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Abstract
Myelofibrosis is the advanced stage of the Philadelphia
chromosome-negative myeloproliferative neoplasms (MPNs),
characterized by systemic inflammation, hematopoietic failure in the bone
marrow, and development of extramedullary hematopoiesis, mainly in the
spleen. The only potentially curative therapy for this disease is
hematopoietic stem cell transplantation, an option that may be offered only
to those patients with a compatible donor and with an age and functional
status that may face its toxicity. By contrast, with the Philadelphia-positive
MPNs that can be dramatically modified by inhibitors of the novel BCR-ABL
fusion-protein generated by its genetic lesion, the identification of the
molecular lesions that lead to the development of myelofibrosis has not yet
translated into a treatment that can modify the natural history of the
disease. Therefore, the cure of myelofibrosis remains an unmet clinical
need. However, the excitement raised by the discovery of the genetic
lesions has inspired additional studies aimed at elucidating the
mechanisms driving these neoplasms towards their final stage. These
studies have generated the feeling that the cure of myelofibrosis will require
targeting both the malignant stem cell clone and its supportive
microenvironment. We will summarize here some of the biochemical
alterations recently identified in MPNs and the novel therapeutic
approaches currently under investigation inspired by these discoveries.
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Introduction
Overt myelofibrosis (MF) is the final stage of several disease 
entities collectively referred to as the Philadelphia chromosome-
negative myeloproliferative neoplasms (MPNs) that include  
polycythemia vera (PV), essential thrombocythemia (ET), and 
prefibrotic or early stage primary myelofibrosis (pre-MF) and 
can also arise de novo as overt fibrotic-stage primary myelofi-
brosis (PMF)1,2 These diseases share common clinical features  
including constitutional and microvascular symptoms, splenom-
egaly, a high risk of thromboembolic and hemorrhagic  
complications, and a propensity to progress to a form of acute 
myeloid leukemia (AML) termed MPN-blast phase (MPN-BP). 
Early studies have identified that MPNs arise within the  
hematopoietic stem/progenitor cell (HSPC) compartment, 
and recent advances have largely elucidated its molecular 
pathophysiology3–5. Constitutive activation of the JAK–STAT  
signaling pathway driven by one of several canonical somatic 
mutations results in myeloproliferation and contributes to 
genomic instability. Acquisition of additional genetic aberra-
tions eventually leads to disease progression5. While PV, ET, and  
pre-MF are usually indolent hematological malignancies 
with a median survival spanning decades or several years, 
overt MF, which include PMF, carries worse prognosis and 
severely affects the patient’s quality of life. Usually, MPN-BP  
has a prognosis of only several months6. The disease pro-
gression of MF exhibits a great range of patient-to-patient  
variability. The detailed genetic information currently available  
on large numbers of patients is providing evidence-based  
criteria for their risk stratification, which, in the future, may  
provide the basis for personalized therapy.

In contrast to the significant progress made in understanding 
the disease’s pathogenesis, treatment for MF remains largely 
palliative. Although we can effectively reduce symptoms and 
prevent thromboembolic complications, a treatment that can 
modify the course of the disease and prevent progression  
to MPN-BP is lacking. The only therapeutic option that offers 
potential cure is allogeneic hematopoietic stem cell (HSC) trans-
plantation (HSCT), but this approach is limited by the lack of 
donors to all patients and by associated morbidity and mor-
tality. Improving the survival of patients with MF is a major 
unmet need in malignant hematology. Better understanding of 
the pathological pathways involved in MF disease progression  
has ushered the development of novel treatment strategies aimed 
at slowing or even reversing disease progression and prolong-
ing patient survival. An excellent review on the genetic basis 
of MPNs has been recently published by Vainchenker et al. in  
F1000Research5. Here, we will summarize scientific informa-
tion that is driving the search for a cure in MPNs, focusing 
our discussion on the most recent strategies targeting the  
microenvironment that are currently under investigation.

Mutational landscape in MPNs
In 2005, four groups reported the identification of a point muta-
tion in exon 14 of the JAK2 gene, JAK2V617F, in over 95% 
of patients with PV and 50–60% of patients with ET and  
PMF7–10. JAK2 is the tyrosine kinase that represents the first  
signal transduction element of the receptors for erythropoietin 

(EPO), thrombopoietin (TPO), and granulocyte-colony stimu-
lating factor (GSCF)5. As such, JAK2 is necessary for normal 
hematopoietic cell growth and differentiation. JAK2V617 
affects the inhibitory domain of the protein, rendering it con-
stitutively active, independent of extracellular activation by  
the physiologic ligands. JAK2 exon 12 mutations have later 
been found to drive most cases of JAK2V617-negative PV11. 
Inactivating mutations in the gene encoding the TPO recep-
tor (MPL) have been identified in 3–5% of ET and PMF cases12. 
In 2013, frameshift mutations in exon 9 of the calreticulin 
(CALR) gene, encoding for an endoplasmic reticulum chaperone  
protein that interacts with MPL, were found in the major-
ity of JAK2V617F and MPL mutation-negative ET and 
PMF patients, thereby completing the “missing piece in 
the puzzle” of MPN driver mutations13,14. In up to 10% of  
patients with ET and 15% of patients with PMF, a driver  
mutation cannot be identified. These “triple-negative” MPNs 
may be driven by non-canonical mutations in JAK2 or MPL 
or by genetic lesions in other mediators of the JAK–STAT  
pathway such as LNK or PPM1D5,15.

