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Mesenchymal stromal cells (MSCs) have, for a long time, been recognized as pivotal

contributors in the set up and maintenance of the hematopoietic stem cell (HSC) niche,

as well as in the development and differentiation of the lympho-hematopoietic system.

MSCs also have a unique immunomodulatory capacity, which makes them able to

affect, both in vitro and in vivo, the function of immune cells. These features, namely

the facilitation of stem cell engraftment and the inhibition of lymphocyte responses,

have both proven essential for successful allogeneic stem cell transplantation (allo-SCT),

which remains the only curative option for several hematologic malignancies. For

example, in steroid-refractory acute graft-vs. host disease developing after allo-SCT,

MSCs have produced significant results and are now considered a treatment option.

However, more recently, the other side of the MSC coin has been unveiled, because

of their emerging role in creating a protective and immune-tolerant microenvironment

able to support the survival of leukemic cells and affect the response to therapies.

In this light, it has been proposed that the failure of current treatments to efficiently

override the stroma-mediated protection of leukemic cells accounts for the high rate

of relapse in acute myeloid leukemia, at least in part. In this review, we will focus

on emerging microenvironment-driven mechanisms conferring a survival advantage to

leukemic cells overt physiological HSCs. This body of evidence increasingly highlights

the opportunity to consider tumor-microenvironment interactions when designing new

therapeutic strategies.

Keywords: acutemyeloid leukemia, mesenchymal stromal cells, bonemarrowmicroenvironment, drug resistance,

immunomodulation

INTRODUCTION

A “Mesenchymal stem cell-like” population was initially classified as a subpopulation of bone
marrow (BM) cells with the ability to reconstitute ectopic BM following heterotopic transplantation
(1, 2). This subpopulation showed rapid adherence to culture dishes and a fibroblast-like shape,
which distinguished them from hematopoietic cells. In addition, this subpopulation retained the
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ability to form colonies, called colony-forming unit fibroblasts
(CFU-Fs) (3), with the capacity to regenerate bone tissue in
serial implants in vivo, suggesting a self-renewal and multi-
lineage potential (4). Subsequent studies identified the role
of the adherent cells obtained from long-term BM cultures
in supporting hematopoietic cells (5). The hypothesis of a
stem cell niche, with non-hematopoietic components regulating
hematopoiesis, was born (6), although it took several more
years to definitively accept this concept. In 1991, Caplan coined
the definition of Mesenchymal Stem Cells for this adherent cell
population (7). Nowadays, the term of Mesenchymal Stromal
Cells (MSCs) seems more appropriate Indeed, the multi-lineage
potential of a single MSC has not been fully proven, thus not all
MSCs can be considered bona fide stem cells in vivo (8).

Since the first definition, the studies regardingMSC properties
have advanced rapidly. Thus, beside the originally discovered
function in hematopoiesis supporting ability, other talents have
been revealed in vitro and in vivo. The physiological abilities
of MSCs, as we will discuss below (YIN), have proven to
be essentials for successful allogeneic stem cell transplantation
in AML and to counteract the Graft versus host disease
(GVHD) (YIN), but can also be exploited by malignant cells
to their advantage (YANG). The BM microenvironment can be
remodeled favoring malignant cell expansion and resistance to
therapy, at the expense of normal hematopoiesis. Thus, the “Pros”
of MSCs may become “Cons” in the malignant niche.

THE YIN OF MSCs: MSC ROLE IN
HEALTHY HEMATOPOIESIS AND IMMUNE
MODULATION

MSC-Dependent Hematopoiesis Support
MSCs represent one of the fundamental components of the
hematopoietic niche (9, 10) (Figure 1A). In vivo, the niche
provides a microenvironment which controls the maintenance,
self-renewal, and differentiation of hematopoietic stem cells
(HSCs), also regulating the release of mature progeny into
the vascular system. In addition, the niche protects HSCs
from stimuli which would exhaust the stem-cell reserves
(11). MSCs actively contribute to the creation of the HSC
niche. Indeed, when transplanted in mice, MSCs have
been shown to differentiate into osteoblasts, pericytes, BM
stromal cells, osteocytes, and endothelial cells, which all
represent functional elements of the niche able to support
hematopoiesis (12).

BM-MSCs also favor the engraftment and homing of HSCs
in the BM of animals when co-transplanted (13–15). The
capacity of MSCs to support hematopoiesis was demonstrated
in vitro (16) and both direct cell-to-cell contact and release
of soluble factors seem to be involved (17). Human MSCs
produce a wide variety of cytokines favoring HSC quiescence
or self-renewal, i.e., stem cell factor (SCF), stromal cell-derived
factor (SDF-1), bone morphogenetic protein 4, transforming
growth factor (TGF)-β , leukemia inhibitory factor (LIF),
and other cytokines influencing more mature hematopoietic
progenitors e.g., granulocyte macrophage colony-stimulating

factor (GM-CSF), and granulocyte colony-stimulating factor
(G-CSF) (16). MSCs also produce several interleukins (i.e., IL-
1, IL-6, IL-7, IL-8, 1L-11, IL-12, IL-14, IL-15). The importance
of cell-to-cell contact has been suggested by the demonstration
that CD34+ cells adhere to the MSC feeder layer, due to the
expression of proteins such as cadherins, integrins, vascular
cell adhesion molecule, and neural cell adhesion molecule 1.
This adhesion is essential to maintain primitive hematopoietic
progenitors in culture (18). In vivo, different hematopoietic stem
and progenitor cell subsets occupy distinct locations in the BM.
Analysis of murine BM sections revealed that approximately 85%
of HSCs are localized within sinusoidal blood vessels, suggesting
the existence of a perivascular niche and its fundamental role
in regulating HSC fate (19). On the contrary, <20% of HSCs
are located close to the endosteum (within 10µm) (20, 21).
Current data indicate that HSCs localize in the BM according
to the stage of differentiation (21), e.g., early lineage-committed
progenitors reside preferentially in the endosteal niche (9). Given
that the position of HSCs within the niche is critical, it is
fundamental to define the features of stromal cells associated with
the different locations. However, univocal surface markers for
MSC identification and classification in vivo have not yet been
found. Most of the available data were obtained in the mouse
model. In 2006, Sugiyama et al. definedmesenchymal progenitors
as the cells expressing an elevated level of the HSC maintenance
protein, CXCL12 (SDF-1), the so called CXCL12-abundant
reticular (CAR) cells. CAR cells are quite abundant in BM and
are found in close contact with putative HSCs, in proximity
to sinusoidal vessels and to endosteum (22). In 2007, another
population of subendothelial osteoprogenitor cells was identified
close to sinusoids. These cells were positive for the melanoma
cell adhesion molecule (CD146+) and show MSC activity, i.e.,
the ability to transfer the hematopoietic microenvironment upon
heterotopic transplantation (23). Finally, Mendez-Ferrer et al.
identified a putative mesenchymal population, expressing Nestin
(Nestin+ MSCs), a protein typical of neural cells. Nestin+

