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Over the past two decades, evidence has accumulated that the human amygdala
exerts some of its functions also when the observer is not aware of the content, or
even presence, of the triggering emotional stimulus. Nevertheless, there is as of yet no
consensus on the limits and conditions that affect the extent of amygdala’s response
without focused attention or awareness. Here we review past and recent studies on
this subject, examining neuroimaging literature on healthy participants as well as brain-
damaged patients, and we comment on their strengths and limits. We propose a
theoretical distinction between processes involved in attentional unawareness, wherein
the stimulus is potentially accessible to enter visual awareness but fails to do so
because attention is diverted, and in sensory unawareness, wherein the stimulus fails to
enter awareness because its normal processing in the visual cortex is suppressed. We
argue this distinction, along with data sampling amygdala responses with high temporal
resolution, helps to appreciate the multiplicity of functional and anatomical mechanisms
centered on the amygdala and supporting its role in non-conscious emotion processing.
Separate, but interacting, networks relay visual information to the amygdala exploiting
different computational properties of subcortical and cortical routes, thereby supporting
amygdala functions at different stages of emotion processing. This view reconciles some
apparent contradictions in the literature, as well as seemingly contrasting proposals,
such as the dual stage and the dual route model. We conclude that evidence in favor of
the amygdala response without awareness is solid, albeit this response originates from
different functional mechanisms and is driven by more complex neural networks than
commonly assumed. Acknowledging the complexity of such mechanisms can foster
new insights on the varieties of amygdala functions without awareness and their impact
on human behavior.

Keywords: amygdala, attention, hemispatial neglect, blindsight, fMRI neuroimaging, superior colliculus, pulvinar,
conscious perception

INTRODUCTION

The amygdala (Amg) is a composite subcortical structure that comprises more than 12 sub-nuclei
having distinctive patterns of input–output connections with the rest of the brain (Whalen and
Phelps, 2009; Janak and Tye, 2015). This histological and connectional heterogeneity reflects its
multifaceted functions. In fact, the Amg has long been known pivotal to emotion processing,
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but it also serves as an interface between emotion and
cognitive functions, including decision-making, learning and
attention (Bzdok et al., 2013). Over the past two decades,
evidence has accumulated that Amg exerts some of its functions
also when the subject is not aware of the content or even
presence of the triggering emotional stimulus (Tamietto and
de Gelder, 2010). This review will discuss findings related
to Amg functions in the absence of stimulus awareness,
its afferent and efferent paths mainly involved in non-
conscious processing, and the consequences of such processing
along several dimensions, including changes in expressive or
instrumental actions, psychophysiological and neuroendocrine
alterations, or modulation of motivated behavior.

Before entering into each specific issue, there are several
preliminary considerations, both theoretical and methodological,
about the relevance of studying Amg contribution to emotion
processing without awareness. First, Amg functions and circuitry
have been well conserved across evolution and appear early
during phylogenetic as well as ontogenetic development. For
example, the Amg is present in reptiles, birds and mammals
(Janak and Tye, 2015), its neurogenesis in humans and other
primates is complete at birth (Nikolic and Kostovic, 1986), and
its connections laid down by the 2nd week of age (Amaral
and Bennett, 2000). Therefore, studying Amg’s role in emotion
perception without stimulus awareness enables us to focus on
processes representing ‘primitives’ that evolved before, and likely
shaped, more sophisticated functions, such as those involved in
sustaining perceptual awareness, core feelings or intentionality.
Likewise, these primordial Amg functions have been implicated
in the specialization of more recent cortical functions across
the primate lineage as well as during development and
maturation (Leppanen and Nelson, 2009), including present-day
organization of the cortical visual system specialized for face and
body processing (Johnson, 2005; Liddell et al., 2005; de Gelder,
2006). Hence, this also provides a valuable testing ground for
gaging cross-species continuity of functions and comparison.
Secondly, examining stimulus properties and categories that
evoke Amg activity without awareness, or that by comparison
fail to do so, we may be able to abstract from common
taxonomies, such as those distinguishing animate from inanimate
objects, faces from bodies and so on, to reveal cross-category
commonalities between stimulus types and attributes that could
not be anticipated by looking at cortical segregation of stimulus
categories (de Gelder and Tamietto, 2011; Van den Stock et al.,
2014). Lastly, the Amg clearly rests at the intersection between
conscious as well as non-conscious emotional processing (Pessoa
and Adolphs, 2010). To the extent that these two different modes
of processing incoming sensory information co-exist in the
brain, assessing which operations the Amg undertakes without
awareness helps to unravel functions that may be overridden,
modulated or even actively blocked during conscious perception
and cortical top-down regulation. This can add valuable insights
on the longstanding debate on whether perception with and
without awareness are qualitative or quantitatively different
phenomena, whether and how they interact and interfere to shape
the ultimately conscious representation of the external world,
and which are, if anything, the specific evolutionary benefits

that determined conservation of emotion processing without
awareness across evolution.

