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Abstract
We generalise Ehrhard and Regnier’s Taylor expansion from pure to probabilistic λ-terms. We prove
that the Taylor expansion is adequate when seen as a way to give semantics to probabilistic λ-terms,
and that there is a precise correspondence with probabilistic Böhm trees, as introduced by the
second author. We prove this adequacy through notions of probabilistic resource terms and explicit
Taylor expansion.
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1 Introduction

Linear logic is a proof-theoretical framework which, since its inception [10], has been built
around an analogy between on the one hand linearity in the sense of linear algebra, and on the
other hand the absence of copying and erasing in cut elimination and higher-order rewriting.
This analogy has been pushed forward by Ehrhard and Regnier, who introduced a series of
logical and computational frameworks accounting, along the same analogy, for concepts like
that of a differential, or the very related one of an approximation. We are implicitly referring
to differential λ-calculus [6], to differential linear logic [8], and to the Taylor expansion of
ordinary λ-terms [9]. The latter has given rise to an extremely interesting research line, with
many deep contributions in the last ten years. Not only the Taylor expansion of pure λ-terms
has been shown to be endowed with a well-behaved notion of reduction, but the Böhm tree
and Taylor expansion operators are now known to commute [7]. This easily implies that the
equational theory (on pure λ-terms) induced by the Taylor expansion coincides with the one
induced by Böhm trees.

The Taylor expansion operator is essentially quantitative, in that its codomain is not
merely the set of resource terms [3, 6], a term syntax for promotion-free differential proofs,
but the set of linear combinations of those terms, with positive real number coefficients.
When enlarging the domain of the operator to account for a more quantitative language,
one is naturally lead to consider algebraic λ-calculi, to which giving a clean computational
meaning has been proved hard so far [18].

But what about probabilistic λ-calculi [11], which have received quite some attention
recently (see, e.g. [5, 2, 16]) due to their applicability to randomised computation and bayesian
programming? Can the Taylor expansion naturally be generalised to those calculi? This
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13:2 On the Taylor Expansion of Probabilistic λ-terms

is an interesting question, to which we give the first definite positive answer in this paper.
In particular, we show that the Taylor expansion of probabilistic λ-terms is a conservative
extension of the well-known one on ordinary λ-terms. In particular, the target can be taken,
as usual, as a linear combination of ordinary resource terms, i.e., the same kind of structure
which Ehrhard and Regnier considered in their work on the Taylor expansion of pure λ-terms.
We moreover show that the Taylor expansion, as extended to probabilistic λ-terms, continues
to enjoy the nice properties it has in the deterministic realm. In particular, it is adequate as
a way to give semantics to probabilistic λ-terms, and the equational theory on probabilistic
λ-terms induced by Taylor expansion coincides with the one induced by a probabilistic
variation on Böhm trees [1]. The latter, noticeably, has been proved to capture observational
equivalence, one quotiented modulo η-equivalence [1].

Are we the first ones to embark on the challenge of generalising Taylor’s expansion to
probabilistic λ-calculi, and in general to effectful calculi? Actually, some steps in this direction
have recently been taken. First of all, we need to mention the line of works originated by
Tsukada and Ong’s paper on rigid resource terms [14]. This has been claimed from the very
beginning to be a way to model effects in the resource calculus, but it has also been applied
to, among others, probabilistic effects, giving rise to quantitative denotational models [15].
The obtained models are based on species, and are proved to be adequate. The construction
being generic, there is no aim at providing a precise comparison between the discriminating
power of the obtained theory and, say, observational equivalence: the choice of the underlying
effect can in principle have a huge impact on it.

One should also mention Vaux’s work on the algebraic λ-calculus [18], where one can
build arbitrary linear combinations of terms. He showed a correspondence between Taylor
expansion and Böhm trees, but only for terms whose Böhm trees approximants at finite
depths are computable in a finite number of steps. This includes all ordinary λ-terms
but not all probabilistic ones. More recently Olimpieri and Vaux have studied a Taylor
expansion for a non-deterministic λ-calculus [19] corresponding to our notion of explicit
Taylor expansion (Section 3).

The Probabilistic Taylor Expansion, Informally
The main idea behind building the Taylor expansion of any λ-term M is to describe the
dynamics of M by way of linear approximations of M . In the realm of the λ-calculus, a
linear approximation has traditionally been taken as a resource term:

s, t ∈ ∆ := x | λx.s | 〈s〉 t s, t ∈ ∆! := [s1, . . . , sn].

A resource term can be seen as a pure λ-term in which applications have the form 〈s〉 t,
where s is a term and t is a multiset of terms, and in which the result of firing the redex
〈λx.s〉 t is the linear combination of all the terms obtained by allocating the resources in t
to the occurrences of x in s. For instance, one such element in the Taylor expansion of δ is
λx.(〈x〉 [x]), where the occurrence of x in head position is provided with only one copy of
its argument. If applied to the multiset [y, z], this term would reduce into 〈y〉 [z] + 〈z〉 [y].
Similarly, an element in the Taylor expansion of δ I would be 〈λx.〈x〉 [x]〉 [I2], which reduces
into 2.〈I〉 [I]. Another element of the same Taylor expansion is 〈λx.〈x〉 [x]〉 [I3], but this one
reduces into 0: there is no way to use its resources linearly, i.e., using them without copying
and erasing.

The actual Taylor expansion of a term is built by translating any application M N into
an infinite sum

(M N)∗ =
∑
n∈N

1
n! .〈M

∗〉 [(N∗)n]
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Figure 1 M ’s Reduction Tree.

and x∗ = x, (λx.M)∗ = λx.M∗. Remark that M∗ and N∗ are linear combinations, but
constructors of the resource calculus are multilinear. For instance (λx.M)∗ =

∑
s∈∆M∗s .λx.s.

As an example the Taylor expansion of δ I is
∑
m,n∈N

1
m!n! .〈λx.〈x〉 [xm]〉 [In]. Remark that

any summand properly reduces only when n = m+ 1, in which case it reduces to n!.〈I〉 [Im].
In turn 〈I〉 [Im] reduces properly only when m = 1, and the result is I. All the other terms
reduce to 0. In the end the Taylor expansion of δ I normalises to 2!