MSCs show CFU-F content, multilineage differentiation, and
self-renewal ability. Nestin+ MSCs are closely associated with
HSCs and reside in the perivascular area, and with a lower
frequency in the immediate vicinity of the endosteum. In vivo,
selective depletion of Nestin+ MSCs reduces HSC number and
BM homing of transplanted HSCs (24). Nestin+ MSCs are
less abundant than CAR cells and express CXCL12 as well.
Thus, Nestin+ MSCs may hold a more primitive phenotype
compared to CAR cells (25). To date, is still under debate
whether the different niche populations described in mice
and therefore the spatial relationship between the different
niche cells and HSCs are preserved in humans. As markers
for human MSC identification, nerve growth factor receptor
(CD271) and CD146 have been indicated. Indeed, CD271+

cells are able to support hematopoiesis and to form CFU-
Fs with tri-lineage differentiation potential in vitro (26), and
CD146 defines a subset of CD271+ cell populations with
different locations: endosteal cells (CD146−) or perivascular cells
(CD146+) (27), which express HSC maintenance genes (28, 29).
These cells also express other markers such as CD105 and
CD90 (30, 31).
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FIGURE 1 | The yin and yang of MSCs in the bone marrow microenvironment. (A) MSCs make a substantial contribution to the creation of the hematopoietic niche,

and play an essential role in normal hematopoiesis by regulating hematopoietic stem cell (HSC) proliferation and differentiation. MSCs also display a unique immune

regulation ability by inhibiting the activation, proliferation, and function of both adaptive and innate immune cells. MSC immunomodulatory properties have been

extensively used in various clinical settings, in particular in graft vs. host disease (GVHD) control. HSPCs, hematopoietic stem and progenitor cells; ECM, extracellular

matrix; GFs, growth factors; CKs, cytokines; ILs, interleukins. (B) MSCs have revealed an emerging role in creating a protective and immune-tolerant

microenvironment able to support AML survival and to affect therapy response. The most relevant MSC-dependent processes nurturing a leukemia drug-resistant

phenotype are outlined. AML, Acute Myeloid Leukemia; EVs, extra vesicles; TNTs, tunneling nanotubes; MITs, Mitochondria; ME, microenvironment.

MSC Immunomodulatory Properties
in vitro
MSCs are considered to be hypoimmunogenic, because
they express low levels of human leukocyte antigen class II
(HLA-II) and co-stimulatory molecules including CD40, B7,
CD80, and CD86, and they do not stimulate alloreactive
T lymphocyte responses in vitro (32, 33). Moreover, a
well-described characteristic of MSCs is their immune
regulation ability, which influences both adaptive and innate
immunity (34) (Figure 1A). The immunomodulatory effect
of MSCs relies on immunological conditions in the local
microenvironment, where inflammatory surroundings influence
MSC behavior. In particular, interferon (IFN)-γ and tumor
necrosis factor (TNF)-α play a key role in inducing the
immunosuppressive ability of MSCs and in creating an
immunosuppressive microenvironment. This effect is desirable
to induce self-tolerance and to control a potentially harmful
inflammatory response, but, as explained in detail below,

it is deleterious when it suppresses the response against
cancer cells.

MSCs influence the activity and functions of various immune

cells both via soluble factors and cell-to-cell contact mechanisms.

In vitro, autologous or allogeneic MSCs are able to inhibit

T-cell proliferation induced by distinct stimuli, including

mitogens, alloantigens, and CD3/CD28 mediated activation (34–
37). Interestingly, MSCs do not induce T-cell apoptosis, but

favor their survival in a quiescent state, promoting the arrest
of T cells in the G0/G1 phase of the cell cycle (38, 39). The
inhibitory effect of MSCs on T cells also requires MSC–T-
cell contact (40). The activation of toll-like receptor (TLR)-
3 and TLR-4, expressed on human BM-derived MSCs (41),
induces pro-inflammatory signals and hampers the negative
activity of MSCs on T-cell proliferation (42). In turn, MSCs
could be polarized, depending on TLR activation, into different
phenotypes: a pro-inflammatory MSC1 phenotype when TLR4-
primed, and an immunosuppressive MSC2 phenotype following
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TLR3 activation (43). Furthermore, MSCs affect T-cell cytokine
production: murineMSCs induce a decrease of IFN-γ production
by T helper 1 (Th1) cells in vivo (44) and human MSCs increase
IL-4 production by Th2 cells in vitro (34), skewing the phenotype
from a pro-inflammatory to an anti-inflammatory state (11).
As discussed in detail below, the suppressive activity of MSCs
is in part mediated by indoleamine 2,3-dioxygenase (IDO)-1
expression and activity, stimulated in turn by IFN-γ/TNF-α
producing activated T cells (45, 46). Additionally, MSCs inhibit
naïve Cytotoxic T lymphocyte (CTL)-mediated lysis, through the
release of soluble factors. MSCs are not lysed by CTLs, suggesting
the existence of a mechanism which allows MSCs to escape
recognition by CTLs (47).