The rest of the paper proceeds as follows. We will first
introduce a conceptual and terminological distinction between
different types of emotion perception without awareness, as
they entail profoundly different mechanisms and are sampled
through distinctive experimental designs. Second, we will review
neuroimaging evidence demonstrating Amg activity for emotion
processing without awareness, how this has been interpreted
and current controversies and limitations. Third, we will
discuss Amg automaticity as a function of time, and how data
acquired with high temporal resolution techniques can elucidate
and accommodate apparent inconsistencies originating from
functional magnetic resonance imaging (fMRI) results. Fourth,
we will consider functional and anatomical evidence about the
neural networks that seem crucial to convey sensory information
to the Amg in the absence of awareness. Firth, we will concentrate
on stimulus categories and properties that can be processed
non-consciously by the Amg and, finally, we will summarize
the behavioral and psychophysiological consequences of emotion
perception without awareness. Throughout the review, we will
concentrate on vision because this is the system best known
in terms of connections with the Amg in human and non-
human primates, and because the large majority of human
studies investigating Amg’s role in processing emotions without
awareness took advantage of visual stimuli.

DIFFERENT TYPES OF UNAWARENESS
FOR EMOTIONS AND HOW THEY ARE
STUDIED

A host of techniques and experimental manipulations have been
used to render emotional stimuli not consciously visible. For
example, during backward masking an emotional stimulus (e.g.,
a facial expression) is briefly presented and then immediately
followed by a masking stimulus (e.g., a neutral or scrambled
face). If the stimulus onset asynchrony (SOA) between the first
(target) and second (mask) stimulus is sufficiently brief, then the
observer cannot consciously report the presence or the emotional
content of the first stimulus (Esteves et al., 1994; Whalen
et al., 1998). Binocular rivalry or continuous flash suppression
exploit the mutual inhibition between monocular channels in
the primary visual cortex (V1) by presenting different images to
the corresponding regions of the two eyes (Pasley et al., 2004;
Tong et al., 2006; Yoon et al., 2009). In such conditions, the
images alternate in dominating perception and, at any moment,
only the dominant image enters awareness, whereas the other
non-dominant image goes undetected. Other popular paradigms
include dual-task designs where the subject’s attention is engaged
in an attention-absorbing task, such as matching judgments
between neutral stimuli, while an emotional stimulus is presented
at task-irrelevant and unattended locations (Vuilleumier et al.,
2001a; Pessoa et al., 2002). In the attentional blink, a rapid stream
of stimuli is presented and the subject is required to report
the presence of a target stimulus. However, if a second target
appears in rapid succession after a first successfully detected
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target (typically within 500 ms), this latter fails to be reported
(Anderson, 2005). Many other paradigms such as priming,
Stroop-task, dot-probe designs or the redundant target paradigm
have been variably used to sample perception without awareness
of emotional and non-emotional stimuli, each with their own
advantages and limitations (Mogg et al., 1994; Algom et al., 2004;
Pourtois et al., 2006; Beall and Herbert, 2008; Hart et al., 2010;
Celeghin et al., 2015c).

Although detailed coverage of these different methods goes
beyond the purposes of this review, they can be conveniently
grouped in two broad categories that entail different functional
mechanisms. Dual-task, attentional blink, visual search or Stroop
paradigms render the emotional stimulus not consciously visible
by interfering with attentional mechanisms. Psychophysical
evidence indicates indeed that visual stimuli outside the focus
of attention are not, or are only partially, seen consciously
(Mack and Rock, 1998). Accordingly, when attentional resources
are engaged in a task, cortical activity that is evoked in visual
areas by unattended (i.e., task-irrelevant) stimuli is suppressed
or significantly reduced by top-down influences from fronto-
parietal regions that control voluntary attention (Beck et al.,
2001). We refer to these phenomena as attentional unawareness.
The processing of emotional information, however, seems less
dependent on attentional resources than neutral information
(Vuilleumier, 2005). As we will discuss later, this mechanism
seems to depend on Amg responsivity.

