with ci = cj = c for all i, j);

(f) for all r, if (Ṽi)r = (Vi,1, ..., Vi,n) and (W̃j)r = (Wj,1, ...,Wj,n) then∑
i pi; si; Ṽi, Vi,1, ..., Vi,n lift(RE)

∑
j qj ; tj ; W̃j ,Wj,1, ...,Wj,n ;

(g)
∑

i pi; Ṽi · J⟨si ; E1⟩K lift(RE)
∑

j qj ; W̃j · J⟨tj ; E2⟩K .
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We let ≈{l̃} denote the union of all {l̃}-bisimulations.
With respect to the definition for pure call-by-value, the definition above has the additional

ingredient of the store, and of clauses (2c) and (2d) to deal with the case in which the values
are locations: (2c) gives an observer the possibility of reading and writing the store, and
(2d) the possibility of extending the store with fresh locations. Clause (2f) adds all elements
of a tuple to the dynamic environment. These aspects are similar to those in ordinary
environmental bisimulations for imperative languages [24, 45].

Three further aspects, however, are new. First, by clause (2e), related environment formal
sums should be first-order consistent, meaning that corresponding columns of constants
should contain exactly one constant. This constraint is a consequence of the equality test
on constants in the language. To ensure that first-order consistency is maintained in the
bisimulation game, most of the clauses use a lifting construction. Thus, when the evaluation
of first-order terms may probabilistically yield different constants, lifting allows us to separate
the final possible worlds according to the specific constants obtained (since the semantics of
a term might be a formal sum assigning non-zero probability to infinitely many different
constant, the definition of lifting must allow for a possibly infinite index set in order to
ensure first-order consistency). This constraint is further discussed in Examples 46 and 47.
A second new aspect is that, since the effect of the evaluation of the terms in the static
environment may change depending on the current store, clauses (1) and (2g) allow us to
derive a congruence result for arbitrary terms (not necessarily values), as illustrated in the
example below. Finally, we parametrize the relation with a set of locations in order to deal
with terms where (public) locations may occur.

If the domains of the stores are empty then we can consider bisimulations parametrized
by the empty set of locations, and in clause (1) we will have empty sequences of values in
the dynamic environment. Anyway, clause (2g) can be applied independently of the presence
of values in the dynamic environment.
In what follows, we sometimes omit any reference to the set of locations parametrizing

the relation, and simply refer to (bi)simulations and (bi)similarity when the parametrizing
set is not relevant.

Example 43. Let M
def
= l := 1 and N

def
= if !l = 0 then l := 1 else Ω. Without

the static environment, terms ⟨l = 0 ; M⟩ and ⟨l = 0 ; N⟩ are bisimilar. However, they are

not contextually equivalent: if C
def
= [·] seq [·], then ⟨l = 0 ; C[M ]⟩ terminates whereas

⟨l = 0 ; C[N ]⟩ does not. This aspect is determined by the store, probabilities do not really
matter. Ordinary environmental bisimulations do not have a static environment, and cannot
therefore test repeated runs of given terms that are not values; as a consequence M and N
are equated, and bisimulation is not fully substitutive on arbitrary terms (see [45, Section
5.2]).
Clause (1) is also modified with respect to pure call-by-name and call-by-value calculi. Indeed,
if we defined the clause as follows:

⟨s ; M⟩R ⟨t ; N⟩ implies J⟨s ; M⟩K lift(R(M,N)) J⟨t ; N⟩K
then the bisimulation would not be sound with respect to terms that diverge at the first

run. For instance, the terms M
def
= if !l = 1 then true else Ω and N

def
= if !l =

1 then false else Ω (that are not contextually equivalent because of contexts such
as l := 1 seq [·]) would be bisimilar with store l = 0, by simply considering the relation

{(⟨l = 0 ; M⟩, ⟨l = 0 ; N⟩), ((M,N), ∅, ∅)}.
Even if we make the location l public by starting the bisimulation game from terms (M, l)
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and (N, l) and by exploiting clause (2f), so as to allow contexts to use the location (as
in [45, Theorem 5.10]), we still have ⟨l = 0 ; (M, l)⟩ and ⟨l = 0 ; (N, l)⟩ bisimilar, since
J⟨l = 0 ; (M, l)⟩K = J⟨l = 0 ; (N, l)⟩K = ∅.
Hence, clause (1) ensures that location l is actually put in the dynamic environment, so
that we can use clause (2c) to change the value of l and then evaluate again M and N using
clause (2g).

The following examples are meant to further illustrate and motivate the form and the
clauses of our bisimulation. The examples only use boolean and integer locations, and
we accordingly assume that all locations in the language are of these types. Higher-order
locations would not affect the essence of the examples and would complicate the description
of the required bisimulations due to the possibility of extending the store (clause (2d)). (The
full abstraction results will not rely on the existence of locations of specific types.) Moreover,
since the terms compared always have the same locations, we assume that fresh locations
for the extensions of the store are the same on both sides. If not specified otherwise, we also
assume that thunks take arguments of unit type.

Example 44 shows that in imperative call-by-value, in contrast with pure call-by-value, to
achieve full abstraction it is necessary to define bisimulation on formal sums rather than on
terms.

Example 44. We have explained in Section 1 why the terms

H
def
= (ν x :=0)(λ.(M ⊕N)) K

def
= (ν x :=0)((λ.M)⊕ (λ.N))

where

M
def
= if !x = 0 then x := 1 seq true else Ω

N
def
= if !x = 0 then x := 1 seq false else Ω

are contextually equivalent, but would be separated by a bisimulation that acted on terms.
With our bisimulation, we can prove H and K equal using a relation that contains the
pair (⟨s ; H⟩, ⟨s ; K⟩), for s the empty store, and all triples ((H,K),Y,Z) in which Y,Z are
first-order consistent, have the same total weight and, seeing them as matrices, for every
column r of the dynamic environments that is not made of constants one of the following
properties holds:

(a) there is l such that all terms in Y⇂r are λ.(M ⊕ N){l/x}, whereas all terms in Z⇂r
are either λ.M{l/x} or λ.N{l/x}; moreover l does not occur elsewhere in terms of the
dynamic environment and its value in the stores is 1;

(b) there is l such that all terms in Y⇂r are λ.(M ⊕ N){l/x}, whereas Z⇂r contains
both λ.M{l/x} and λ.N{l/x}; moreover l does not occur elsewhere in the dynamic
environment and its value in the stores is 0. The right-hand matrix obtained by erasing
all columns that are not of this shape is either ∅ or (without considering the stores) of
the form (...((Y1 · Y2) · Y3) · ...) · Yn, for Yi =

1
2 ;λ.M{li/x}+ 1

2 ;λ.N{li/x}. This clause
guarantees that λ.M{li/x} and λ.N{li/x} have the same probability in every column
(if li is set to 0 in the stores), and that this property still holds if the matrix is splitted
by separating the rows with λ.M{li/x} from the rows with λ.N{li/x};

(c) there is l such that all terms in Y⇂r and Z⇂r are l; moreover l is set to the same value
in all the stores.

Finally, we add to the relation the triple ((H,K), 1; s; ∅, 1; s; ∅), where ∅ denotes the empty
dynamic environment, to satisfy clause (1) of Definition 42. Clause (2g) is handled appealing
to item (b). The most interesting case is the bisimulation clause (2b) applied to a column r
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of functions that satisfy item (b). The result of the evaluation of such functions (with unit

as argument) is that l is set to 1 and then true and false are returned, with the same
probability. Using the lifting construction we can now split the possible worlds in which
true has been produced and those in which false has been produced, yielding two pairs of
environment formal sums both of which are in the bisimulation (note that the lifting splits
the original column r so that the corresponding column in the two final pairs satisfies item
(a) above).

In this work we sometimes view environment formal sums as matrices (Figure 2). This
however is only for representation convenience: our environments are tuples of rows (each
row representing a possible world originated by the probabilistic evaluation of terms), rather
than tuples of columns, that is, tuples of formal sums. The next example shows that if the
environments were tuples of formal sums, where formal sums are added to the environment
following the evaluation of terms during the bisimulation game, then bisimilarity would not
be complete. Intuitively this happens because the histories of different possible worlds would
not be anymore separated and could interfere.

Example 45. Let

A
def
= (ν y :=0)(L⊕M) B

def
= (ν y :=0)(L⊕N)

L
def
= λ.!y M

def
= λ.(y := 1 seq 2) N

def
= λ.2 .

Terms A and B create a new location and allow the reading capability on it in the subterm
L. The writing capability, in contrast, exists only in the subterm M of A. A behaviour from
A that could not be mimicked with B is the run of M , where 1 is assigned to the location x,
followed by a run of L, where x is read and 1 is emitted (with B, any value produced by L
would be 0). This behaviour, however, is impossible, because L and M are in a probabilistic
choice and are therefore obtained in two distinct possible worlds, in one of which x can
only be read, in the other x can only be written. Moreover, the writing capability alone is
irrelevant, because the location is private; hence it can be omitted from M , resulting in the
term N that appears in B. Indeed, A and B are contextually equivalent.
However, the ‘wrong’ behaviour above for A could be reproduced in the bisimulation if

the environments were tuples of formal sums (that is, all possible worlds have the same
environment, made of formal sums). The formal sum obtained by the evaluation of A, with
summand terms L and M , would be stored in the environment and could then be executed
several times, with possible interleaving of evaluations of L and M . (The example could be
made more complex so as to obtain a ‘wrong’ behaviour from the execution of two different
formal sums in the environment, rather than by multiple executions of the same formal
sum.)

With our bisimulation, we can prove A,B equal using a relation composed by (A,B) (for
simplicity, we leave out the store) and by all triples ((A,B),Y,Z) where the environment
formal sums Y = 1; s;V1, ..., Vn and Z = 1; t;W1, ...,Wn are first-order consistent, and for
each column r that does not contain constants one of the following holds:

(a) there is l such that Vr = L{l/y} = Wr; moreover l does not occur elsewhere in the
dynamic environment or within a location of the stores, and is set to 0 in both stores;

(b) there is l such that Vr = M{l/y} and Wr = N ; and, again, l does not occur elsewhere
in the dynamic environment or within a location of the stores; moreover in the store s
we have s(l) ∈ {0, 1} whereas in t we have t(l) = 0;

(c) Vr = Wr = l for some l assigned to the same value in both stores.
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The proof that this relation is a bisimulation crucially exploits the lifting construction. For
instance, using (a) and (b) one shows that the semantics of A and B are in the lifting of the
relation, and similarly one proceeds when handling clause (2g) of the bisimulation.

The main purpose of the lifting construct in Definition 42 of environmental bisimulation is
to maintain the first-order consistency of related environment formal sums. One may wonder
whether something simpler would suffice, namely avoiding the lifting construct altogether
and simply requiring that, whenever two first-order terms are evaluated, the probability
of obtaining a given constant is the same on both sides (and thus maintaining first-order
consistency by avoiding the addition of such values onto the dynamic environments). The
example below shows that this would be unsound.

Example 46. We compare the terms A
def
= (ν x :=0)(M,N1) and B

def
= (ν x :=0)(M,N2)

where

M
def
= λ. if !x = 0 then ((x := 1 seq true)⊕ (x := 2 seq false)) else Ω

N1
def
= λ. if !x = 2 then x := 3 seq n else Ω

N2
def
= λ. if (!x = 1 ∨ !x = 2) then x := 3 seq (n⊕ Ω) else Ω

and n is any integer. The terms A and B produce the values (M,N1){l/x} and (M,N2){l/x}
and l is a location that is accessible only to such values. The definitions of M{l/x} and
Ni{l/x} (for i = 1, 2) use conditionals on the content of l in such a way that the only
meaningful manipulations with the values (M{l/x}, Ni{l/x}) is to evaluate M{l/x} first, and
then, possibly, to evaluate Ni{l/x}. Any other order of evaluation would produce a divergence.

We explain why, intuitively, bisimilarity would equateA andB if, on constants, bisimulation
simply checked the probabilities of obtaining each constant (rather than employing the
lifting construction). The evaluation of (the body of) M{l/x} produces true or false, with
the same probability 1

2 and with l respectively set to 1 and 2. Then the only meaningful

observation is the evaluation of the values Ni{l/x}. This means evaluating the formal sums

F1
def
= 1

2 ; l = 1;N1{l/x}unit+ 1
2 ; l = 2;N1{l/x}unit

and F2
def
= 1

2 ; l = 1;N2{l/x}unit+ 1
2 ; l = 2;N2{l/x}unit .

The evaluation of F1 terminates only when l = 2, yielding the value formal sum Y1
def
=

1
2 ; l = 3;n. The evaluation of F2, in contrast, may terminate under both stores, yielding the

value formal sum Y2
def
= 1

4 ; l = 3;n+ 1
4 ; l = 3;n. Both in Y1 and in Y2 the outcome n has the

overall probability 1
2 .

The terms A and B however are not contextually equivalent, because distinguished by a
context C that evaluates M{l/x} and then proceeds with the evaluation Ni{l/x} only when
the outcome from M{l/x} was true. Now, C[A] never terminates, whereas C[B] terminates
and produces n with probability 1

4 .
Our environmental bisimulation distinguishes A from B because we separately analyze

the possible worlds in which the evaluation of M{l/x} has produced true and the possible
worlds in which the evaluation has produced false, somehow mimicking the effect of the
context C above.

Yet another possibility for avoiding the lifting construct of the Definition 42 of bisimulation
might have been to drop the requirement of first-order consistency, allowing environment
formal sums in which a first-order column may contain different constants. Thus constants
would be added to the dynamic environment as any other type of value, and one would
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simply check that, at any time, the weights for the occurrences of a given constant in related
columns are the same; formally, replacing clause (2e) with:

(2e′) for every column r and every constant c,∑
{i | (Ṽi)r=c} pi =

∑
{j | (W̃j)r=c} qj .

The example below shows that this choice would be unsound too. We write (ν x, y :=0)M
for the creation of two locations in which the initialization of the first one is irrelevant.

Example 47. This is a variation of the previous example.

