
This article has been accepted for publication in Monthly Notices of the Royal 

Astronomical Society ©: 2019 The Authors. Published by Oxford University Press on 

behalf of the Royal Astronomical Society. All rights reserved. 



MNRAS 486, 3927–3941 (2019) doi:10.1093/mnras/stz1051
Advance Access publication 2019 April 13

Joint halo-mass function for modified gravity and massive neutrinos – I.
Simulations and cosmological forecasts

Steffen Hagstotz,1,2‹ Matteo Costanzi,1,2 Marco Baldi 3,4,5 and Jochen Weller1,2
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ABSTRACT
We present a halo-mass function accurate over the full relevant Hu–Sawicki f(R) parameter
space based on spherical collapse calculations and calibrated to a suite of modified gravity
N-body simulations that include massive neutrinos. We investigate the ability of current and
forthcoming galaxy cluster observations to detect deviations from general relativity while
constraining the total neutrino mass and including systematic uncertainties. Our results indicate
that the degeneracy between massive neutrino and modify gravity effects is a limiting factor
for the current searches for new gravitational physics with clusters of galaxies, but future
surveys will be able to break the degeneracy.
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1 I N T RO D U C T I O N

One of the goals in modern cosmology is to understand the
underlying dynamics and statistics of the cosmic density field.
Clusters of galaxies trace the highest of its peaks, and theory predicts
their abundance to depend exponentially on the amplitude of the
matter power spectrum (Press & Schechter 1974; Bond et al. 1991;
Sheth & Tormen 2002) that turns them into a formidable probe of
cosmological parameters (Allen, Evrard & Mantz 2011; Kravtsov &
Borgani 2012).

Studying the cosmic density field is especially of interest because
it might reveal the mechanism for the observed accelerated expan-
sion of the Universe. It can either be explained by introducing a
smooth dark energy component to the Universe’s energy budget, or
by modifying gravity itself. Both scenarios can potentially be tested
via their imprint on the abundance of clusters (Battye & Weller
2003; Mohr et al. 2003), but in this paper, we will focus on the
latter.

Because general relativity (GR) is the unique theory of gravity in
1 + 3 dimensions under very general assumptions (Lovelock 1972),
any modifications introduce new physical degrees of freedom.
While these can give rise to accelerated expansion, they also tend
to enhance gravity at the perturbative level. One example discussed
in this paper are the f(R) scalar–tensor theories, which generalize
the Einstein–Hilbert action by adding a non-linear function of the
Ricci scalar R.

� E-mail: steffen.hagstotz@fysik.su.se

The enhancement of gravity tends to result in an increased
abundance of clusters, and several approaches to model the halo-
mass function in modified gravity exist (Kopp et al. 2013; Lombriser
et al. 2013; Lombriser, Koyama & Li 2014; Cataneo et al. 2016; von
Braun-Bates et al. 2017). But all of these studies were performed
within a one-parameter extension of the minimal �CDM standard
model, and a natural extension is the inclusion of massive neutrinos
which form a small, but unknown fraction of cosmological dark mat-
ter. The detection of a non-zero neutrino mass is firmly established
by particle physics as a consequence of neutrino flavour oscillations
(Araki et al. 2005) and in cosmology the neutrino background can
be measured in both the cosmic microwave background (CMB;
Sellentin & Durrer 2015) and the large-scale structure (Baumann
et al. 2018). Even though the mass scale is still uncertain, neutrinos
lead to a suppression of structure growth below their free-streaming
scale (Lesgourgues & Pastor 2006). This then leads to the question:
Can neutrinos mask modified gravity effects in the large-scale
structure? Are constraints obtained on f(R) theories from cluster
number counts (Schmidt, Vikhlinin & Hu 2009; Lombriser et al.
2012a; Cataneo et al. 2015) then still valid when including massive
neutrinos into the analysis? And on a more fundamental level, how
can the joint effects of neutrinos and modified gravity be included
in the theoretical prediction of cluster abundance?

Early investigations of these issues have been presented by Baldi
et al. (2014), who performed the first N-body simulations of f(R)
gravity in the presence of massive neutrinos, clearly demonstrating
a strong degeneracy between their effects on the abundance of grav-
itationally bound systems. More recently, Roncarelli, Villaescusa-
Navarro & Baldi (2017) and Roncarelli, Baldi & Villaescusa-
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Navarro (2018) investigated the individual impact of massive
neutrinos and f(R) gravity on the kinetic Sunyaev–Zeldovich signal
of massive clusters, showing an opposite trend for the two models
with respect to �CDM and thereby confirming the existence of
the degeneracy. Then, Giocoli, Baldi & Moscardini (2018) and
Peel et al. (2018a) explored the same degeneracies based on a
combination of cluster counts and weak lensing statistics along
the past light cone, while Peel et al. (2018b) and Merten et al.
(2018) investigated possible methods to break these degeneracies
with machine learning techniques. In this work, we continue
investigating the combined effects of f(R) and massive neutrinos
by developing a theoretical model of the joint halo-mass function,
calibrated to a suite of specifically designed N-body simulations.

We start with a brief summary of f(R) gravity in Section 2 and
present the simulation suite used to explore joint effects of modified
gravity and neutrinos in Section 3. In Section 4, we introduce the
joint mass function and apply our framework to forecast the ability
of current and future surveys to constrain f(R) theories in Section 5.
We summarize our results in Section 6.

2 R E V I E W O F f(R) G R AV I T Y

We start from the modified Einstein–Hilbert action1

S =
∫

dx4√−g

(
R + f (R)

16πG
+ Lm

)
, (1)

with the Lagrangian of the matter fieldsLm. We adopt the functional
form proposed by Hu & Sawicki (2007)

f (R) = −2�
R

R + m2
, (2)

with a constant � and the curvature scale m2. Note that f(R) → 0
for R → 0, in that sense the model does not contain a cosmological
constant. For m2 � R, the function can be expanded to get

f (R) ≈ −2� − fR0
R̄2

0

R
, (3)

where R̄0 is the Ricci scalar today, overbars denote background
quantities, and we introduced the dimensionless parameter fR0 ≡
−2�m2/R̄2

0 . To recover the well-measured �CDM expansion
history, we fix the first term to the cosmological constant in GR � =
�GR and |fR0| is the only remaining free parameter of the model.
Reproducing the standard background evolution also implies |fR0|
� 1, and consequently geometrical quantities are indistinguishable
from �CDM.

The modified Einstein equations are obtained by variation of
equation (1) with respect to the metric gμν

Gμν − fRRμν −
(

f

2
− �fR

)
gμν − ∇μ∇νfR = 8πGTμν , (4)

with the new scalar degree of freedom fR ≡ df/dR. The trace of
equation (4) leads to an equation of motion for the scalar field fR

∇2δfR = a2

3

(
δR(fR) − 8πGδρm

)
, (5)

where we adopted the quasi-static approximation and consider small
perturbations on a smooth background, i.e. the quantities δx ≡ x −
x̄. The time–time component of the modified Einstein equations

1We use natural units c = � = 1.

gives a Poisson-like equation for the scalar metric perturbation 2ψ =
δg00/g00

∇2ψ = 16πG

3
a2ρm − a2

6
δR(fR), (6)

which can still be identified with the Newtonian potential but has
contributions from both the matter density ρm and the scalar field
via δR(fR). Equations (5) and (6) are non-linear and thus we will
later resort to N-body simulations to solve them in general, but two
limiting cases are insightful:

For large field values |fR0| 	 |ψ |, we can linearize

δR 
 dR

dfR

∣∣∣∣
R=R̄

δfR , (7)

and the Fourier-space solution of equations (5) and (6) becomes

k2ψ(k) = −4πG

(
4

3
− 1

3

μ2a2

k2 + μ2a2

)
a2δρm(k) , (8)

where we introduced the Compton wavelength of the scalar field
μ−1 = (3dfR/dR)1/2. On small scales k > μ, this leads to a Poisson
equation with an additional factor of 4/3. For scales larger than the
Compton wavelength, the additional contribution vanishes and we
recover behaviour as in GR.