1!2! .I = I, which is exactly
the Taylor expansion of the normal form of δ I. More generally every Taylor expansion is
normalisable, and the normal form of the Taylor expansion of a term corresponds to the
Taylor expansion of its Böhm tree, hence (normal forms of) Taylor expansions yields an
interesting model of deterministic λ-calculus.

Now let us consider the probabilistic λ-term M = δ(I ⊕ Ω), where ⊕ is an operator for
binary, fair, probabilistic choice, δ = λx.xx, I = λ.x.x and Ω = δδ is a purely diverging,
term. As such, M is a term of a minimal, untyped, probabilistic λ-calculus. Evaluation
of M is performed leftmost-outermost is as in Figure 1. In particular, the probability of
convergence for M is 1

4 . Please observe that two copies of the argument I ⊕ Ω are produced,
and that the “rightmost” one is evaluated only when the “leftmost” one converges, i.e. when
the probabilistic choice I ⊕ Ω produces I as a result.

Extending the Taylor expansion to probabilistic terms seems straightforward, a natural
candidate for the Taylor expansion of M ⊕N being just 1

2 .M
∗ + 1

2 .N
∗. When computing

the Taylor expansion of M we will find expressions such as 〈λx.〈x〉 [x]〉 [( 1
2 .I + 1

2 .Ω
∗)2], i.e.

1
4 .〈λx.〈x〉 [x]〉 [I2] + 1

4 .〈λx.〈x〉 [x]〉 [Ω2] + 1
2 .〈λx.〈x〉 [x]〉 [I,Ω]. For non-trivial reasons, the

Taylor expansion of any diverging term normalises to 0, so just like in our previous example,
the only element in M∗ which does not reduce to 0 is 〈λx.〈x〉 [x]〉 [I2]. The difference is that
this time it appears with a coefficient 1

1!2!
1
4 , so M

∗ normalises to 1
4 .I. Please notice how this

is once again the “normal form” of the original term M .

The goal of this paper is to show that the correspondence between Taylor expansions and
Böhm trees is preserved when we add probabilistic choices to the calculus. Unfortunately
although the final result is the same as in the deterministic setting, the known proof techniques
fail. To begin with not all (infinite) linear combinations of resource term are normalisable.
Normal forms of deterministic Taylor expansions always exist because such expansions are
uniform: all terms in their support have the same shape (the support of (λx.M)∗ only
contains abstractions, etc.) and this property is known to ensure normalisability. This
property does not hold for probabilistic expansions: (x⊕ λy.y)∗ contains both the variable x
and the abstraction λy.y. Thus we need to find a different way to prove that probabilistic
Taylor expansions normalise. We proceed by using an intermediate notion of Taylor expansion
with explicit choices, which enjoys uniformity and share other properties with deterministic
Taylor expansion, and we then transpose directly the results on this intermediate construction
to the “natural” probabilistic Taylor expansion.
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13:4 On the Taylor Expansion of Probabilistic λ-terms

Layout of the Paper
In Section 2 we introduce the resource calculus with explicit choices and show it enjoys the
same properties as the usual deterministic resource calculus. In Section 3, we define the
explicit Taylor expansion from probabilistic λ-terms. These constructions have an interest
in themselves and they have been independently studied by Olimpieri and Vaux [19] for
a non-deterministic calculus but in this paper they are just an intermediate step towards
proving our main results. Definitionally, the crux of the paper is Section 4, in which the
Taylor expansion of a probabilistic λ-term is made to produce ordinary resource terms. The
relation between Böhm trees and Taylor expansions is investigated in Section 5 and Section 6.

Notations
We write N for the set of natural numbers and R+ for the set of nonnegative real numbers.
Given a set A, we write R+〈A〉 for the set of families of positive real numbers indexed by
elements in A. We write such families as linear combinations: an element S ∈ R+〈A〉 is
a sum S =

∑
a∈A Sa.a, with Sa ∈ R+. The support of a family S ∈ R+〈A〉 is supp(S) =

{a ∈ A | Sa > 0}. We write R+[A] for those families S ∈ R+〈A〉 such that supp(S) is finite.
Given a ∈ A we often write a for 1.a ∈ R+〈A〉 unless we want to emphasise the difference
between the two expressions. We also define finite multisets over A as functions m : A→ N
such that m(a) 6= 0 for finitely many a ∈ A. We use the notation [a1, . . . , an] to describe the
multiset m such that m(a) is the number of indices i ≤ n such that ai = a.

2 Probabilistic Resource Calculus

In this section, we describe the theory of resource terms with explicit choices, for the purpose
of extending many of the properties of resource terms to the probabilistic case. All this has
an interest in itself, but here this is mainly useful as a way to render certain proofs about
the Taylor Expansion easier (see Section 3 for more details). For this reason we try to give
the reader a clear understanding of this calculus and of why these definitions and properties
are useful, without focusing on the actual proofs. These are straightforward generalisations
of those for deterministic resource terms [9] and can be found in an extended version of this
paper [4]. The same results have recently been given for a non-deterministic calculus [19] by
Olimpieri and Vaux.

2.1 The Basics
IDefinition 1. The sets of probabilistic simple resource terms ∆⊕ and of probabilistic
simple resource poly-terms ∆!

⊕ over a set of variables V are defined by mutual induction
as follows:

s, t ∈ ∆⊕ := x | λx.s | 〈s〉 t | s⊕p • | • ⊕p s s, t ∈ ∆!
⊕ := [s1, . . . , sn]

where p ranges over [0, 1]. We call finite probabilistic resource terms the finite linear
combinations of resource terms in R+[∆⊕], and finite probabilistic resource poly-terms
the finite linear combinations of resource poly-terms in R+[∆!

⊕]. We extend the constructors
of simple (poly-)terms to (poly-)terms by linearity, e.g., if S ∈ R+[∆⊕] then λx.S is defined
as the poly-term such that (λx.S)λx.s = Ss and (λx.S)t = 0 if t is not an abstraction.

Some consecutive abstractions λx1. . . . λxn.s will be indicated as λx1 . . . xn.s, or even as
λ~x.s. Similarly, to describe many successive applications 〈〈〈M〉 N1〉 . . . 〉 Nk, we use a single
pair of brackets and we write 〈M〉 N1 . . . Nk.
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We write ∆(!)
⊕ for ∆⊕ ∪∆!