We compare the terms M1
def
= (ν x, y :=0)(A,B1) and M2

def
= (ν x, y :=0)(A,B2) where

A
def
= λ. if !y = 0 then y := 1 seq (λz.(x := z seq z))(true⊕ false) else Ω

B1
def
= λ. if !y = 1 then y := 2 seq !x else Ω

B2
def
= λ. if !y = 1 then y := 2 seq (true⊕ false) else Ω

As in the previous example,M1 andM2 yield the values (A,B1){l, l
′
/x, y} and (A,B2){l, l

′
/x, y},

and the interactions of the terms with the store is such that the only meaningful experiment
is to evaluate A{l, l′/x, y} first, and then Bi{l, l

′
/x, y} (indeed, the location l′ is only used to

this end).
We explain why, intuitively, the variant (2e′) above of the clause for first-order values

would incorrectly equate M1 and M2. The evaluation of A{l, l′/x, y} adds to the dynamic
environment the formal sum

1
2 ; l = true, l′ = 1; true+ 1

2 ; l = false, l′ = 1; false

(the values produced are also placed in the location l).

Now, in one case the evaluation of B1{l, l
′
/x, y} adds to the dynamic environment a column

of boolean values identical to the column produced above (because B1{l, l
′
/x, y} emits the

value stored in l, which is identical to the value produced by the evaluation of A{l, l′/x, y}).
This means that we end up with an environment formal sum in which the relevant columns
are

1
2 ; true , true
1
2 ; false , false

(5)

In contrast, when evaluating B2{l, l
′
/x, y} each possible world is split into two, in each of

which true and false have probability 1
2 . Thus the relevant columns of the final environment

formal sum are
1
4 ; true , true
1
4 ; true , false
1
4 ; false , true
1
4 ; false , false

In each of these columns, the probabilities for true and false are the same as in the columns
of (5), as required by (2e′).
However the terms are not contextual equivalent. They are separated by a context that

evaluates Bi{l, l
′
/x, y} only if the outcome of the evaluation of A{l, l′/x, y} is true. Thus the

overall probability of obtaining true at the end is 1
2 in one case, and 1

4 in the other. Similarly
the terms are distinguished in our bisimulation, reasoning along the lines of Example 46.

The definition of {l̃}-simulation is the same as the definition of {l̃}-bisimulation, but for
the first clause on environment formal sums with stores, which becomes:

∑
i pi ≤

∑
j qj . We

let ≲{l̃} denote {l̃}-similarity.
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The basic properties and definitions for environmental (bi)simulations in pure call-by-value
remain valid, with the due adjustments. In some cases, however, some subtleties arise.

It can be easily proved that, for any set {l̃}, {l̃}-bisimilarity and {l̃}-similarity are an
equivalence and a preorder relation respectively. For proving transitivity, in particular, the
restriction to parametrized relations, rather than to arbitrary relations, is fundamental.

Analogously, we have that {l̃}-(bi)simulations are closed under union, and thus relations

≈{l̃} and ≲{l̃} are respectively the largest {l̃}-bisimulation and {l̃}-simulation.
In finite-step simulation, clauses (2b) and (2g) are modified so to make sure that only a

finite number of reductions are performed on the challenger side. No modification is made to
the clauses (1), (2c), (2d), (2e) and (2f) for locations, constants, and tuples, because there is
no evaluation of terms involved.

The definition of extended environment formal sum and of the multi-step reduction from
extended environment formal sums to environment formal sums is adapted to the imperative

case as expected, by assuming that when
∑

i pi; si; Ṽi;Mi Z=⇒ Y there is only a finite number
of ⟨si ; Mi⟩ that actually perform some reduction steps.

Definition 48. A PE relation is a finite-step {l̃}-simulation if it satisfies the same clauses
(1), (2a), (2c), (2d), (2e) and (2f) of (the simulation version of) Definition 42; and, in place
of clauses (2b) and (2g) we have:

(2)
∑

i pi; si; Ṽi RE
∑

j qj ; tj ; W̃j implies:

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂,
if
∑

i pi; si; Ṽi;Mi{Ti/x} Z=⇒ Y then Y lift(RE)
∑

j qj ; W̃j · J⟨tj ; Nj{Uj/x}⟩K ;

(g) if
∑

i pi; si; Ṽi; E1 Z=⇒ Y then Y lift(RE)
∑

j qj ; W̃j · J⟨tj ; E2⟩K .

We write ≲{l̃}
fin for finite-step {l̃}-similarity. We prove that {l̃}-similarity and finite-step

{l̃}-similarity coincide by exploiting the saturation by approximants and the saturation by

suprema of {l̃}-simulations and finite-step {l̃}-simulations, respectively. Since only clauses
(2b) and (2g) are modified, we can proceed as in the proofs for the pure calculi.

Theorem 49. ≲{l̃}= ≲{l̃}
fin .

Precongruence is derived for the finite-step similarity using ‘up-to lifting and environment’
techniques, and then transported to similarity, from which it is transported to bisimilarity
using the characterization of bisimilarity as the equivalence induced by the simulation
preorder.
The up-to lifting and environment technique is defined analogously to the probabilistic

call-by-value case. The environment preorder is as follows: (Y,Z) ≤env (Y′,Z′) if Y =∑
i pi; si; Ṽi,Z =

∑
j qj ; tj ; W̃j with | Y |=| Z | and Y′ =

∑
i pi; si; Ṽ

′
i ,Z

′ =
∑

j qj ; tj ; W̃
′
j

with | Y′ |=| Z′ | and for every index r in | Y | there is an index r′ in | Y′ | such that for all

i, j, (Ṽi)r = (Ṽ ′
i )r′ and (W̃j)r = (W̃ ′

j)r′ .

Definition 50. A PE relation is a finite-step {l̃}-simulation up-to lifting and environment
if:

(1) ⟨s ; M⟩R ⟨t ; N⟩ implies dom(s) = dom(t) = {l̃} and 1; s; l̃ R(M,N) 1; t; l̃ ;

(2)
∑

i pi; si; Ṽi RE
∑

j qj ; tj ; W̃j implies:

(a)
∑

i pi ≤
∑

i qi ;
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(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂,
if
∑

i pi; si; Ṽi;Mi{Ti/x} Z=⇒ Y then Y lift(≥env (RE))
∑

j qj ; W̃j ·J⟨tj ; Nj{Uj/x}⟩K ;
(c) for all r, if (Ṽi)r = li and (W̃j)r = kj then for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂,

•
∑

i pi; si; Ṽi, si(li) lift(≥env (RE))
∑

j qj ; tj ; W̃j , tj(kj) ,

•
∑

i pi; si[li → Ti]; Ṽi lift(≥env (RE))
∑

j qj ; tj [kj → Uj ]; W̃j ;

(d) for any ({si}i, {tj}j)-fresh locations ({li}i, {kj}j),
and for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)⋆̂,∑

i pi; si[li → Ti]; Ṽi, li lift(≥env (RE))
∑

j qj ; tj [kj → Uj ]; W̃j , kj ;

(e) for all r, if (Ṽi)r = ci and (W̃j)r = cj then all constants in the two columns are the
same (i.e., there is ca with ci = cj = ca for all i, j) ;

(f) for all r, if (Ṽi)r = (Vi,1, ..., Vi,n) and (W̃j)r = (Wj,1, ...,Wj,n) then∑
i pi; si; Ṽi, Vi,1, ..., Vi,n lift(≥env (RE))

∑
j qj ; tj ; W̃j ,Wj,1, ...,Wj,n ;

(g)
∑

i pi; si; Ṽi; E1 Z=⇒ Y then Y lift(≥env (RE))
∑

j qj ; W̃j · J⟨tj ; E2⟩K .

Theorem 51. If R is a finite-step {l̃}-simulation up-to lifting and environment then

R ⊆ ≲{l̃}
fin .

The soundness of the up-to lifting and environment technique follows as in call-by-value

(Lemma 38). Given a finite-step {l̃}-simulation up-to lifting and environment R , we prove

that S= Pairs(R ) ∪
⋃

E lift(≥env (RE)) is a finite-step {l̃}-simulation.

We first prove congruence of finite-step {l̃}-similarity for contexts with locations in {l̃},
and then we show how to derive congruence for general contexts. The proofs of these results
are reported in Appendix A. The proof structure for Theorem 52 is as in call-by-value; we

define the context closure of a finite-step {l̃}-simulation and we prove that it is a finite-step

{l̃}-simulation up-to lifting and environment.

Theorem 52. Finite-step {l̃}-similarity is a precongruence for contexts with locations in

{l̃}: if ⟨s ; M⟩≲{l̃}
fin ⟨t ; N⟩ then for every context C with Loc(C) ⊆ {l̃} we have ⟨s ; C[M ]⟩≲{l̃}

fin ⟨t ; C[N ]⟩.

Then we derive precongruence for general contexts by showing how to move from relations

parametrized by a set {l̃} to relations parametrized by {l̃′}, for {l̃′} a set including {l̃}.

Theorem 53. Let l̃′ = l̃, l̃′′ and let Ṽ ′ = Ṽ , Ṽ ′′ be a sequence of values whose types are

consistent with those of l̃′, and with locations in {l̃′}. Let C be a context with locations in

{l̃′}. If ⟨s ; M⟩≲{l̃}
fin ⟨t ; N⟩ then:

• ⟨s[l̃′′ → Ṽ ′′] ; C[M ]⟩≲{l̃′}
fin ⟨t[l̃′′ → Ṽ ′′] ; C[N ]⟩ ;

• ⟨l̃′ = Ṽ ′ ; C[M ]⟩≲{l̃′}
fin ⟨l̃′ = Ṽ ′ ; C[N ]⟩ .

5.2 Contextual equivalence

We set ⟨s ; M⟩ ⇓= weight(J⟨s ; M⟩K). Contextual equivalence and the contextual preorder
are defined by quantifying over all stores and contexts.
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Definition 54. M and N are in the contextual preorder, written M ≤ctx N , (resp. contex-
tually equivalent, written M =ctx N), if, for any store s and context C such that ⟨s ; C[M ]⟩
and ⟨s ; C[N ]⟩ are well-formed, ⟨s ; C[M ]⟩⇓ ≤ ⟨s ; C[N ]⟩⇓ (resp. ⟨s ; C[M ]⟩⇓ = ⟨s ; C[N ]⟩⇓).

Theorem 55 (Completeness). Let Loc(M) ∪ Loc(N) = {l̃}. If M ≤ctx N then

⟨l̃ = Ṽ ; M⟩ ≲{l̃} ⟨l̃ = Ṽ ; N⟩, for any Ṽ whose types and locations are consistent with l̃.

Proof. We prove that the relation

R def
= {(⟨l̃ = Ṽ ; M⟩, ⟨l̃ = Ṽ ; N⟩) | M ≤ctx N ∧ {l̃} = Loc(M) ∪ Loc(N)}∪

{((M,N),
∑

i pi; si;V
i
1 , ..., V

i
n ,

∑
j qj ; tj ;W

j
1 , ...,W

j
n) | M ≤ctx N

∧ ∃C, Ṽ such that (J⟨l̃ = Ṽ ; C[M ]⟩K =
∑

i pi; si;λx.xV
i
1 ...V

i
n

∧ J⟨l̃ = Ṽ ; C[N ]⟩K =
∑

j qj ; tj ;λx.xW
j
1 ...W

j
n

with Loc(C) ⊆ {l̃} = Loc(M) ∪ Loc(N)
∧ they are first-order consistent)}

is a {l̃}-simulation. The full proof is in Appendix A. 2

We can now derive full abstraction for the simulation preorder and bisimilarity. Contextual
equivalence and preorder are defined on terms, while bisimilarity and the simulation preorder
are defined over configurations of a term and a store. In the full abstraction result we show
that congruence on terms corresponds to bisimilarity when an arbitrary store is considered.

Theorem 56 (Full abstraction). Let Loc(M) ∪ Loc(N) = {l̃}. We have, for any Ṽ

whose types and locations are consistent with l̃:

• M ≤ctx N if and only if ⟨l̃ = Ṽ ; M⟩ ≲{l̃} ⟨l̃ = Ṽ ; N⟩ ;
• M =ctx N if and only if ⟨l̃ = Ṽ ; M⟩ ≈{l̃} ⟨l̃ = Ṽ ; N⟩ .

Proof. Theorem 55 proves completeness. For soundness, suppose ⟨l̃ = Ṽ ; M⟩ ≲{l̃} ⟨l̃ =
Ṽ ; N⟩ for some Ṽ consistent with l̃. Let s be a store and C a context such that ⟨s ; C[M ]⟩
and ⟨s ; C[N ]⟩ are well-formed. We want to prove that ⟨s ; C[M ]⟩ ⇓≤ ⟨s ; C[N ]⟩ ⇓.
By well-formedness, we know that s = ∅[l̃′ → Ṽ ′], for some l̃′ such that l̃′ = l̃, l̃′′ and for

some consistent Ṽ ′, and that C has locations in {l̃′}. By ⟨l̃ = Ṽ ; M⟩ ≲{l̃} ⟨l̃ = Ṽ ; N⟩ we
have ⟨l̃ = Ṽ ; M⟩≲{l̃}

fin ⟨l̃ = Ṽ ; N⟩ and by Theorem 53 we derive ⟨l̃′ = Ṽ ′ ; C[M ]⟩≲{l̃′}
fin ⟨l̃′ =

Ṽ ′ ; C[N ]⟩. Then ⟨l̃′ = Ṽ ′ ; C[M ]⟩ ⇓≤ ⟨l̃′ = Ṽ ′ ; C[N ]⟩ ⇓.
2

The universal quantification over stores in the full abstraction is outside, and not inside,
the double implication, i.e., we do not prove

M ≤ctx N if and only if for all consistent Ṽ , ⟨l̃ = Ṽ ; M⟩ ≲{l̃} ⟨l̃ = Ṽ ; N⟩
but rather

for all consistent Ṽ , M ≤ctx N if and only if ⟨l̃ = Ṽ ; M⟩ ≲{l̃} ⟨l̃ = Ṽ ; N⟩.
The latter statement implies the former one (assuming that a consistent initialisation of the
store is possible). The reason why we can prove the latter one, and thereby consider an
arbitrary store when proving contextual equivalence, is that the definition of simulation and
bisimulation already includes the universal quantification over different assignments of the

locations in l̃, since the locations are in the dynamic environment and we can apply the
second item of clause (2c).
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6 ADDITIONAL RELATED WORKS

We discuss here some additional works on probabilistic calculi based on different notions
of bisimulations (with respect to applicative or environmental) or different techniques for
proving contextual equivalence.