In contrast, failure to become aware of a stimulus may
uniquely depend on sensory reasons, despite attentional selection
mechanisms operate normally (Kentridge et al., 2004). For
instance, if the energy of the stimulus is below the detection
threshold or the exposure time is too brief (subliminal),
the stimulus can fail to generate a consciously reportable
sensation notwithstanding we attend to it (Savazzi and Marzi,
2002; Dehaene et al., 2006). Backward masking, binocular
rivalry or flash suppression do not modulate attention, but
interfere temporarily with normal functioning in the ventral
occipito-temporal cortex, which is known to be crucial for
visual awareness (Macknik and Livingstone, 1998; Williams and
Mattingley, 2004; Tong et al., 2006). In this latter case we refer to
this type of non-conscious processing as sensory unawareness.

Attentional and sensory unawareness are thus qualitatively
different phenomena that can be investigated to sample different
Amg functions, while still remaining within the domain of non-
conscious processes. For example, attentional unawares is well-
suited to examine the role of Amg in biasing orientation toward
affective stimuli, and to investigate which mechanisms enable
Amg to eventually promote privileged access of emotional signals
to awareness. Sensory unawareness can instead reveal alternative
visual pathway by which the stimuli can reach the Amg, or their
impact toward on-going activities, behaviors or judgments, while
still remaining unseen. Lastly, patients with brain damage can
be an invaluable additional source of information to broaden
our wisdom on Amg functions without awareness. Patients
with hemispatial neglect due to right temporo-parietal lesions
typically fail to pay attention to the contralesional (left) space,
and stimuli appearing on that side often go undetected (Driver
and Mattingley, 1998). Therefore, the study of Amg response

to emotional stimuli in these patients can add insights into
the mechanisms governing attentional unawareness. On the
other end, patients with cortical blindness ensuing from damage
to, or denervation of, the primary visual cortex (V1) offer a
case study to investigate the differences between conscious and
non-conscious emotion processing due to sensory, as opposed
to attentional, causes and the role of Amg therein (Celeghin
et al., 2015b). In fact, the V1 lesion in such patients determines
permanent blindness to stimuli projected within the scotoma
(the visual field region affected by the cortical lesion), also if
the stimuli are supra threshold and long-lasting (Celeghin et al.,
2015a,c; Weiskrantz, 2009). Lastly, patients with focal damage to
the Amg offer the ultimate ground-truth to translate correlational
evidence on Amg functions to causation, by observing whether
and how the influence of emotional stimuli during attentional
or sensory unawareness, as typically reported in healthy subjects
during fMRI experiments, is modified or abolished following
Amg lesion (Anderson and Phelps, 2001).

AMYGDALA RESPONSE DURING
SENSORY AND ATTENTIONAL
UNAWARENESS: EVIDENCE AND LIMITS

Studies reporting Amg response under conditions of attentional
or sensory unawareness are summarized in Supplementary
Table 1, with indications on the paradigms, stimuli and main
findings. Neuroimaging investigations on healthy participants
in whom attention was manipulated have often reported that
stimulus-evoked activity in the Amg, along with that of other
cortical and subcortical structures, is not suppressed when
emotional stimuli are unattended (Vuilleumier et al., 2001a;
Anderson et al., 2003; Bishop et al., 2004; Williams et al., 2005).
Although this has been sometimes interpreted as evidence of
strict automaticity in Amg response to emotion, the current
evidence is mixed on this issue (Pessoa, 2005; Pessoa et al.,
2005; Silvert et al., 2007). For example, Vuilleumier et al.
(2001a), showed that Amg activation in response to fearful facial
expressions is independent of attention, whereas Pessoa et al.
(2002) reported that when attention is engaged elsewhere by a
demanding task, Amg response is suppressed. These apparently
contradictory results may be partly explained by differences in
the tasks and experimental design, which prevent simple or
straightforward comparisons. In fact, in the original study by
Pessoa et al. (2002), the subjects had to evaluate the gender
during trials in which attention was focused on the faces, whereas
they had to evaluate the same/different orientation of peripheral
bars when faces were unattended. In addition to the focus of
attention on faces vs. bars, therefore, also the cognitive load,
type of judgment and task requirements varied between the two
conditions, whereas in the study by Vuilleumier et al. (2001a)
only the focus of attention changed. Also, Pessoa et al. (2002),
used a block design, which samples Amg activity across various
consecutive repetitions of the same condition and is thus more
liable to habituation and less sensitive to physiological responses
induced by single events, whereas Vuilleumier et al. (2001a) used
an event-related design where the stimuli presented at attended
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and unattended locations varied randomly between single
trials. Another major confounding factor concerns the different
responses the Amg displays to various emotion categories. For
instance, Williams et al. (2005) found that Amg activity in
response to happy facial expressions was greater when faces
were attended, whereas for fearful expressions activity was
greater when the faces were unattended. Findings gleaned in
neuroimaging studies on patients with hemispatial neglect seem
more convergent toward Amg ‘automaticity’. Indeed, undetected
emotional stimuli on patients’ left side can activate the Amg
as well as cortical areas directly connected to it, such as the
orbitofrontal cortex or the insula (Vuilleumier et al., 2002; de
Gelder et al., 2012; Tamietto et al., 2015). The advantage of
addressing the issue of Amg automaticity in neglect patients
consists in the fact that no explicit or intentional manipulation
of attention is required from the subject, thereby discounting
issues related to task differences and attentional load between
conditions.