Advances in genotyping, such as the application of next- 
generation sequencing and high-resolution chromosomal micro-
arrays, have led to the discovery of additional somatic mutations 
that usually arise following acquisition of the driver mutations 
but can also precede them and that can contribute to disease  
progression and transformation to MPN-BP. These mutations 
affect genes involved in epigenetic regulation and splicing, 
such as ASXL1, DNMT3A, TET2, SRSF2, U2AF1, and SF3B1, 
as well as signaling and apoptosis, and were found across all 
myeloid malignancies5. Mutations in ASXL1, SRSF2, EZH2, 
and IDH1/2 have been associated with shortened survival and 
higher risk of progression to MPN-BP16. Mutations in U2AF1  
have been associated with anemia and additional poor prog-
nostic features17. Mutations or other genetic lesions affecting 
the tumor suppressor p53 have been shown to play a central 
role in progression to MPN-BP and are highly predictive of 
leukemic transformation and poor outcomes18,19. The growing  
importance of genomic analysis in MPN patient assess-
ment is reflected by the advent of updated risk stratification  
models integrating molecular and cytogenetic profiles with 
the more traditional clinical and morphological parameters to  
guide management decisions such as referral to HSCT20–22. 
For example, a Genetics-based International Prognostic 
Scoring System (GIPSS) has been proposed that is based  
exclusively on mutational and cytogenetic markers20. Recently,  
comprehensive genomic characterization of 2,035 MPN patients  
identified distinct genetic subgroups that correlate well with 
clinical course and prognosis and may arguably provide more 
accurate classification than current disease entities15. We hope 
that this influx of advanced molecular diagnostics will ulti-
mately contribute to more personalized tailoring of treatment  
strategies and translate to improved survival.

Optimization of current treatment approaches for MF
Great efforts are dedicated to improving the treatment arma-
mentarium currently available for MF. We will focus on  
what we perceive are the main trajectories within these efforts: 
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development of second-generation JAK inhibitors, advances in 
transplantation medicine and its utilization for MF, and evalua-
tion of novel agents. Although a complete summary of current 
treatment approaches is beyond the scope of this review, it is 
important to note the emerging role for pegylated interferon for-
mulations in the treatment of early stage (proliferative) MF23–25  
and of hypomethylating agents in accelerated and MPN-BP26–28.

JAK inhibitors
Following the discovery of JAK2V617, a non-selective JAK1/2 
inhibitor, ruxolitinib, was developed and has been shown in two 
pivotal phase III studies to induce significant spleen volume 
reduction and improvement in constitutional symptoms, leading 
to its approval by the USA and European regulatory agencies 
for intermediate-2 and high-risk MF29,30. The widespread use  
of ruxolitinib has changed the therapeutic landscape and sig-
nificantly impacted the quality of life of many MF patients.  

Moreover, long-term follow up of the COMFORT studies has 
suggested a survival advantage with the use of ruxolitinib31.  
Since the biological effects of this drug on mutation allele bur-
den or bone marrow histological findings have been inconsist-
ent and overall modest32–34, other analyses have attributed the 
beneficial effect of ruxolitinib on survival to the attenuation of  
systemic inflammation and reversal of cachexia owing to 
spleen volume reduction. Furthermore, the use of ruxolitinib is  
limited in patients with anemia and thrombocytopenia. These 
considerations inspired the development of second-generation  
JAK inhibitors that lack myelosuppressive effects and may allow 
effective treatment for patients with cytopenias. Three second- 
generation JAK inhibitors have been evaluated in phase III  
clinical trials, and their efficacy results are summarized in Table 1.

Pacritinib is an oral multi-kinase inhibitor with specificity 
for JAK2, FLT3, IRAK1, and CSF1R. The PERSIST-1 study  

Table 1. Summary of the efficacy outcomes of the six larger scale (phase II and III) second-generation JAK inhibitor studies. BAT, 
best available therapy; DIPSS, Dynamic International Prognostic Scoring System; FED, fedratinib; IPSS, International Prognostic Scoring 
System; JAK, Janus kinase; MF, myelofibrosis; MOM, momelotinib; PAC, pacritinib; PLT, platelet; pts, patients; RBC, red blood cell; RUX, 
ruxolitinib; SVR, spleen volume reduction; TSS, total symptom score.

Drug Trial Patient population Number 
of 

patients

Comparator Spleen 
response 

(SVR≥35%) at 
24 weeks

Symptom 
response 

(≥50% 
reduction in 
TSS) at 24 

weeks

Cytopenia Ref.