In the opposite limit of small field values |fR0| � |ψ |, the two
contributions in equation (5) approximately cancel; therefore,

δR ≈ 8πGδρm (9)

and equation (6) turns into the usual Poisson equation. This is the
screened regime.

To estimate where the transition occurs, we can formally solve
equation (5) using the Greens’s function of the Laplacian

δfR(r) = 1

4πr

1

3

∫ r

0
d3r ′8πG

(
δρ − δR

8πG

)
(10)

= 2

3

GMeff (r)

r
(11)

with an effective mass Meff as the source for field fluctuations δfR

(Schmidt 2010). Note that Meff(r) ≤ M(r) and equality holds in the
unscreened regime where we get δfR = 2

3 ψN with the Newtonial
potential of a spherical overdensity ψN = GM/r. Because the
fluctuation in fR is by definition smaller than its background value
δfR ≤ f̄R , this translates to

|fR| ≤ 2

3
ψN(r); (12)

thus, the additional force is only sourced by mass outside of the
radius where this condition is met.

To summarize, the theory is identical to �CDM on the back-
ground level, but perturbatively yields a maximum enhancement of
gravity by one-third on scales smaller than the Compton wavelength
μ−1. It also includes a screening mechanism that restores GR
in regions of high density and its onset is given by the typical
depth of cosmological potential wells ψ ∼ 10−5. . . 10−6, so that
|fR0| ∼ 10−5. . . 10−6 is the relevant parameter space where this
mechanism can function. Values of |fR0| below this threshold are
always screened, and therefore, phenomenologically uninteresting.

3 T H E D U S T G R A I N -PATHFINDER
SI MULATI ONS

For our analysis, we make use of the halo catalogues extracted
from the DUSTGRAIN-pathfinder simulations (see Giocoli et al.
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2018, for a detailed description), a suite of cosmological N-body
simulations designed to investigate the possible observational de-
generacies between f(R) gravity and massive neutrinos by sampling
their joint parameter space. The simulations have a periodic box size
of 750 Mpc h−1 per side filled with 7683 dark matter particles of
mass m

p

cdm = 8.1 × 1010 M h−1 (for the case of mν = 0) and with
as many neutrino particles (for the case of mν > 0). The particles are
moving under the effect of an f(R) gravitational interaction mediated
by the scalar potential ψ satisfying equation (6).

The DUSTGRAIN-pathfinder runs have been performed with the
mg-gadget code (Puchwein, Baldi & Springel 2013) – a modified
version of the GADGET code (Springel 2005) for f(R) gravity theories
– combined with the particle-based implementation of massive
neutrinos developed by Viel, Haehnelt & Springel (2010), and
already employed in Baldi et al. (2014). The mg-gadget f(R)
solver has been thoroughly tested (see e.g. Winther et al. 2015)
and already used for several applications in cosmology ranging
from pure collisionless simulations (Baldi & Villaescusa-Navarro
2018; Arnold et al. 2019) to hydrodynamical simulations (Arnold,
Puchwein & Springel 2015; Roncarelli et al. 2018), to zoomed sim-
ulations of Milky Way-sized objects (Arnold, Springel & Puchwein
2016; Naik et al. 2018).

Initial conditions have been produced by generating two separate
but fully correlated random realizations of the linear density power
spectrum for CDM and massive neutrino particles as computed by
the Einstein–Boltzmann code CAMB (Lewis, Challinor & Lasenby
2000) at the starting redshift of the simulation zi = 99. Following the
approach of e.g. Zennaro et al. (2017) and Villaescusa-Navarro et al.
(2018), neutrino gravitational velocities are calculated based on the
scale-dependent growth rate D(zi, k) for the neutrino component. On
top of these, neutrino particles also receive an additional thermal
velocity extracted from the neutrino momentum distribution for
each value of neutrino mass under consideration.

In this work – which is the third in a series of papers making
use of the DUSTGRAIN-pathfinder simulations after Giocoli et al.
(2018) and Peel et al. (2018a) – we restrict our focus on a subset of
the full simulations suite consisting of nine runs whose parameters
are summarized in Table 1. All simulations share the same standard
cosmological parameters that are set in accordance with the Planck
2015 constraints (Planck Collaboration XIII 2016a), namely �m =
�cdm + �b + �ν = 0.31345, �b = 0.0481, �� = 0.68655, H0 =
67.31 km s−1 Mpc−1, As = 2.199 × 10−9, ns = 0.9658.

For all simulations, we have identified collapsed CDM structures
in each comoving snapshot by means of a friends-of-friends (FoF)
algorithm (see Davis et al. 1985) on the CDM particles with linking
length λ = 0.16 × d, where d is the mean interparticle separation,
retaining only structures with more than 32 particles. On top of such
FoF catalogue, we have run the SUBFIND algorithm (Springel et al.
2001) to identify gravitationally bound structures and to associate
standard quantities such as the mass and the radius to the main
substructure of each FoF group. The latter quantities are computed
in the usual way by growing spheres of radius R around the most-
bound particle of each main substructure enclosing a total mass M
until the condition

4

3
πR3

200m × 200 × �mρcrit = M200m (13)

is fulfilled for R = R200m and M = M200m, where ρcrit ≡ 3H2/8πG is
the critical density of the universe.

4 J OI NT MASS FUNCTI ON

Dark matter haloes form from collapsing regions that decouple
from the background expansion. Their abundance can be related
to the volume fraction of the initially Gaussian density field δR

smoothed on a radius R above a critical collapse threshold δc

(Press & Schechter 1974). This yields the number density of haloes
within a mass interval [M, M + dM], the halo-mass function:

dn

dM
= f (σ )

ρm

M2

d ln σ−1

d ln M
, (14)

where ρm = �mρcrit is the mean density of the Universe and f(σ )
is the multiplicity function related to the collapsed volume fraction
F(M) occupied by haloes over mass M by

f (σ ) = 2σ 2∂F/∂σ 2 . (15)

It depends on the variance of the linear density field

S ≡ σ 2
(
R(M), z

) =
∫

dk

k

k3P (k, z)

2π2
W 2

(
kR(M)

)
(16)

within a filter W containing the mass M = 4/3πR3ρm. The variables
M, R, and σ 2 are monotonous functions of each other and can
therefore be used interchangeably.

Note that even though σ is often thought of as growing with
cosmic time σ (z) = D(z)σ 0, in the framework of spherical collapse
it is instructive to consider the threshold δc(z) = δc/D(z) as the
dynamical quantity. At early times, the density field is Gaussian
and completely characterized by its variance alone. The collapse
criterion is then really a criterion imposed on the initial conditions.

If we assume a top-hat filter in Fourier space W = θ (k − 1/R), each
new mode of the density field entering the filter is independent and
the smoothed field performs a random walk with R (or equivalently
S) as a time variable. The problem can then be rephrased: when does
a trajectory δ(S) first cross the threshold δc (Bardeen et al. 1986;
Bond et al. 1991)?

Under these assumptions individual trajectories follow a
Langevin equation

∂δ

∂S
= η(S) , (17)

with a stochastic driving term η defined by its mean 〈η〉 = 0 and
variance 〈η(S)η(S′)〉 = δD(S − S′). The probability distribution �

of trajectories then evolves according to the corresponding Fokker–
Planck equation

∂�

∂S
= 1

2

∂2�

∂δ2
, (18)

with the boundary condition �(δ, S = 0) = δD(δ) because the
Universe is homogeneous on large scales. However, trajectories
can cross the barrier more than once leading to double-counting
of haloes. To solve this, one demands the additional boundary
condition (an absorbing barrier) �(δ = δc, S) = 0.