Investigations on sensory unawareness have shown
consistently that unseen emotional stimuli elicit activity in
the Amg, often along with activity in the superior colliculus and
pulvinar (Morris et al., 1998, 1999; Whalen et al., 1998; Critchley
et al., 2002; Killgore and Yurgelun-Todd, 2004; Pasley et al.,
2004; Williams et al., 2004b, 2006a,b; Liddell et al., 2005; Carlson
et al., 2009; Yoon et al., 2009; Juruena et al., 2010; Troiani and
Schultz, 2013). But how robust is the Amg response to unseen
with respect to seen stimuli? The answer varies markedly amid
studies, despite this is an important question to characterize
the relative role of Amg during non-conscious processing of
emotions. Some reports found indeed that Amg activity during
unawareness vs. awareness is the same, others described that
in several cases unseen emotions yielded enhanced responses
as compared to consciously perceived stimuli (Anderson et al.,
2003; Williams et al., 2004b), whereas still others reported greater
activity in Amg when participants were aware of emotional
expressions (Williams et al., 2006a,b; Amting et al., 2010).
Also in this case, methodological differences seem at least
partly responsible for the inconsistencies. In fact, assessing the
neural bases of emotion perception during sensory unawareness
should be based on direct comparisons between consciously
and unconsciously, albeit physically identical, stimuli. This type
of evidence, however, is difficult to obtain in healthy observers
because many paradigms used to make a stimulus invisible for
the subject also introduce a spatial and temporal difference from
its consciously visible counterpart. At present, investigations
on patients with cortical blindness after V1 lesion possibly
provide the best opportunity to characterize non-conscious
perception of emotions and its neural correlates. These patients
can discriminate the emotional content of stimuli that they
do not seen consciously, for example guessing whether the
stimulus conveys a fearful or happy expression (de Gelder et al.,
1999) – a phenomenon known as affective blindsight – and their
proficiency is associated with activity in the Amg (de Gelder et al.,
1999, 2001; Morris et al., 2001; Hamm et al., 2003; Pegna et al.,
2005; de Gelder and Hadjikhani, 2006; Tamietto et al., 2009; Van
den Stock et al., 2011b). As it often happens when mixed results
are reported, interpretations and theoretical views on the role

of Amg tended to cluster along two extremes: those endorsing
a strict notion on Amg automaticity and independency from
awareness, and those purporting that awareness is a necessary
condition for Amg response to occur. Others and we have
proposed that neural networks for conscious and non-conscious
emotion processing are not entirely segregated (Vuilleumier,
2005; Pessoa et al., 2006; Duncan and Barrett, 2007; Tamietto
and de Gelder, 2010; Pourtois et al., 2013). In this context, Amg
not only contributes to both modes of processing, but its initial
response without awareness actually helps to determine whether
the stimulus will reach awareness and how it will modulate
behavioral and bodily reactions. Therefore, the temporal
dimension of Amg response becomes critical to interpret its role
in emotion perception with vs. without awareness, while also
offering an additional framework to understand more coherently
the seemingly piecemeal findings summarized above.