PAC PERSIST-1 
(phase III)

JAK-inhibitor-naïve 
pts with DIPSS 
intermediate or 
high-risk MF, with 
no exclusion for 
baseline anemia or 
thrombocytopenia

327 BAT (2:1) 
excluding JAK 
inhibitors

19% in PAC 
group versus 
5% in BAT 
group  
(P <0.0003)

19% in PAC 
versus 10% in 
BAT

25% who were 
transfusion 
dependent achieved 
transfusion 
independence. 
Responses for pts 
with low PLT counts

35

PAC PERSIST-2 
(phase III)

MF pts with PLT 
counts <100 x 109/L

311 BAT (2:1) 
including RUX 
(48%)

18% in PAC 
group versus 
3% in BAT 
group

25% in PAC 
group versus 
14% in BAT 
group

Reduced transfusion 
burden in PAC group

36

MOM SIMPLIFY-1 
(phase III)

JAK-inhibitor-naïve 
adult pts with IPSS 
intermediate-2 
or high-risk MF, 
or symptomatic 
intermediate-1 MF

432 Ruxolitinib (1:1) 
(the only head-
to-head study)

26.5% in 
MOM group 
versus 29% 
in RUX group 
(non-inferior)

28.4% in MOM 
group versus 
42.2% in RUX 
group (inferior)

66.5% of MOM 
pts transfusion 
independent at 24 
weeks versus 49.3% 
with RUX

37

MOM SIMPLIFY-2 
(phase III)

Adult MF patients 
who had suboptimal 
responses or 
hematological side 
effects with RUX 

156 BAT (RUX in 
89%) 
(2:1)

7% in MOM 
group versus 
6% in RUX 
group 
(not superior)

26% in MOM 
group versus 
6% in BAT 
group  
(P = 0.0006)

RBC transfusion 
independence at 24 
weeks achieved by 
43% of MOM group 
versus 21% of BAT 
group

38

FED 
(two 
doses)

JAKARTA-1 
(phase III)

JAK-inhibitor-
naïve pts with 
intermediate-1 to 
high-risk MF

289 Placebo (2:1) 36% and  
40% in FED 
400 mg and 
500 mg groups, 
respectively, 
versus 1% with 
placebo

36% and 
34% for the 
two doses 
versus 7% with 
placebo

Not reported 
(drug 
myelosuppressive)

39

FED 
(400 
mg)

JAKARTA-2 
(phase II)

RUX resistant or 
intolerant patients 
with intermediate or 
high-risk MF

97 None 
(single-arm 
study)

55% (46 of 83 
evaluable pts)

26% (23 of 90 
evaluable pts)

Not reported (drug 
myelosuppressive)

40
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randomized ruxolitinib-naïve patients irrespective of platelet 
count to either pacritinib at a dose of 400 mg once daily or best  
available therapy (BAT) excluding ruxolitinib. Spleen and  
symptom responses were significantly superior in the pacritinib 
arm. Notably, patients with low platelet counts achieved 
comparable benefits. Toxicities were overall manageable35.  
PERSIST-2 recruited only patients with thrombocytope-
nia and randomized them to pacritinib at one of two doses 
or BAT including ruxolitinib. Prior use of ruxolitinib was 
allowed. Pacritinib at both doses was superior to BAT and led 
to significant spleen and symptom responses, with tolerable  
myelosuppression36. The development of pacritinib was halted 
by a clinical hold placed by the FDA due to suspicion of excess 
cardiovascular deaths in patients treated with the drug. This 
hold was subsequently removed, and the results of a new  
study that may hopefully lead to pacritinib’s approval are awaited.

Momelotinib is a JAK1/2 inhibitor with activity against 
activin receptors believed to contribute to a remarkable ane-
mia response, rendering this drug attractive, especially in the  
setting of transfusion-dependent anemia. The two phase III  
SIMPLIFY studies that evaluated momelotinib, despite showing 
a compelling anemia response, each failed to show superiority  
or non-inferiority in a primary or key-secondary endpoint37,38. 
A more pragmatic study design that would take into account 
the anemia response and superior tolerability of this drug 
along with spleen and symptom responses could allow for a  
better evaluation of this potentially beneficial agent41. Recently, 
the development of momelotinib was renewed, and a new  
phase III study is recruiting patients.

Fedratinib is a selective JAK2 inhibitor. The JAKARTA-1 
study evaluated two doses of fedratinib versus placebo and 
showed significantly superior spleen and symptom responses 
in both treatment arms39. JAKARTA-2 was a single-arm  
phase II study evaluating fedratinib in patients who were  
intolerant of or resistant to ruxolitinib40. This was the only  
clinical trial directly evaluating a second-generation JAK inhibi-
tor as second-line treatment, and responses, especially with 
regards to spleen volume reduction, were compelling for this  
patient population. The development of fedratinib was 
also stalled by a clinical hold placed by the FDA due to a  
suspected association with Wernicke’s encephalopathy, which 
was eventually lifted following re-evaluation. The phase III  
FREEDOM study (NCT03755518) is currently recruiting  
patients and will hopefully contribute to further development of 
this drug with apparent potential clinical benefit. Based on the  
results of the JAKARTA-1 trial, on 16 August 2019, the  
FDA approved fedratinib for the treatment of adult patients  
with intermediate-2 or high-risk MF.