⊕, which is ranged over by metavariables like σ, τ . Note that
intuitively ∆(!)

⊕ should stand for either ∆⊕ or ∆!
⊕, not their union. For instance we will

prove some properties for finite linear combinations in R+[∆(!)
⊕ ], but the only relevant linear

combinations are the actual (poly-)terms in R+[∆⊕] or R+[∆!
⊕]. Yet this distinction is

technically irrelevant, and all our results hold if we define ∆(!)
⊕ as a union.

The reason why linear combinations over such elements are dubbed terms will be clear
once we describe the operational semantics of the resource calculus. The main point of the
resource calculus is to allow functions to use their argument arbitrarily many times and yet
remain entirely linear, which is achieved by taking multisets as arguments: if a function
uses its argument n times then it needs to receive n resources as argument and use each of
them linearly. This idea has two consequences. First, an application can fail if a function is
not given exactly as many arguments as it needs, as it would need either to duplicate or to
discard some of them. Second, the result of a valid application is often not unique: a function
can choose how to allocate the different resources to the different calls to its argument, and
different choices may lead to different results. Both these features are treated using linear
combinations: a failed application results in 0 (i.e. the trivial linear combination) and a
successful one yields the sum of all its possible outcomes.

I Definition 2. We define the substitution of t ∈ ∆!
⊕ for x ∈ V in s ∈ ∆⊕ by:

δxs · [t1, . . . , tn] =
{

0 if s does not have exactly n free occurences of x∑
ρ∈Sn

s[tρ(1)/x1, . . . , tρ(n)/xn] ∈ R+[∆(!)
⊕ ] otherwise

where x1, . . . , xn are the free occurrences of x in s and Sn is the set of permutations over
{1, . . . , n}.

I Example 3. A basic example is δx(〈x〉 [x]) · [y, z] = 〈y〉 [z] + 〈z〉 [y]: there are two
occurrences of x in 〈x〉 [x], so there are two ways to substitute [y, z] for them. Remark that
we also have δx[x, x] · [y, z] = [y, z] + [z, y] = 2.[y, z]: the two occurrences of x are not as
clearly distinguished as in the first example but they still count as different occurrences.
Similarly δx(〈x〉 [x]) · [y, y] = 2.〈y〉 [y] and δx[x, x] · [y, y] = 2.[y, y]: there are two distinct
occurrences of y, so there are two ways to allocate them. As another example, please consider
δx(λx.x) · [y] = δx(〈x〉 [x]) · [y] = 0: the substitution fails if the number of resources does not
match the number of free occurrences of the substituted variable.

The operational semantics of the deterministic resource calculus [9] is usually given as a
single rule of β-reduction. In the probabilistic setting, we also need rules to make choices
commute with head contexts.

I Definition 4. The reductions →β and →⊕ are defined from ∆(!)
⊕ to R+[∆(!)

⊕ ] by:

〈λx.s〉 t→β δxs · t
λx.(s⊕p •)→⊕ λx.s⊕p • λx.(• ⊕p s)→⊕ • ⊕p λx.s
〈s⊕p •〉 t→⊕ 〈s〉 t⊕p • 〈• ⊕p s〉 t→⊕ • ⊕p 〈s〉 t

extended under arbitrary contexts. We simply write → for →β ∪ →⊕. Reduction can be
extended to finite terms in the following way: if S ∈ R+[∆(!)

⊕ ], Sσ > 0 and σ → T then
S → S − Sσ.σ + SσT .

As the resource calculus does not allow any duplication, and β-reduction erases some
constructors, it naturally decreases the size of the involved simple terms. Consequently,
β-reduction is strongly normalising. This result can be extended to the whole reduction →,
which is also confluent.

FSCD 2019



13:6 On the Taylor Expansion of Probabilistic λ-terms

I Proposition 5. The reduction → is confluent and strongly normalising on R+[∆(!)
⊕ ]. Given

S ∈ R+[∆(!)
⊕ ] we write nf(S) for its unique normal form for →, and given σ ∈ ∆(!)

⊕ we write
nf(σ) for nf(1.σ).

2.2 Infinite Terms
So far we only worked with finite terms but to fully express the operational behaviour of a
λ-term in the resource λ-calculus, which is the purpose of the Taylor expansion, we need
infinite ones. We can extend the constructors of the calculus to R+〈∆(!)

⊕ 〉 by linearity and
generalise the reduction relation →, but Proposition 5 fails. Indeed let I0 = I = λx.x and
In+1 = 〈In〉 [I]. For n ∈ N, let S =

∑
n∈N In. Then, for all n ∈ N the term In normalises in

n steps and S does not normalise in a finite number of reduction steps. A simple solution to
this problem is to define the “normal form” of an infinite term by normalising each of its
components: we can set nf(S) =

∑
σ∈∆(!)

⊕
Sσnf(σ). But then another problem arises. In our

previous example, we have nf(In) = I for all n ∈ N, thus we would have nf(S) =
∑
n∈N I,

which is not an element of R+〈∆(!)
⊕ 〉 as the coefficient of I is infinite. Still we can use this

pointwise normalisation if we consider terms with a particular property, called uniformity.

I Definition 6. The coherence relation ¨ on ∆(!)
⊕ is defined by:

x ¨ x
s ¨ s′

λx.s ¨ λx.s′
s ¨ s′ t ¨ t′

〈s〉 t ¨ 〈s′〉 t′
s ¨ s′

s⊕p • ¨ s′ ⊕p •
s ¨ s′

• ⊕p s ¨ • ⊕p s′

s ¨ s t ¨ t
s⊕p • ¨ • ⊕p t

s ¨ s t ¨ t
• ⊕p t ¨ s⊕p •

∀i, j ≤ m+ n, si ¨ sj

[s1, . . . , sm] ¨ [sm+1, . . . , sm+n]

For S, S′ ∈ ∆(!)
⊕ we write S ¨ S′ when for all σ, σ′ ∈ supp(S) ∪ supp(S′), σ ¨ σ′. A simple

(poly-)term σ ∈ ∆(!)
⊕ is called uniform if σ ¨ σ, and a term S ∈ R+〈∆(!)