TIMING OF Amg RESPONSE: FAST
SIGNALS FOR SLOW MEASURES?

The speed of processing has always been regarded as one hallmark
of non-conscious emotion perception (LeDoux, 1996). However,
human studies on Amg engagement in emotion processing
without awareness typically used fMRI, which has high spatial but
poor temporal resolution. In fact, fMRI studies usually average
together events occurring during a temporal window of about
2 s, due to the sluggishness of blood oxygen level-dependent
(BOLD) response. On the other hand, non-invasive methods with
higher temporal resolution in the order of milliseconds, such as
EEG and MEG, have traditionally had limitations in sampling
neural activity in deep structures like the Amg (Costa et al., 2014).
Nevertheless, recent technical advancements in sources analysis,
such as the synthetic aperture magnetometry (SAM) and sliding
windows analysis increased precision and sensitivity in detecting
MEG or EEG signal from deep brain structures.

One early study combining MEG and MRI methods reported
early event-related synchronization in the Amg at 20–30 ms
after stimulus onset, whereas synchronization in the striate
cortex occurred later, at about 40–50 ms after stimulus onset
(Luo et al., 2007). A more recent MEG study revealed
dissociation between rapid Amg responses to automatic fearful
face processing and later responses that interacted with voluntary
attention. On each trial, participants had to discriminate the
orientation of peripheral bars while task-irrelevant neutral or
fearful faces were presented centrally. Rapid enhancement of
neural activity in the gamma band triggered by threatening
faces (30–60 ms) was independent of task load and occurred
under attentional unawareness, whereas emotion processing and
attention interacted at later latencies (280–340 ms), subsequent to
fronto-parietal activity (Luo et al., 2010). Coherently, two other
MEG studies applying dynamic causal modelling (DCM) tested
the explanatory power of the automatic Amg response allegedly
mediated via subcortical route, versus a model predicting only
cortical mediation associated with stimulus awareness over Amg
response. A model considering also automatic Amg responses
mediated by a subcortical route explained early brain activity

Frontiers in Psychology | www.frontiersin.org 4 January 2017 | Volume 7 | Article 2029

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-02029 January 6, 2017 Time: 12:9 # 5

Diano et al. Amygdala Response During Emotional Unawareness

better than the model including only cortical access to the
Amg, whereas both models had comparable explanatory power
at longer latencies (Garrido et al., 2012; Garvert et al., 2014).
Therefore, MEG data offer new clues to resolve the longstanding
controversy concerning automaticity of Amg response based on
fMRI results, as described above (Brosch and Wieser, 2011).
On such bases, it seems that Amg automaticity is a function
of time, and these findings have been interpreted according
to a two-stage model of emotion-attention interaction. Early
Amg responses afford initial discrimination between threat
and neutral stimuli. These responses occur independently of
awareness and attention, possibly because the influence of
fronto-parietal cortex in reducing the representation strength
of task-irrelevant and unattended emotional information during
attentional competition requires more time to be effective.
Conversely, later Amg responses are modulated by attention
because the same top-down fronto-parietal mechanisms have had
sufficient time to enhance the representation of task-relevant
and attended information in visual areas. Notably, both the
early automatic and later attention-modulated Amg responses
lie within the time window of one volume acquisition of fMRI
studies, likely resulting in the contamination of the rapid effects.
In keeping with such view, EEG recordings have revealed that
Amg damage influences emotion perception at two distinct time-
windows, one early processing within the P1 time-range, around
100–150 ms post-stimulus onset, and one later component,
around 500–600 ms (Rothstein et al., 2010). These findings are
consistent with the contribution of Amg in emotion perception
at multiple processing stages, and the correlation between the
degree of Amg damage and the magnitude of EEG effects at both
time-windows supports its causal role.