Bone marrow transplantation
The discovery by Fialkow in 1976 that MPNs are a clonal dis-
order of HSCs3, more recently confirmed at the molecular level 
by the Weissman laboratory4, led to the hypothesis that MPNs 
may be cured by HSCT, a procedure which replaces the malig-
nant HSCs of the recipient with healthy ones provided by the 
donor. However, since the disease also impairs the supportive  

bone marrow microenvironment, which remains patient  
derived after transplantation42, this approach was initially 
received with skepticism. Reports of long-term survival of  
transplant recipients coupled by histological evidence of reso-
lution of bone marrow fibrosis eventually provided compelling  
evidence for the curative potential of this approach43–46. However,  
HSCT remained limited to a relatively small proportion 
of patients owing to the older age and frequent comor-
bidities of most patients and the high non-relapse mortality  
reported in early studies.

Recently, advances in transplantation medicine and molecu-
lar diagnosis are being translated to a consistent improve-
ment in HSCT outcomes in MF47–49. Several factors contribute 
to the increased utilization and improved outcomes of HSCT 
for MF treatment: 1) the use of reduced intensity condition-
ing (RIC) regimens in older patients, which have demonstrated  
decreased transplant-related mortality with comparable 
relapse rates and overall survival50–52; 2) increased accessi-
bility to HSCT for patients lacking sibling or matched-unre-
lated donors owing to advances in the use of alternative donors  
such as haploidentical donors and cord blood53–55; 3) accumu-
lating data regarding mutational profiles and their prognostic  
significance allowing earlier and more informed patient  
selection56; and 4) accumulating experience with the use  
of ruxolitinib before or after transplant.

HSCT is presently considered the standard of care in eli-
gible patients with intermediate-2 and high-risk disease34. 
There is lack of consensus regarding its use in earlier stages 
of the disease predicted to have more prolonged survival. A  
subset of patients classified as having low/intermediate-1 risk dis-
ease may eventually experience rapid progression to advanced 
MF and shortened survival. The recent advances in link-
ing genetic profiles with risk of progression may improve the  
prediction of disease course and allow us to identify early  
stage patients who should be considered for HSCT.

Evaluation of novel agents
Numerous investigational agents are being evaluated for the 
treatment of MF alone or in combination with ruxolitinib. 
These agents were designed with the aim to a) improve ane-
mia, b) deplete the malignant HSCs by targeting molecu-
lar alterations downstream of the genetic lesions, c) reduce  
microenvironmental abnormalities that may synergize with 
the driver mutations in sustaining proliferation of the malig-
nant HSCs, or d) boost patients’ immune reactions. Compre-
hensive reviews focusing on investigational agents for the 
treatment of MF have been published recently57,58. We will  
highlight several agents representing the above aims that 
have shown a strong scientific and preclinical rationale and/or  
encouraging signs of activity in early phase clinical studies.

Agents that improve anemia
Activins are members of the transforming growth factor 
(TGF)-β superfamily that inhibit the differentiation of late-
stage erythrocyte precursors in a mechanism independent 
of erythropoietin and are overexpressed in myelodysplastic  
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syndromes (MDS) and in MF. Two agents that antagonize 
the activity of activins, sotatercept and luspatercept, have  
demonstrated efficacy in the treatment of anemia in patients 
with MDS59–63. These agents are currently being evaluated in 
patients with MF and anemia with promising results in early  
phase studies64.

Drugs targeting epigenomic alterations found in malignant 
HSCs
Members of the Bromodomain and Extra-Terminal (BET) fam-
ily of proteins function as “readers” of histone modification 
marks, by interacting with acetylated lysine residues on histone 
tails, and regulate genes that are involved in inflammation and 
cancer such as MYC, BCL-2, and NF-kB65,66. The NF-kB path-
way downstream to BET has been shown to be activated in MF 
via JAK–STAT and other inflammatory cytokine signaling67.  
In a preclinical study using two MF mouse models, treatment 
with a BET inhibitor (BETi) resulted in reduction of cytokine 
production, spleen volume, and bone marrow fibrosis, and 
these effects were enhanced in combination with ruxolitinib68.  
These data indicate that drugs that reduce NFκB function 
and expression of NF-kB target genes might be effective in 
treating MF69. CPI-610, a BET inhibitor, is currently being  
evaluated for the treatment of MF patients, alone or in 
combination with ruxolitinib (NCT02158858).

While most of the above investigational agents as well as JAK 
inhibitors target signaling pathways involved in myelopro-
liferation and systemic inflammation, agents directly target-
ing MF-HSCs are lacking. The development of such agents has 
been a major challenge in the effort to improve the therapeu-
tic armamentarium for myeloid malignancies. Imetelstat is an 
inhibitor of telomerase enzymatic activity70. The rationale for 
its use in MF stems from the findings of enhanced telomerase  
activity in MPN granulocytes71. A pilot study evaluating 
the use of single-agent telomerase in 33 patients with inter-
mediate-2 and high-risk MF demonstrated a modest over-
all response rate (ORR) of 21%; however, in all four patients 
who achieved a complete response, bone marrow fibrosis was 
reversed, and a molecular response occurred in three of these 
patients, suggesting that imetelstat targets the malignant HSCs72.  
Preclinical studies confirmed these findings by demonstrating 
direct targeting of MF-CD34+ cells by imetelstat, reflected by 
decreased formation of megakaryocytic colonies and by reduced 
human chimerism in an immune-deficient mouse xenotrans-
plantation model. Both of these effects were selective to  
cells from MF patients, but not normal individuals, and sus-
tained over time73. Recently, a multicenter phase II study 
evaluating two doses of imetelstat in a cohort of MF  
patients that progressed after or were refractory to ruxolitinib 
treatment has demonstrated an estimated twofold prolongation 
of survival as compared to retrospective reports of comparable  
patient populations, warranting further clinical testing74.