The solution to equation (18) is then given by (Bond et al. 1991)

�(δ, σ 2) = 1

2πσ 2

(
e−δ2/2σ 2 − e−(2δc−δ)2/2σ 2

)
, (19)

where the second Gaussian term reflects the fact that trajectories
end at the barrier. Omitting it lead to the missing normalization
factor of 2 of the Press & Schechter (1974) prediction.

With the boundary condition, the distribution function vanishes
for δ > δc, so we express F(S) by subtracting the fraction of
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Table 1. The subset of the DUSTGRAIN-pathfinder simulations considered in this work with their specific parameters.

Simulation name Gravity type |fR0|
∑

mν (eV) �cdm �ν m
p
cdm (M h−1) m

p
ν (M h−1)

�CDM GR – – 0.31345 – 8.1 × 1010 –
fR4 f(R) 10−4 – 0.31345 – 8.1 × 1010 –
fR5 f(R) 10−5 – 0.31345 – 8.1 × 1010 –
fR6 f(R) 10−6 – 0.31345 – 8.1 × 1010 –
fR4-0.3eV f(R) 10−4 0.3 0.30630 0.00715 7.92 × 1010 1.85 × 109

fR5-0.15eV f(R) 10−5 0.15 0.30987 0.00358 8.01 × 1010 9.25 × 108

fR5-0.1eV f(R) 10−5 0.1 0.31107 0.00238 8.04 × 1010 6.16 × 108

fR6-0.1eV f(R) 10−6 0.1 0.31107 0.00238 8.04 × 1010 6.16 × 108

fR6-0.06eV f(R) 10−6 0.06 0.31202 0.00143 8.07 × 1010 3.7 × 108

trajectories that did not yet cross the threshold

F (σ 2) = 1 −
∫ δc

−∞
�(δ, σ 2)dδ , (20)

from which we can derive the multiplicity function f(σ ) by using
equation (15) to get the mass function by Press & Schechter (1974)

fk(σ ) =
√

2

π

δc

σ
e−δ2

c /(2σ 2), (21)

with the correct normalization. Note that we indicate solutions
from non-correlated random walks (using a k-space top-hat) with
subscript k.

This approach works reasonably well, but has several shortcom-
ings:

(i) Collapse in a Gaussian random field does not occur spher-
ically. In the Zel’dovich approximation, the eigenvalues λi of
the deformation tensor follow the joint probability distribution
(Doroshkevich 1970)

p(λ1, λ2, λ3) = 153

8π
√

5σ 6
exp

(
−3I 2

1

σ 2
+ 15I2

2σ 2

)
(22)

× |(λ3 − λ2)(λ3 − λ1)(λ2 − λ1)| , (23)

with I1 = λ1 + λ2 + λ3 and I2 = (λ1λ2 + λ1λ3 + λ2λ3). Isotropic
collapse with λ1 = λ2 = λ3 therefore does not occur. Instead,
the Zel’dovich picture suggests a collapse into subsequently walls,
sheets, filaments, and haloes, where the last step occurs typically
along a filament in an ellipsoidal fashion. This is fully consistent
with structure formation observed in N-body simulations.

(ii) Real haloes do not form out of sharp k-space top-hats.
Usually, one assumes rather a real-space top-hat as initial condition
for the spherical collapse. This leads to coupling of Fourier modes
and introduces correlations between steps of the random walk.

4.1 Diffusing, drifting barrier

The non-spherical collapse dynamics can be addressed by modi-
fying the collapse barrier. The main motivation is that low-mass
(high σ ) haloes are more ellipsoidal, while the largest objects are
approximately spherical. Ellipsoidal patches collapse later because
they have to get rid of angular momentum, which leads to an
effective higher threshold. There are various ways to extend the
excursion set formalism to account for this, and here we follow
Kopp et al. (2013) and introduce a scale-dependent barrier of the
form

B = δc + βS , (24)

which tends to the spherical collapse threshold δc for high-mass
haloes σ � 1. Even though more general forms for the ellipsoidal
collapse barrier B can be found in the literature (e.g. B = δc + βSγ ;
see Sheth & Tormen 2002), the linear approximation adopted in
this work is sufficient for typical cluster abundance studies using
clusters of mass M � 1013.5 M h−1.

In addition to the barrier drift, the collapse dynamics themselves
are complicated by environmental effects and fuzzy halo definitions.
In Maggiore & Riotto (2010b), this was taken into account by turn-
ing the barrier itself into a Gaussian stochastic variable with a mean
B̄ = δc + βS and width DB. Both the trajectories and the barrier
itself perform a random walk, and the joint probability distribution
is obtained from a 2D Fokker–Planck equation (Maggiore & Riotto
2010b; Corasaniti & Achitouv 2011)

∂�

∂S
= 1

2

∂2�

∂δ2
+ DB

2

∂2�

∂B2
, (25)

which leads to the multiplicity

fk(σ ) =
√

2a

π

1

σ
e−aB̄2/(2σ 2)

(
B̄ − σ 2 dB̄

dσ 2

)
, (26)

with a ≡ 1/(1 + DB). Using equation (24), this reduces to a Press–
Schechter like solution with the constant threshold δc replaced by
the full barrier:

fk(σ ) =
√

2a

π

δc

σ
e−a(δc+βσ 2)2/2σ 2

. (27)

A broader barrier DB then leads to a smaller factor a in the
exponential, boosting the abundance of high-mass clusters because
those rare trajectories can cross the threshold more easily.

4.2 Non-Markovian corrections

Accounting for realistic filter functions makes it necessary to
consider the deviations from an uncorrelated random walk. Haloes
form from regions that resemble spherical patches in the initial
conditions and several possible window functions to capture the
correct form of these proto-haloes exist (Bond et al. 1991). Here,
we assume a real space top-hat, which in Fourier space turns into

W (x) = 3j1(x)

x
, (28)

with the spherical Bessel function j1, which we use from here on
to calculate the variance of the density field S in equation (16). In
Maggiore & Riotto (2010a), the authors calculated the corrections
induced by correlations between the variance S smoothed at differ-
ent radii R for this choice of smoothing filter. The general two-point
correlation function can be written as

〈δ1δ2〉 = min(S1, S2) + �(S1, S2) , (29)
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where we introduced the shorthand δ1 = δ(R1), and the first term
expresses the Markov dynamics leading to the Press–Schechter
result with a general barrier in equation (27). The correction is
of the form

�(S1, S2) = κ
S1(S2 − S1)

S2
(30)

with the correlation coefficient fitted to numerical �CDM results
(Maggiore & Riotto 2010a)

κ(R) 
 0.459 − 0.003R , (31)

and has a weak dependence on cosmology via the power spectrum.
As pointed out above, we deal with a purely Gaussian field in the
initial conditions here, and all correlations are introduced by the
filter and not by later non-linear mode coupling. This also means
that κ should be calculated from the �CDM relation in equation (31)
even within a modified gravity model. We will return to this point
when discussing the modified gravity mass function.