MSCs are able to induce regulatory T cells (Tregs)
(34). In particular, MSC-exposed Tregs have increased
immunosuppressive activity, compared to Tregs not pre-
cultured with MSCs. This effect is potentially due to the
activation of programmed cell death 1 receptor (PD)-1 on Tregs
and IL-10 production in MSC/Treg co-culture system (48).
In addition, prostaglandin E2 (PGE2), TGF-β, and HLA-G5
expression in MSCs, as well as contact-dependent mechanisms,
are responsible for MSC-mediated Treg induction (49, 50).
MSCs can indirectly induce Tregs by inducing the production of
IL-10 in dendritic cells (DCs), which in turn induces the Treg
generation in vitro (34).

It has been shown that MSCs may block DC differentiation
from peripheral or cord blood-derived precursors (51). Likewise,
MSCs prevent the typical expression of surface markers
such as CD80, CD86, and HLA-DR during DC maturation
(52). MSCs affect mature DC function, inducing a decreased
expression of major histocompatibility complex class II and
other proteins and a decreased IL-2 production, which in
turn alter antigen presenting cell (APC) activity of DCs (53).
In addition, MSCs reduce TNF-α secretion by DCs and
hence reduce their pro-inflammatory activity (34). The negative
regulation of DCs, mediated by MSCs, is exerted through
several mechanisms, including MSC secretions of IL-6 (54) and
PGE2 (55). Recently, MSC-derived extracellular vesicles (EVs)
have been reported to reduce the maturation and function of
DCs (56).

MSCs are involved in the regulation of natural killer (NK)
cells and macrophages. MSCs are able to block resting NK
cell proliferation and cytotoxicity, whereas MSC effects on NK
activated cells are less evident (57). In addition, MSCs inhibit
cytolysis mediated by NK cells and their IFN-γ production,
through HLA-G5 secretion (49). It is noteworthy that IL-2
activated NKs, contrary to freshly isolated NKs, are able to lyse
autologous and allogeneic MSCs (57). Finally, murine MSCs
promote macrophageM2 polarization in vitro through activation
of signal transducer and activator of transcription (STAT)-
3 and inhibition of nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) (58). Human MSCs program
macrophage plasticity, favoring theM2 phenotype through PGE2
release and altering macrophage metabolic status (59). In turn,
M2 macrophages, contrary to their M1 counterpart, are able to
induceMSC osteoblast differentiation, suggesting their particular
role in regulating bone homeostasis (60). Interestingly, MSCs

can recruit macrophages/monocytes into the inflammation site
through the release of paracrine factors (61).

MSC Immunomodulatory Properties in vivo
Given their immunomodulatory properties, MSCs have been
extensively used in the clinical setting in recent years. In
some areas, such as chronic degenerative disorders, genetic
diseases, and solid organ transplantation, treatment with MSCs
is in the early phases of development. In other fields, such
as steroid refractory acute GVHD (sr-aGVHD), MSCs have
already produced significant results, and might be considered
as a treatment option (Figure 1A). Immunomodulation through
MSCs has some properties which make it particularly useful for
the treatment of sr-aGVHD. In particular, it does not require
donor-recipient matching, it is non-antigen specific and, last but
not least, it is dependent on exposure to inflammation (“site
specific”) (62). Accordingly, MSCs have been widely tested as a
salvage option to treat sr-aGVHD, and convincingly shown their
effectiveness by improving overall survival (OS) of responding
patients (63, 64). Despite encouraging results reported within the
last 10 years, there is still an urgent requirement to find well-
defined factors that can be used to predict treatment outcome at
an early stage, in order to identify those patients more likely to
respond and the most effective administration regimen. A better
understanding of these matters would considerably optimize
MSC treatment and help doctors to clearly establish the possible
role of MSCs in the therapeutic management of GVHD (65). An
exhaustive discussion of the clinical trials conducted up to now
is not an objective of this review. The results of the most relevant
clinical studies with MSCs for sr-aGVHD, conducted in the last
10 years, are reported in Table 1.

THE YANG OF MSCs: MSC ROLE IN AML
ONSET AND PROGRESSION

AML and other myeloid malignancies have for a long time
been considered exclusively driven by leukemic cell-intrinsic
mechanisms, due to the discovery of critical driver mutations in
HSCs (71, 72). Recently, the role of the microenvironment and
BM stromal cells, including MSCs, gained attention as critical
contributors to AML pathogenesis, persistence, and recurrence.
Recent findings suggest that alterations, which first occur in
the BM niche, can directly drive the dysfunction of HSCs,
favoring leukemia initiation and progression in a niche-driven
model of malignant transformation. Moreover, growing evidence
highlights the ability of leukemic cells to profit from physiological
signals and to shape BMniche cells (HSC-drivenmodel), in order
to create a self-reinforcing and more favorable niche, supporting
malignant cells at the expense of normal hematopoiesis.

Niche-Driven Mechanisms of
Leukemogenesis
The BM microenvironment exerts not only a bystander effect
but also plays an active role in myeloid transformation. The
genetic manipulation of specific stromal cell subsets is able to
drive leukemogenesis in mice. In a first study, the targeted
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TABLE 1 | MSCs for GVHD.