Targeting the inflammatory microenvironment
Several clinical studies have shown that MPN patients express 
increased levels of inflammatory mediators75, including the key 
inflammatory cytokine interleukin-8 (IL-8), the plasma levels 

of which predict adverse clinical outcomes76. The pathoge-
netic role of these cytokines is also supported by the observa-
tion that JAK inhibition can attenuate features of MPNs in vivo 
through the inhibition of cytokine production in mutant and  
non-mutant cells77. However, there is limited insight on the 
pathobiological consequence of aberrant cytokine produc-
tion in MPNs. It is conceivable that specific targeting of 
some of the cytokines altered in MPNs may lead to better  
clinical outcomes than those obtained with JAK inhibitors77. 
An altered cytokine pathway that holds potential clinical inter-
est in MF is the lipocalin-2 (LCN2)/interleukin-8 (IL-8) axis 
and its down-stream signaling via NF-kB. There is evidence 
that the sequence of events leading to abnormalities in the 
microenvironment in MF spleens and marrow includes, at  
least in part, LCN278. LCN2 increased the proliferation of 
splenic endothelial cells, and LCN2 treatment of splenic stromal 
cells led to increased elaboration of IL-8, which contrib-
utes to the creation of an endothelial cell niche supporting the  
proliferation of MF-HSCs79,80. This endothelial cell niche can 
be disrupted in vitro by reparixin, an antagonist of the recep-
tors for IL-8 CXCR1/281,82 that are highly expressed on MF 
spleen CD34+ cells79. These data indicate that reparixin may  
represent a novel therapy which can antagonize the effects of 
IL-8 and thereby disrupt the HSC niche function of splenic  
endothelial cells. A clinical trial to test the effects of repar-
ixin in MF is planned to be opened by the Myeloproliferative  
Neoplasm Research Consortium.

Boosting the patient’s immune system
An important emerging approach in cancer therapy is acti-
vation of endogenous anti-tumor activity by treatment with 
agents that suppress the immune evasion mechanisms acti-
vated by cancer cells83. Checkpoint inhibitors, which block 
the interaction between programmed cell death (PD)1 and its  
ligand PD-L1 that is exploited by cancer cells to prevent 
attack by cytotoxic T-lymphocytes, have shown impressive 
anti-tumor responses in several solid cancers and B-lymphoid 
malignancies83. There is a strong pre-clinical rationale for  
inhibition of PD1/PD-L1 interaction in MF84–86, and several 
clinical trials are ongoing (NCT03065400, NCT02421354, and  
NCT02871323). In addition, recent studies suggest that mutant  
calreticulin and JAK2 can induce specific anti-tumor T-cell 
responses, which can be harnessed for the development of  
mutation-specific peptide vaccines87,88. These and other 
immune therapy approaches, such as bispecific antibodies, are  
still in early stages of development.

Harnessing the altered p53–TGF-β circuitry to treat 
MF
Although MF originates at the level of HSCs, the predomi-
nance of the malignant HSCs over the reservoir of normal 
HSCs is sustained by tumor-induced micro-environments of 
bone marrow and spleen89,90. Studies in animal models indi-
cate that these microenvironmental abnormalities may induce 
MF independently from the presence of driver mutations91. It is  
believed that the interaction between MF and abnormal micro-
environments determine, at least in part, the clinical seque-
lae of MF as well as the rate of progression and evolution to 
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MPN-BP75. In addition to abnormalities described in a previous 
section, “Targeting the inflammatory microenvironment”,  
possibly inter-related abnormalities for which promising inves-
tigational agents are available are represented by reduced 
expression of p53 in malignant HSCs and increased TGF-β  
bioavailability in their supporting microenvironment.

Targeting the reduced expression of p53 in MF-HSCs
p53 is a tumor suppressor that regulates cell cycle, apop-
tosis, DNA repair, and senescence of many cell types92,93.  
Hypomorphic/loss-of-function mutations of p53 are associ-
ated with tumor progression in most human cancers18, and  
inactivating mutations are observed in 20% of MPN-BP while  
deletion of p53 leads to the development of AML in  
JAK2V617F-harboring mice94. Although in patients with 
chronic-phase MPN p53 is usually wild-type, as discussed in  
“Targeting the inflammatory microenvironment”, malignant 
HSCs are p53 hypomorphic, as they express low levels of the  
protein95,96.