The probabilistic λ-calculus, i.e., a λ-calculus endowed with binary, fair, probabilistic choice,
was first presented in [12]. In [11] and [8] probabilistic applicative bisimulations for pure
call-by-name and call-by-value λ-calculi are shown to be congruences, using Howe’s method
coupled with a disentangling technique. Completeness however only holds in call-by-value,
while it fails in call-by-name. The reason for this is that distributivity of lambda-abstraction
over probabilistic choice holds for contextual equivalence in call-by-name but does not hold
in call-by-value, and in order to prove such distributivity laws the bisimulation has to
be defined over probability distributions or formal sums, rather than being defined over
terms (see Examples 5 and 33). In call-by-name, completeness is obtained using coupled
logical bisimulation [11], a probabilistic version of the logical bisimilarity for deterministic
languages [44]. While applicative bisimulation requires two functions to be related whenever
they take as input the same argument, logical bisimulation requires two functions to be
related whenever they take as input terms in the contextual closure of the relation itself.
Since the contextual closure of a relation includes identity, the set of terms with which
related functions are tested is enlarged with respect to applicative bisimilarity. This makes
the congruence proof easier by allowing a direct use of the inductive hypothesis, thereby
removing the need for Howe’s technique. Drawbacks of all forms of logical bisimilarity are a
non-monotone functional (which makes it harder to prove that bisimilarity is the largest
bisimulation) and a confinement to pure λ-calculi. Further, up-to techniques may be difficult
in logical bisimilarity. For instance, Example 26 cannot be proved with the techniques in
[11]: the equality fails for applicative bisimilarity, and the up-to context technique provided
for logical bisimilarity is not powerful enough (the paper shows a similar example, akin to
Example 5, where however the functions employed immediately throw away their input, and
this is essential for the proof).
A further difference between applicative bisimulations and environmental bisimulations

shows up when one considers the corresponding simulations. Even in cases where applicative
bisimilarity is fully abstract for contextual equivalence, the corresponding simulation may
not be fully abstract for the contextual preorder. Pure call-by-value is such an example
[8, 10]. In contrast, in all calculi in the paper, full abstraction for environmental bisimilarity
carries over to the corresponding simulation, with a similar proof.
An alternative bisimulation for enriched calculi is normal form (or open) bisimulation

[22, 28, 42, 47]. This is complete (with respect to contextual equivalence) only in certain
extensions of the λ-calculus (e.g., call-by-value with both state and callcc), and would be
incomplete in other languages (such as λ-calculus without state or/and callcc).
Another approach to contextual equivalence in higher-order languages is via logical

relations (see, e.g., [31, Chapter 8] and [37]). This technique has been applied to probabilistic
typed higher-order languages by Bizjak and Birkedal [6]. Their probabilistic logical relation
uses biorthogonality, and is defined on terms, rather than on distributions. These features
introduce some universal quantification (e.g., on evaluation contexts) which makes it difficult
to prove examples such as 44, as discussed in [5, Section 1.5]. Proof techniques combining
features of bisimulations and logical relations in the non-probabilistic case are studied in
[20, 21, 33].
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In denotational semantics, fully abstract models for probabilistic PCF have been studied
in [18] using domain theory and adding statistical termination testers, and in [16] using
probabilistic coherence spaces. [13] provides a fully abstract game semantics for probabilistic
Algol, using a quotienting step.

Finally, in this work we have only considered exact behavioral equivalences, as opposed
to approximate behavioral equivalences (allowing the programs to differ up to a certain
probability value ϵ) or metrics (measuring the distance between the behaviors of probabilistic
programs) [14, 15]. Bisimulation metrics for an affine probabilistic pure λ-calculus have been
recently proposed in [9]. Applicative bisimulation metric is proved to be sound with respect
to the contextual distance, and a metric for an extensions of the language with tuples is
defined. In order to be sound with respect to the contextual metric, the tuple distance is
endowed with a notion of environment.

7 CONCLUSIONS AND FUTURE WORK

We have investigated environmental bisimulations in sequential higher-order languages,
considering pure λ-calculi, both call-by-name and call-by-value, and an extension with
higher-order references.
While we have tried to respect the general schema of environmental bisimulations, our

definitions and results present noticeable technical differences. Some differences, such as the
appeal to formal sums, are specific to probabilities. Other differences, however, may be seen
as insights into environmental bisimulations that were suggested by the study of probabilities.
An example is the distinction between a static and a dynamic environment, which reflects
the copying facilities of the language on the terms of the environment. This distinction
yields sharper congruence results, which show up well in the imperative λ-calculus: with
ordinary environmental bisimulations, bisimilarity is fully substitutive only for values, since
for general terms substitutivity holds only for evaluation contexts (see Example 43). The
example in Section 3.4 shows that static environments can also be useful in context closures
of ‘up-to context’ techniques.
To understand environmental bisimulations for call-by-value calculi, we have found im-

portant the study of the imperative extension. Only in the richer language do various
aspects of our definitions find a justification: the use of formal sums (Example 44); dynamic
environments as formal sums of tuples of values, as opposite to, e.g., tuples of formal sums
(Example 45); the lifting construct to handle first-order values (Example 46). The pure
call-by-value calculus has allowed us to present the concepts in a simpler setting, as a
stepping stone towards the imperative extension, but seems a rather peculiar language, one
in which a number of variations of the definitions collapse.

The dynamic environments are used only for the call-by-value calculi. In general, the form
of the bisimulation clauses depends on the features of the calculus. It would be interesting
to investigate an abstract formulation of bisimulation, of which the concrete definitions
presented in this paper would be instances. Possible bases for such a framework could be
coalgebras [40] or bigraphs [30].

Related to the problems with congruence of applicative bisimulations are also the difficulties
with “up-to context” techniques (the usefulness of these techniques in higher-order languages
and its problems with applicative bisimulations have been studied by Lassen [27]; see also
[26, 39, 41]). Enhancements of the bisimulation proof method, as up-to techniques, are
particularly useful for environmental bisimulations [45] because of the quantification over
contexts that appear in the definition and that can make bisimulation proofs tedious. We have
explored some basic enhancements, mainly in call-by-name, including new forms of up-to
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techniques specific to probabilities such as ‘up-to lifting’. The study of powerful enhancements
goes beyond the scopes of this work; we regard it as an important and challenging line for
future work. The study could be pursued in a number of directions, for instance investigating
other forms of up-to and strengthening the ‘up-to context’ enhancements.
Another interesting direction for future work is the addition of concurrency. A major

consequence of this could be the move to semantics that combine probabilities with non-
determinism.
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A PROOFS

Proof of Lemma 11

(1) The proof of (1) follows from the definition of JMK as the supremum of the set
{Y | M Z=⇒ Y } with respect to the ≤apx preorder. Let R be a simulation and let S
be its saturation by approximants.
If M S N then JMK S(M,N) JNK, since ≤apx is reflexive and JMK R(M,N) JNK.
If Y S(M,N) Z then there is a Y ′ such that Y ≤apx Y ′ and Y ′ R(M,N) Z. We
have weight(Y ) ≤ weight(Y ′), by the definition of approximant, and weight(Y ′) ≤
weight(JZK), since R is a simulation.
Suppose Y + Y ′′ = Y ′. Then, for any context C,

JY • C[M ]K ≤apx JY • C[M ]K + JY ′′ • C[M ]K = JY ′ • C[M ]K R(M,N) JZ • C[N ]K

which implies JY • C[M ]K S(M,N) JZ • C[N ]K.
(2) Let S =

⋃
n Rn be the saturation by suprema of a finite-step simulation R. The clause

on λ-terms is immediate, since M S N and M Z=⇒ Y implies Y R0
(M,N) JNK (by the

definition of finite-step simulation), which in turn implies JMK R1
(M,N) JNK (since

JMK = sup{Y | M Z=⇒ Y } and thus we can find an ordered sequence of formal sums
that satisfies the condition for R1).
For the clause on formal sums, the crux is proving the following lemma.

Lemma 57. If
∑

i pi;λx.Mi Rn
E
∑

j qj ;λx.Nj then:

(a)
∑

i pi ≤
∑

j qj
(b)

∑
i pi;Mi{P/x} Z=⇒ Y implies Y Rn

E
∑

j qj ·JNj{Q/x}K, for all P,Q ∈ E⋆.

Proof. The proof is by induction on n.
For the case n = 0, the two properties above are immediate consequences of the
definition of R .
For the inductive case, if Y R n+1

(M,N)Z then either Y R n
(M,N)Z, and the result follows

by the inductive hypothesis, or Y = supS for S = {Yk}k≥0 a set of formal sums such
that Yk R n

(M,N)Z for all k and Yk ≤apx Yk+1. As a consequence, there is a sequence
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Y ′
k such that Y0 = Y ′

0 and Yk+1 = Yk + Y ′
k+1, i.e., Yk =

∑
0≤h≤k Y

′
h. Hence, it follows

from Y = supS that Y =
∑

k≥0 Y
′
k.

The first item follows by the inductive hypothesis, since Y is the supremum of S and
Yk ∈ S implies weight(Yk) ≤ weight(Z). As to the second item, we have Y • C[M ] =
sup{Yk •C[M ]} =

∑
k≥0 Y

′
k •C[M ]. We want to prove that if

∑
k≥0 Y

′
k •C[M ] Z=⇒ X

for some formal sum X then XR n+1
(M,N)JZ • C[N ]K.

If
∑

k≥0 Y
′
k • C[M ] Z=⇒ X then, by the definition of the multi-step reduction relation

(which guarantees that only a finite number of terms are evaluated in the formal
sum), there is an m ≥ 0 such that

∑
0≤k≤m Y ′

k • C[M ] Z=⇒ X ′ and X = X ′ +

val(
∑

k>m Y ′
k • C[M ]) .

For any m′ ≥ 0 we have∑
0≤k≤m+m′ Y ′

k • C[M ] Z=⇒ X ′ + val(
∑

m≤k≤m+m′ Y ′
k • C[M ])

Since
∑

0≤k≤m+m′ Y ′
k = Ym+m′ and Ym+m′ R n

(M,N)Z, by the inductive hypothesis∑
0≤k≤m+m′ Y ′

k • C[M ] Z=⇒ X ′ + val(
∑

m≤k≤m+m′ Y ′
k • C[M ]) implies

X ′ + val(
∑

m≤k≤m+m′ Y ′
k • C[M ]) R n

(M,N)JZ • C[N ]K.

Hence, by the definition of R n+1
(M,N) and by

X = sup{X ′ + val(
∑

m≤k≤m+m′ Y ′
k • C[M ]) }m′≥0

we derive XR n+1
(M,N)JZ • C[N ]K.

2

Then the result follows since Y =
∑

i pi;λx.Mi SE
∑

j qj ;λx.Nj = Z implies Y Rn
E Z

for some n, and we have
∑

i pi ≤
∑

j qj (by the first item of lemma 57), and∑
i pi; JMi{P/x}K = sup{Y |

∑
i pi;Mi{P/x} Z=⇒ Y } Rn+1

E
∑

j qj ; JNj{Q/x}K,
for all P,Q ∈ E⋆ (by the second item of lemma 57 and by the definition of relation
Rn+1), which implies Rn+1

E ⊆ SE .

Proof of Lemma 18
Let R be a finite-step simulation saturated by approximants and let

S= {(C[M ], C[N ]) | M RN} ∪ {((C[M ], C[N ]), Y, Z) | Y S ′
(M,N) Z}

with
S ′ = {((M,N), 1;λx.C ′[M ], 1;λx.C ′[N ]) | M R N}

∪{((M,N), Y, Z) | Y R(M,N) Z}
∪{((M,N), ∅, Z) | for some M,N,Z}

We show that S is a finite-step simulation up-to lifting. Note that the last set of triples is
added to the relation since for any term M that is not a value we have M Z=⇒0 ∅, and ∅ is
simulated by any formal sum Z. We first prove the following result:

Lemma 58. For any context C, if M R N and C[M ] Z=⇒ Y , then we have Y lift(S ′
(M,N)) JC[N ]K.

Proof. We prove by induction on the length n of the reduction that M RN and
C[M ] Z=⇒n Y imply Y lift(S ′

(M,N)) JC[N ]K. If Y = ∅ then the result follows by the

third set of S ′. Suppose that Y ̸= ∅. If n = 0 then we have two cases:

• C = [·] and M is a value. Then M Z=⇒ Y and since R is a finite-step simulation we
have Y R (M,N)JNK = JC[N ]K, which implies that they are in S ′

(M,N) as well.
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• C = λx.C ′. Then Y = 1;λx.C ′[M ] S ′
(M,N) 1;λx.C

′[N ] = JC[N ]K, by the first set of S ′.

Suppose now that C[M ] Z=⇒n+1 Y .

• C = [·] and M Z=⇒n+1 Y . The result follows from the fact that R is a finite-step
simulation, as in the first case of n = 0.

• C = C1 ⊕ C2 and C[M ] −→ 1
2 ;C1[M ] + 1

2 ;C2[M ] Z=⇒n Y . Then C1[M ] Z=⇒n1 Y1,

C2[M ] Z=⇒n2
Y2 and Y = 1

2 ;Y1+
1
2 ;Y2. We have JC[N ]K = 1

2 ; JC1[N ]K+ 1
2 ; JC2[N ]K and

it follows from the inductive hypothesis on n1 and n2 that Y1 lift(S ′
(M,N)) JC1[N ]K

and Y2 lift(S ′
(M,N)) JC2[N ]K. Hence, Y lift(S ′

(M,N)) JC[N ]K.
• C = C1C2. Then C[M ] Z=⇒n+1 Y implies C[M ] =⇒n1 Y1C2[M ] Z=⇒n2 Y , where
C1[M ] Z=⇒n1 Y1 =

∑
i pi;λx.Pi. Since n1 ≤ n (by Y ̸= ∅), we can apply the inductive

hypothesis and derive Y1 lift(S ′
(M,N)) JC1[N ]K, i.e., Y1 =

∑
j rj ·Y ′

j and JC1[N ]K =∑
j rj ·Z ′

j for Y
′
j S ′

(M,N) Z
′
j . Hence, Y1C2[M ] Z=⇒n2

Y implies Y ′
jC2[M ] Z=⇒n′

j
Y ′′
j , with∑

j n
′
j = n2 and Y =

∑
j rj ·Y ′′

j , and JC[N ]K = JJC1[N ]KC2[N ]K = J
∑

j rj ·Z ′
jC2[N ]K =∑

j rj ·JZ ′
jC2[N ]K =

∑
j rj ; JZ

′
j • C2[N ]K.