Study N. of patients Cell dose (106/Kg) Response rate (%) Overall survival (%)

Resnick et al. (66) 50 1.1 25 (80 in responders)

von Dalowski et al. (64) 58 0.99 47 19 at 1 year

Introna et al. (67) 40 1.5 (3 doses) 67.5 50 at 1 year

Sánchez-Guijo et al. (68) 25 1

4 sequential doses (all 2)

71 N/R

Servais et al. (69) 33 (2 cohorts) 1–2 vs. 3–4 21 vs. 30 0 vs. 48

Bader et al. (70) 69 (51 children + 18 adults) 1–2 30 CR−9 PR−16 NR 75 (children) 61 (adults)

deletion of the Dicer I, ribonuclease III (Dicer I), in a well-
defined population of mesenchymal progenitors recapitulates
features of human myelodysplastic syndrome (MDS), including
the propensity to develop into AML (73). The loss of Dicer
I results in a decrease of the SBDS ribosome maturation
factor (Sbds) expression in mesenchymal/osteoprogenitor cells.
SBDS encodes for a protein involved in ribosomal maturation
and its mutation has been identified in Shwachman-Diamond
syndrome (SDS), characterized by BM failure with a high
risk of developing AML (73). MSCs isolated from MDS
patients show a lower expression of DICER I and SBDS (74).
Furthermore, mesenchymal progenitors devoid of the Sbds
gene show increased secretion of damage associated molecular
pattern (DAMP) molecules, S100A8 and S100A9, leading to
mitochondria dysfunction and genotoxic stress in HSCs. A
correlation was also found between the expression of the two
DAMP molecules in MSCs isolated from MDS patients and the
increased risk of these patients of developing AML (75).

The role of MSC-derived osteoprogenitors in AML has
recently been highlighted. The activating mutation in the β-
catenin gene in osteoprogenitor cells causes the activation of
Notch signaling in HSCs, and impairs myeloid and lymphoid
differentiation leading to the development of AML in mice.
Interestingly, 38% of MDS and AML patients show an
increase of β-catenin signaling in osteoblasts and of NOTCH
signaling in HSCs (76, 77). Finally, activating mutations of
the Tyrosine phosphatase SHP-2 (encoded by Ptpn11 gene)
in MSCs and osteoprogenitors, already found in Noonan
syndrome and associated with an increased risk of leukemic
transformation, induce juvenile myelomonocytic leukemia-like
myeloproliferative neoplasm in mice (78).

A niche-driven mechanism of leukemia in humans is
supported by the phenomenon of a donor cell-derived
hematopoietic neoplasm, reported for AML, MDS, T-cell
lymphoma, and chronic myeloid leukemia (CML). Indeed,
in rare cases, donor-derived leukemia occurring in patients
receiving BM transplantation may be completely different
from the original leukemic clone. In the host, pre-existing BM
niche alterations could initiate leukemogenesis in engrafted
cells of donor origin (79, 80). In addition, a perturbation of
those pathways, which we mentioned before as able to drive
a niche-induced transformation in mice (i.e., Dicer1, sbds,
S100A8/9, β-catenin), has been described in patients (73–76).
Ex vivo expanded MSCs isolated from MDS and AML patients
show several alterations, e.g., chromosomal aberrations in MSCs

derived from MDS and AML patients have been reported in
30–70% of the samples. Surprisingly, in some patients, the
cytogenetic abnormalities identified in MSCs are different from
those detected in hematopoietic cells, isolated from the same
patients (81, 82). Chromosomal and genetic alterations of MSCs
have been correlated to specific gene-expression programs and
disease subtypes, suggesting that the genetic susceptibility of
MSCs can play an active role in the progression of MDS and
AML (83). However, the functional meanings of these alterations
are still under debate and conflicting results have been published.
Several studies reported normal functionality including
differentiation capacity, ability to support hematopoiesis in vitro,
immunophenotype, expression of adhesion and extracellular
matrix proteins (84–86). On the contrary, other studies revealed
functional alterations of MSCs, including growth deficiency and
altered osteogenic differentiation ability, and reduced capacity
to support hematopoietic cells (83, 86–91). The secretome
of MSCs is also altered in the leukemic BM (87, 92, 93). In
particular, it has been demonstrated that a subset of MSCs
shows an increased expression of pro-inflammatory molecules
e.g., C-C motif chemokine ligand 3 (CCL3), TNF, IL-8, IL-6,
DAMPs, and a reduced expression of factors essential for HSC
maintenance and differentiation e.g., CXCL12, KIT Ligand, and
angiopoietin 1 (28, 61, 75).

HSC-Driven Mechanisms of
Leukemogenesis Exploiting the BM
Microenvironment
Malignant HSCs can influence the composition and the
functional status of the BM microenvironment. Medyouf
et al. found that primary human MDS cells could instruct
MSCs, isolated from healthy donors (HDs), toward an MDS-
like behavior in vitro (94). Furthermore, in a patient-derived
xenograft model, MDS cells need their disease-associated
MSCs to propagate the disease in vivo, suggesting that both
hematopoietic and stromal cells have a role in MDS (94).
Recently, the remodeling of the niche, induced by AML
cells, has been characterized. Similarly to MDS, healthy
MSCs cultured in AML cell-conditioned medium showed a
reduced osteogenic differentiation and proliferation ability (87).
Among the mechanisms driving the remodeling of the niche,
inflammation, a hallmark of cancer, seems to play a role. The
ability to induce inflammation could potentially reflect specific
“physiological” immune functions, still present in malignant cells
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(95). In an AML mouse model, it was observed that CCL3
produced by AML cells inhibits osteoblastic cells and bone
demineralization. Interestingly, CCL3 mRNA is detected also in
malignant cells isolated from AML patients (96).

AML cells are able to modify the transcriptome of MSCs.
Indeed, leukemic stem cells (LSCs), unlike normal CD34+ cells,
modulate in MSCs the expression of cell-cycle genes, cytokine-
related genes, and other genes, like CXCL12 and JAG-1, involved
in cell-to-cell cross-talk (91).

Additionally, malignant cells can shape the niche through the
release of EVs. EVs (e.g., exosomes and microvesicles) are new
mediators in the intercellular communication network in various
physiological and pathophysiological frameworks. EVs are
produced starting from different cell types and perform different
functions depending on their origins and cargoes. Indeed, EVs
contain proteins, lipids, and nucleic acid, representing potential
signal molecules to deliver to specific target cells (97, 98).
Both primary AML cells and AML cell lines release EVs,
carrying several coding and non-coding RNAs, relevant to AML
pathogenesis. It has been demonstrated that the content of
AML cell-derived EVs is able to modify stromal cell functions,
regulating cellular pathways including the production of growth
factors, metabolism, and immune response, all favoring AML
cell survival (99–102). In vivo, AML-derived EVs mediate the
BM remodeling leading to an increased number of mesenchymal
stromal progenitors, osteoblast loss and downregulation of HSC-
supporting factors in BM stromal cells. The disruption of EV
secretion reduces leukemia progression in mice (103).