This leads to the real-space top-hat multiplicity function fx to
the first order in the correlation coefficient κ (Maggiore & Riotto
2010a; Kopp et al. 2013),

fx(σ ) ≈ fk(σ ) + κ
(
f m−m

β(0) (σ ) + f m−m

β(1) (σ ) + f m−m

β(2) (σ )
)

(32)

with the Markovian (i.e. κ = 0) term fk for a diffusive, drifting barrier
given by equation (27) and the memory-of-memory corrections
(Corasaniti & Achitouv 2011) themselves are expanded up to the
second order in the drift parameter β to get

f m−m

β(0) (σ ) = a
δc

σ

(
eaδ2

c /2σ 2 − 1

2
�

(
0,

aδ2
c

2σ 2

))
, (33)

f m−m

β(1) (σ ) = −aδcβ

(
a erfc

(
δc

√
a

2σ 2

)
+ f m−m

β(0) (σ )

)
, (34)

f m−m

β(2) (σ ) = −aβ

(
β

2
σ 2f m−m

β(0) (σ ) + δcf
m−m

β(1) (σ )

)
, (35)

where erfc(x) is the complementary error function and �(0, x)
denotes the incomplete Gamma function.

4.3 Spherical collapse in modified gravity

As for the �CDM case, the starting point of our analysis is spherical
collapse. Kopp et al. (2013) numerically solved the full modified
Einstein, scalar field, and non-linear fluid equations to obtain δc in
f(R) gravity, and they parametrized their solution for the threshold
by

δf (R)
c (fR0,M, z) = δGR

c (z) × � (fR0,M, z) , (36)

where the deviation from GR is captured by the correction factor

�(fR0,M, z) = 1 + b2 (1 + z)−a3

(
mb −

√
m2

b + 1

)
+ b3(tanh (mb) − 1), (37)

Table 2. Fiducial values for the GR mass function barrier shape and the
virial f(R) collapse threshold equation (36).

GR f(R)

DB β α4 β3 μ1 μ2

0.4 0.12 0.11 2.7 × 10−3 1.99 26.21

0.9

1.0

δf
(R

)
c

/δ
G

R
c

1012 1013 1014 1015

M [M h−1]

0.0

0.1

Δ
n
/n

Figure 1. Top: Relative change in the collapse threshold δc/δ
GR
c for slightly

different values of the screening mass Mscreen (dashed vertical lines) around
|fR0| 
 10−6 at z = 0. This corresponds to the position of the typical bump
in the relative cluster abundance compared to �CDM (bottom).

mb(fR0,M, z) = (1 + z)a3
(
log10 M − m1(1 + z)−a4

)
,

m1(fR0) = μ1 log10 |fR0| + μ2,

b2 = 0.0166,
(38)

b3(fR0) = β3

(
2.41 − log10 |fR0|

)
,

a3(fR0) = 1 + exp
(
−2.08

(
log10 |fR0| + 5.56

)2
)

,

a4(fR0) = α4(tanh(0.69(log10 |fR0| + 6.65)) + 1).

The parametrization converges to the GR limit δGR
c separately for

high z and |fR0| → 0, which is well approximated by (Nakamura &
Suto 1997)

δGR
c (z) = 3(12π)2/3

20

(
1 − 0.0123 log10

(
1 + �−1

m − 1

(1 + z)3

))
. (39)

The coefficients in equation (37) were fitted to numerical solutions
of the collapse dynamics, and we will focus on α4, β3, μ1, μ2 whose
fiducial values from Kopp et al. (2013) are given in Table 2.

The crucial ingredient to calculate the f(R) threshold is mb, which
sets the transition mass where screening sets in. We will express
this scale as the screening mass Mscreen, defined by mb(Mscreen) =
0. In Fig. 1, we show the connection between the threshold and the
cluster abundance: the threshold grows quasi-linearly with log M up
to the inflexion point Mscreen, after which δc asymptotically reverts
to the fiducial GR value. In the mass function, this scale corresponds
to a characteristic peak in the additional relative abundance. Note
that the negative relative abundance for lower masses shown in
the plot is physical because of mass conservation: additional high-
mass objects form from low-mass haloes. Different background
densities �m will lead to slightly different screening behaviour, so
this description should only be used in proximity to matter densities
implied by the CMB.
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Figure 2. Change in collapse threshold δ
f (R)
c /δGR

c for a halo of fixed mass
M200 = 1014 M h−1 with redshift for various values of |fR0|. The fiducial
threshold is lowered due to the fifth force for large |fR0|. At high redshifts,
δc reverts to the �CDM value. The plot includes the corrections from
Section 4.6.

For mb = 0, the threshold is given by

δc = δGR
c

(
1 + b2(1 + z)−a3 − b3

)
, (40)

and because a lower δc leads to a higher cluster abundance, b2 and
b3 set the height of the additional abundance peak, a3 and a4 control
the redshift evolution of the screening mass, and μ1, μ2 determine
how quickly the model reverts to GR when changing fR0.

Fig. 2 shows the variation of the threshold as a function of
redshift for various values of the |fR0| parameter, assuming a halo
with M200 = 1014 M h−1. Considering this mass representative of
the lightest objects entering a cosmological cluster catalogue, the
leftmost line indicates the limit of cluster abundance studies to
constrain the theory at a given redshift where the deviation in δc is
of order 1 per cent.2

To write the multiplicity function for f(R) including non-
Markovian corrections, we assume that the correlation between
steps behaves similar for modified gravity and GR. This is justified
because we measure the correlation in the initial conditions where
the density fields in both theories are identical – all modifications
to the time evolution are absorbed into the threshold δc(fR0, M, z).
Therefore, we write (Kopp et al. 2013)

f f (R)
x (σ ) 
 f GR

x (σ )
f

f (R)
k

f GR
k

(41)

with the Markovian multiplicity function f
f (R)
k derived from the

modified gravity barrier B̄ = δc(fR0,M, z) + βσ 2 given in equa-
tion (36)

f
f (R)
k (σ ) =

√
2a

π

1

σ
e−aB̄2/(2σ 2)

(
B̄ − σ 2 dB̄

dσ 2

)

=
√

2a

π

1

σ
e−aB̄2/(2σ 2)

(
δf (R)

c − 3M

2

∂δf (R)
c

∂M

∂ ln σ

∂ ln R

)
.

(42)

Together with f GR
k (equation 27) and f GR

x (equation 32), this defines
the full modified gravity multiplicity function (equation 41) and

2Even though a given uncertainty in δc does not translate to the mass function
linearly, our approach models correction to the threshold; therefore, once it
is too close to GR, it cannot be used to constrain deviations anymore.

yields the halo-mass function via equation (14). We emphasize
again that all expressions are defined for the smoothed density field
σ GR calculated in a standard cosmology – as already discussed, the
threshold is imposed on the initial conditions, and all subsequent
effects of modified gravity are encapsulated in the dynamics of the
barrier.

4.4 Neutrinos

As we have seen, the signal of modified gravity is a lower collapse
threshold and a resulting higher abundance of clusters compared
to �CDM. To set realistic limits on deviations from GR, we
will now incorporate effects of massive neutrinos. As has been
studied before (see e.g. Lesgourgues & Pastor 2006), they suppress
structure growth below the free-streaming scale that leads to a lower
abundance of galaxy clusters, counteracting possible effects of f(R).
Constraining the neutrino mass is an important goal for cluster
cosmology in its own right, but here we will focus on degeneracy
with modified gravity effects.