⊕ 〉 is called uniform
if S ¨ S.

Observe that the term S defined above is not uniform: I0 is an abstraction whereas for
any n ∈ N, In+1 is an application, hence I0 and In+1 are not coherent. More generally Im
and In are not coherent whenever m 6= n. We can change the definition of I0 to get a uniform
term: let I ′0 = 〈I〉 [ ], I ′n+1 = 〈I ′n〉 [I] for n ∈ N, and S′ =

∑
n∈N I

′
n. Then I ′n+1 reduces into

I ′n, just like In+1 reduces into In, but I ′0 is not a normal form as it reduces into 0. Thus the
uniform term S′ has a normal form nf(S′) =

∑
n∈N nf(I ′n) = 0.

I Remark 7. In the rules for s⊕p • ¨ • ⊕p t and • ⊕p t ¨ s⊕p • we require s ¨ s and t ¨ t

to ensure that whenever σ ¨ τ , the simple (poly-)terms σ and τ are necessarily uniform.
This is not crucial as we usually consider uniform (poly-)terms (whose support only contains
uniform simple (poly-)terms), and indeed in [19] the non-deterministic terms s ⊕ • and
• ⊕ t are always considered coherent. We only add this requirements to simplify inductive
reasoning on ¨.

What makes coherence and uniformity interesting is that if two coherent terms S and S′
have disjoint supports, then all of their reducts, and in particular their normal forms, have
disjoint supports. Then any element in the support of nf(S + S′) comes either from nf(S) or
from nf(S′), but it cannot come from both.

I Proposition 8. Given S, S′ ∈ R+[∆(!)
⊕ ], if S ¨ S′ then nf(S) ¨ nf(S′). If moreover

supp(S) ∩ supp(S′) = ∅ then supp(nf(S)) ∩ supp(nf(S′)) = ∅.
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This immediately implies that pointwise reduction of infinite uniform terms is well defined,
as both complete left reducts and normal forms of distinct but coherent simple (poly-)terms
have disjoint supports.

I Corollary 9. If S ∈ R+〈∆(!)
⊕ 〉 is uniform then

∑
σ∈∆(!)

⊕
Sσnf(σ) is in R+〈∆(!)

⊕ 〉. We write
nf(S) for this sum.

2.3 Regular Terms
The deterministic Taylor expansion associates to any λ-term a uniform term, and explicit
choices are adopted precisely for the sake of preserving this property in the probabilistic
case. Taylor expansions have another important property: they are entirely defined by their
support. If a simple term s is in the support of the Taylor expansion of a λ-term M , then
its coefficient is the inverse of its multinomial coefficient, which does not depend on M .
Moreover this property is preserved by normalisation. Using explicit choices enforces this
result in the probabilistic case, as well.

I Definition 10. For any σ ∈ ∆(!)
⊕ we define the multinomial coefficient m(σ) ∈ N by:

m(x) = 1 m(〈s〉 t) = m(s)m(t)

m(λx.s) = m(s⊕p •) = m(• ⊕p s) = m(s) m(s) =
∏
u∈∆⊕

s(u)! ·m(u)s(u)

where s(u) is the multiplicity of u in s.

I Definition 11. A uniform term S ∈ R+〈∆(!)
⊕ 〉 is called regular if for all σ ∈ supp(S),

Sσ = 1
m(σ) .

Multinomial coefficients correspond to the number of permutations of multisets which
preserve the description of simple (poly-)terms. For instance, given variables x1, . . . , xn ∈ V,
the coefficient m([x1, . . . , xn]) is exactly the number of permutations ρ ∈ Sn such that
(xρ(1), . . . , xρ(n)) = (x1, . . . , xn). For a more precise interpretation of multinomial coefficients
see [9] or [14]. Due to their relation with permutations in multisets, these coefficients appear
naturally when we perform substitutions.

I Theorem 12. For any σ ∈ ∆(!)
⊕ uniform, for x ∈ V, t ∈ ∆!

⊕ and u ∈ supp(δxσ · t), we
have: (δxσ · t)u = m(t)m(σ)

m(u) .

This theorem ensures that a regular β-redex 1
m(〈λx.s〉 t) .〈λx.s〉 t reduces into a regular

term. More generally, the theorem is the key step towards proving that regular (poly-)terms
always normalise to regular (poly-)terms.

I Theorem 13. If S ∈ R+〈∆(!)
⊕ 〉 is regular then nf(S) is regular.

2.4 Regularity and the Exponential
The regularity of terms is preserved by the constructors of simple resource terms.

I Proposition 14. For all x ∈ V, S ∈ R+〈∆⊕〉 regular and T ∈ R+〈∆!
⊕〉 regular, the terms

1.x, λx.S, S ⊕p •, • ⊕p S and 〈S〉 T are regular.

FSCD 2019



13:8 On the Taylor Expansion of Probabilistic λ-terms

One may expect a similar result for poly-terms: if S1,. . . ,Sn in R+〈∆⊕〉 are regular then
[S1, . . . , Sn] is regular. However, this is not the case: 1.x is regular and yet 1.[x, x] is not.
Indeed nontrivial coefficients appear in m(σ) precisely when σ contains simple poly-terms
with multiplicities greater than 1, so the regular sum with the same support as [S1, . . . , Sn]
has no simple description. A natural way to build regular poly-terms from regular terms is
to use the following construction.

I Definition 15. The exponential of S ∈ R+〈∆⊕〉 is !S =
∑
n∈N

1
n! [S

n] ∈ R+〈∆!
⊕〉, where

[Sn] stands for the poly-term [S, . . . , S] with n copies of S.

I Proposition 16. If S ∈ R+〈∆⊕〉 is regular then !S is regular.

Proof. The key point is that the number of sequences (s1, . . . , sn) which describe a given
simple poly-term s = [s1, . . . , sn] is exactly n!∏

u∈∆⊕
s(u)!

. J

With these results, we have all the ingredients we need to translate (probabilistic) λ-terms
into regular terms: variables and abstractions of regular terms are regular, and we can
define an application between regular terms following Girard’s call-by-name translation of
intuitionistic logic into linear logic [10]: S applied to T is 〈S〉 !T .