Kim and collaborators found that distinct patterns of MSC
changes induced by AML cells characterize AML patients and
are associated with a heterogeneous clinical course. Stromal
remodeling in leukemic BMmay potentially serve as a prognostic
factor (91). All these mechanisms indicate a fundamental bi-
directional interaction among malignant cells and surrounding
microenvironment (83) with relevant consequences on AML
onset and, as we will explain below, on disease development
and outcome.

Emerging Microenvironment-Driven
Mechanisms of Drug Resistance
Despite the introduction of new anti-leukemic agents and
approaches, and the high rates of remission after induction
therapy, treatment failure, and relapse are still major hurdles in
AML. The persistence of AML cells after therapy, resulting in
minimal residual disease (MRD), is the main factor responsible
for AML relapse. In addition to cell-autonomous mutations
(i.e., intrinsic factors), increasing evidence indicates that the
BM microenvironment (i.e., extrinsic factors) may contribute
to protect LSCs from being killed by chemotherapeutic agents,
resulting in MRD persistence (104–107). Indeed, environment-
mediated de novo drug resistance creates a transient state of
malignant cell protection eventually leading to the selection
and outgrowth of cells with an increasing level of acquired
drug resistance (108). Here, we will describe the most relevant
microenvironment-dependent processes underlying protection
against chemotherapy, with a particular emphasis on new

emerging mechanisms driven by MSCs to nurture a leukemia
drug-resistant phenotype (Figure 1B).

MSC-Dependent Multi-Drug Resistance Phenotype
The tumor microenvironment can facilitate the establishment
of a multi-drug resistance (MDR) phenotype in leukemic cells.
Indeed, MDR may arise through different processes, including
drug uptake and imbalance in cell survival/death signaling, but
especially through themodulation of the adenosine triphosphate-
binding cassette (ABC) efflux transporter expression. The
ABC transporter regulates the efflux of xenobiotics including
chemotherapeutic drugs. In co-culture experiments, a subset
of BM-derived stromal cells increased the expression of
several ABC transporters in a myeloid leukemia cell line and
protection against chemotherapy-induced apoptosis (109, 110).
The adhesion of leukemic cells to the BM-microenvironment is
also crucial for the persistence of MDR in AML (107).

MSC-Dependent Pro-Survival Effect: Soluble Factors

and Cell-to-Cell Contact
The ultimate result of a successful cytotoxic treatment is
the induction of apoptosis, a genetically determined process
of programmed cell death. The BM microenvironment offers
protection against cytotoxic agents, allowing the activation of
anti-apoptotic signals and leading to enhanced cell survival and
resistance to therapy. The activation of signals which inhibit
apoptosis is correlated with a poor response to chemotherapy in
AML (111–115).

BM stromal cells play a key role in the activation of pro-
survival mechanisms. Earlier studies showed that stromal cells
protect leukemic cells from apoptosis induced spontaneously,
by serum deprivation or by drugs (116–119). It is still unclear
whether the pro-survival effect of stromal cells on AML is
either due to direct contact (116, 117, 120) or to soluble
factors secreted from stromal cells (118). Regarding the latter,
compounds able to reduce IL-6 production by BM stromal
cells are cytotoxic for AML cells, but not for BM stromal cells
themselves (121). Other growth factors affecting BM-mediated
resistance to chemotherapy include TGF-β, basic fibroblast
growth factor, and vascular endothelial growth factor (122, 123).

Both soluble factors and adhesion molecules activate pro-
survival pathways and often interact with each other. SDF-
1/CXCL-12, constitutively expressed by both MSCs and MSC-
derived osteoblasts, could stimulate malignant cell survival
(124). The SDF-1 receptor, CXCR4 is expressed by normal
and malignant hematopoietic cells (125). Anti-CXCR4 or a
CXCR4 antagonist decrease AML cell survival in vitro (126).
Although SDF-1 has not been directly implicated in drug-
resistance, it could contribute by an indirect mechanism. Indeed,
SDF-1/CXCR4 axis inhibition could override BM stromal cell
protection to drug-induced apoptosis in AML (126, 127). CXCR4
antagonists dramatically reduce AML load in mice previously
engrafted with primary human AML without influencing
the engraftment of normal hematopoietic progenitors (128),
probably because tumor cells express higher levels of CXCR4
than normal cells (125). Furthermore, SDF-1 enhances integrin
α4β1 (VLA)-4-mediated adhesion of tumor cells to extracellular
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matrix components (ECM), i.e., fibronectin and collagen, in
the BM. Malignant hematopoietic cells adherent to ECM via
VLA-4 showed an adhesion-mediated resistance to distinct
types of chemotoxic agents (129). VLA-4-mediated adhesion
promotes MRD in a mouse model of AML following cytarabine
treatment. Anti-VLA4 antibodies reduceMRD and increase mice
survival (107). Integrin ligation triggers activation of pro-survival
pathways. Integrin-linked kinase interacts with β integrins and
activates PI3K/AKT-mediated pro-survival signaling in leukemia
cells (120).

Whatever the upstream mechanism, the activation of pro-
survival pathways results in the involvement of common targets.
BCL2, a critical pro-survival factor, was significantly upregulated
in leukemic cells in co-cultures with stromal cells (118, 130). In
pre-clinical models, it has been demonstrated that the efficacy of
BCL2 inhibitor venetoclax in vitro was attenuated by cytokines
(i.e., soluble factors) produced by stromal cells (131, 132).
Mechanistically, cytokines activate Janus kinase (JAK)/STAT
signaling and decrease the expression of BCL-2 relative to the
other BCL2 family members (i.e., BCLXL, MCL1, and BFL1).
Accordingly, navitoclax, possibly targeting both BCL2 and BCLX,
retains its cytotoxic activity also in the presence of the stroma.