Ichiki & Takada (2012), Costanzi et al. (2013), and Castorina et al.
(2014) showed that the effect of neutrinos on the cluster abundance
can be well captured by rescaling the smoothed density field

σ 2 → σ 2
cdm(z) =

∫
dk

k

k3Pcdm(k, z)

2π2
W 2(kR) , (43)

with the CDM power spectrum obtained by rescaling the total matter
power spectrum Pm with the respective transfer functions weighted
by the density of each species

Pcdm(k, z) = Pm(k, z)

(
�cdmTcdm(k, z) + �bTb(k, z)

Tm(k, z)(�cdm + �b)

)2

, (44)

thus assuming that neutrinos are distributed smoothly on cluster
scales. The scale dependent growth caused by neutrinos for the
other components is also accounted for by the transfer functions.
Equation (43) is expressed as a time-dependent rescaling, but we
can also again think of the initial density field as fixed and map the
change to the collapse threshold

δν
c = σ (z)

σcdm(z)
δc. (45)

In this picture, we account for the effect of neutrinos by introducing
an appropriate shift in the time variable σ 2 of the random walk.
This rescaling expresses the cold dark matter (CDM) approximation
outlined above and it allows us to compare the effects of modified
gravity and neutrinos on the threshold directly. While there is some
ambiguity how to compare cosmologies with and without neutrinos,
in this paper we choose to keep the total matter density �m fixed.
Thus when adding neutrinos, we rescale the dark matter density by
(Lesgourgues & Pastor 2006)

�′
cdm = �cdm −

∑
mν

93.14 eV
. (46)

In Fig. 3, we show the rescaled critical density for collapse δν
c

and the resulting effect on the halo-mass function. A larger δc leads
to an increased exponential suppression of high-mass haloes in
equation (26). Note that the scale dependent growth caused by
neutrinos translates to a weak mass dependence of the barrier. To
check how this suppression can mask the additional abundance
caused by modified gravity, we combine the f(R) threshold with the
neutrino rescaling from equation (45):

δeff
c = σ (z)

σcdm(z)
δf (R)

c . (47)
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Figure 3. Top: Change in the collapse threshold δν
c /δc for different neutrino

masses. The scale-dependent growth in νCDM cosmologies translates to a
slight mass dependence of δc. The higher threshold leads then to a stronger
suppression in the exponential high-mass tail of the mass function (bottom).
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Figure 4. Change in the effective collapse threshold at z = 0 induced by
massive neutrinos with

∑
mν = 0.3 eV (blue), for |fR0| = 10−5 (orange) and

the combined effect. The grey shaded region shows a 5 per cent deviation
from the fiducial value. Over the mass range M > 1014 Mh−1 relevant for
cluster abundance studies, the effects of neutrinos and modified gravity are
approximately degenerate.

A suitable combination of neutrino masses and |fR0| can then lead
to an effective barrier close to its �CDM value over the mass range
M > 1014Mh−1 relevant for cluster surveys, as demonstrated in
Fig. 4. We will return to this point and check the validity of this
approach by comparing to simulations in Section 4.6.

4.5 Halo bias and cluster clustering

The mass function also allows us to derive the corresponding
clustering bias. The Eulerian bias is given by the overabundance
of objects in a region with an overdensity δ0 compared to the mean
abundance (Sheth & Tormen 1999)

b = 1 + 1

n̄(M)

dn̄(M|δ0)

dδ0
= 1 + 1

f (σ )

df (σ |δ0, σ0)

dδ0

∣∣∣∣
δ0=0

; (48)

therefore, the first-order bias is the linear response of the halo field
to changes in the underlying density field. For a fixed barrier, the
conditional mass function f(σ |δ0) simply involves a shift of the
barrier δc → δc–δ0, but for a generic barrier the situation is more
complicated.
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Figure 5. Deviations from the fiducial GR bias for several values of |fR0| and∑
mν at redshift z = 0. Clusters become more abundant with larger values

of |fR0|, so they become less biased. For neutrinos this trend is reversed, the
suppression of high-mass objects increases their bias.

Achitouv et al. (2016) proposed the conditional mass function
for a generic barrier

f (S|δ0, S0) =
√

2

π

(
B̄ − S

dB̄

dS
+ S2

2

d2B̄

dS2
− δ0

)
S/a

(S/a − S0)3/2

(49)

× exp

(
− (B̄ − δ0)2

2(S/a − S0)

)
, (50)

and found good agreement with Monte Carlo random walks for
various barrier shapes. This yields the linear bias

b(S) = 1 +
(

aB̄

S
− 1

B̄ − S dB̄
dS

)
, (51)

with the same barrier B̄ used for the mass function, but the bias
depends only mildly on the barrier width DB and drift β for the
mass range we focus on in this work. It is mainly sensitive to the
mean threshold δc.

We show the changes in the bias induced by modified gravity or
massive neutrinos in Fig. 5, using the f(R) barrier B̄(M, z, fR0).
The lower threshold means that clusters form out of smaller
overdensities compared to �CDM, so they are less biased tracers
of the density field. This tendency is only enhanced the stronger the
f(R) effect gets and the linear bias shrinks with larger values of |fR0|.
For neutrinos, this effect is reversed: because the high-mass tail of
the mass function is suppressed, massive clusters are less abundant
overall and therefore only form in very overdense regions. However,
the absolute scale of the halo bias in �CDM is still uncertain (Baxter
et al. 2016; Paech et al. 2017), making it very difficult to use this
behaviour for constraints – both neutrinos and modified gravity lead
to a lower bias of low-mass objects compared to high-mass objects.
We therefore leave a forecast analysis also including the clustering
of clusters for future work.

4.6 Calibration and comparison

The excursion set framework predicts the mass function in terms
of the halo mass at virialization dn/dMvir, since this is the time at
which the halo stops to collapse. Moving to modified gravity, the
virial overdensity is even more complicated. While constant in an
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Figure 6. Relative simulated M200m halo abundance for |fR0| = 10−5 at
redshift z = 0.3 compared with the original spherical collapse prediction for
virial masses (grey, dot–dashed) and our calibrated model (orange, solid).
We assume Poisson errors for the simulated counts.

Einstein-de-Sitter universe, we expect �f (R)
vir to evolve with fR0, �m,

and redshift.
From the observational point of view, however, the mass of a

cluster is often defined as the mass inside a sphere encompassing an
overdensity � times a reference value. In this work, we adopt �m =
200 with respect to the mean matter density as given in equation (13)
to define our simulated catalogues and calibrate the mass function
accordingly.

A first exemplary comparison between the fiducial barrier model
equation (36) and our simulation is shown in Fig. 6 for fR0 = 10−5

and z = 0.3. The virial mass function from Kopp et al. (2013) is
a bad fit to the M200m catalogue for masses beyond ∼1014 M h−1

since the screening mass is offset, leading to a wrong position and
amplitude of the f(R) bump. To calibrate the mass function to a new
mass definition, we focus on the screening mass mb in equation (38).
We keep the functional form, but because the position and evolution
of the screening mass scale is different for another mass definition,
we re-fit the parameters μ1, μ2 to account for the evolution with
fR0, β3 to adapt the height of the relative abundance peak and α4 to
adjust the redshift evolution. This is done via minimization of the
Gaussian log-likelihood

lnL = −1

2

(
Ntheo − Nsim

)
C−1

(
Ntheo − Nsim

)T

−1

2
ln det C−1, (52)

where the covariance matrix consists of a Poissonian contribution
and a sample variance term

C−1
ij = δijN

theo
i + bibjN

theo
i N theo

j σ (Vbox) (53)

with theoretical cluster counts N theo
i per mass bin i and σ (Vbox) is

the variance of the linear density field computed inside the box. We
calculate the mean bias averaged over a bin �Mi as

b̄i =
∫

�Mi

dM
dn

dM
b(M)

/∫
�Mi

dM
dn

dM
, (54)

using equation (51) for the bias and equation (41) for the mass
function. Note that the barrier shape given by DB and β is very
important for the proper GR limit, but largely cancels in equa-
tion (41). The mass function ratio is therefore almost completely
independent from the fiducial barrier values. So while we choose
to work within a consistent framework with a mass function that is

Table 3. Best-fitting parameters for the width DB and the drift β of the
fiducial GR barrier and the calibrated values for the modified gravity
threshold δc(fR0, z) in equation (36). The fit was obtained using the dark
matter simulations without neutrinos described in Section 3.