Studies to determine the levels of p53 in MF patients with no 
obvious p53 mutations were inspired by Takaoka et al., who 
reported that interferon suppresses tumor progression and  
activates the immune response by increasing the expression 
of p53 in mouse models of fibroblast transformation97. Since 
interferon is an effective therapy in patients with MPNs98, it 
was hypothesized that interferon is at least partially effective 
in these patients by increasing the otherwise low levels of p53 
expressed by the malignant HSCs99. As in other cancers95,100, the  
mechanisms that reduce p53 in MPNs may be represented 
by overexpression of its major regulators MDM2 (HDM2 in 
humans) and MDM4 (HDM4/HDMX), which are expressed at 
levels higher than normal in MF CD34+ cells99. Overexpression 
of HDM4 and HDM2 in MF may be genetically determined. The 
two genes are localized on chromosomes 1 and 12, respectively, 
and gain of 1q and 12q rearrangements are frequently associ-
ated with disease progression in MPNs101. Alternatively, the  
observation that high TGF-β1 induces the expression of 
HDM2 in breast cancer driving its late metastatic stage102 sug-
gests that, even in the absence of chromosomal duplication, 
the great levels of TGF-β expressed in the microenvironment  
(see following section) may drive high levels of HDM2 in MF.

The existence of a p53/HDM2 cycle in MF is important because 
binding of p53 to HDM2 resulting in p53 ubiquitination and 
degradation is inhibited by a class of compounds called Nut-
lins. Nutlins (Nutlin-3, RG7112, RG7388, HDM201, and 
KRT232) bind to the MDM2 p53-binding site, interfering 
with its interaction with p53, leading to p53 accumulation and  
activation95,100,103–106. Proof-of-principle for the therapeutic use  
of Nutlins in MF was provided by the observation that the 
orally available Nutlin RG7388 (idasanutlin) depletes MPN-
HSCs in culture99. In addition, low doses of the Nutlin RG7112 
induce apoptosis of MF CD34+ cells and reduce donor  
cell chimerism and JAK2V617F allele burden in NSG mice 
transplanted with MF CD34+ cells107. The promising results 
of an open label phase I study of idasanutlin as a single agent 
in patients with PV and ET presented by Dr. Mascarenhas  

et al. in 2017 at ASH108 and the observation that in AML 
the patients with the highest overexpression of HDM2 are 
most responsive to therapy with idasanutlin109 suggest that 
MF patients, who express higher levels of HDM2 than those 
observed in PV, will respond well to idasanutlin. A clinical trial  
with idasanutlin in MF will be conducted soon by the  
Myeloproliferative Neoplasm Research Consortium.

Targeting the TGF-β circuitry in MF
Megakaryocytic hyperplasia was the first histopathological 
hallmark identified in MF110. These early studies also identi-
fied that this abnormality is associated with increased TGF-β 
content and release due to pathological emperipolesis (the 
interaction between megakaryocytes and neutrophils)111. 
However, in spite of the overwhelming evidence linking  
TGF-β with fibrosis in other systems112,113, the link between 
megakaryocyte and TGF-β abnormalities and disease pro-
gression in MF has been obscured for some time by the fact  
that they are not direct targets of the driver mutations.

The link between driver mutations, alterations of megakaryo-
cyte maturation, and disease progression in MF has been 
recently clarified by the observations that mice expressing  
JAK2V617F only in megakaryocytes develop MF114; the driver 
mutations induce a ribosomopathy that reduces the content 
of the transcription factor GATA1 (which is essential for ter-
minal maturation) in megakaryocytes, halting their matu-
ration115,116; mice lacking the regulatory sequences which 
specifically drive GATA1 expression in megakaryocytes  
(Gata1low mice) develop the same megakaryocyte abnormalities 
observed in MF and MF with age117,118; and, finally, treatment 
with an inhibitor of Aurora kinase A, a protein overexpressed in 
MF megakaryocytes, rescues GATA1 expression in these cells, 
curing MF in animal models119, suggesting GATA1 as a drug-
gable target in MF120. This clinical hypothesis was tested by 
demonstrating that an inhibitor of Aurora Kinase A has some  
efficacy in MF patients121. Owing to these exciting results, 
additional megakaryocyte abnormalities are currently being  
considered as potential therapeutic targets for MF.

The Vainchenker laboratory hypothesized for the first time 
that TGF-β represents a target to cure MF by demonstrat-
ing that malignant HSCs lacking the TGF-β gene fail to induce 
MF upon transplantation in healthy recipients122. Further-
more, malignant HSCs did not induce MF when transplanted 
into recipients lacking the TGF-β receptor 1 gene123. These  
results suggest that TGF-β produced by the progeny of the malig-
nant HSCs exerts its pathobiological effects by activating its 
receptor on a cell population present in the microenvironment.  
However, attempts to explore the clinical potential of TGF-β 
in MF were hampered for some time by the fact that the  
gene ablation strategy used by Vainchenker is not practical in  
clinical settings.