As an alternative stroma-mediated pro-survival mechanism,
it has been suggested that the microenvironment may contain
factors (e.g., adhesion molecules) that can induce malignant
cell quiescence contributing to protect them from the drugs
targeting rapidly dividing cells. Homing to the niche is crucial
for AML LSCs to maintain their stem cell properties, including
quiescence. The adhesion molecule CD44, the receptor for
hyaluronan, osteopontin, and other ECMmolecules, is important
for homing and engraftment of AML LSC in murine models. An
anti-CD44 antibody inhibits AML LSC engraftment and alters
their stem cell fate (133). While BM stromal cells exert their
protective effect within the tumor microenvironment, it is likely
that away from the niche this protection is no longer active. The
mobilization of leukemic cells in the peripheral blood where they
exit from dormancy and become subjected to the cytotoxicity
of chemotherapeutic drugs could be considered a promising
cell killing strategy. Disruption of CXCL-12/CXCR4 interactions
with CXCR4 inhibitors efficiently blocks LSC homing to the
BM niche and likely sensitizes leukemic cells to chemotherapy
(125–128). Based on their ability to mobilize leukemia cells out
of protective BM niches, different molecules, including CXCR4
antagonists, have been explored in combination with cytotoxic
drugs (i.e., venetoclax).

Conversely, a pro-apoptotic stroma-dependent effect was
observed in JAK2-inhibitor treatment (ruxolitinib). In this
case, stroma-produced cytokines, such as G-CSF and GM-
CSF increased STAT-5 phosphorylation, a downstream target
of JAKs, potentiating JAK inhibitor efficacy. When combined
with venetoclax, the JAK2 inhibitor ruxolitinib demonstrated
synergistic killing activity. This result was summarized in a
systemic xenograft model of AML (132). Furthermore, AML
cells prove more sensitive to drugs targeting rapidly dividing
cells, such as taxanes and vinka alkaloids, in the presence of
stroma-secreted soluble factors, probably due to their stimulating
effect on cell proliferation (86).

At present, clinical studies with molecules directly targeting
stroma are still under construction. Given the genetic diversity of
AML, and the complexity of the BM architecture, it will probably
be necessary to design studies combining drugs with different
targets. Theoretically, the major hurdle is still to find targets
particular to the malignant cell population, in order to be able
to reduce toxicity and preserve the functions and the properties
of the healthy microenvironment. In this view, genomic profiling
could be useful in identifying possible targets, also within stroma
cells (134).

MSC-Dependent Pro-Survival Effect: New

Mechanisms
In addition to cell-direct contact and soluble factors, the list of
mechanisms accounting for MSC-dependent pro-survival factor
transfer has progressively expanded.

EVs derived from MSCs (MSC-EVs) are able to vicariate
MSCs themselves. Like MSCs, MSC-EVs are able to determine
a decrease in pro-inflammatory responses including immune cell
activation and oxidative stress (135). Moreover, EVs have been
found to retain MSC therapeutic activities in vivo, including
GVHD improvement (136). EV studies revealed a novel
mechanism by which MSCs could play a pro-leukemic function.
MSC-EVs act as paracrine factors and induce modifications in
the recipient cells that could influence and inhibit proliferation
of cancer cells in vitro and tumor progression in vivo, similar
to MSCs (137–139). However, an opposite inhibitory effect on
cancer was demonstrated in certain systems (137, 140, 141).
Accordingly, EVs could have different effects on cancer cells
depending on their content or source (i.e., if produced by
normal or malignant MSCs). In particular, EVs derived from
normal MSCs inhibit tumor cell proliferation in vitro and in
vivo (142). Although the role of MSC-derived exosome signaling
in AML has not yet been established, it has been demonstrated
that exosomes derived from MSCs isolated from AML patients
containedmicroRNAs able to influence gene regulatory networks
in AML cells (143). In this light, the identification of microRNA
and/or proteins that can be transferred from MSCs to leukemic
cells represents a promising concept for the development of new
therapeutic strategies to treat AML.

Tunneling nanotubes (TNTs) have been identified as a novel
means for cell-to-cell communications (144–146). TNTs are
filamentous actin-based structures, able to connect cells and
to act as a route to transport organelles, proteins, and signal
molecules, etc. (146, 147). TNTs have been characterized in both
cell lines and primary AML cells (148). Interestingly, cytarabine
significantly decreases TNTs, while Daunorubicin has no effect.
The effect of drugs on TNT number could be an indicator of
a different cell sensitivity to the microenvironment-mediated
protection. By using a fluorescent tracking system, it was recently
demonstrated that TNT signaling extends from MSCs toward
AML cells; this could represent a route of mitochondria transfer
(149) producing stromal-mediated drug resistance (150). These
observations suggest that drugs targeting TNTs could potentially
contribute to override the MSC-mediated tumor protection
against apoptosis and to prevent drug resistance.
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MSCs and Mitochondrial Metabolism Regulation
Cancer cells consume high levels of glucose and the majority
of them prefer glycolysis even in the presence of oxygen
(Warburg effect). The prevailing concept is that the Warburg
effect results from irreversible damage to the oxidative capacity of
mitochondria in cancer cells. However, recent findings indicate
that the Krebs cycle is intact in leukemia cells (151, 152), and
utilizes substrates, such as glutamine and fatty acids, to generate
intermediates for biosynthetic pathways and to counteract
oxidative stress. In the absence of permanent alterations to the
oxidative capacity of the cells, mitochondrial uncoupling (i.e.,
the abrogation of adenosine triphosphate (ATP) synthesis in
response to mitochondrial potential) could mimic the Warburg
effect. It has been demonstrated that in leukemia cells, MSCs
increase the expression of uncoupling protein 2 (UCP2), a
mitochondrial inner membrane protein that short circuits
the electrochemical gradient generated by the mitochondrial
respiration chain. Uncoupled mitochondria display a metabolic
shift to the oxidation of carbon sources alternative to glucose,
supported in part by fatty acid and glutamine metabolism.
Uncoupled mitochondria are more resistant to cytotoxic insults,
produce less reactive oxygen species (ROS) and block the
activation of the intrinsic apoptotic pathway. Not all leukemic
cells are uncoupled and exhibit increased aerobic glycolysis after
co-cultures with MSCs (153, 154). Contrary to the Warburg
hypothesis, LSCs rely on oxidative phosphorylation to generate
ATP (155). LSCs, albeit variable from patient to patient and
in some cases within the same patient, are considered the
real perpetrators for the propagation of AML. Although the
effect of MSCs on mitochondrial uncoupling in LSCs has not
yet been evaluated, mitochondrial metabolism has progressively
emerged as a putative point of vulnerability for LSCs.
Indeed, the inhibition of mitochondrial metabolism selectively
targets LSCs, which are metabolically inflexible, i.e., they are
unable to shift to glycolysis when mitochondrial respiration is
inhibited (152).