GR f(R)

DB β α4 β3 μ1 μ2

0.37(1) 0.11(1) 0.067(1) 5.6(1) × 10−3 1.38(1) 21.32(1)

extended to f(R), one could also replace f GR
x in equation (41) with

another multiplicity function such as ones by Tinker et al. (2008)
or Crocce et al. (2010) as long as it is also calibrated to M200m.
We do not perform a comprehensive comparison of mass functions
here, but we note that our results for bias and multiplicity agree
within ∼5 per cent with those established results in the literature –
a value we take as an estimate for current systematic effects on the
halo-mass function mainly due to differences in halo definition.

Within our simulations, we find no preference for any redshift
evolution in the GR barrier parameters DB and β. We fit them to
our �CDM simulations first and keep them fixed while calibrating
the remaining f(R) parameters α4, β3, μ1, and μ2 to our fR4, fR5,
and fR6 simulations. The resulting best-fitting values with statistical
errors are shown in Table 3. For the �CDM barrier values we find
qualitative agreement with previous similar studies (Maggiore &
Riotto 2010b; Kopp et al. 2013; Achitouv et al. 2016), while the
position and evolution of the screening mass mb given by the other
parameters deviates substantially from the virial mass function from
Kopp et al. (2013). The results are compared to our simulated
catalogues in Fig. 7 for a wide range of redshifts and values of |fR0|.
We find that our model for the halo-mass function can reproduce
the simulated data by fitting only four parameters to account for the
full non-linear behaviour of the modified gravity model.

The next step is to test the inclusion of neutrinos into our
framework via equation (47). We show the combined effect of
neutrinos and modified gravity measured from our simulations in
Fig. 8 – note that the simulations including neutrinos were not
used to fit the mass function parameters. Both cosmologies show
an approximate degeneracy leading to an abundance of clusters
that is within 10 per cent consistent with �CDM expectation at
z = 0, and the behaviour is well captured by our mass function.
This cancellation weakly depends on redshift, so cosmologies with
similar mass functions at z = 0 will in general differ at earlier times.
The precise degeneracy depends on the survey specifications such
as redshift range and selection function, and we will return to this
problem within the full cosmological parameter space in the next
section.

5 FORECASTS

To assess if differences in the cluster abundance are measurable, it
is important to consider the changes in the halo-mass function in
the context of a survey with a specific selection function.

We now show with two idealized test cases the consequences
of our results for the ability of current and future surveys to
constrain |fR0|. The abundance of clusters is mostly sensitive to
(�m, σ 8,

∑
mν , log fR0); as for the other relevant cosmological

parameters, we include priors from different probes. This has to be
done with caution, because data sets might show different results
when analysed in a f(R) framework. We therefore make use of the
fact that the model reproduces a �CDM expansion history and limit
ourselves to geometrical probes.
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Figure 7. Calibrated halo-mass function ratio for various redshifts and |fR0| = 10−4 (blue), 10−5 (orange), and 10−6 (green) compared to our simulation suite.
The f(R) bump in the relative abundance moves towards lower masses with redshift.
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Figure 8. Joint effect of modified gravity and neutrinos on the relative halo
abundance at z = 0. The theoretical abundance is calculated by combining
the calibrated f(R) barrier with the neutrino rescaling (equation 45). Both
cluster abundance predictions deviate by less than 10 per cent from the
�CDM predictions. Data points are from our simulations with Poissonian
error bars.

We add baryon acoustic oscillation priors on the distance scale
DV(z) based on BOSS DR12 data (Alam et al. 2017) at redshifts
z = 0.38, 0.51, and 0.61. We centre them on the same fiducial
cosmology used for the simulations described in Section 3 and
assume pre-reconstruction errors on the data points, i.e. without
assuming a �CDM model to linearize the BAO signal, which
results in conservative results. We denote this data set with BAO.
Complementary, big-bang nucleosynthesis (BBN) measurements
constrain the baryon density �bh2 in the early Universe, where we
assume f(R) effects to be negligible – even though this does not
have to be the case, and has to be investigated for a given f(R)
model carefully (see e.g. Erickcek et al. 2013, 2014). The width of
the error bar is based on Cooke et al. (2014). We give a summary
of both sets of Gaussian priors in Table 4.

Table 4. A summary of the complementary BAO and BBN mock data sets
used in combination with cluster counts if indicated. We assume these result
in Gaussian priors on the measured quantity with mean μ and width σ .

Probe Quantity μ σ

BAO DV(z = 0.38)/rs 10.05 0.17
DV(z = 0.51)/rs 12.84 0.13
DV(z = 0.61)/rs 14.77 0.13

BBN 100 × �bh2 2.224 0.046

The most powerful complementary data set comes from the
CMB. If indicated, we combine the cluster data with priors on
the primary CMB parameters derived from the Planck-high-�
temperature power spectrum. We use the publicly available chains
either for the base model or including varying neutrino masses to
derive the covariance matrix and use this multivariate Gaussian
prior, again centred on our fiducial cosmology. While changes
to the temperature anisotropy power spectrum by f(R) gravity are
introduced via the integrated Sachs-Wolfe effect at late times, the
impact on multipoles � > 30 is very small for the relevant parameter
space.

5.1 Optical cluster surveys

We now explore these effects in the context of a forecast for an
optical cluster survey, where the main observable is the cluster
richness λ. We model the expected cluster abundance per bin in
redshift �zi and richness �λj as

〈Nij 〉 = �

∫
�zi

dz
dV

dz

∫ ∞

0
dM

dn

dM

∫
�λj

dλ p(λ|M) , (55)

where the survey area � is fixed, and introduce the probability
p(λ|M) for a cluster of mass M to be observed with a richness λ.
We assume a lognormal distribution, which allows us to solve the
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integration over the observable to arrive at

〈Nij 〉 = �

∫
�zi

dz
dV

dz

∫ ∞

0
dM

1

2
(erfc(xmin,j ) − erfc(xmax,j ))

dn

dM
,

(56)

with

xmin/max,j ≡ ln λmin/max,j − 〈ln λ〉(M)√
2σ 2

ln λ

. (57)

We use the weak-lensing calibrated M–λ relation measured by
Murata et al. (2018) on SDSS clusters:

〈ln λ〉(M) = A + B ln

(
M

M�

)
, (58)

σln λ(M) = σ0 + q ln

(
M

M�

)
, (59)

where M� = 3 × 1014 M h−1 is the pivot mass of the relation and
A, B, σ 0, and q are free parameters varied within priors given by the
measurements by Murata et al. (2018). Note that the weak lensing
mass estimate of a given cluster is not affected by f(R) because
geodesics are unchanged up to a negligible factor 1 + |fR0| (Schmidt
2009).

In addition to these observational uncertainties, also the mass
function measured in simulations shows systematic scatter. This is
mainly caused by ambiguities in the halo definition, so even an
identical underlying dark matter field can result in slightly different
halo statistics. Typically, different halo finders vary in the resulting
amplitude and tilt of the mass function (Knebe et al. 2011), so we
assume

dn

dM
→ dn

dM

(
γ + η log

(
M

M�

))
(60)

with γ and η free to vary with Gaussian priors with width σ = 0.05
centred at 1 and 0, respectively. Because these systematic errors
are by far larger than statistical uncertainty in our fit of barrier
parameters, we keep the latter fixed.

The selection function is crucial for the specific degeneracy
between parameters, so we distinguish two cases: either a large,
shallow layout or a deeper survey focused on a smaller sky area.