Since lift( lift(R ) ) = lift(R ) for any relation R , the result follows if we can
prove that for every j Y ′

jC2[M ] Z=⇒n′
j
Y ′′
j implies Y ′′

j lift(S ′
(M,N)) JZ ′

j • C2[N ]K. If
Y ′
j S ′

(M,N) Z
′
j then either Y ′

j = ∅ and the result trivially follows, or one of these cases

hold:
– Y ′

j = 1;λx.C ′[M ] and Z ′
j = 1;λx.C ′[N ]. Hence, either Y ′′

j = ∅, in which case the

result follows by the third set of S ′, or Y ′
jC2[M ] −→ 1;C ′[M ]{C2[M ]/x} Z=⇒n′′

j

Y ′′
j , with n′′

j ≤ n. Terms C ′[M ]{C2[M ]/x} and C ′[N ]{C2[N ]/x} are respectively of
the form C ′′[M ] and C ′′[N ], so we can apply the inductive hypothesis to derive
Y ′′
j lift(S ′

(M,N))Z
′
j • C2[N ].

– Y ′
j R (M,N)Z

′
j . It is easy to check that Y ′

jC2[M ] Z=⇒ Y ′′
j iff Y ′′′

j • C2[M ] Z=⇒ Y ′′
j

for some Y ′′′
j ≤apx Y

′
j . Since R is finite-step simulation saturated by approximants,

Y ′′′
j • C2[M ] Z=⇒ Y ′′

j implies Y ′′
j R (M,N)JZ ′

j • C2[N ]K, and the result follows from
R (M,N) ⊆ lift(S ′

(M,N)) .
2

We derive from lemma 58 that S is a finite-step simulation up-to lifting as follows:

• Let C[M ] S C[N ] withM RN . If C[M ] Z=⇒ Y then, by Lemma 58, Y lift(S ′
(M,N)) JC[N ]K.

Therefore, Y lift(S(C[M ],C[N ])) JC[N ]K.
• Let 1;λx.C ′[M ] SC[M ],C[N ] 1;λx.C

′[N ] withM RN . Then for any C ′′ there is a context
C ′′′ such that 1;λx.C ′[M ] • C ′′[C[M ]] = 1;C ′′′[M ] and 1;λx.C ′[N ] • C ′′[C[N ]] =
1;C ′′′[N ]. It is easy to check that 1;P Z=⇒ Y iff P Z=⇒ Y and that J1;P K = JP K for any
term P . Therefore, by Lemma 58, 1;C ′′′[M ] Z=⇒ Y implies Y lift(S ′

(M,N)) J1;C ′′′[M ]K,
which implies Y lift(SC[M ],C[N ]) J1;C ′′′[M ]K.

• Let Y RC[M ],C[N ]Z with Y R (M,N)Z. Then, as R is a finite-step simulation, for
any C ′ Y • C ′[C[M ]] Z=⇒ Y ′ implies Y ′ R (M,N)JZ • C ′[C[N ]]K, which in turn implies
Y ′ SC[M ],C[N ] JZ • C ′[C[N ]]K.

• Let ∅RC[M ],C[N ]Z. Then for any P we have ∅ • P Z=⇒ Y implies Y = ∅ and we stay
in the third set.

Proof of Lemma 22
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To complete the proof, it remains to prove that for any C ′ we have JJC[M ]K • C ′[M ]K =
JC[M ]C ′[M ]K. This result can be derived by Lemma 59 below, since

JJC[M ]K • C ′[M ]K = JJC[M ]KC ′[M ]K (by 59(2))

= JC[M ]C ′[M ]K (by 59(1))

Lemma 59. For any M,N, Y it holds:

(1) JMNK = JJMKNK
(2) JY NK = JY •NK

Proof. (1) For the left to right inequality (i.e., JMNK ≤ JJMKNK), we prove that
MN Z=⇒ Z implies JMKN Z=⇒ Z ′ for some Z ≤apx Z ′. Since MN Z=⇒ Z implies
M Z=⇒ Z ′′ and Z ′′N Z=⇒ Z for some Z ′′. By definition Z ′′ ≤apx JMK, so we derive
JMKN Z=⇒ Z ′ for some Z ′ such that Z ≤apx Z

′.
For the converse inequality, we analogously prove that JMKN Z=⇒ Z impliesMN Z=⇒ Z ′

for some Z ≤apx Z
′. Since relations =⇒ and Z=⇒ are small-step and finitary, although

JMK could have an infinite support (i.e., be a sum of infinitely many values) only a
finite number of β-reductions substituting N in a value of JMK can be performed in the
reduction JMKN Z=⇒ Z. Hence, there is some formal sum Z ′′ with finite support such
that Z ′′ ≤apx JMK and Z ′′N Z=⇒ Z. This implies that M Z=⇒ Z ′′′ for some Z ′′′ such
that Z ′′ ≤apx Z

′′′, which in turn implies MN Z=⇒ Z ′ for some Z ′ such that Z ≤apx Z
′.

(2) The left to right inequality (i.e., JY NK ≤ JY •NK) follows trivially, since Y N Z=⇒ Z
implies Y •N Z=⇒ Z ′ for some Z ′ such that Z ≤apx Z

′.
In order to prove JY •NK ≤ JY NK we show that Y •N Z=⇒ Z implies that there is a
sequence of formal sums {Zj}j≥0 (for j ranging over natural numbers) ordered with
respect to ≤apx such that Y N Z=⇒ Zj for every j, and with sup{Zj}j≥0 = Z. Hence,
the result follows since

JY •NK = sup{Z | Y •N Z=⇒ Z} ≤ sup{(sup{Zj}j≥0) | Y •N Z=⇒ Z}

and, since for every Z we have sup{Zj}j≥0 ≤ JY NK, we derive

sup{(sup{Zj}j≥0) | Y •N Z=⇒ Z} ≤ JY NK.

Hence, it remains to prove that Y •N Z=⇒ Z implies that there is a (infinite) sequence
of formal sums {Zj}j≥0 ordered with respect to ≤apx such that Y N Z=⇒ Zj for every
j, and with sup{Zj}j≥0 = Z. Let Y =

∑
i∈I pi;λx.Pi and Y •N Z=⇒ Z. It follows

by the definition of Z=⇒ that there is a finite I ′ ⊆ I and a formal sum Z ′ such that∑
i∈I′ pi;Pi{N/x} Z=⇒ Z ′ and Z = Z ′+ val(

∑
i∈I\I′ pi;Pi{N/x}) (only a finite number

of steps can be taken, and thus only a finite number of summands can move). Hence,
by allowing all and only the summands with index i ∈ I ′ to perform the β-reduction
substituting N in Pi we derive Y N Z=⇒ Z ′. Then, by allowing one at a time the
summands of Y with index i ∈ I\I ′ to perform the β-reduction substituting N in Pi,
we obtain a sequence {Zj}j≥0, that starts from Z0 = Z ′ and progressively adds to
it the values in val(

∑
i∈I\I′ pi;Pi{N/x}) one by one. This sequence is ordered with

respect to ≤apx, it is such that Y N Z=⇒ Zj for every j, and it has sup{Zj}j≥0 = Z.
2

Proof of Lemma 25
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Let R be a finite-step simulation up-to lifting and context. We prove that

R′ def
= Pairs(R)

∪ {((M,N), 1;λx.C[M ], 1;λx.C[N ]) | M R N}
∪ {((M,N), Y, Z) | Y ′ R (M,N)Z and Y ≤apx Y

′, for some Y ′}
∪ {((M,N), ∅, Z) | for some M,N,Z}

is a finite-step simulation up-to lifting, from which the result follows by R ⊆ R′.
Note that the relation lift(R′

(M,N)) is saturated by approximants, i.e., the following

property holds: if Y ≤apx Y ′ lift(R′
(M,N))Z then Y lift(R′

(M,N))Z. We first prove the

following result:

Lemma 60. For any context C, if M R N and C[M ] Z=⇒ Y , then we have Y lift(R′
(M,N)) JC[N ]K.

Proof. We prove that M R N and C[M ] Z=⇒n Y imply Y lift(R′
(M,N)) JC[N ]K, by

induction on n. If Y = ∅ then the result holds by the last set of R′. Suppose that Y ̸= ∅. If
n = 0 then we have two cases:

• C = [·] and M is a value. Then M Z=⇒ Y and we have Y lift(R(M,N)) JNK = JC[N ]K.
• C = λx.C ′. Then Y ≤apx 1;λx.C

′[M ]dirac((M,N)
⋆
)1;λx.C ′[N ] = JC[N ]K.

Suppose now that C[M ] Z=⇒n+1 Y .

• C = [·] and M Z=⇒n+1 Y . The result follows from the fact that R is a finite-step
simulation up-to lifting and context, as in the first case of n = 0.

• C = C1 ⊕ C2 and C[M ] −→ 1
2 ;C1[M ] + 1

2 ;C2[N ] Z=⇒n Y . Then C1[M ] Z=⇒n1
Y1,

C2[N ] Z=⇒n2 Y2 with n1 + n2 ≤ n and Y = 1
2 ;Y1 + 1

2 ;Y2. We have JC[N ]K =
1
2 ; JC1[N ]K + 1

2 ; JC2[N ]K and it follows from the inductive hypothesis on n1 and
n2 that Y1 lift(R′

(M,N)) JC1[N ]K and Y2 lift(R′
(M,N)) JC2[N ]K. Hence, we derive

Y lift(R′
(M,N)) JC[N ]K.

• C = C1C2. Then C[M ] Z=⇒n+1 Y implies C[M ] =⇒n1
Y1C2[M ] Z=⇒n2

Y , where
C1[M ] Z=⇒n1 Y1 =

∑
i pi;λx.Pi. Since n1 ≤ n (by Y ̸= ∅), we can apply the inductive

hypothesis and derive Y1 lift(S ′
(M,N)) JC1[N ]K, i.e., Y1 =

∑
j rj ·Y ′

j and JC1[N ]K =∑
j rj ·Z ′

j for Y ′
jR′

(M,N)Z
′
j . Hence, Y1C2[M ] Z=⇒n2

Y implies Y ′
jC2[M ] Z=⇒n′

j
Y ′′
j , with∑

j n
′
j = n2 and Y =

∑
j rj ·Y ′′

j , and

JC[N ]K = JJC1[N ]KC2[N ]K =

J
∑

j rj ·Z ′
jC2[N ]K =

∑
j rj ·JZ ′

jC2[N ]K =
∑

j rj ; JZ
′
j • C2[N ]K.

Since lift( lift(R ) ) = lift(R ) for any relation R , the result follows if we can
prove that for every j Y ′

jC2[M ] Z=⇒n′
j
Y ′′
j implies Y ′′

j lift(R′
(M,N)) JZ ′

j • C2[N ]K. If
Y ′
j R′

(M,N) Z
′
j then one of the following cases hold:

– Y ′
j = 1;λx.C ′[M ] and Z ′

j = 1;λx.C ′[N ]. Hence, either Y ′′
j = ∅, in which case

the result follows by the last set of R′, or Y ′
jC2[M ] −→ 1;C ′[M ]{C2[M ]/x} Z=⇒n′′

j

Y ′′
j , with n′′

j ≤ n. Terms C ′[M ]{C2[M ]/x} and C ′[N ]{C2[N ]/x} are respectively of
the form C ′′[M ] and C ′′[N ] and we can apply the inductive hypothesis to derive
Y ′′
j lift(R′

(M,N)) JZ ′
j • C2[N ]K.

– Y ′
j ≤apx XR (M,N)Z

′
j . If Y

′
jC2[M ] =⇒ Y ′′

j then there is aX ′ such thatXC2[M ] Z=⇒n′′
j

X ′ and Y ′′
j ≤apx X ′, for some n′′

j ≤ n′
j . It is easy to check that there is exists a

X ′′ such that X • C2[M ] Z=⇒n′′′
j

X ′′ and X ′ ≤apx X ′′, for some n′′′
j < n′′

j . Since

XR (M,N)Z
′
j , there are two cases:
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∗ X • C2[M ] =⇒ F and Z ′
j • C2[N ] =⇒ G with F lift(dirac((M,N)

⋆
))G.

Hence, F Z=⇒n′′′′
j

X ′′′ with X ′′ ≤apx X ′′′, for some n′′′′
j ≤ n′′′

j < n. We can apply

the inductive hypothesis to the pairs in (M,N)
⋆
whose projections respectively

compose F and G through the lifting, and derive X ′′′ lift( lift(R′
(M,N)) ) JGK. It

follows from Y ′′
j ≤apx X

′′′ that Y ′′
j lift(R′

(M,N)) JGK = JZ ′
j • C2[N ]K.

∗ X ′′ lift(dirac((M,N)⋆)∪ R(M,N)) JZ ′
j • C2[N ]K.

As Y ′′
j ≤apx X

′′, we then derive Y ′′
j lift(R′

M,N ) JZ ′
j •C2[N ]K, since lift(R′

(M,N))

is saturated by approximants.
– the result is immediate if Y ′

j = ∅.
2

From Lemma 60, we can now derive that R′ is a finite-step simulation up-to lifting:

(1) if M R′ N then M R N , and M Z=⇒ Y implies Y lift(R(M,N)) JNK, by the definition
of R. Then the result follows by R ⊆ R′.

(2) if Y R′
(M,N) Z then:

• if Y ≤apx Y
′ R(M,N) Z then for all P,Q ∈ (M,N)⋆ we have two cases:

– Y ′ • P =⇒ F and Z •Q =⇒ G with F lift(dirac((M,N)
⋆
))G.

If Y • P Z=⇒ Y ′′ then there is a Y ′′′ such that Y ′ • P =⇒ F Z=⇒ Y ′′′ and
Y ′′ ≤apx Y

′′′. It follows from F lift(dirac((M,N)
⋆
))G and from Lemma 60 that

F Z=⇒ Y ′′′ implies Y ′′′ lift( lift(R′
(M,N)) ) JGK, which is equivalent to saying

that Y ′′′ lift(R′
(M,N)) JZ •QK. Since F ′′ ≤apx Y

′′′ and lift(R′
(M,N)) is saturated

by approximants, we derive Y ′′′ lift(R′
(M,N)) JZ •QK.

– Y ′ • P Z=⇒ X and X lift(dirac((M,N)⋆)∪ R(M,N)) JZ •QK.
If Y • P Z=⇒ Y ′′ then there is a Y ′′′ such that Y ′ • P Z=⇒ Y ′′ + Y ′′′ = X
and, by the definition of R, Y ′′ + Y ′′′ lift(dirac((M,N)⋆)∪ R(M,N)) JZ • QK,
which implies Y ′′ + Y ′′′ lift(R′

(M,N)) JZ •QK. Since Y ′′ ≤apx Y
′′ + Y ′′′, we have

Y ′′ lift(R′
(M,N)) JZ •QK.