3 Explicit Probabilistic Taylor Expansion

This section is devoted to defining and studying the Taylor expansion with explicit choices,
or explicit Taylor expansion, of probabilistic λ-terms. It is named as such because its target
is the set of probabilistic resource terms, as defined in the previous section, rather than the
usual ones. This is not the main contribution of this paper, but an intermediate step in the
study of Taylor expansion as defined in Section 4.

3.1 The Definition
Probabilistic λ-terms are λ-terms enriched with a probabilistic choice operator.

I Definition 17. The set of probabilistic λ-terms Λ+ is:

M,N ∈ Λ+ := x | λx.M |M N |M ⊕p N

I Definition 18. The explicit Taylor expansion M⊕ is defined inductively as follows:

x⊕ = x (M N)⊕ = 〈M⊕〉 !N⊕ =
∑
n∈N

1
n! 〈M

⊕〉 [(N⊕)n]

(λx.M)⊕ = λx.M⊕ (M ⊕p N)⊕ = (M⊕ ⊕p •) + (• ⊕p N⊕)

The results from the previous section immediately imply that Taylor expansions are
regular resource terms and that they are normalisable.

I Proposition 19. For all M ∈ Λ+, the explicit Taylor expansion M⊕ is uniform and
regular.

Proof. This is a direct consequence of Proposition 14 and Proposition 16. J

I Corollary 20. Every explicit Taylor expansion M⊕ has a normal form nf(M⊕), which we
call the explicit Taylor normal form of M , and which is regular.

Proof. This is given by Theorem 13. J
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3.2 Probabilistic Reduction

In the literature, the probabilistic λ-calculus is usually endowed with a labelled transition
relation p−→ describing a probabilistic reduction process, where a choice M ⊕p N reduces to
M with probability p and to N with probability 1− p. Here to emphasise the correspondence
between such a reduction and the constructors s ⊕p • and • ⊕p t of the resource calculus
we rather use labels l, p and r, p to explicit whether we reduce to the left-hand side or the
right-hand side of a choice ⊕p. Since we were mostly interested in normalisation in the
resource calculus, we will only consider a big-step operational semantics for the probabilistic
λ-calculus.

I Definition 21. Head contexts are contexts of the form λ~x.[ ] ~P , and are indicated with
the metavariable H. Head normal forms are terms of the form H[y]. We write hnf for
the set of all head normal forms. We now define a formal system deriving judgements in
the form ρ ` M →→ h where M ∈ Λ+, h ∈ hnf and ρ is a finite sequence of elements in
{l, r} × [0, 1]:

ε ` h→→ h

ρ ` H[M
[
N/x

]
]→→ h

ρ ` H[(λx.M)N ]→→ h

ρ ` H[M ]→→ h

(l, p) · ρ ` H[M ⊕p N ]→→ h

ρ ` H[N ]→→ h

(r, p) · ρ ` H[M ⊕p N ]→→ h

where ε is the empty sequence and (`, p) · (ρ1, . . . , ρn) = ((`, p), ρ1, . . . , ρn) for ` ∈ {l, r}.

I Lemma 22. For all M ∈ Λ+ and ρ there is at most one h ∈ hnf such that ρ `M →→ h.

An interesting property of explicit Taylor expansion is that the explicit Taylor normal
form of a term M is precisely given by the explicit Taylor normal forms of the head normal
forms h of M , as well as the sequences of choices ρ such that ρ `M →→ h.

I Definition 23. Given a sequence of choices ρ and s ∈ ∆⊕ we define ρ ·s ∈ ∆⊕ by induction
on the length of ρ by:

ε · s = s ((l, p) · ρ) · s = (ρ · s)⊕p • ((r, p) · ρ) · s = • ⊕p (ρ · s)

We extend this definition to R+〈∆⊕〉 by linearity.

I Theorem 24. Given any M ∈ Λ+,

nf(M⊕) =
∑
h∈hnf

∑
ρ`M→→h

ρ · nf(h⊕).

Proof. First observe that these resource terms are regular: Corollary 20 states that nf(M⊕)
and the nf(h⊕) are regular (so the ρ · nf(h⊕) are regular too), and if ρ ` M →→ h and
ρ′ ` M →→ h′ then either ρ = ρ′ and by Lemma 22 h = h′, or ρ 6= ρ′ and then ρ · nf(h⊕)
and ρ′ · nf(h′⊕) have disjoint supports and we can show they are coherent. Thus we only
need to prove that these terms have the same supports. On one hand we can prove that
for any s ∈ supp(M⊕) and any t ∈ supp(nf(s)) there exist ρ and h such that ρ ` M →→ h

and t ∈ supp(ρ · nf(h⊕)), by reasoning by induction on the size of s. When s has a
head β-redex we need to check that in general if u ∈ supp(U⊕) and v ∈ supp(!V ⊕) then
supp(δxu · v) ⊂ supp((U

[
V /x

]
)⊕), which is immediate by induction on U . On the other

hand if ρ `M →→ h we prove that for any t ∈ supp(nf(h⊕)) we have ρ · t ∈ supp(nf(M⊕)),
by induction on the proof of ρ `M →→ h. J
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4 Generic Taylor Expansion of Probabilistic λ-terms

4.1 Barycentric Semantics of Choices
The explicit probabilistic Taylor expansion is satisfactory in that it is an extension of
deterministic Taylor expansion which preserves its most important properties: it is regular
and so are its normal forms. But while deterministic Taylor normal forms are well known to
correspond to Böhm trees [7], explicit Taylor normal forms are not such a good denotational
semantics for probabilistic λ-calculus, as they take the exact choices made during the reduction
into account. For instance the terms x⊕ 1

2
y and y ⊕ 1

2
x have distinct explicit Taylor normal

forms while one could expect them to have the same semantics. More precisely we expect
any model of the probabilistic λ-calculus to interpret probabilistic choices as a barycentric
sum respecting the following equivalence.