For the shallow case, we assume an area of 104 deg2

with eight richness bins as in Murata et al. (2018) λ ∈
[20, 25, 30, 35, 40, 47.5, 55, 77.5, 100] and one redshift bin z

∈ [0.1, 0.3]. This translates to an approximately flat limiting mass
of Mmin ∼ 1014.4 M h−1. All bins are well populated with over 100
clusters so we assume a Gaussian likelihood as in equation (52). This
mock survey is combined with either CMB or BAO + BBN priors
as given in Table 4 and we evaluate the resulting likelihood using the
Monte Carlo Markov Chain code montepython (Audren et al.
2013; Brinckmann & Lesgourgues 2018).

We show the cluster count distribution in redshift and richness
for a shallow survey in Fig. 9. For the given selection function,
at low redshifts the effects of neutrinos and modified gravity are
almost completely degenerate. Both roughly translate into a shift in
the overall amplitude that is also easily mimicked by the amplitude
of the M–λ relation. The richness information does help to break
this degeneracy slightly because neutrinos tend to cause a strong
suppression of very massive clusters while modified gravity leads
to a higher abundance of low- and intermediate-mass objects. The
resulting limits on |fR0| that can be achieved with such a survey are
shown in Table 5. If cluster counts are only combined with BAO
information, the limits are rather weak and when adding neutrinos

we find no relevant upper bound. Adding the CMB improves the
situation by pinning down the other cosmological parameters, but
even then adding neutrinos weakens the bounds considerably. Note
that there is a small additional effect due to broader CMB constraints
on other parameters in a νCDM cosmology, but this mostly extends
the contours in the direction of larger allowed �m values while |fR0|
is anticorrelated with the matter density.

For the deep survey, we take an area of 5000 deg2 – the
total area that will be covered by the Dark Energy Survey3 –
and bins in richness λ ∈ [20, 30, 45, 60, 200] and redshift z

∈ [0.2, 0.35, 0.5, 0.65, 0.8]. The resulting cluster counts for
this configuration in redshift and richness are shown in Fig. 10.
Information about the abundance at higher redshifts helps to
disentangle the competing effects: while neutrinos suppress the
population there, the f(R) mass function reverts to GR for z > 0.5.
Even though modified gravity boosts the abundance of high-mass
clusters at low redshifts as shown in Fig. 7, integrated over z the
effect on low-richness clusters is dominant as shown in the right-
hand panel of Fig. 10. Neutrinos, on the other hand, suppress the
high-mass end of the halo-mass function, so that – when combined
– the two effects largely break the degeneracy between f(R) and
neutrinos. Even without adding CMB information, such a survey
can constrain |fR0| down to the effective cluster floor of ∼10−6 even
when marginalizing over neutrino mass. We show the resulting
posterior from both surveys combined with BAO and BBN priors
for vanishing neutrino mass in Fig. 11.

5.2 SZ Cluster surveys

The thermal Sunyaev–Zeldovitch (SZ) effect is the heating of
CMB photons by scattering with hot electron plasma in clusters
of galaxies, leading to a characteristic distortion of the blackbody
spectrum (for a review see e.g. Carlstrom, Holder & Reese 2002).
The measured amplitude is expressed by the Compton y-parameter
and is given by the integrated electron density ne weighted with
their temperature Te along the line of sight

y ∝
∫

neTedl ∝ M〈Te〉. (61)

If we assume a virialized system, 〈Te〉 ∝ M2/3 and the amplitude
scales as y ∝ M5/3. The potential energy of such a cluster is given
by

〈Epot〉 ∝ −GM2

R
∝ −GM5/3 ∝ −y; (62)

therefore, the thermal SZ effect is a probe of the potential energy.
In unscreened f(R) gravity, potentials are deeper by a factor of 4/3
and thus a cluster with the same mass will induce a larger SZ signal
compared to a standard cosmology.

A SZ-selected cluster sample will hence show a higher abundance
in modified gravity both due to the mass function enhancement
discussed so far, but also due to modifications of the selection
function because lower mass clusters will surpass the detection
threshold (Mak et al. 2012).

To model this effect, we consider the relative strength of gravity

g(r) ≡ dψ/dr

dψN/dr
(63)

normalized by the Newtonian expectation ψN that varies between 1
in the screened regime and 4/3 for the unscreened case. From this,

3https://www.darkenergysurvey.org
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Figure 9. Left: Redshift evolution of the expected cluster abundance for the fiducial cosmology observed by the shallow optical survey described in the text.
Grey shaded bands indicate 1σ uncertainty in the mass-richness-relation obtained by drawing samples from the joint distribution p(A, B, σ 0, q) while keeping
the cosmology fixed. The bottom plot shows relative deviations from �CDM caused by modified gravity (orange), massive neutrinos (blue), or both (violet).
For low redshifts with the given selection function, both effects are approximately a shift in total amplitude of the counts. Right: Richness distribution of cluster
counts. The bottom plot shows relative deviations.

Table 5. Expected constraints on f(R) for either a shallow optical cluster
survey spanning z ∈ [0.1, 0.3] and covering 104 deg2 or a deep survey z

∈ [0.2, 0.8] with an area of 5000 deg2. See the main text for a detailed
description. The given limit refers to 95 per cent confidence intervals. Note
that the external CMB prior does not improve the limit for the deep survey
configuration.

Survey External probes
∑

mν Limit on |fR0|
Shallow BAO+BBN – <8.1 × 10−4

BAO+BBN Free –
BAO+BBN+CMB – <7.6 × 10−5

BAO+BBN+CMB Free <1.5 × 10−4

Deep BAO+BBN – <1.9 × 10−6

BAO+BBN Free <2.0 × 10−6

we can derive the weighted average

ḡ =
∫

drr2w(r)g(r)∫
drr2w(r)

, (64)

with the weighting function

w(r) = ρ(r)r
dψN

dr
(65)

which corresponds to the averaged additional potential energy. We
follow Schmidt (2010) and make the simplified assumption that the
fifth force is only sourced by mass outside of the radius given by
equation (12). Therefore, we write

g(r) = 1 + 1

3

M(< r) − M(< rscreen)

M(< r)
, (66)

where rscreen is the radius where the equality in equation (12) holds.
The time evolution of rscreen and subsequently ḡ is induced by the

background evolution of fR

f̄R(z) = |fR0|
1 + 4 ��

�m

(1 + z)3 + 4 ��

�m

, (67)

and the integrals in equation (64) can be solved by assuming NFW
profiles so both density and potential are determined. Note that ḡ

is only very weakly sensitive to the concentration of the profiles,
so we fix the relation to the results of Bullock et al. (2001). Even
though haloes tend to be more concentrated in f(R) cosmologies
(Lombriser et al. 2012b; Shi et al. 2015), this does not change our
qualitative argument.

From equation (62), we therefore expect the mass estimate to be
biased compared to GR by

Meff = ḡ3/5Mtrue; (68)

that is, the SZ signal coming from an unscreened cluster of fixed
mass is higher by a factor of (4/3)3/5 
 1.19 compared to the GR
expectation, while for a screened cluster ḡ = 1. Similar arguments
have been used before to constrain f(R) by comparing lensing
masses with X-ray (Wilcox et al. 2015) or dynamical mass estimates
(Pizzuti et al. 2017). Here, we want to incorporate the effect into a
cluster abundance framework.

To illustrate the method, we consider the consequences for the
Planck SZ cluster sample (Planck Collaboration XXIV 2016b).
There, the hydrostatic mass bias (1 − b) is introduced to account
for the difference between masses inferred from lensing and the
corresponding hydrostatic SZ signal. In f(R), we therefore expect (1
− b) to be modified by an additional factor ḡ3/5. Because the mass
definition used in SZ surveys is typically M500c, we calculate NFW
potentials to determine ḡ using this mass definition and we consider
a cluster fully screened if the equality in equation (12) has not been
met at R500c.
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Figure 10. Left: Redshift evolution of the expected cluster abundance for the fiducial cosmology observed by the deep optical survey described in the text.
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cluster survey as described in the text. The contours shown here assume
vanishing neutrino mass.