• If Y = 1;λx.C[M ] and Z = 1;λx.C[N ] with M R N then for all P,Q ∈ (M,N)⋆

we have Y • P = 1;C ′[M ] and Z •Q = 1;C ′[N ] for some C ′. Then, by Lemma 60,
having Y • P Z=⇒ Y ′ we derive Y ′ lift(R′

(M,N)) JZ •QK.
• If Y = ∅ then the simulation clause holds and we stay in the last set of R′.

Proof of Lemma 29
Let �⋆t denote the transitive closure of �⋆, i.e., P �⋆t P ′ if there are P = P1, P2, ..., Pk =

P ′ such that for every 1 ≤ i < k there are a context Ci and tuples P̃i, P̃ ′
i with Pi = Ci[P̃i]

and Pi+1 = Ci[P̃ ′
i ] = Ci+1[P̃i+1] and P̃i � P̃ ′

i . Define the following term relation

R(M,N)
def
= (�⋆̂t (M,N)⋆̂) ∪ (�⋆̂tT(M,N))

We consider �⋆t, instead of just considering �⋆, since otherwise the induction hypothesis
would not suffice in the proof of Lemma 61(**), for the application case.
Let liftd(·) denote lift(dirac(·)) .

Lemma 61. It holds that

(*) P �⋆t P ′ and P Z=⇒n Y imply P ′ Z=⇒n′ Y ′ with n ≥ n′ and Y liftd(�⋆̂t) ≤apx Y
′

(**) P (�⋆t (M,N)⋆)Q and P Z=⇒ Y imply Y disliftd(R(M,N)) ≤apx JQK
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Proof. We first prove (*). Let P = P1, P2, ..., Pk = P ′ be such that for every i, for

1 ≤ i < k, there are a context Ci and tuples P̃i, P̃ ′
i with Pi = Ci[P̃i] and Pi+1 = Ci[P̃ ′

i ] =

Ci+1[P̃i+1] and P̃i � P̃ ′
i . Suppose that P Z=⇒n Y . We prove by induction on k that for every

i such that 1 ≤ i < k we have Pi Z=⇒mi
Yi and mi ≥ mi+1 and Yi liftd(�

⋆̂t) ≤apx Yi+1.
The result is trivial for k = 1. Suppose that k = k′ +1. The result follows from the inductive
hypothesis and from

Y liftd(�⋆̂t) ≤apx Y
′ liftd(�⋆̂t) ≤apx Y

′′ implies Y liftd(�⋆̂t) ≤apx Y
′′,

if we can prove that for any C and P̃ , P̃ ′ such that P̃ � P̃ ′, whenever C[P̃ ] Z=⇒m Y , then

C[P̃ ′] Z=⇒m′ Y ′ with m ≥ m′ and Y liftd(�⋆̂t) ≤apx Y
′. This is proved by induction on m.

If m = 0 then Y = Y ′ and the result follows. Suppose C[P̃ ] Z=⇒m+1 Y . We have three cases:

• if C = [·] then the result immediately follows by P̃ = P � P ′ = P̃ ′.

• C = C1 ⊕ C2. Then there are Y1, Y2 such that Y = 1
2 ;Y1 +

1
2 ;Y2 and Ci[P̃ ] =⇒mi

Yi

for i = 1, 2 and mi < m+ 1. The result follows from the inductive hypothesis

• C = C1C2. If C1[P̃ ] is a value then, by the definition of �, C1[P̃
′] is exactly the same

value. Then the terms resulting after the β-reduction are in �⋆̂t, and we conclude by
the inductive hypothesis.

If C1[P̃ ] Z=⇒m1
Y1 then we can apply the inductive hypothesis to mi and the result

follows.

We can now prove (**) by showing by induction on n that P (�⋆t (M,N)⋆)Q and P Z=⇒n Y
imply Y disliftd(R(M,N)) ≤apx JQK.
Let P �⋆t P ′, P ′ = C[M ] and Q = C[N ]. If n = 0 and Y ̸= ∅ then P is a value, Y = 1;P

and by (*) P ′ is a value too, with P �⋆̂t P ′. We have two cases:

• C = [·], with P ′ = M a value, and Q = N .
By the definition of T(M,N) we have 1;P ′ = JMKdirac(T(M,N))JNK and it follows from

P �⋆̂t P ′ that Y disliftd(�⋆̂tT(M,N))JQK.
• P ′ = λx.C ′[M ] and Q = λx.C ′[N ].

Then Y disliftd(�⋆̂t (M,N)⋆̂)JQK.

If P Z=⇒n+1 Y then by (*) we have P ′ Z=⇒m Y ′ with m ≤ n+ 1 and Y liftd(�⋆̂t) ≤apx Y
′.

Suppose that Y ′ ̸= ∅. We have three cases:

• C = [·]. If M Z=⇒m Y ′ then Y ′ = JMKdirac(T(M,N))JNK. For any term relations S,S ′

we have
– liftd(S) dirac(S ′) ⊆ disliftd(SS ′)
– ≤apx disliftd(T(M,N)) ⊆ disliftd(T(M,N)) ≤apx

Hence, we derive Y disliftd(�⋆̂tT(M,N)) ≤apx JNK.
• C = C1 + C2. Then there are Y1, Y2 such that Y ′ = 1

2 ;Y1 +
1
2 ;Y2 and Ci[M ] =⇒mi

Yi

for i = 1, 2 and mi ≤ n. By the inductive hypothesis, we have

Y ′ lift(disliftd(R(M,N))) ≤apx JQK

As lift(disliftd(·)) = disliftd(·) and liftd(S) disliftd(S ′) ⊆ disliftd(SS ′)
for any S and S ′, from �⋆t�⋆t=�⋆t we derive

Y disliftd(R(M,N)) ≤apx JQK.

• C = C1C2. We consider two cases:



Environmental bisimulations for probabilistic higher-order languages 47

– C1[M ] = M and M = λx.M ′ and N = λx.N ′ are values.

Then M T(M,N) N and we have MC2[M ] Z=⇒m Y ′ iff M ′{C2[M ]/x} d
=⇒ F Z=⇒m′ Y ′,

withm′ < m ≤ n+1 and JNC2[N ]K = JN ′{C2[N ]/x}K = JGK, where Fdisliftd(�⋆T ⋆−
(M,N))G

(note that here the determinism of the reduction to F is used in order to guarantee that
F Z=⇒m′ Y ′ and that m′ < m ≤ n+ 1). Hence, we have Y ′dislift({(Yi, Zi)}i)JGK,
with either Yidirac(�

⋆̂T ⋆−
(M,N))Zi (which implies Yidirac(R(M,N))Zi) or Mi Z=⇒mi

Yi and JNiK = Zi for Mi �⋆ (M,N)⋆Ni and mi ≤ m′ < n + 1, and by apply-
ing the inductive hypothesis we derive Yidisliftd(R(M,N)) ≤apx Zi. Therefore,

Y liftd(�⋆t) ≤apx Y
′disliftd(R(M,N)) ≤apx JQK, and the result follows.

– C1[M ] = λx.C ′
1[M ] and C1[N ] = λx.C ′

1[N ].
We can apply the inductive hypothesis to C ′

1[M ]{C2[M ]/x} Z=⇒m′ Y ′ to derive

Y ′disliftd(R(M,N)) ≤apx JC ′[N ]{C2[N ]/x}K,

then we have Y liftd(�⋆t) ≤apx Y
′disliftd(R(M,N)) ≤apx JC ′[N ]{C2[N ]/x}K, which

implies the result.
2

We can now show that the relation

Sdef
= {(M,N)} ∪ {((M,N), 1;V, 1;W ) | V R(M,N) W} ∪ {((M,N), ∅, Z) | for any Z}

is a finite-step simulation up-to distribution and lifting:

• since M(�⋆t (M,N)⋆)N , by Lemma 61(**), if M Z=⇒ Y then

Y disliftd(R(M,N))Y
′ ≤apx JNK,

which implies Y dislift(S(M,N))JNK (using the last set of relation S(M,N) to eliminate
the approximation preorder ≤apx).

• the weight of the formal sums is the same.

• if 1;V S(M,N) 1;W and V �⋆̂t V ′(M,N)⋆̂W then for any (P,Q) ∈ (M,N)⋆ we have

V P �⋆t V ′P (M,N)⋆WQ. Then clause (2b) of finite-step simulation holds by Lemma
61(**).

If V �⋆̂t V ′ T(M,N) W then for any (P,Q) ∈ (M,N)
⋆
we have V P �⋆t V ′P . Hence,

V P Z=⇒ Y implies, by Lemma 61(*), that V ′P Z=⇒ Y ′ with Y liftd(�⋆̂t) ≤apx Y ′.

By the definition of T(M,N) and since
d

=⇒ is deterministic, from V ′P Z=⇒ Y ′ and
Lemma 61(**) we derive Y ′disliftd(R(M,N)) ≤apx JWQK (see the proof of Lemma
61(**), application case, for more details). Then Y disliftd(R(M,N)) ≤apx JWQK,
which implies Y disliftd(S(M,N))JWQK.

Hence, we have M ≲fin N .
It remains to prove that N ≲fin M (then it follows from Corollary 12 and Theorem 7(3)

that M ≈ N). To do so, we first prove the following lemma.

Lemma 62. It holds that

(*) P �⋆t P ′ and P ′ Z=⇒ Y ′ imply P Z=⇒ Y with Y liftd(�⋆̂t)Y ′

(**) P (�⋆t (M,N)⋆)Q and Q Z=⇒ Z imply P Z=⇒ Y for some Y such that Y disliftd(R(M,N))Z

The results in Lemma 62 are symmetric to the results in Lemma 61, and are proved
analogously. For item (*), we proceed first by induction on the length k of the sequence
P = Pk � .... � P1 = P ′, and then, for the inductive step, we show by induction on the
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length of m that P � P ′ and P ′ Z=⇒m Y ′ imply P Z=⇒ Y with Y liftd(�)Y ′. Item (**) is
proved by induction on the length of the reduction Q Z=⇒ Z.

There are two main differences with respect to Lemma 61. In item (*), since the direction
of �⋆t is now reversed, the length of the reduction P ′ Z=⇒ Y ′ is not greater than or equal
to the length of the reduction from P . Secondly, in item (**), instead of considering the
semantics of terms (on one side) we only relate formal sums reached via the multi-step
reduction relation. This is a stronger condition, that is needed in the remainder of the proof.
Finally, we prove that relation

S ′def= {(N,M)} ∪ {((N,M), 1;W, 1;V ) | V R(M,N) W} ∪ {((N,M), ∅, Z) | for any Z}

is a finite-step simulation up-to distribution and lifting. The proof proceeds as the proof
for S. The conditions on the first and the last set of S ′ are immediate; for the second set
of S ′, the simulation clauses follow by deriving from Lemma 62(*) and (**) the follow-
ing property: if V R(M,N) W and P (M,N)⋆Q then WQ Z=⇒ Z implies V P Z=⇒ Y and
Y disliftd(R(M,N))Z.

Proof of Theorem 52
Let R be a finite-step {l̃}-simulation saturated by approximants. We first define, for any

pair of terms (M,N), the preorder ≤cce(M,N) (context closure of environments) on pairs

of environment formal sums with store: (Y,Z) ≤cce(M,N) (Y
′,Z′) if Y =

∑
i pi; si; Ṽi,Z =∑

j qj ; tj ; W̃j with | Y | = | Z | and Y′ =
∑

i pi; si; Ṽ
′
i ,Z

′ =
∑

j qj ; tj ; W̃
′
j with | Y′ | = | Z′ |

and

• for every index r in | Y | there is an index r′ in | Y′ | such that Y⇂r = Y′⇂r′ and
Z⇂r = Z′⇂r′ ;

• for every index r′ ≤ | Y′ | there is a location-free value-context C such that for

every i, j it holds that (Ṽ ′
i )r′ = C[M, Ṽi] and (W̃ ′

j)r′ = C[N, W̃j ] (i.e., (Y
′⇂r′ ,Z′⇂r′) ∈

({(M, Ṽi}i, {N, W̃j}j)⋆̂).
For any indexed relation R(M,N) on environment formal sums, we write Rcce

(M,N) for relation

≤cce(M,N) (RM,N ), i.e.,

Rcce
(M,N)= {(Y,Z) | ∃Y′,Z′ such that (Y′,Z′) ≤cce(M,N) (Y,Z) ∧ Y′ R(M,N) Z

′}

Note that we can add to a finite-step {l̃}-simulation R saturated by approximants the set

{((M,N), ∅,Y) | Y is an environment formal sum}

for any (M,N), and we still have that R is a finite-step {l̃}-simulation saturated by
approximants, since the presence of the empty formal sum on the left is irrelevant and
trivially satisfies the simulation clauses. Hence, we assume that finite-step simulations have
this property, that we refer to as R is saturated by ∅.
The following result is used in the proof of Lemma 64 (in Lemma 63 and 64, the set of

locations parametrizing the relations is not relevant, hence we omit it).

Lemma 63. Let R be a finite-step simulation and let

Y =
∑

i pi; si; Ṽi Rcce
(M,N)

∑
j qj ; tj ; W̃j = Z

Let ({λx.Pi}i, {λx.Qj}j) ∈ ({M, Ṽi}i, {N, W̃j}j)⋆̂ and ({Ti}i, {Uj}j) ∈ ({M, Ṽi}i, {N, W̃j}j)⋆̂.
Then one of the following holds:
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• ({Pi{Ti/i}}i, {Qj{Uj/x}}j) ∈ ({M, Ṽi}i, {N, W̃j}j)⋆

• for every W,
∑

i pi; si; Ṽi, λx.Pi;Pi{Ti/i} Z=⇒ W implies

W lift(Rcce
(M,N)) J

∑
j qj ; tj ; W̃j , λx.Qj ;Qj{Uj/x}K

Proof. We have the three cases below:

• If λx.Pi = λx.C ′[M, Ṽi] and λx.Qj = λx.C ′[N, W̃j ] for some location-free context C ′,
then there is a location-free context C ′′ such that∑

i pi; si; Ṽi;Pi{Ti/x} =
∑

i pi; si; Ṽi;C
′′[M, Ṽi]∑

j qj ; tj ; W̃j ;Qj{Uj/x} =
∑

j qj ; tj ; W̃j ;C
′′[N, W̃j ]

and the first item holds.
• If there is an r such that λx.Pi = (Ṽ ′

i )r and λx.Qj = (W̃ ′
j)r for some

Y′ =
∑

i pi; si; Ṽ
′
i R(M,N)

∑
j qj ; tj ; W̃

′
j = Z′

such that (Y′,Z′) ≤cce(M,N) (Y,Z), then it follows from the fact that R is a finite-step

simulation that
∑

i pi; si; Ṽ
′
i ;Pi{Ti/x} Z=⇒ W′ implies

W′ lift(R(M,N)) J
∑

j qj ; tj ; W̃
′
j ;Qj{Uj/x}K.