I Definition 25. The barycentric equivalence ≡bar is the least congruence on Λ+ such
that for all M,N,P ∈ Λ+ and p, q ∈ [0, 1]:

M ⊕p N ≡bar N ⊕1−pM M ⊕pM ≡bar M

(M ⊕p N)⊕q P ≡bar M ⊕pq (N ⊕ q(1−p)
1−pq

P ) if pq 6= 1 M ⊕1 N ≡bar M

We want a notion of Taylor expansion M∗ such that if M ≡bar N then M∗ = N∗. This
is easy to achieve, as the resource calculus stemmed precisely from quantitative models of
the λ-calculus, and resource terms are linear combinations.

I Definition 26. The sets of simple resource terms ∆ and of simple resource poly-
terms ∆! are:

s, t ∈ ∆ := x | λx.s | 〈s〉 t s, t ∈ ∆! := [s1, . . . , sn]

The set of resource terms is R+〈∆〉 and the set of resource poly-terms is R+〈∆!
⊕〉.

I Definition 27. The Taylor expansion M∗ ∈ R+〈∆〉 of a term M ∈ Λ+ is defined
inductively as follows:

x∗ = x (M N)∗ =
∑
n∈N

1
n! 〈M

∗〉 [(N∗)n]

(λx.M)∗ = λx.M∗ (M ⊕p N)∗ = pM∗ + (1− p)N∗

The definition of the Taylor expansion of a probabilistic choice immediately gives the expected
property.

I Proposition 28. If M ≡bar N then M∗ = N∗.

4.2 Normalisation
Unfortunately, these Taylor expansions lack all the good properties of explicit expansions:
they are not entirely defined by their support, and those supports are not uniform, so we
do not even know if such Taylor expansions admit normal forms. But there is actually a
close relationship between explicit and non explicit Taylor expansions which can be used to
recover our most important results. Indeed, switching from the explicit Taylor expansion to
the Taylor expansion simply amounts to using coefficients instead of explicit choices.
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I Definition 29. Given any σ ∈ ∆(!)
⊕ we define |σ| ∈ ∆(!) and a probability P(σ) as follows:

|x| = x P(x) = 1
|λx.s| = λx.|s| P(λx.s) = P(s)
|〈s〉 t| = 〈|s|〉 |t| P(〈s〉 t) = P(s)P(t)
|s⊕p •| = |s| P(s⊕p •) = pP(s)
| • ⊕ps| = |s| P(• ⊕p s) = (1− p)P(s)

|[s1, . . . , sn]| = [|s1|, . . . , |sn|] P([s1, . . . , sn]) =
n∏
i=1
P(si)

To any probabilistic resource (poly-)term S ∈ R+〈∆(!)
⊕ 〉 one could associate the resource

term
∑
σ∈∆(!)

⊕
SσP(σ).|σ|. But just like with normalisation, infinite coefficients may appear.

For instance, removing the choices from S =
∑

((x⊕1 •) . . . )⊕1 • (the sum of all simple terms
with x under any number of left choices) could give x an infinite coefficient. Fortunately, we
do not get any infinite coefficient if we work with regular terms.

I Proposition 30. For any S ⊂ ∆(!)
⊕ such that for all σ, σ′ ∈ S, σ ¨ σ′ and |σ| = |σ′| we

have
∑
σ∈S P(σ) ≤ 1.

I Corollary 31. For all S ∈ R+〈∆(!)
⊕ 〉 regular,

∑
σ∈∆(!)

⊕
SσP(σ).|σ| is in R+〈∆(!)〉.

In particular, we can apply this process to explicit Taylor expansions and to their normal
forms. It is easy to see that we associate to every explicit Taylor expansion the corresponding
Taylor expansion, but more interestingly erasing choices commutes with normalisation.

I Proposition 32. For any M ∈ Λ+:∑
s∈∆⊕

M⊕s P(s).|s| = M∗
∑
t∈∆⊕

nf(M⊕)tP(t).|t| =
∑
s∈∆

M∗s .nf(s)

hence
∑
s∈∆M∗s .nf(s) is well defined. We denote it by nf(M∗) and we call it the Taylor

normal form of M .

Proof. The key point is that nf(|σ|) = |nf(σ)| and for any τ ∈ supp(nf(σ)), P(τ) = P(σ). J

4.3 Adequacy
The behaviour of a probabilistic λ-term is usually described as a (sub-)probability distribution
over the possible results of its evaluation. In particular, the observable behaviour of a term
is its convergence probability, i.e. the probability for its computation to terminate [11, 5]. To
show that the Taylor expansion gives a meaningful semantics we will prove it is adequate, i.e.
it does not equate terms which are not observationally equivalent. We can actually show a
more refined result, given as a Corollary of Theorem 24: the Taylor normal form of a term is
given by the Taylor normal forms of its head normal forms.

I Definition 33. The any sequence of choices ρ we associate a probability P(ρ) by:

P(ε) = 1 P((l, p) :: ρ) = pP(ρ) P((r, p) :: ρ) = (1− p)P(ρ)

The probability P (M →→ h) for M ∈ Λ+ to reduce into a head normal form h and its
convergence probability P⇓(M) are defined as follows:

P (M →→ h) :=
∑

ρ`M→→h

P(ρ) P⇓(M) =
∑
h∈hnf

P (M →→ h) .
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I Proposition 34. For M ∈ Λ+ we have:

nf(M∗) =
∑
h∈hnf

P (M →→ h) nf(h∗).

Proof. This is given by Proposition 32 and Theorem 24. Observe that for any ρ and
s ∈ nf(h⊕) we have P(ρ · s) = P(ρ)P(s) and |ρ · s| = |s|. J

The adequacy follows immediately.

I Proposition 35. If nf(M∗) = nf(N∗) then for all context C, P⇓(C[M ]) = P⇓(C[N ]), i.e.
M and N are contextually equivalent.

Proof. First the convergence probability of a term M is exactly the sum of the coefficients
nf(M∗)λ~x.y [ ] ... [ ]. Second if nf(M∗) = nf(N∗) then nf(C[M ]∗) = nf(C[N ]∗) for all C. J

5 On the Taylor Expansion and Böhm Trees

5.1 A Commutation Theorem
Deterministic Taylor normal forms are an adequate semantics for the probabilistic λ-calculus,
but more precisely they are known to correspond to Böhm trees [7]. We are now able to
show that this result extends to the probabilistic case.