The limiting mass is determined according to the procedure
described in Planck Collaboration XXIV (2016b) as the mass of
an object with detection probability 1/2 by using the measured
noise maps, the SZ–scaling relations given there and by applying a
signal-to-noise detection threshold of q = 6.

In Fig. 12, we show the resulting limiting mass for the Planck
SZ selection function. Because the clusters in the sample are very
massive, they are screened unless |fR0| reaches quite high values
∼10−4. However, if all clusters in the Planck sample are unscreened,
this would be completely absorbed by the fiducial measurement of
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Figure 12. Limiting mass using the Planck SZ cluster selection function
for the fiducial case (grey), assuming all clusters are unscreened for a high
value of |fR0| = 10−4 (orange) and an intermediate case where parts of the
sample are screened with |fR0| = 5 × 10−5 (red, dot–dashed).

the bias factor – but because the lensing calibration is performed
on very massive objects, smaller objects can still exhibit deviations.
This is illustrated with the dot–dashed line for |fR0| = 5 × 10−5.

The resulting Planck SZ cluster counts are shown in Fig. 13.
Here, we recalibrate our mass function to M500c using the rescaling
outlined in Hu & Kravtsov (2003). While this simplified procedure
will not predict the position of the screening mass and the subse-
quent position of the f(R) peak in the mass function correctly, we just
want to point out that the effect of the adjusted selection function
can be quite large – in this case, the additional observed cluster
abundance caused by the higher SZ signal from low-mass clusters
(dashed lines in Fig. 13) contributes almost in equal parts to the
higher total observed cluster counts caused by the higher intrinsic
abundance in the mass function itself (solid lines).
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Figure 13. Redshift distribution for the Planck cluster counts using the
modified halo-mass function (solid) and also taking selection function
effects into account via equation (68) (dot–dashed). Grey bands indicate
a 10 per cent uncertainty in the cluster mass scale (1 − b). The enhancement
of the observed cluster abundance in f(R) due to the boosted abundance of
massive clusters in the mass function (orange solid) is comparable to the
number of low-mass objects that surpass the detection threshold due to the
higher SZ signal caused by the enhancement of gravity (orange dashed).

The high-mass scale for the Planck clusters limits the use-
fulness of this method here, but upcoming X-ray surveys such
as eRosita4 are expected to detect clusters and groups down to
M ∼ 1013 M h−1, where a similar analysis can prove to be very
powerful.

5.3 Searching for modified gravity with other
parametrizations

The problem in searching for modifications of gravity is that theory
space is enormous, and there are potentially many models to test.
Current and future cosmological surveys are mostly designed to
search for deviations in the dark energy equation of state w from
−1, so we might wonder if these standard searches are sufficient to
detect deviations from �CDM without assuming a specific model.
The hope is then that once an anomaly is detected (for example,
an equation of state w �= −1), one can resolve the tension in an
extended model involving new physics.

As a test case, we set
∑

mν = 0 and generate a fiducial cluster
catalogue with |fR0| = 10−4 for the shallow optical cluster survey
described above combined with CMB and BAO+BBN information.
This value of |fR0| is larger than the 95 per cent upper limit |fR0|
< 7.2 × 10−5 from the same combination of data sets given in
Table 5 and could be detected by a dedicated search using the
correct analysis model. We then explore the posterior assuming a
wCDM model and use the corresponding CMB covariance matrix
to obtain our prior. For this analysis, we assume that the effect of
w on the mass function is captured by the different evolution of the
density field alone and therefore use the �CDM barrier parameters.

We find that the best-fitting wCDM model does not show any
significant deviations from the vanilla case. The full posterior
distribution of the major cosmological parameters is shown in
Fig. 14, and while there are small deviations in the nuisance
parameters, all of them are within 1σ compatible with their standard
values without any peculiar features.

4http://www.mpe.mpg.de/eROSITA
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Figure 14. Posterior distribution of the main cosmological parameters for
the shallow survey +BBN+BAO+CMB with a fiducial model generated
using |fR0| = 10−4. All parameters are fully consistent with a vanilla �CDM
model and none of these (including nuisance parameters not plotted here)
show significant deviations >1σ from their fiducial values indicated by
dashed lines.
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Figure 15. Bars show the binned richness distribution of clusters for the
best-fitting wCDM model compared to the fiducial data points generated
with |fR0| = 10−4. All cosmological parameters for the best-fitting model
are very close to �CDM (see also Fig. 14) and all nuisance parameters agree
within 1σ with their fiducial values.

We also compare the richness distribution of cluster counts for
the best-fitting model with the f(R) mock data in Fig. 15 and find
no significant deviations. The full parameter space proves to be
flexible enough to account even for a large value of |fR0| that could
be detected if the correct model is assumed in the analysis, where
the nuisance parameters make up for most of the difference between
the models since a varying equation of state alone does not mimic
the f(R) signal – even though all of them remain within 1σ range of
their fiducial values. This indicates that wCDM might not be a good
approach to search for generic deviations from �CDM for models
that are not captured by this particular paramtrization.
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Therefore, we cannot necessarily exclude modified gravity (or
other) models just from the lack of tensions in the �CDM or wCDM
analysis of cosmological surveys. Instead, it is necessary to consider
the phenomenology of models individually in order to exclude them.

6 C O N C L U S I O N S

In this paper, we presented an accurate halo-mass function based
on a spherical collapse framework valid for modified gravity and
neutrino cosmologies, and calibrated it to a suite of specifically
designed cosmological simulations, the DUSTGRAIN-pathfinder
runs. This allows joint constraints from cluster abundance studies.
We keep the additional relative change and the fiducial GR mass
function separate, so our results can be used with any other mass
function calibrated to our mass definition of M200m.

The cluster mass definition is crucial to accurately predict the
characteristic f(R) peak in the relative abundance because it governs
the onset of screening effects. Mass functions for other commonly
used mass definitions such as M500c therefore require recalibration
of the screening mass, which we refer to future work.

We also demonstrate that the inclusion of neutrinos via a rescaling
of the density field equation (43) still holds in extended models, and
we find a degeneracy between effects of f(R) and massive neutrinos
in the abundance of clusters that limits the ability of surveys with
small redshift reach to disentangle them. This is likely to weaken
existing limits on |fR0| from cluster abundance, and we will use the
mass function for joint constraints using cluster data in a follow-up
paper.

Deeper cluster surveys however can tell neutrinos and modified
gravity reliably apart by their different redshift evolution, and
future optical cluster samples will be able to probe the entire
phenomenologically relevant parameter range of the model even
when accounting for systematic uncertainties. This could be realized
by the complete Dark Energy Survey, eRosita, or Euclid5 cluster
samples.

We also explore the possibility to include f(R) effects in the
selection function of SZ or X-ray surveys directly as proposed by
Schmidt (2010) and we find potentially large effects if the sample
can be extended to include nearby, intermediate, and low-mass
objects with M � 1014 M h−1. Even though neutrinos can mask
the additional abundance in the mass function at low redshifts,
it is still possible to detect fifth forces through these selection
effects. This allows to incorporate the limits on |fR0| from comparing
lensing mass estimates and X-ray, SZ, or dynamical mass estimates
consistently into cluster abundance studies in a fully consistent
framework.

Finally, we find that generic searches for wCDM do not necessar-
ily lead to significant tensions or conspicuous features when used to
analyse mock f(R) data – even if the value of |fR0| could be detected
with the same data set in a dedicated analysis. This emphasizes the
need to model phenomenology of �CDM extensions carefully. A
lack of tensions within a parametrization does not imply the absence
of new physics.
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