Since
∑

i pi; si; Ṽi, λx.Pi;Pi{Ti/i} Z=⇒ W implies

(W′, J
∑

j qj ; tj ; W̃
′
j ;Qj{Uj/x}K) ≤cce(M,N) (W, J

∑
j qj ; tj ; W̃j , λx.Qj ;Qj{Uj/x}K),

we derive

W lift(Rcce
(M,N)) J

∑
j qj ; tj ; W̃j , λx.Qj ;Qj{Uj/x}K

• If λx.Pi = M and λx.Qj = N then M and N are values and by clause (2g) applied to
R(M,N), ∑

i pi; si; Ṽ
′
i ,M R(M,N)

∑
j qj ; tj ; W̃

′
j , N

for some (
∑

i pi; si; Ṽ
′
i ,
∑

j qj ; tj ; W̃
′
j) ≤cce(M,N) (Y,Z). By clause (2b) applied to

R(M,N), from
∑

i pi; si; Ṽ
′
i ,M ;Pi{Ti/x} Z=⇒ W′ we derive

W′ lift(R(M,N)) J
∑

j qj ; tj ; W̃
′
j , N ;Qj{Uj/x}K.

By the assumptions λx.Pi = M and λx.Qj = N there are already columns in the
dynamic environments of Y and Z composed by M and N respectively; thus

(W′, J
∑

j qj ; tj ; W̃
′
j , N ;Qj{Uj/x}K) ≤cce(M,N) ≥env (W, J

∑
j qj ; tj ; W̃j ;Qj{Uj/x}K),

from which the result follows.
2

In what follows, we sometimes use relations ≤lift and ≤lift≤env, defined as follows:

• (Y,Z) ≤lift {(Yg,Zg)}g if there are probability values pg such that Y =
∑

g pg ·Yg

and Z =
∑

g pg · Zg ;

• (Y,Z) ≤lift≤env {(Yg,Zg)}g if there are probability values pg such that Y =
∑

g pg ·
Y′

g and Z =
∑

g pg · Z′
g with (Y′

g,Z
′
g) ≤env (Yg,Zg) for every g.

The notation, as for relations ≤env and ≤cce(M,N), is extended to environment formal sums
with running terms by requiring the running term to be the same everywhere.
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Lemma 64. Suppose that R(M,N) is a finite-step simulation saturated by approximants
(only defined on formal sums). For any location-free context C if Y Rcce

(M,N) Z and

Y;C[M,Y] Z=⇒ W then W lift(≥env (Rcce
(M,N))) JZ;C[N,Z]K.

Proof. Suppose that Y =
∑

i pi; si; Ṽi Rcce
(M,N)

∑
j qj ; tj ; W̃j = Z, with Y′ =

∑
i pi; si; Ṽ

′
i

and Z′ =
∑

j qj ; tj ; W̃
′
j related by R(M,N) and such that (Y′,Z′) ≤cce(M,N) (Y,Z).

We prove by induction on n and then by induction on the structure of C that∑
i pi; si; Ṽi;C[M, Ṽi] Z=⇒n W implies W lift(≥env (Rcce

(M,N))) J
∑

j qj ; tj ; W̃j ;C[N, W̃j ]K.

(In the proof we sometimes assume that Ṽi = Ṽ ′
i , Ṽ

′′
i and W̃j = W̃ ′

j , W̃
′′
j . This does not

affect the results since the context closure of environments allows us to permute the columns
in the formal sums.)

If W = ∅ then the result follows by the fact that R is saturated by ∅. Suppose that W ̸= ∅
and n = 0. We have one of the following cases:

• C = [·]1 and M is a value. Then∑
i pi; Ṽ

′
i · (1; si;M) lift(R(M,N))

∑
j qj ; W̃

′
j · J⟨tj ; N⟩K

and we derive∑
i pi; Ṽi · (1; si;M)( lift(Rcce

(M,N)) )
∑

j qj ; W̃j · J⟨tj ; N⟩K .

• C ̸= [·]1 and for every i, j, C[M, Ṽi] and C[N, W̃j ] are values. Then it follows from the
definition of ≤cce(M,N) that

W =
∑

i pi; si; Ṽi, C[M, Ṽi] Rcce
(M,N)

∑
j qj ; tj ; W̃j , C[N, W̃j ] = J

∑
j qj ; tj ; W̃j , C[N, W̃j ]K .

Suppose now that
∑

i pi; si; Ṽi;C[M, Ṽi] Z=⇒n+1 W, with W ̸= ∅. We have the following
cases:

• C = [·]1 and M is not a value. Then the result follows analogously to the n = 0 case.

• C = C1 ⊕ C2. In this case
∑

i pi; si; Ṽi; (C1 ⊕ C2)[M, Ṽi] Z=⇒ W implies∑
i pi; si; Ṽi; (C1 ⊕ C2)[M, Ṽi] −→ 1

2 ·
∑

i pi; si; Ṽi;C1[M, Ṽi] +
1
2

∑
i pi; si; Ṽi;C2[M, Ṽi]

and W = 1
2 ·W1 +

1
2 ·W2, with

∑
i pi; si; Ṽi;Ch[M, Ṽi] Z=⇒nh

Wh, for h = 1, 2 and
nh ≤ n. Since

J
∑

j qj ; tj ; W̃j ; (C1 ⊕ C2)[N, W̃j ]K =
1
2 · J

∑
j qj ; tj ; W̃j ;C1[N, W̃j ]K + 1

2 · J
∑

j qj ; tj ; W̃j ;C1[N, W̃j ]K

we can apply the inductive hypothesis to n1 and n2 and derive

W lift( lift(≥env (Rcce
(M,N))) ) J

∑
j qj ; tj ; W̃j ; (C1 ⊕ C2)[N, W̃j ]K

The result follows from lift( lift(R) ) = lift(R) .
• C = C1C2.
Suppose that there exists some i such that C1[M, Ṽi] is not a value, and such that

C1[M, Ṽi] performs some small steps in the reduction leading to W. Hence, there is a
set I ′ ⊆ I such that∑
i∈I pi; si; Ṽi;C1[M, Ṽi]C2[M, Ṽi] =⇒n1

∑
i∈I′⊆I,k pi,k; si,k; Ṽi;Vi,kC2[M, Ṽi] Z=⇒n2

W
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with n1 > 1 and∑
i∈I pi; si; Ṽi;C1[M, Ṽi] Z=⇒n1

∑
i∈I′,k pi,k; si,k; Ṽi, Vi,k .

We have

J
∑

j∈J qj ; tj ; W̃j ;C1[N, W̃j ]C2[N, W̃j ]K = J
∑

j∈J′⊆J,h qj,h; tj,h; W̃j ;Wj,hC2[N, W̃j ]K

for J
∑

j∈J qj ; tj ; W̃j ;C1[N, W̃j ]K =
∑

j∈J′,h qj,h; tj,h; W̃j ,Wj,h. Then we can apply the
inductive hypothesis to n1 and derive∑

i∈I′,k pi,k; si,k; Ṽi, Vi,k lift(≥env (Rcce
(M,N)))

∑
j∈J′,h qj,h; tj,h; W̃j ,Wj,h

which is equivalent to saying

(
∑

i∈I′,k pi,k; si,k; Ṽi, Vi,k,
∑

j∈J′,h qj,h; tj,h; W̃j ,Wj,h) ≤lift≤env {(Yg,Zg)}g ⊆Rcce
(M,N)

with Yg =
∑

i,k∈Ig
p′i,k; si,k; Ṽi,k, and Zg =

∑
j,h∈Jg

q′j,h; tj,h; W̃j,h such that for every

g there is a context Cg such that for all i, k ∈ Ig and for all j, h ∈ Jg we have

Vi,kC2[M, Ṽi] = Cg[M, Ṽi,k] and Wj,hC2[N, W̃j ] = Cg[N, W̃j,h].

If
∑

i∈I′⊆I,k pi,k; si,k; Ṽi;Vi,kC2[M, Ṽi] Z=⇒n2
W then for every g there is a Wg such

that
∑

i,k∈Ig
p′i,k; si,k; Ṽi,k;Cg[M, Ṽi,k] Z=⇒n′

g
Wg and

∑
g n

′
g = n2 and

(W, J
∑

j∈J qj ; tj ; W̃j ;C1[N, W̃j ]C2[N, W̃j ]K)

≤lift≤env {(Wg, J
∑

j,h∈Jg
q′j,h; tj,h; W̃j,h;Cg[N, W̃j,h]K)}g

By the inductive hypothesis on each of the n′
g we derive

{(Wg, J
∑

j,h∈Jg
qj,h; tj,h; W̃j,h;Cg[N, W̃j,h]K)}g ⊆ lift(≥env (Rcce

(M,N)))

from which the result follows by lift(≥env ( lift(≥env (R)) )) = lift(≥env (R)) .

We now consider the case when no C1[M, Ṽi] contributes to the multi-step reduction to

W. If there exist some i such that C2[M, Ṽi] contributes to the multi-step reduction
to W, then we can derive the result using the same reasoning as above.

Otherwise, there is a set I ′ ⊆ I such that C1[M, Ṽi] and C2[M, Ṽi] are values for every
i ∈ I ′, and∑

i∈I′ pi; si; Ṽi;C1[M, Ṽi]C2[M, Ṽi] =
∑

i∈I′ pi; si; Ṽi; (λx.Pi)C2[M, Ṽi]

=⇒n1

∑
i∈I′ pi; si; Ṽi;Pi{C2[M, Ṽi]/x}

Z=⇒n2 W

with n1 ≤ n+ 1 and n2 ≤ n.

Suppose that C1[N, W̃j ] = λx.Qj is a value, for all j, and C2[N, W̃j ] is a value. Then,

J
∑

j qj ; tj ; W̃j ;C1[N, W̃j ]C2[N, W̃j ]K =
J
∑

j qj ; tj ; W̃j ;λx.QjC2[N, W̃j ]K =
J
∑

j qj ; tj ; W̃j ;Qj{C2[N, W̃j ]/x}K

Since R is saturated by approximants,∑
i∈I′ pi; si; Ṽi Rcce

(M,N)

∑
j qj ; tj ; W̃j

which implies, by Lemma 63, that one of the following holds:
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– there is a context C ′ such that∑
i∈I′ pi; si; Ṽi;Pi{C2[M, Ṽi]/x} =

∑
i∈I′ pi; si; Ṽi;C

′[M, Ṽi]

and ∑
j qj ; tj ; W̃j ;Qj{C2[N, W̃j ]/x} =

∑
j qj ; tj ; W̃j ;C

′[N, W̃j ].

Then we can apply the inductive hypothesis on the reduction∑
i∈I′ pi; si; Ṽi;C

′[M, Ṽi] Z=⇒n2
W

and derive the result.
– for any W′, if

∑
i∈I′ pi; si; Ṽi, λx.Pi;Pi{C2[M, Ṽi]/x} Z=⇒ W′ then

W′ lift(Rcce
(M,N)) J

∑
j qj ; tj ; W̃j , λx.Qj ;Qj{C2[N, W̃j ]/x}K.

Then we have

(W, J
∑

j qj ; tj ; W̃j ;Qj{C2[N, W̃j ]/x}K)

≤env (W
′, J

∑
j qj ; tj ; W̃j , λx.Qj ;Qj{C2[N, W̃j ]/x}K)

and the result follows by ≥env lift(R) ⊆ lift(≥env (R)) .

It remains to consider the case when C1[N, W̃j ] or C2[N, W̃j ] are not values for some

j. If C1[N, W̃j ] is not a value for some j then C1 = [·]1 and N is not a value. Suppose

C2[N, W̃j ] is a value for all j. Then we have

J
∑

j∈J qj ; tj ; W̃j ;NC2[N, W̃j ]K =
J
∑

j∈J′⊆J,h qj,h; tj,h; W̃j ;λx.Qj,hC2[N, W̃j ]K =
J
∑

j∈J′⊆J,h qj,h; tj,h; W̃j ;Qj,h{C2[N, W̃j ]/x}K

for J
∑

j∈J qj ; tj ; W̃j ;NK =
∑

j∈J′,h qj,h; tj,h; W̃j , λx.Qj,h. Since R is a finite-step simu-

lation saturated by approximants, by clause (2g) we derive∑
i∈I′ pi; si; Ṽ

′
i , λx.Pi lift(R(M,N))

∑
j∈J′,h qj,h; tj,h; W̃

′
j , λx.Qj,h

which implies∑
i∈I′ pi; si; Ṽi, λx.Pi lift(Rcce

(M,N))
∑

j∈J′,h qj,h; tj,h; W̃j , λx.Qj,h .

Then

(
∑

i∈I′ pi; si; Ṽi, λx.Pi,
∑

j∈J′,h qj,h; tj,h; W̃j , λx.Qj,h) ≤lift {(Yg,Zg)}g ⊆Rcce
(M,N)

with Yg =
∑

i∈Ig
p′i; si; Ṽi, λx.Pi, and Zg =

∑
j,h∈Jg

q′j,h; tj,h; W̃j , λx.Qj,h such that

for every g we have ∑
i∈Ig

p′i; si; Ṽi, λx.Pi;λx.PiC2[M, Ṽi]

and ∑
j,h∈Jg

q′j,h; tj,h; W̃j , λx.Qj,h;λx.Qj,hC2[N, W̃j ]

satisfy the premises of Lemma 63. Then we can proceed as in the previous case and

derive that
∑

i∈Ig
p′i; si; Ṽi, λx.Pi;Pi{C2[M, Ṽi]/x} Z=⇒ Wg implies

Wg lift(≥env (Rcce
(M,N))) J

∑
j,h∈Jg

q′j,h; tj,h; W̃j , λx.Qj,h;Qj,h{C2[N, W̃j ]/x}K ,

from which the result follows.
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Finally, if there are some j such that C2[N, W̃j ] is not a value then we can proceed
as in the previous case, exploiting clause (2g) on R(M,N) in order to evaluate N in
argument position as well.