Cancer cells could use different strategies to acquire
metabolites and organelles, including mitochondria, to build
up ATP production. Consistently, it has been shown that
AML cells present a higher number of mitochondria in
comparison with normal HSCs (156, 157). Interestingly, extra-
mitochondria derive from MSCs through a process of transfer
that has not yet been defined, but which likely involve TNTs
and/or endocytosis and requires cell-to-cell contact (150, 158).
AML cells, through NADPH oxidase-2 (NOX2) activity, locally
increase oxidative stress, pushingMSCs to increase mitochondria
production (150). The extra-mitochondria are transferred to
AML cells without any side effect on the metabolic health
of MSCs through the activation of peroxisome proliferator-
activated receptor γ coactivator (PGC)-1α, the master regulator
of mitochondrial biogenesis, which is essential for AML-
directed mitochondrial transfer (159). Thus, AML cells with
extra-functionally active mitochondria might gain a metabolic
advantage, and possibly be relevant for chemo-resistance.
Most types of chemotherapy exploit mechanisms involving
the induction of oxidative stress. Thus, AML cells with the
highest content of mitochondria could most likely survive after

oxidative chemotherapy. Accordingly, it has been demonstrated
that chemotherapy stimulates mitochondrial transfer (158).

Targetingmitochondria transfer could emerge as an intriguing
approach to the development of therapeutic regimens able
to tackle chemo-resistant metabolically advantaged AML cells.
In support of this theory, normal CD34+ HSCs are less
prone to receive extra-mitochondria, opening a window for a
feasible target therapy with limited detrimental effects. In this
context, NOX2 and PGC-1α could be interesting targets, as (1)
NOX2 knocked-down AML blasts have reduced mitochondrial
respiration; (2) the NOX2 inhibitor decreases mitochondrial
transfer and AML cell viability, whereas it is ineffective on normal
HSCs, and (3) inhibition of PGC-1α in BM-MSCs reduces
mitochondria transport (159).

Moreover, NOX2 and PGC-1α activity appear crucial for AML
persistence and recurrence in vivo. In fact, NOX2 knocked-down
AML mice show better OS with respect to the NOX2 wild type
AML control (150), and PGC-1α knocked-down BM-MSCs mice
showed a reduced tumor volume compared with control mice
(159). Last but not least, extra-mitochondria AML equipped
cells could acquire additional anti-apoptotic proteins, also from
the BCL-2 family, gaining a survival advantage and, possibly,
resistance to standard therapy (160). Promising data, coming
from the use of venetoclax, an anti-BCL-2, in elderly AML
patients, might partly be exploited by venetoclax’s effect on
mitochondria and oxidative stress of AML cells (161).

MSC-Dependent Nurturing Function
Tumor cells are exposed to nutrient and oxygen-poor conditions.
Thus, metabolic adaptation to stress condition and to increased
nutrient demand is a crucial requirement for tumor cell survival
and expansion. Several data suggest that there is a complex
network of metabolic interactions involving malignant cells and
their neighbors in the tumor microenvironment. In particular,
it is becoming increasingly clear that cancer cells could induce
stromal cells to produce metabolites and nutrients to feed
their metabolism and gain a proliferative advantage. Among
the stromal-produced nutrients, glutamine (GLN), albeit a non-
essential amino acid, plays a key role in sustaining themetabolism
of proliferating cells and regulating redox homeostasis. A variety
of human cancer cell lines, including AML, have been shown to
be highly dependent on GLN for proliferation and survival. In
particular, AML cells are able to utilize GLN as an alternative
carbon source for energy production (162). GLN deprivation
or inhibition of Glutamine synthetase (GLS) cause cell growth
inhibition and induce apoptosis in AML cells (163).

MSC-Dependent Regulation of Redox Homeostasis
Besides nurturing function, the BMmicroenvironment performs
a fundamental role in regulating redox homeostasis of leukemia
cells by contributing substrates to generate antioxidants. MSCs,
by uncoupling mitochondria, contributed to the reduction of
ROS and protection of AML cells from redox-induced damage
(153, 164). Recent data have indicated that the leukemia
microenvironment in the BM is hypoxic (165). Residing in a
hypoxic region may contribute to protect leukemia cells from
oxidative stress, including the stress generated by chemotherapy.
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Furthermore, it has been demonstrated that BM stromal cells
contribute to the hypoxic adaptation of leukemic cells. BM-MSCs
upregulate hypoxia inducible factor 1 subunit α (HIF-1α) under
hypoxic conditions through mTOR/AKT pathway activation.
HIF-1α is a key regulator of the cell response to hypoxia and, as
a transcription factor, controls the expression of genes involved
in energy metabolism, angiogenesis, apoptosis, and cell cycle.
HIF-1α induces the stabilization and the activation of the CXCL-
12/CXCR4 pathway, thus facilitating the recruitment and the
retention of leukemic cells within the leukemic niche (166). HIF-
1α up-regulation increases, in turn, the expression of the glucose
transporter and drives leukemic cells to switch to glycolytic
metabolism. This metabolic adaptation directly inhibits the
mitochondrial apoptotic pathway (167). Thus, forced expression
of HIF-1α makes leukemic cells resistant to chemotherapy,
whereas downregulation of HIF-1α or inhibition of the mTOR
pathway restore the chemosensitivity of leukemic cells (168).