TGF-β is known to play a major role in the development of 
fibrosis in multiple organs124 and in the induction of tumor-
supporting microenvironments in other cancers125,126. The  
experiments by Vainchenker do not clarify whether TGF-β 
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promotes MF by inducing fibrosis and therefore by ham-
pering the ability of the bone marrow microenvironment to  
support normal HSCs and/or by inducing a microenviron-
ment supporting the malignant HSCs in extramedullary 
sites. Using the Gata1low mouse model, our laboratory has  
identified at least some of the events linking megakaryocyte 
abnormalities, increased TGF-β, and development of MF. We  
determined that, although plasma and washes from bone mar-
row and spleen of Gata1low mice, as well as those from MF 
patients, contain levels of total and bioactive TGF-β modestly  
(twofold) greater compared to normal controls127,128, the  
megakaryocytes and their surrounding microenvironment con-
tain levels of TGF-β 1000–2000-fold greater than normal128,129, 
suggesting that it is not increased TGF-β content per se but 
its increased bioavailability that plays a major role in induc-
ing disease progression in MF. By careful electron-microscopy 
analyses, we also determined that the increased TGF-β bio-
availability is established by a sequence of abnormal cellular  
interactions involving megakaryocytes, neutrophils, and acti-
vated fibrocytes that are mediated by adhesion receptors that 

are druggable (Figure 1). Ablation of one of them, P-selectin,  
rescues MF in Gata1low mice, providing clinical rationale for 
the use of P-selectin inhibitors, alone or in combination with  
ruxolitinib, in MF.

To identify additional druggable TGF-β targets, we char-
acterized the TGF-β expression profiling of bone marrow 
and spleen from MF patients and Gata1low mice128,130. These  
experiments identified that the tissues from the patients and 
the mouse model express the same distinctive abnormali-
ties which include reduced expression of the canonical SMAD 
1, 2, and 4 signaling and increased expression of JUNB,  
EVI1, and STAT1, three genes downstream of the non- 
canonical MAPK signaling. These abnormalities predict the 
activation of non-canonical p38/ERK-dependent rather than 
canonical SMAD-dependent signaling. The knowledge that  
activation of SMAD signaling induces normal HSCs into  
quiescence131,132 while in systemic sclerosis activation of the 
p38/ERK pathway promotes the development of fibrosis133,134  
suggests a model for progression from the indolent phase of 

Figure 1. A cellular model for the establishment of increased transforming growth factor (TGF)-β bioavailability, which leads to 
fibrosis and disease progression in myelofibrosis (MF).  This model was elaborated thanks to the fact that, in contrast with other animal 
models that develop a MPN phenotype that rapidly progress into its fatal MF phase (discussed in 114), Gata1low mice slowly develop MF with 
age117,118. From 1–8 months, Gata1low mice express pre-MF traits such as splenomegaly, increased rates of thrombosis, and osteosclerosis. 
From 8–12 months, they display MF traits including fibrosis and neovascularization, and from 12 months until their natural death they express 
a late-MF phenotype which includes increased stem/progenitor cell trafficking and extramedullary hematopoiesis in liver. The various phases 
are characterized by a sequence of abnormal cellular interactions that finally result in increased TGF-β bioavailability in the microenvironment. 
First, a pathological neutrophil-megakaryocyte (Mk) emperipolesis leads to death of the megakaryocytes by para-apoptosis, which releases 
TGF-β into the microenvironment. Second, TGF-β activates fibrocytes to produce collagen and to establish contacts with megakaryocytes, 
leading to the death of additional megakaryocytes and the release of activated lysyl-oxidase 2 (LOX2) into the microenvironment135. LOX2 
polymerizes the collagen produced by the activated fibrocytes into collagen fibers, resulting in fibrosis. The collagen fibers are heavy binders 
of TGF-β, inducing the formation of areas of increased TGF-β bioavailability in the microenvironment (see also 128).
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the disease (pre-MF) to MF depicted in Figure 2. In this model, 
increased levels of TGF-β promote disease progression by 
reducing the number of normal HSCs (inducing them into  
quiescence and reducing their supportive microenvironment 
in the bone marrow) while increasing the number of malig-
nant HSCs (which are insensitive to TGF-β and are sustained by  
a specific microenvironment induced by TGF-β in the spleen).

Circumstantial evidence in support of the model for disease 
progression depicted in Figure 2 exists. First, we observed 
that the spleen, but not the bone marrow, from MF patients and 
Gata1low mice contains greater numbers of activated fibro-
cytes that establish physical contacts with megakaryocytes,  
forming “nests”, which lodge hematopoietic cells with the mor-
phology of HSCs128,136. In the mouse model, the presence of 
these nests is induced by TGF-β. Second, we demonstrated 
that in contrast to normal HSCs, MF-HSCs are not induced  
into cycle by treatment with TGF-β receptor 1 kinase inhibitors137.

Based on this overwhelming evidence, a proof-of-principle 
experiment was conducted that provided findings that one-
month treatment with an inhibitor of LK5, the first element 
of the TGF-β receptor I signaling, completely rescues MF in 
Gata1low mice129,136. Furthermore, a limited clinical trial with  
a human neutralizing antibody against TGF-β (fresolimumab, 
Sanofi Aventis) provided evidence for sustained improvements 

in hemoglobin level137,138 and of reduced bone marrow 
fibrosis that lasted for at least one year after the drug was  
discontinued137 in at least two of the three patients treated. A 
drawback of drugs targeting TGF-β is their lack of specifi-
city that makes them prone to off-target effects. The availability  
of ligand-traps specific for TGF-β1, such as AVID200  
developed by Formation Biologics139, makes conducting clini-
cal trials to test the efficacy of TGF-β inhibition in MF and 
eventually to halt the progression from pre-MF to MF in  
patients without fear of cardiovascular or osteological compli-
cations finally possible. AVID200 will be tested in a clinical  
trial to be opened soon by the Myeloproliferative Neoplasm  
consortium.