• case C = !C ′.
The interesting case is when C ′[M, Ṽi] does not contribute to the reduction, for every i
(otherwise, we can apply the inductive hypothesis analogously to the application case),
i.e., there is a subset I ′ ⊆ I such that∑

i∈I′ pi; si; Ṽi; !C
′[M, Ṽi] =

∑
i∈I′ pi; si; Ṽi; !li =⇒n+1

∑
i∈I′ pi; si; Ṽi, si(li)

Since R is saturated by approximants,
∑

i∈I′ pi; si; Ṽ
′
i R(M,N)

∑
j qj ; tj ; W̃

′
j .

Since contexts are location-free, there are two cases:

– C ′[M, Ṽi] ∈ Ṽ ′
i . Then C ′[N, W̃j ] = l′j ∈ W̃ ′

j and by clause (2c) on R we have∑
i∈I′ pi; si; Ṽ

′
i , si(li) lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , ti(l

′
j)

and the result follows from

J
∑

j qj ; tj ; W̃
′
j ; !l

′
jK =

∑
j qj ; tj ; W̃

′
j , ti(l

′
j)

– C = [·]1 and M = l.
Suppose that N = l′. Then by clause (2g) we have∑

i∈I′ pi; si; Ṽ
′
i ,M R(M,N)

∑
j qj ; tj ; W̃

′
j , N

and by clause (2c)∑
i∈I′ pi; si; Ṽ

′
i ,M, si(li) lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , N, tj(l

′
j)

Then ∑
i∈I′ pi; si; Ṽi, si(li) lift(≥env (Rcce

(M,N)))
∑

j qj ; tj ; W̃j , tj(l
′
j)

The case when N is not a value follows analogously.
• C = C1 := C2.
Again, the interesting case is when for every i neither C1[M, Ṽi] nor C2[M, Ṽi] con-
tributes to the reduction, i.e., there is a subset I ⊆ I ′ such that∑

i∈I′ pi; si; Ṽi;C1[M, Ṽi] := C2[M, Ṽi]

=
∑

i∈I′ pi; si; Ṽi; li := Ti

Z=⇒n+1

∑
i∈I′ pi; si[li → Ti]; Ṽi, unit

As above, since R is saturated by approximants,
∑

i∈I′ pi; si; Ṽ
′
i R(M,N)

∑
j qj ; tj ; W̃

′
j

and, since contexts are location-free, there are two cases:

– C1[M, Ṽi] ∈ Ṽ ′
i . Then C1[N, W̃j ] = l′j ∈ W̃ ′

j . Suppose that C2[N, W̃j ] = Uj is a value

for every j. Then ({Ti}i, {Uj}j) ∈ ({M, Ṽ ′
i }i, {N, W̃ ′

j}j)⋆̂ and by clause (2c) on R
we have∑

i∈I′ pi; si[li → Ti]; Ṽ
′
i lift(R(M,N))

∑
j qj ; tj [l

′
j → Uj ]; W̃

′
j

and the result follows.
If C2[N, W̃j ] is not a value for some j then C2[M, Ṽj ] = M and C2[N, W̃j ] = N .
Then we derive from clause (2g) that∑

i∈I′ pi; si; Ṽ
′
i ,M R(M,N) J

∑
j qj ; tj ; W̃

′
j ;NK =

∑
j,h qj,h; tj,h; W̃

′
j ;Uj,h
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and we can derive, as in the previous case, that∑
i∈I′ pi; si[li → M ]; Ṽ ′

i ,M lift(R(M,N))
∑

j,h qj ; tj [l
′
j → Uj,h]; W̃

′
j , Uj,h

from which the result follows.
– C = [·]1 and M = l.

Suppose that N = l′ and C2[N, W̃j ] = Uj is a value for every j. Then ({Ti}i, {Uj}j) ∈
({M, Ṽ ′

i }i, {N, W̃ ′
j}j)⋆̂. Then by clause (2g) we have∑

i∈I′ pi; si; Ṽ
′
i ,M R(M,N)

∑
j qj ; tj ; W̃

′
j , N

and by clause (2c) on R we have∑
i∈I′ pi; si[l → Ti]; Ṽ

′
i ,M lift(R(M,N))

∑
j qj ; tj [l

′ → Uj ]; W̃
′
j , N

and the result follows.
If N or C2[N, W̃j ] are not values then we proceed analogously to the previous cases,
by proving that we can add to the environment the values they evaluate to while
staying in relation R(M,N).

• C = (ν x :=C1)C2, with C2 a context with free variable x.
We consider the case when∑

i∈I′ pi; si; Ṽi; (ν x :=C1[M, Ṽi])C2[M, Ṽi]

=
∑

i∈I′ pi; si; Ṽi; (ν x :=Ti)C2[M, Ṽi]

=⇒n1

∑
i∈I′ pi; si[li → Ti]; Ṽi;C2[M, Ṽi]{li/x}

Z=⇒n2
W

and C1[M, Ṽi] = Uj is a value for every j, thus

J
∑

j qj ; tj ; W̃j ; (ν x :=C1[N, W̃j ])C2[N, W̃j ]K = J
∑

j qj ; tj [kj → Uj ]; W̃j ;C2[N, W̃j ]{kj/x}K

for ({Ti}i, {Uj}j) ∈ ({M, Ṽ ′
i }i, {N, W̃ ′

j}j)⋆̂ and for locations ({li}i, {kj}j) which are
({si}i, {tj}j)-fresh. By clauses (2d) and (2c) we have∑

i∈I′ pi; si[li → Ti]; Ṽ
′
i , li R(M,N)

∑
j qj ; tj [kj → Uj ]; W̃

′
j , kj

which implies∑
i∈I′ pi; si[li → Ti]; Ṽi, li;C2[M, Ṽi]{li/x} Rcce

(M,N)

∑
j qj ; tj [kj → Uj ]; W̃j , kj ;C2[N, W̃j ]{kj/x} .

Then the result follows from the inductive hypothesis on n2.
• case C = if C1 then C2 else C3 and case C = op(C1, ..., Cm).
The result follows from the fact that Rcce

(M,N) satisfies clause (2e) for constants and

then from the inductive hypothesis.
• C = (C1, ..., Cm).
Since the multi-step reduction to W has length strictly greater than one, there is some

z such that 1 ≤ z ≤ m and some i such that Cz[M, Ṽi] contributes to the multi-step
reduction to W. Then we can apply the inductive hypothesis on the contexts to Cz

and derive that:∑
i∈I′ pi; si; Ṽi;Cz[M, Ṽi] Z=⇒n′

∑
i∈I′,k pi,k; si,k; Ṽi, Vi,k

for n′ ≤ n+ 1 implies∑
i∈I′,k pi,k; si,k; Ṽi, Vi,k lift(≥env (Rcce

(M,N)))
∑

j∈J′,h qj,h; tj,h; W̃j ,Wj,h

= J
∑

j qj ; tj ; W̃j ;Cz[N, W̃j ]K
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i.e.,

(
∑

i∈I′,k pi,k; si,k; Ṽi, Vi,k,
∑

j∈J′,h qj,h; tj,h; W̃j ,Wj,h) ≤lift≤env {(Yg,Zg)}g ⊆Rcce
(M,N)

with Yg =
∑

i,k∈Ig
p′i,k; si,k; Ṽi,k, and Zg =

∑
j,h∈Jg

q′j,h; tj,h; W̃j,h and for every g

there is a context Cg such that for every i, k ∈ Ig and j, h ∈ Jg:

C[M, Ṽi]{Vi,k/Cz[M, Ṽi]} = Cg[M, Ṽi,k]

C[N, W̃j ]{Wj,h/Cz[N, W̃j ]} = Cg[N, W̃j,h]

(where the substitution only concerns the specific instance of Cz[M, Ṽi] in Cz[M, Ṽi]

that occurs as the z-th element of the tuple C[M, Ṽi], and the same for Cz[N, W̃i]).
Finally, we derive the result by applying the inductive hypothesis on the number of
reductions from ∑

i,k∈Ig
p′i,k; si,k; Ṽi,k;Cg[M, Ṽi,k] .

• C = #z(C
′).

We consider the case when C ′[M, Ṽi] = (Vi,1, ..., Vi,m) is a value for every i and∑
i∈I pi; si; Ṽi; #z(C

′[M, Ṽi]) −→ W =
∑

i∈I pi,k; si,k; Ṽi, Vi,a

We have three cases:
– C ′[M, Ṽi] = (Vi,1, ..., Vi,m) ∈ Ṽ ′

i .

Then C ′[N, W̃j ] = (Uj,1, ..., Uj,m) ∈ W̃ ′
j and we have, by clause (2f) on R,∑

i pi; si; Ṽ
′
i , Vi,1, ..., Vi,m lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , Uj,1, ..., Uj,m

Therefore,

(W, J
∑

j qj ; tj ; W̃j ,#z(Uj,1, ..., Uj,m)K)
≤env (

∑
i pi; si; Ṽi, Vi,1, ..., Vi,m,

∑
j qj ; tj ; W̃j , Uj,1, ..., Uj,m) ∈ lift(Rcce

(M,N))

– C ′[M, Ṽi] = (C1[M, Ṽi], ..., Cm[M, Ṽi]) and C ′[N, W̃j ] = (C1[N, W̃j ], ..., Cm[N, W̃j ]).
The result directly follows from the definition of the preorder ≤cce(M,N).

– C ′ = [·]1.
The result follows from clauses (2g) and (2f) for R.

2

Lemma 65. Suppose that R(M,N) is a finite-step {l̃}-simulation saturated by approximants

(only defined on formal sums), and that C is a context with locations in {l̃}. The following
relation satisfies the clauses on formal sums for finite-step simulations up-to lifting and
environment:

Sdef
= {((C[M ], C[N ]),Y,Z) | Y Rcce

(M,N) Z}

Proof. We can assume that the relation R(M,N) is closed by {l̃}, i.e., each location l ∈ {l̃}
occurs in corresponding columns in the dynamic environment of the formal sums (formally:

for any Y,Z in the relation and for every l ∈ {l̃} there is an index r, for 1 ≤ r ≤| Y |, such
that both Y⇂r and Z⇂r are tuples composed by location l). This assumption simplifies our
proof, while not affecting the results. Indeed, we can eliminate all the pairs that do not

satisfy the requirement of {l̃}-closure and we still have a finite-step {l̃}-simulation saturated
by approximants.



56 Davide Sangiorgi and Valeria Vignudelli

The proof exploits the fact that if R(M,N) is closed by {l̃} then Rcce
(M,N) is closed by {l̃}

and, for any C such that Loc(C) ⊆ {l̃}, if it holds that
∑

i pi; si; Ṽi Rcce
(M,N)

∑
j qj ; tj ; W̃j and

({Ti}i, {Uj}j) ∈ ({C[M ], Ṽi}i, {C[N ], W̃j}j)⋆̂, then ({Ti}i, {Uj}j) ∈ ({M, Ṽi}i, {N, W̃j}j)⋆̂,
since the locations in {l̃} are guaranteed to occur at corresponding columns in {Ṽi}i and
{W̃j}j and then C can be turned into a location-free context.
The condition (2a) on the weights is immediately satisfied by the definition of Rcce

(M,N),

since R is a simulation.
Then we prove that the conditions from (2b) to (2g) of finite-step simulation up-to

lifting and environment are satisfied by S. Suppose that Y =
∑

i pi; si; Ṽi S(C[M ],C[N ])∑
j qj ; tj ; W̃j = Z with Y′ =

∑
i pi; si; Ṽ

′
i ,Z

′ =
∑

j qj ; tj ; W̃
′
j related by R(M,N) and such

that (Y′,Z′) ≤cce(M,N) (Y,Z).

(2b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then

for all ({Ti}i, {Uj}j) ∈ ({C[M ], Ṽi}i, {C[N ], W̃j}j)⋆̂,
if
∑

i pi; si; Ṽi;Mi{Ti/x} Z=⇒ W then

W lift(≥env (S(C[M ],C[N ])))
∑

j qj ; W̃j · J⟨tj ; Nj{Uj/x}⟩K

Proof. We have three cases:
– if (Ṽi)r = λx.C ′[M, Ṽ ′

i ] and (W̃j)r = λx.C ′[N, W̃ ′
j ] for some location-free context C ′

then, since R(M,N) is closed with respect to l̃, there is a location-free context C ′′

such that ∑
i pi; si; Ṽi;Mi{Ti/x} =

∑
i pi; si; Ṽi;C

′′[M, Ṽi]∑
j qj ; tj ; W̃j ;Nj{Uj/x} =

∑
j qj ; tj ; W̃j ;C

′′[N, W̃j ]

and we derive the result by Lemma 64.

– if (Ṽi)r = (Ṽ ′
i )r′ and (W̃j)r = (W̃ ′

j)r′ for some r′ then, since R(M,N) is closed with

respect to l̃, there is a location-free context C ′′ such that∑
i pi; si; Ṽi;Mi{Ti/x} =

∑
i pi; si; Ṽi;Mi{C

′′[M, Ṽ ′
i ]/x}∑

j qj ; tj ; W̃j ;Nj{Uj/x} =
∑

j qj ; tj ; W̃j ;Nj{C
′′[N, W̃ ′

j ]/x}

Since R(M,N) is a finite-step simulation,∑
i pi; si; Ṽ

′
i ;Mi{C

′′[M, Ṽ ′
i ]/x} Z=⇒ W

implies W lift(RM,N ) J
∑

j qj ; tj ; W̃
′
j ;Nj{C

′′[N, W̃ ′
j ]/x}K, which in turn implies the

result analogously to Lemma 63.

– if (Ṽi)r = M and (W̃j)r = N then M and N are values and by clause (2g) applied
to R(M,N) we have∑

i pi; si; Ṽ
′
i ,M lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , N

Hence, by clause (2b) applied to R(M,N) we have∑
i pi; si; Ṽ

′
i ,M ;Mi{C

′′[M, Ṽ ′
i ]/x} Z=⇒ W

implies W lift(R(M,N)) J
∑

j qj ; tj ; W̃
′
j , N ;Nj{Uj/x}K, which in turn implies the re-

sult (see the proof of Lemma 63).
2
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(2c) for all r, if (Ṽi)r = li and (W̃j)r = kj then

–
∑

i pi; si; Ṽi, si(li) lift(S(C[M ],C[N ]))
∑

j qj ; tj ; W̃j , tj(kj) ,

– for all ({Ti}i, {Uj}j) ∈ ({C[M ], Ṽi}i, {C[N ], W̃j}j)⋆̂ we have∑
i pi; si[li → Ti]; Ṽi S(C[M ],C[N ])

∑
j qj ; tj [kj → Uj ]; W̃j .