Admittedly, intracranial electrophysiological recordings
offer the most reliable source of evidence concerning both
automaticity and temporal properties of Amg response. Three
studies addressed this issue by recoding signals directly from
electrodes implanted in the Amg of patients undergoing pre-
surgical assessment. Pourtois et al. (2010b) employed the same
dual-task paradigm previously used by Vuilleumier et al. (2001b)
to gage Amg automaticity with fMRI measures. Recordings from
lateral Amg showed an early neural response that differentiated
between fearful and neutral faces in the 140–290 ms time-range,
which occurred independently of, and prior to, attentional effect
starting at 700 ms post-stimulus onset. Likewise, Sato et al.
(2011) showed greater gamma-band activity in response to fear
compared to neutral faces between 50 and 150 ms. Even though
this study confirmed early responses to emotional stimuli,
sensory or attentional unawareness was not manipulated and
stimuli were projected centrally for 1 s. Similarly, Hesse et al.
(2016) recorded local field potential in three patients with depth
electrodes placed in the Amg and found that early activity in Amg
(80–200 ms), but not in other temporal, parietal, or frontal sites,
predicts rapid encoding of intentional harm from visual scenes
(Hesse et al., 2016). Lastly, a recent study by Mendez-Bertolo
et al. (2016) found fast Amg responses beginning 74 ms post-
stimulus onset specific for fearful compared to neutral or happy
facial expressions. Moreover, fast Amg responses were selective
to low spatial frequencies components of fearful faces. This

sensitivity to low spatial frequencies is important because it is in
keeping with the properties of the magnocellular pathway, which
is supposed to relay visual signal to the Amg via a subcortical
pathway devoted to fast and non-conscious emotion perception
(Vuilleumier et al., 2003a).

The present findings raise two interrelated issues of the utmost
relevance. The first concerns how visual information exploitable
for non-conscious emotion perception reaches the Amg. The
second relates to the encoding properties of the pathway(s)
that channel visual information to the Amg without awareness,
thereby defining which visual properties, stimulus attributes and
categories can undergo non-conscious emotion processing and
trigger appropriate responses. In the next two sections we will
deal separately with each of these issues.

PATHWAYS TO THE Amg RELEVANT
FOR NON-CONSCIOUS EMOTION
PERCEPTION

The canonical pathway for the transmission of visual information
from the retina to the Amg passes through the occipito-temporal
cortex along the ventral stream, with the main projection
originating from the anterior part of the inferior temporal
cortex (TE) (e.g., Kravitz et al., 2013). However, prior studies in
rodents documented the role of midbrain structures for rapid but
coarse processing of affectively laden auditory and visual stimuli,
thereby documenting a subcortical pathway to the Amg that
bypasses the primary sensory cortices (Jones and Burton, 1976;
Campeau and Davis, 1995; LeDoux, 1996; Doron and Ledoux,
1999; Linke et al., 1999; Shi and Davis, 2001). Neuroimaging data
on healthy subjects in whom sensory unawareness for emotional
stimuli had been induced by experimental manipulations have
shown that the superior colliculus, pulvinar, and Amg are
commonly activated in response to non-consciously processed
emotional signals (Whalen et al., 1998; Morris et al., 1999;
Vuilleumier et al., 2003b; Whalen et al., 2004; Liddell et al.,
2005; Williams et al., 2006b). Conversely, the primary cortical
route that relays visual input to the Amg does not seem to
respond significantly during sensory unawareness, but does so
when the emotional stimuli are perceived consciously (Pasley
et al., 2004; Williams et al., 2006a,b). Unseen facial and bodily
expressions have yielded similar findings when presented in the
blind fields of patients with affective blindsight. This indicates
that a functional subcortical route to the Amg is invovled in
emotion perception during sensory unawareness (Morris et al.,
2001; de Gelder et al., 2005, 2011; Pegna et al., 2005; Tamietto
and de Gelder, 2010; Van den Stock et al., 2011a,b, 2013, 2015a;
Georgy et al., 2016). The involvement of the superior colliculus
and pulvinar is in keeping with their connectional pattern and
physiological properties. Notably, the superficial layers of the
SC receive direct retinal input only from the Magnocellular
and Koniocellular channels originating from the parasol and
bistratified retinal ganglion cells, respectively (Goldberg and
Robinson, 1978; Casagrande, 1994; Waleszczyk et al., 2004). Also
the medial subdivision of the inferior pulvinar receives direct
projections from the retina, in addition to input originating
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from the superior colliculus and targeting the centro-medial
and posterior subdivisions of the inferior pulvinar. Hence, these
subcortical structures are ideally positioned to convey visual
input to the Amg and bypass transient or permanent inactivation
of the visual cortices. Single cell recordings in monkeys provided
independent support for the role of the superior colliculus and
pulvinar in encoding emotional expressions (Nguyen et al., 2014).
Indeed, a subpopulation of neurons in the superior colliculus
responds to faces or face-like images also when the images
were filtered in low spatial frequency. Moreover, the magnitude
and latency of such responses in the superior colliculus to
face images correlated significantly with those recorded in the
pulvinar. Noteworthy, neurons in the monkey pulvinar respond
differentially to specific emotional expressions, as shown in
another cell recording study from the same group (Maior et al.,
2010).