I Definition 36. The sets of probabilistic Böhm trees PT d and of probabilistic value
trees VT d for d ∈ N are defined inductively by induction on the depth d:

PT 0 = {⊥ : ∅ → [0, 1]} VT 0 = ∅
PT d+1 = D(VT d+1) VT d+1 = {λ~x.y T1 · · · Tm | T1, . . . ,Tm ∈ PT d}

where D(X) is the set of countable-support subprobability distributions on any set X, ⊥ is
the only subprobability distribution over the empty set, i.e. over VT 0.

I Definition 37. We define PTd(M) for M ∈ Λ+ and d ≥ 0, and VTd(h) for h ∈ hnf and
d ≥ 1 by induction on the depth d as follows: PT0(M) is the unique function ∅ → [0, 1] and

PTd+1(M) = t 7→
∑

h∈VT−1
d+1(t)

P (M →→ h)

VTd+1(λ~x.y M1 . . . Mm) = λ~x.y PTd(M1) . . . PTd(Mm)

Intuitively the Böhm tree of a term M would be some limit of its finite Böhm approximants
PTd(M). To avoid making the structure of Böhm trees of infinite depth explicit, we simply
write PT (M) for the sequence (PTd(M))d∈N. In particular we say that M and N have the
same Böhm tree iff PTd(M) = PTd(N) for every d ∈ N.

The definition of the Taylor expansion can easily be generalised to finite-depth Böhm
trees. We simply define T∗ for T ∈ PT d and t∗ for t ∈ VT d+1 by:

T∗ =
∑

t∈VT d

T(t)t∗ (λ~x.y T1 . . . Tm)∗ = λ~x.〈y〉 !T∗1 . . . !T∗m

We extend this definition to infinite Böhm trees as follows: if s ∈ ∆ contains at most ds
layers of nested multisets then for any M ∈ Λ+, PTd(M)∗s = PTds

(M)∗s for all d ≥ ds, so
PT (M)∗s can be taken as PTds(M)∗s. Then the Taylor normal form of a term is exactly the
Taylor expansion of its Böhm tree.
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I Theorem 38. For all M ∈ Λ+, nf(M∗) = (PT (M))∗.

Proof. We prove nf(M∗)s = (PT (M))∗s by induction on ds, using to Proposition 34. J

This theorem is important but it does not actually prove the correspondence between
Böhm trees and Taylor expansions: we still do not know if Taylor expansion is injective
on Böhm trees. In the deterministic case this is simple to prove: to every deterministic
Böhm tree T of depth d we can associate a simple resource term sT such that for all
M ∈ Λ, BTd(M) = T iff sT ∈ supp(nf(M∗)) (by associating λ~x.〈y〉 [sT1 ] . . . [sTm

] to
λ~x.yT1 . . . Tm). This works because ordinary Böhm trees are not quantitative, thus the
quantitative part of their Taylor expansions (the coefficients) is irrelevant. The situation
is more complicated in the probabilistic case, as Taylor expansions are no longer defined
solely by their supports. The rest of this article is devoted to proving injectivity for the
probabilistic Taylor expansion.

5.2 Böhm Tests
In order to better understand coefficients in probabilistic Taylor expansions and to get our
injectivity property, we use a notion of testing coming from the literature on labelled Markov
decision processes [17].

I Definition 39 (Böhm Tests). The classes of Böhm term tests (BTTs) and Böhm hnf tests
(BHTs) are given as follows, by mutual induction:

T,U ::= ω | T ∧ U | ev(t) t, u ::= ω | t ∧ u | (λx1. · · · .λxn.y)(T 1, . . . , Tm)

The probability of success of a BTT T on a term M and the probability of success of a BHT
t on an head-normal-form h, indicated as Pr(T,M) and Pr(t, h) respectively, are defined as
follows:

Pr(T ∧ U,M) = Pr(T,M) · Pr(U,M); Pr(ω,M) = Pr(ω, h) = 1;

Pr(t ∧ u, h) = Pr(t, h) · Pr(u, h); Pr(ev(t),M) =
∑

h∈hnf

P (M →→ h) · Pr(t, h);

Pr((λx1. · · · .λxn.y)(T 1, . . . , Tm), λx1 · · · .λxn.yM1 · · ·Mm) = Πm
i=1Pr(T i,Mi);

Pr((λx1. · · · .λxn.y)(T 1, . . . , Tm), h) = 0, otherwise

The following is the first step towards proving the main result of this paper, as it characterises
Böhm tree equality as equality of families of real numbers.

I Theorem 40. Two terms M and N have the same Böhm trees iff for every BTT T it
holds that Pr(M,T ) = Pr(N,T ).

A detailed proof of Theorem 40 can be found in the Extended Version of this paper [4]. Let us
briefly discuss how the proof goes. The starting point is a result due to van Breugel et al. [17],
which establishes a precise correspondence between bisimilarity and testing in a probabilistic
scenario: two states s and s′ of any labelled Markov decision processes (satisfying certain
natural conditions) are bisimilar iff the probabilities of any test T to succeed in s and in s′
are the same, and tests are defined inductively as follows:

T,U ::= ω | T ∧ U | a(T )

where a is an action of the underlying labelled Markov decision process. Given that Böhm
trees can be naturally presented coinductively, most of the involved work has already been
done. What remains to be proved, then, is that the result above also holds for transition
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systems in which firing an action a brings the system into k distinct states, thus capturing
the kind of tree-like evolution typical of Böhm trees. This can be done by translating
any such tree-like transition system into a linear one in such a way that bisimilarity and
testing-equivalence remain unaltered.

To achieve our main result we now need to relate the probability of success of tests to
the coefficients of Taylor normal forms. This is the purpose of Section 6.

6 Implementing Tests as Resource Terms

There is a very tight correspondence between simple resource terms and Böhm tests, but
this correspondence does not hold for all Böhm tests. Simple resource terms can be seen as
a particular class of Böhm tests.