Proof. Since contexts used in ≤cce(M,N) are location-free and R(M,N) is closed with

respect to the locations in l̃ (and thereby the locations in C[M ], C[N ] are in the
dynamic environment of the formal sums in R(M,N) in corresponding columns), there

is r′ such that (Ṽ ′
i )r′ = li and (W̃ ′

j)r′ = kj , then:

–
∑

i pi; si; Ṽ
′
i , si(li) lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , tj(kj) and we have∑

i pi; si; Ṽi, si(li) lift(Rcce
(M,N))

∑
j qj ; tj ; W̃j , tj(kj),

from which the result follows.
– by ({Ti}i, {Uj}j) ∈ ({M, Ṽ ′

i }i, {N, W̃ ′
j}j)⋆̂ we derive∑

i pi; si[li → Ti]; Ṽ
′
i R(M,N)

∑
j qj ; tj [kj → Uj ]; W̃

′
j ,

which implies∑
i pi; si[li → Ti]; Ṽi S(C[M ],C[N ])

∑
j qj ; tj [kj → Uj ]; W̃j .

2

(2d) for any ({si}i, {tj}j)-fresh locations ({li}i, {kj}j),
and for all ({Ti}i, {Uj}j) ∈ ({C[M ], Ṽi}i, {C[N ], W̃j}j)⋆̂,∑

i pi; si[li → Ti]; Ṽi, li S(C[M ],C[N ])

∑
j qj ; tj [kj → Uj ]; W̃j , kj .

Proof. The result follows from ({Ti}i, {Uj}j) ∈ ({M, Ṽ ′
i }i, {N, W̃ ′

j}j)⋆̂ as in the
previous clause, by exploiting clause (2d) on R. 2

(2e) for all r, if (Ṽi)r = ci and (W̃j)r = cj then all constants in the two columns are the
same (i.e., there is ca with ci = cj = ca for all i, j).

Proof. For every r, there are three cases: either Y⇂r = Y′⇂r′ and Z⇂r = Z′⇂r′ for
some r′, in which case both columns are composed by the same constant, since R is a
finite-step simulation; or the value-context is a constant and Y⇂r = Z⇂r = c; or the
constants are respectively M and N , in which case∑

i pi; si; Ṽ
′
i ,M lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , N

(by clause (2g)) and thus they have to be the same constant, otherwise R would not
respect condition (2e). 2

(2f) for all r, if (Ṽi)r = (Vi,1, ..., Vi,n) and (W̃j)r = (Wj,1, ...,Wj,n) then∑
i pi; si; Ṽi, Vi,1, ..., Vi,n lift(S(C[M ],C[N ]))

∑
j qj ; tj ; W̃j ,Wj,1, ...,Wj,n .

Proof. If Y⇂r = Y′⇂r′ and Z⇂r = Z′⇂r′ for some r′ then it follows from the definition
of R that∑

i pi; si; Ṽi, Vi,1, ..., Vi,n lift(S(C[M ],C[N ]))
∑

j qj ; tj ; W̃j ,Wj,1, ...,Wj,n.
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Otherwise, for every 1 ≤ h ≤ n we have ({Vi,h}i, {Uj,h}j) ∈ ({M, Ṽ ′
i }i, {N, W̃ ′

j}j)⋆̂,
which implies

(Y′,Z′) ≤cce(M,N) (
∑

i pi; si; Ṽi, Vi,1, ..., Vi,n,
∑

j qj ; tj ; W̃j ,Wj,1, ...,Wj,n),

i.e., the formal sums are in relation lift(S(C[M ],C[N ])) .

Finally, if (Ṽi)r = M and (W̃j)r = N then the clause follows as in the previous cases

from
∑

i pi; si; Ṽ
′
i ,M lift(R(M,N))

∑
j qj ; tj ; W̃

′
j , N , by clause (2g). 2

(2g)
∑

i pi; Ṽi · J⟨si ; C[M ]⟩K lift(S(C[M ],C[N ]))
∑

j qj ; W̃j · J⟨tj ; C[N ]⟩K .

Proof. Since R(M,N) is closed with respect to l̃, there is a location-free context C ′

such that
Y;C[M ] = Y;C ′[M,Y]
Z;C[N ] = Z;C ′[N,Z]

and the result follows from Lemma 64. 2

2

We can now derive from Lemma 65 the congruence result. Let C be a context such that

Loc(C) ⊆ {l̃}. Let R be a finite-step {l̃}-simulation such that ⟨s ; M⟩ R ⟨t ; N⟩. Then the
relation

{(⟨s ; C[M ]⟩, ⟨t ; C[N ]⟩)} ∪ {((C[M ], C[N ]),Y,Z) | Y Rcce
(M,N) Y}

is a finite step simulation up-to lifting and environment, since:

• clause (1) on terms follows since Loc(C) ⊆ {l̃} and by clause (1) for R we have

(1; s; l̃, 1; t; l̃) ∈ R(M,N) ⊆Rcce
(M,N);

• the clauses for formal sums follow by Lemma 65.

Proof of Theorem 53
Let l̃′ = l̃, l̃′′ and let Ṽ ′ = Ṽ , Ṽ ′′ be a sequence of values whose types are consistent with

those of l̃′ and with locations in {l̃′}. Let C be a context with locations in {l̃′} and let R be

a finite-step {l̃}-simulation (saturated by approximants) relating ⟨s ; M⟩ and ⟨t ; N⟩. Then
1; s; l̃ R(M,N) 1; t; l̃ and by repeatedly applying clause (2d) we derive

1; s[l̃′′ → W̃ ]; l̃′ R(M,N) 1; t[l̃
′′ → W̃ ]; l̃′

for a consistent sequence of values W̃ . (Note that we cannot guarantee by just using clause

(2d) that the tuple of values Ṽ ′′ is assigned to l̃′′, since locations in l̃′′ might occur in any

value in Ṽ ′′. Hence, we first have to put all the locations in {l̃′′} in the dynamic environment.)
Then by repeatedly applying clause (2c) we derive

1; s[l̃′′ → Ṽ ′′]; l̃′ R(M,N) 1; t[l̃
′′ → Ṽ ′′]; l̃′ .

It is easy to see that if we restrict R(M,N) to those pairs of formal sums whose dynamic

environments begin with the sequence l̃′ of locations then the clauses of finite-step {l̃′}-
simulation are satisfied. Let R′

(M,N) be such a restriction of R(M,N). Then we can apply

Lemma 65 (see the proof of Theorem 52) and derive that relation

Sdef
= {((C[M ], C[N ]),Y,Z) | Y R′cce

(M,N) Z}
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is a finite-step {l̃′}-simulation (up-to lifting and environment). Since

(1; s[l̃′′ → Ṽ ′′]; l̃′, 1; t[l̃′′ → Ṽ ′′]; l̃′) ∈ R′
(M,N) ⊆ R′cce

(M,N) =S(C[M ],C[N ])

we conclude ⟨s[l̃′′ → Ṽ ′′] ; C[M ]⟩≲{l̃′}
fin ⟨t[l̃′′ → Ṽ ′′] ; C[N ]⟩.

Finally, by repeatedly applying clause (2c) to locations l̃ in the pair

1; s[l̃′′ → Ṽ ′′]; l̃′ S(C[M ],C[N ]) 1; t[l̃
′′ → Ṽ ′′]; l̃′

we derive

1; l̃′ = Ṽ ′; l̃′ S(C[M ],C[N ]) 1; l̃
′ = Ṽ ′; l̃′

which in turn implies ⟨l̃′ = Ṽ ′ ; C[M ]⟩≲{l̃′}
fin ⟨l̃′ = Ṽ ′ ; C[N ]⟩.

Proof of Theorem 55
We prove that the relation

R def
= {(⟨l̃ = Ṽ ; M⟩, ⟨l̃ = Ṽ ; N⟩) | M ≤ctx N ∧ {l̃} = Loc(M) ∪ Loc(N)}∪

{((M,N),
∑

i pi; si;V
i
1 , ..., V

i
n ,

∑
j qj ; tj ;W

j
1 , ...,W

j
n) | M ≤ctx N

∧ ∃C, Ṽ such that (J⟨l̃ = Ṽ ; C[M ]⟩K =
∑

i pi; si;λx.xV
i
1 ...V

i
n

∧ J⟨l̃ = Ṽ ; C[N ]⟩K =
∑

j qj ; tj ;λx.xW
j
1 ...W

j
n

with Loc(C) ⊆ {l̃} = Loc(M) ∪ Loc(N)
∧ they are first-order consistent)}

satisfies the clauses of {l̃}-simulation. Let l̃ = l1, ....ln = Loc(M)∪Loc(N) and ⟨l̃ = Ṽ ; M⟩ R
⟨l̃ = Ṽ ; N⟩. Hence, M ≤ctx N and clause (1) holds since, using context C = λx.xl1...ln
(with no holes) we derive from M ≤ctx N that 1; l̃ = Ṽ ; l1, ..., ln R(M,N) 1; l̃ = Ṽ ; l1, ..., ln.

To prove that R satisfies the clauses of simulation for formal sums, we first show the
following lemma.

Lemma 66. If Y R(M,N) Z then for any C with Loc(C) ⊆ Loc(M) ∪ Loc(N):

• If JY;C[M,Y]K and JZ;C[N,Z]K are first-order consistent then

JY;C[M,Y]K R(M,N) JZ;C[N,Z]K ;

• If JY;C[M,Y]K and JZ;C[N,Z]K are not first-order consistent then

JY;C[M,Y]K lift(R(M,N)) JZ;C[N,Z]K .

Proof. If Y =
∑

i pi; si;V
i
1 , ..., V

i
n R(M,N)

∑
j qj ; tj ;W

j
1 , ...,W

j
n = Z then they are first-

order consistent environment formal sums and there are C, s such that J⟨s ; C[M ]⟩K =∑
i pi; si;λx.xV

i
1 ...V

i
n and J⟨s ; C[N ]⟩K =

∑
j qj ; tj ;λx.xW

j
1 ...W

j
n and Loc(C) ⊆ {l̃} =

Loc(M) ∪ Loc(N).

Let C ′ be any context with Loc(C) ⊆ {l̃} = Loc(M) ∪ Loc(N) and let

PM,C′ = λx1, ..., xn.(λz, x.xx1...xnz)C
′[M,x1, ..., xn]

and PN,C′ the same term with M substituted to N . It follows from M ≤ctx N that
C[M ]PM,C′ ≤ctx C[N ]PN,C′ .
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We have:

J⟨s ; C[M ]PM,C′⟩K= JJ⟨s ; C[M ]⟩KPM,C′K
= J

∑
i pi; si; (PM,C′V i

1 ...V
i
n)K

= J
∑

i pi; si; (λz, x.xV
i
1 ...V

i
nz)C

′[M,V i
1 , ..., V

i
n]K

=
∑

i,k pi,k; si,k; (λz, x.xV
i
1 ...V

i
nVi,k)

for J
∑

i pi; si;C
′[M,V i

1 , ..., V
i
n]K =

∑
i,k pi,k; si,k;Vi,k and analogously for N :

J⟨s ; C[N ]PN,C′⟩K =
∑

j,h qj,h; tj,h;λx.xW
j
1 ...W

j
nWj,h

for J
∑

j qj ; tj ;C
′[N,W j

1 , ...,W
j
n]K =

∑
j,k qj,h; tj,h;Wj,h.

If J
∑

i pi; si;C
′[M,V i

1 , ..., V
i
n]K and J

∑
j qj ; tj ;C

′[N,W j
1 , ...,W

j
n]K are first order consistent,

then we can conclude, by the definition of R , that∑
i pi;V

i
1 , ..., V

i
n · J⟨si ; C ′[M,V i

1 , ..., V
i
n]⟩K

R(M,N)

∑
j qj ;W

j
1 , ...,W

j
n · J⟨tj ; C ′[N,W j

1 , ...,W
j
n]⟩K

If J
∑

i pi; si;C
′[M,V i

1 , ..., V
i
n]K and J

∑
j qj ; tj ;C

′[N,W j
1 , ...,W

j
n]K are not first order consis-

tent, which means that the dynamic environment is composed of different constants, then
for any constant c we can use the term

PM,C′,c = λx1, ..., xn.(λz, x.xx1...xnz) if C ′[M,x1, ..., xn] = c then c else Ω

to derive, analogously as above, that∑
{i,k|Vi,k=c} pi,k; si,k;V

i
1 , ..., V

i
n, Vi,k R(M,N)

∑
{j,h|Wj,h=c} qj,h; tj,h;W

j
1 , ...,W

j
n,Wj,h

and thus

Y;C[M,Y] =
∑

c

∑
{i,k|Vi,k=c} pi,k; si,k;V

i
1 , ..., V

i
n, Vi,k

lift(R(M,N))∑
c

∑
{j,h|Wj,h=c} qj,h; tj,h;W

j
1 , ...,W

j
n,Wj,h = Z;C[N,Z]

2

Let Y =
∑

i pi; si;V
i
1 , ..., V

i
n R(M,N)

∑
j qj ; tj ;W

j
1 , ...,W

j
n = Z be first-order consistent

environment formal sums and let C, s be such that J⟨s ; C[M ]⟩K =
∑

i pi; si;λx.xV
i
1 ...V

i
n and

J⟨s ; C[N ]⟩K =
∑

j qj ; tj ;λx.xW
j
1 ...W

j
n. We can now prove that R satisfies the simulation

clauses on formal sums.

(2a) It follows from the definition of ≤ctx that M ≤ctx N implies C[M ] ≤ctx C[N ], which
implies weight(Y) = weight(J⟨s ; C[M ]⟩K) ≤ weight(J⟨s ; C[N ]⟩K) = weight(Z).

(2b) Let V i
r = λx.Mi and W j

r = λx.Nj . The result follows from Lemma 66, using context
C = [·]r+1C

′, for any value context C ′.
(2c) Let V i

r = li and W j
r = kj . The result follows from Lemma 66, respectively using

contexts C1 = ![·]r+1 and C2 = [·]r+1 := C ′, for any value context C ′. In the latter case,
since the formal sums are first-order consistent we can use directly relation R(M,N),
without the lifting construction (by the first item of Lemma 66).

(2d) The result follows from the first item of Lemma 66, using context C = (ν x :=C1)C2,
for C1 a value context and C2 a context with free variable x.

(2e) The result directly follows from the definition of R.
(2f) For all r, if V i

r = (Vi,1, ..., Vi,n) and W j
r = (Wj,1, ...,Wj,n) then the result follows by

iteratively applying Lemma 66, using contexts C1 = #1([·]r+1),..., Cn = #n([·]r+1).
(2g) The result follows from Lemma 66, using context C = [·]1.
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