Granted the role of a subcortical functional pathway to the
Amg devoted to processing emotion under sensory unawareness,
are these structures also anatomically connected, besides the
functional interactions described above? The presence of
anatomical connections between the superior colliculus, pulvinar,
and Amg has been documented by tracer studies in birds and
rodents. Yet similar evidence in primates was lacking until
recently (Pessoa, 2005; Pessoa and Adolphs, 2010). Day-Brown
et al. (2010) have provided such evidence in the tree shrew, a
species considered a prototypical primate, by showing that the
dorsal pulvinar, which receives both topographic and diffuse
projections from the superior colliculus, also projects to the Amg,
thereby forming a disynaptic pathway. The authors proposed
that the role of this pathway is to convey non-topographic
visual information from the SC to the Amg, with the purpose
of ‘alerting the animal to potentially dangerous visual signals’
(Day-Brown et al., 2010). In an attempt to verify whether such
anatomical connections also exist in the human brain, we used
diffusion tensor imaging (DTI) and tractography techniques
to characterize in vivo the connectivity between the superior

colliculus, pulvinar, and Amg in normal observers and its changes
in blindsight patient GY (Tamietto et al., 2012). We found
fiber connections between pulvinar and Amg and also between
superior colliculus and Amg via the inferior-lateral pulvinar in
the healthy observer as well as in patient GY. Unilateral V1 lesion
increased fiber connections along this pathway, but only in the
patient’s damaged hemisphere, thus providing additional support
of the functional role of this subcortical route in conveying visual
information critical for affective blindsight and non-conscious
emotion perception. A recent tractography study by Rafal et al.
(2015) also traced connections between colliculus, pulvinar, and
Amg in eight monkeys and twenty healthy human participants.
Results in human participates were highly coherent with our
prior results, while the authors also reported for the first time
anatomical evidence of direct and closely similar connections in
the monkey brain.

Admittedly, the existence of such subcortical route to the
Amg does not exclude other theoretical possibilities or alternative
pathways, nor the contribution of cortical areas in different
instances of conscious or non-conscious emotion processing
(Pessoa and Adolphs, 2010). For example, both the lateral
geniculate nucleus and the pulvinar send collateral projections
that bypass V1 and target extrastriate visual areas, including
areas along the ventral cortical stream that can then relay
visual information back to the Amg (Tamietto and Morrone,
2016). Also, two other disynaptic subcortical pathways to the
Amg have been recently demonstrated in mice, along with
their functional role in triggering innate defensive responses
to threatening visual stimuli. Both these pathways originate
from the superior colliculus, but one includes the parabigeminal
nucleus as intermediate station leading to the Amg (Shang
et al., 2015), whereas the other involves the lateral posterior
nucleus of the thalamus (Wei et al., 2015). It remains to be
established whether these and other potential pathways beyond
the well-documented colliculus-pulvinar-Amg play a crucial role
for emotion perception without awareness in humans (Figure 1).

FIGURE 1 | Major cortical and subcortical visual connections to the Amg. Dashed lines indicate pathways recently reported in mice and not yet confirmed in
human and non-human primates. LGN, lateral geniculate nucleus; OFC, orbitofrontal cortex; PBGN, parabigeminal nucleus; PI, pulvinar inferior; PL, pulvinar lateral;
PM, pulvinar medial; SC, superior colliculus; TE, temporal inferior rostral; TEO, temporal inferior posterior; ThLP, thalamus lateral posterior; vlPFC, ventro-lateral
prefrontal cortex.
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These two-routes perspectives involving cortical vs.
subcortical input to the Amg have been often conceived or
presented as alternative to the two-stages account discussed
above and emerging from attentional unawareness or analyses
of the temporal profile of Amg responses. However, there is
no logical contradiction between these two views nor they
must be seen as mutually exclusive. Conversely, empirical
evidence seems to indicate they co-exist in the intact brain, and
they gain new coherence when considered under the light of
the distinction between sensory and attentional unawareness
introduced above. In fact, when V1 is not able to process
visual information normally, because of either experimental
manipulation inducing sensory unawareness or permanent
damage, the subcortical route seems the primary non-canonical
pathway to convey rapidly visual information to Amg and
sustain non-conscious emotion processing. During attentional
unawareness in healthy subjects or in patients with neglect,
however, the visual cortex is normally functioning and coarse
magnocellular input can also reach the Amg from cortical
areas in the ventral stream through an initial forward sweep
(Vuilleumier, 2005; Pourtois et al., 2013). This can afford rapid
processing of unattended stimuli prior to voluntary attentional
control (Pourtois et al., 2010a,b) or fine-grained and conscious
stimulus perception.