MSC-Dependent Immunosuppression and

Inflammatory Pathways
Among the multifaceted functions attributed to MSCs, immune
modulation is the most relevant, from a clinical point of view.
Selected pathways of tumor evasion from immune-surveillance,
which could potentially lead to anti-cancer therapy resistance,
can take place in the BM microenvironment. In solid tumors,
it is now well-established that immune suppression mediated
by the stromal environment contributes to cancer cell growth
(169). However, a similar role for MSCs in AML is less clear.
This is partially imputable to the poor characterization of the
immunosuppressive and anti-inflammatory properties of MSCs
derived from AML patients.

As discussed before, MSCs contribute to the immune
responses. Many mediators, including IDO1, PGE2, HLA-
G5, IL-10, TGF-β, hepatocyte growth factor, heme oxygenase
1 and LIF, have been involved in the immunosuppressive
activity of MSCs, at different levels. It is reasonable to assume
that none of these factors alone could lead to a significant
abrogation of the immune response. Rather, MSC-mediated
immunoregulation is the result of the cumulative action
displayed by several molecules simultaneously. Among these
molecules, IDO1 performs an immunomodulatory activity in
different settings, including AML (170). IDO enzymes catalyze
the initial step in tryptophan degradation along the kynurenine
pathway, which in turn inhibits T cell proliferation and induces
T cell death (171). Thus, professional APCs but also MSCs
upregulate IDO1 following inflammatory stimuli, mostly IFN-
γ (45). MSCs, expressing IDO1, are able to activate Tregs and
to induce T-cell differentiation of Tregs, thereby potentiating
immunosuppression in the tumor microenvironment (172).
Indeed, Tregs have been recognized as essential contributors
in microenvironment immunomodulation and ultimately in
helping leukemic cells to evade immune surveillance (173,
174). Data obtained in our lab demonstrated that AML cells,
but not normal HSCs, expressed IDO1 (175) which mediates
immune tolerance (176) and correlates with a poor clinical
outcome (177). We further demonstrated that MSCs isolated
from MDS and AML patients also up-regulated IDO1 following

pro-inflammatory cytokine treatment to a similar extent with
respect to MSCs isolated from HDs (our unpublished data),
besides showing comparable immune-regulatory functions (86).
However, others demonstrated that AML-derived MSCs are
more highly immunosuppressive/anti-inflammatory than those
derived from HDs (93). Leukemic cells originate and grow in
the immunosuppressive Treg-rich BM microenvironment and
are thus protected against the active immune response. On
the one hand, immune-modulation could also be exacerbated
within an inflamed tumor microenvironment. Inflammatory
signals are produced, as mentioned before, both by AML cells
and MSCs in the leukemic microenvironment. In particular,
TNF-α is upregulated in MSCs after co-culture with leukemic
cells (178). Thus, TNF-α, indicated as crucial in all steps of
hematologic malignancies (179, 180), may contribute to the
generation of an inflammatory niche able to favor tumor growth
and immune suppression. On the other hand, the production
of an anti-inflammatory/immunosuppressive cytokine IL-10 by
MSCs has been indicated as a negative prognostic factor in
AML patients, suggesting a dual role of inflammation in the
immune response (93). Furthermore, the increase in the MSC-
secreted inflammatory cytokine IL-6 could have opposite effects
on immunosuppression. While IL-6 has been involved in the
inhibition of DC differentiation, decreasing the stimulatory effect
of DCs on T cells (53, 54), the secretion of IL-6 byMSCs has been
shown to promote anti-tumor adaptive immunity by increasing
T lymphocyte trafficking in the tumor microenvironment (181).

Finally, the effect of chemotherapy in the leukemic
microenvironment partly relies on the induction of inflammatory
modifications, including an increase in serum inflammatory
cytokines, thus chemotherapy may lead to the upregulation of
IDO1 expression on MSCs, exacerbating an immune tolerant
environment. Besides IDO1, the induction of inducible nitric
oxide synthase by MSCs and the production of nitric oxide
(NO) were shown to play a major role in immunosuppression
in murine systems (182–184). However, some data have been
published supporting a regulatory role of NO production
in MSC-induced immune suppression also in hematological
malignancies (178).

All together, these changes in the MSC-dependent
inflammatory status of the microenvironment can collectively
result in immune modulation and could contribute to tumor
progression and drug-resistance within the BM niche.

CONCLUSIONS

Until recently, AML research was focused on the identification
of HSC-autonomous and disease-specific genetic events leading
to malignant transformation. However, the contribution of
the BM microenvironment has gained increasing attention,
challenging the evidence that AML derives exclusively from cell-
intrinsic defects. New studies have demonstrated that primary
alterations of stromal cells, including MSCs, are able (e.g., by
promoting an inflammatory or genotoxic microenvironment
triggering alterations in HSCs) to induce the disease in mice
models and in some cases in patients. Moreover, AML cells
exploit MSC-dependent pro-survival signals and shape the
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BM microenvironment, in order to create a permissive/self-
reinforcing niche favorable to escape therapy and immune
response. All these concepts converge to indicate a fundamental
bi-directional interaction between malignant cells and the
BM microenvironment both contributing to AML onset and
progression. Although the mechanisms underlying this cross-
talk are just starting to be unraveled, an increasing body of
evidence indicates that, similarly to other malignancies, targeting
the AML microenvironment may be helpful at therapeutical
level, thus being complementary to conventional treatments.
This approach may lead to improved clinical results, especially
for those patients, i.e., high-risk AML sufferers, who still have a
dismal prognosis and whose management represents an unmet
medical need. In this clinical scenario, a better understanding of
cell-extrinsic and microenvironmental mechanisms underlying
drug resistance constitutes a fundamental step for the design and
development of new and potentially more effective therapies.
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