I Definition 41. The classes of resource Böhm term tests (rBTTs) and resource Böhm hnf
tests (rBHTs) are given as follows, by mutual induction:

T,U ::= ω | T ∧ U | ev(t) t ::= (λx1. · · · .λxn.y)(T 1, . . . , Tm)

I Definition 42. For every rBTT T we define a simple poly-term sT and for every rBHT t

we define a simple term st in the following way:

sω = [ ] sT∧U = sT · sU sev(t) = [st] s(λ~x.y)(T 1,...,Tm) = λ~x.〈y〉 sT 1 . . . sTm

The similarity between simple resource terms and resource Böhm tests is more than
structural: the probability of success of a resource Böhm test is actually given by a coefficient
in the Taylor normal form.

I Proposition 43.
1. For every rBTT T and M ∈ Λ+, !nf(M∗)sT

= Pr(T,M)
m(sTt ) .

2. For every rBHT t and h ∈ hnf, nf(h∗)st = Pr(t,h)
m(sTh

) .

Proof. We reason by induction on tests. Observe that these can be considered modulo com-
mutativity and associativity of the conjunction and modulo ω∧T ' T : these equivalences pre-
serve both the results of testing and the associated simple resource (poly-)terms. Then every
rBTT is equivalent either to ω or to a conjunction T = ev(t1)∧· · ·∧ev(tk). In the first case we
always have !nf(M∗)[ ] = 1. In the second case just like in the proof of regularity of the expo-
nential (Proposition 16) for any M ∈ Λ+ we have !nf(M∗)sT

= 1∏
u∈∆

sT (u)!

∏k
i=1 nf(M∗)sti

.

To conclude we want to show that nf(M∗)sti
= Pr(ev(ti),M)

m(sti
) for all i ≤ k. We have by defin-

ition Pr(ev(ti),M) =
∑
h∈hnf P (M →→ h) · Pr(ti, h), and Proposition 34 gives nf(M∗)sti

=∑
h∈hnf P (M →→ h) · nf(h∗)sti

, so we conclude by induction hypothesis on ti. Now given a
rBHT t = (λ~x.y)(T 1, . . . , Tm) and h ∈ hnf we have either nf(h∗)st

=
∏m
i=1!nf(M∗i )sT i and

Pr(t, h) =
∏m
i=1 Pr(T i,Mi) if h is of the form λ~x.y M1 . . . Mm, in which case we conclude

by induction hypothesis, or nf(h∗)st
= Pr(t, h) = 0 otherwise. J

With this result, we completely characterise Taylor normal forms by resource Böhm tests.

I Corollary 44. Two terms M and N have the same Taylor normal form iff for every rBTT
T it holds that Pr(M,T ) = Pr(N,T ).

Proof. Simply observe that every simple resource term in normal form is equal to sT for
some resource Böhm test T . J
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Thanks to Theorem 40 and Corollary 44 both Böhm tree equality and Taylor normal
form equality are characterised by tests. They still leave a gap in our reasoning, as not all
Böhm tests are resource Böhm tests. This difference is not just cosmetic: ev(ω) is a valid
Böhm test which computes the convergence probability of any λ-term, which cannot be done
using only resource Böhm tests. More precisely this cannot be done using a single Böhm
test. To fill the gap between Böhm tests and resource Böhm tests we observe that any of the
former can be simulated by a family of resource Böhm tests.

I Proposition 45. For every BTT T there is a family (Ti)i∈I of rBTTs of arbitrary size (pos-
sibly empty, possibly infinite) such that for all λ-term M we have Pr(T,M) =

∑
i∈I Pr(Ti,M).

Proof. We prove this, as well as the corresponding result for BHTs, by induction on the size
of tests. In the case of BTTs, the result is simply given by induction hypothesis. To the
BTT ω we associate the single-element family (w), to T ∧ U we associate (Ti ∧ Uj)i∈I,j∈J
where (Ti)i∈I and (Uj)j∈J are given by induction hypothesis on T and U , and to ev(t)
we associate (ev(ti))i∈I . The interesting part of the proof is on BHTs, where we want to
remove two constructors. Modulo commutativity and associativity of the conjunction and the
equivalence ω ∧ T ' T , every BHT is either ω or of the form (λx1...xn1 .y1)(T 1

1 , . . . , T
m1
1 ) ∧

· · · ∧ (λx1...xnk
.yk)(T 1

k , . . . , T
mk

k ) with k ≥ 1. In the first case to ω we associate the family
((λx1 . . . xn.y)(ωm))m,n∈N,y∈V where ωm denotes the sequence ω, . . . , ω of length m. In the
second case if mi 6= mj , ni 6= nj or yi 6= yj for some i, j ≤ k then the result of the test is
always 0, which is simulated by the empty family of rBHTs. Otherwise let m = m1, n = n1
and y = y1, the test is equivalent to (λx1 . . . xn.y)(T 1

1 ∧ · · · ∧ T 1
k , . . . , T

m
1 ∧ · · · ∧ Tmk ). We

apply the induction hypothesis to the BTTs T i1 ∧ · · · ∧ T ik to get families (U ij)j∈Ji and we
associate the family ((λx1 . . . xn.y)(U1

j1
, . . . , Umjm

))j1∈J1,...,jm∈Jm
to the original BHT. J

I Corollary 46. Given two terms M and N , for every BTT T it holds that Pr(M,T ) =
Pr(N,T ) iff for every rBTT T it holds that Pr(M,T ) = Pr(N,T ).

We can now state the main result of this paper.

I Theorem 47. Two terms have the same Böhm trees iff their Taylor expansions have the
same normal forms.

Proof. The result follows from Theorem 40, Corollary 46 and Corollary 44. J

7 Conclusion

In this paper, we attack the problem of extending the Taylor Expansion construction to
the probabilistic λ-calculus, at the same time preserving its nice properties. What we find
remarkable about the defined notion of Taylor expansion is that its codomain is the set
of ordinary resource terms, and that the equivalence induced by the Taylor expansion is
precisely the one induced by Böhm trees [13]. The latter, not admitting η, is strictly included
in contextual equivalence.

Among the many questions this work leaves open, we could cite the extension of the
proposed definition to call-by-value reduction, along the lines of [12], and a formal comparison
between the notion of equivalence introduced here and the the one from [15] in which, however,
the target language is not the one of ordinary resource terms, but one specifically designed
around probabilistic effects.
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