The existence of a circuitry between p53 and TGF-β in 
development and cancer progression has been extensively  
discussed140–142. In addition to the possibility that high levels of  
TGF-β may be responsible for reducing p53 in cancer cells 
by inducing HMD2 discussed in a previous section, “Target-
ing the reduced expression of p53 in MF-HSCs”102, other feed-
backs between the two pathways have also been described. In 
some cell models, low levels of p53 are responsible for render-
ing malignant cells insensitive to the inhibitory effects of TGF-β  
on proliferation143. It is therefore possible that, also in MF, 
low levels of p53 make the malignant HSCs TGF-β unrespon-
sive. This consideration suggests that combination therapies  

Figure 2. Circuitry between p53 abnormalities in the malignant hematopoietic stem cells (HSCs) and transforming growth factor 
(TGF)-β in the supporting microenvironment leading to disease progression in myelofibrosis (MF). It is suggested that in MF disease 
progression is driven by a p53/TGF-β circuitry. In the pre-MF stage, the driver mutations, possibly by inducing an inflammatory milieu 
(lipocalin-2 [LNC2]/interleukin-8 [IL-8]), reduce p53 in MF-HSCs, making these cells unresponsive to TGF-β and retarding megakaryocyte 
maturation. Retarded megakaryocyte maturation, associated with high IL-8 expression, induces, in an autocrine fashion, megakaryocytes to 
increase TGF-β bioavailability, which in turn is responsible for suppressing hematopoiesis from normal HSCs (inducing bone marrow failure) 
and for promoting an MF-HSC-supporting microenvironment in the spleen, facilitating the transition of pre-MF to MF (modified from 137). MK, 
megakaryocyte; PMF, primary myelofibrosis.
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targeting p53 (Nutlins) and TGF-β (AVID200), by disrupt-
ing the cross-talks between the two pathways, have a greater 
potential than single therapies to cure MF. This hypothesis will  
be tested by ongoing preclinical studies.

Lessons learned from studying MF are broadly 
applicable to cancer pathogenesis and therapy
As previously discussed, the dissemination of malignant 
hematopoiesis beyond the marrow occurring during MF pro-
gression is associated with the establishment of malignant 
HSC-supporting microenvironments in the spleen. These 
events are strikingly similar to those occurring in many meta-
static solid tumors125,126, suggesting that lessons learned from  
studying MF may be applied to studying the progression of  
numerous other tumor types.

Induction of tumor-specific microenvironments as well as cell 
trafficking are complex processes that involve hundreds of 
genes, many of which are implicated in multiple biological proc-
esses. A comparison of gene dysregulation in Gata1low mice and 
in the metastatic phase of other solid cancers provides support 
for the hypothesis that the two pathologies are determined by  
common mechanisms. Pathway analyses of expression pro-
filing of bone marrow and spleen from Gata1low mice identi-
fied two altered expression signatures involving 20–35 genes 
of the TGF-β1 signaling pathway with important hemat-
opoietic functions129. In bone marrow, there was significant  
down-regulation of Bmp2, Bmp5, Acvrl1, and Igf1, whereas in 
the spleen, there was significant overexpression of Cdkn1a and  
Ltbp1 and underexpression of Gdf2 and Nodal. Interestingly, 
several of these events are reported also in other metastatic  
solid tumors. For example, TGF-β is dysregulated in color-
ectal cancer with similarity to those noted in the bone mar-
row, including downregulation of Bmp2 and Bmp5144; 
ACVRL1 overexpression is also observed in colorectal cancer,  
where it has been suggested as a prognostic biomarker for 
the metastatic phase145; and TGF-β and its signaling cross-
talk play a crucial role during the endothelial mesenchymal 
transition, which promotes the metastatic phase of various  

solid tumors, particularly in breast and pancreatic carcinoma146. 
These similarities strongly suggest that lessons learned from 
studying MF can be applied to studying the pathogenesis  
of other tumor types.

Finally, fibrosis is the end stage of all organ failures, includ-
ing liver, kidney, heart, and lung, which, when associated with 
MF, have poor prognosis. It is conceivable that the identifica-
tion of treatments which prevent or delay the progression of MF  
to PMF may inspire treatments for other organ failures as well.

Conclusion
Although MPNs are uniformly associated with the activa-
tion of the JAK/STAT signaling pathways, therapy with  
currently available JAK2 inhibitors is unable to deplete or  
eliminate MPN-HSCs. New developments in our knowledge on 
the biology of MPNs have identified an interplay among HSCs 
and microenvironmental abnormalities that may sustain disease  
progression. This cycle is druggable by BETi, CXCR1/2 
inhibitors, p53 activators, and TGF-β inhibitors. These drugs 
are currently the subject of careful investigation in preclini-
cal models and clinical studies in MF patients as single agents.  
We foresee that these careful approaches will soon iden-
tify the best agents that, alone or in combination, may take us  
closer to the cure of MF in the near future.
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