STIMULUS CATEGORIES AND
PROPERTIES TRIGGERING AMYGDALA
RESPONSE WITHOUT AWARENESS

Faces are a privileged medium to express emotions during social
and non-social interaction. It is therefore not surprising that
the wide majority of studies examining emotion perception in
human used facial expressions as visual stimuli (e.g., Adolphs,
2002; D’Agata et al., 2011). Likewise, also research on emotion
perception without awareness primarily used facial expressions
(Morris et al., 1998, 1999; Whalen et al., 1998; Axelrod et al.,
2015). This has contributed to the prevailing view that Amg
activity during non-conscious emotion perception is selective
for facial expressions (Johnson, 2005; de Gelder et al., 2006).
However, recent investigation seems to challenge this view
from two parallel lines of findings. On the one hand, Amg
activity contingent upon sensory and attentional awareness in
healthy as well as brain damaged patients has emerged from
the use of non-facial stimuli, thereby extending evidence of
non-conscious emotion processing to other stimulus categories.
Bodily expressions of emotions, both static and dynamic, have
been the most extensively studied non-facial stimuli (de Gelder
and Hadjikhani, 2006; de Gelder et al., 2006, 2010; Tamietto
et al., 2009; Van den Stock et al., 2011a,b, 2013, 2015a,b;
Tamietto et al., 2015). Visual stimuli associated to danger in
our evolutionary past, such as snakes and spiders, have also
been studied during attentional and sensory unawareness. Non-
conscious exposure to these stimuli evokes physiological arousal
and amygdala response (Carlsson et al., 2004; Wendt et al.,
2008; Alpers et al., 2009; Almeida et al., 2015), particularly if
participants were phobic to these classes of stimuli, and activated

Amg also when unattended because presented in the affected side
of patients with hemispatial neglect (Tamietto et al., 2015). On the
other hand, the alleged special status of faces in triggering non-
conscious perception and Amg activity is at odd with negative
evidence when non-emotional facial characteristics, such as
gender or identity, are tested during unawareness (Rossion et al.,
2000; Negro et al., 2015). Moreover, facial expressions that
communicate more complex emotions like guilt or arrogance,
whose meaning lays in the socialization process and is less
biologically rooted, also fail to undergo non-conscious emotion
processing in patients with affective blindsight (Celeghin et al.
(2016).

A certain degree of functional similarity between these
different stimulus categories, owing to their common suitability
in undergoing non-conscious emotion processing and in
triggering Amg response, challenges theories exclusively focused
on the specific visual features or on the unique role of faces
in conveying emotions. In fact, it suggests an approach that
cuts across gross physical differences between stimuli, as they
exist between facial and bodily expressions, or between these
latter and snakes, to concentrate more on common functional
properties of these different stimulus classes. The findings
reported above thus converge with the idea that non-conscious
emotion processing is not specific for faces, but rather for
biologically primitive emotional signals that can be encoded
from low spatial frequencies, that are clearly associated with
action tendencies, and to which we are evolutionary prepared
to respond (Tamietto and de Gelder, 2010). Accordingly,
complex affective scenes, as derived from the International
Affective Picture System (IAPS), cannot be processed non-
consciously in patients with affective blindsight (de Gelder
et al., 2002) and do not activate Amg under attentional
unawareness tested in patients with neglect (Grabowska et al.,
2011).

Evidence therefore indicates that processing the emotional
value of complex scenes, facial expressions of social emotions,
or personal identity from faces depends critically on conscious
visual perception and on the detailed processing of the high
spatial frequency information that is characteristically performed
by the cortical visual system in the ventral stream. We have
already discussed findings about fast Amg responses for low
but not high spatial frequency fearful expressions (Vuilleumier
et al., 2003a; Mendez-Bertolo et al., 2016). In an attempt
to determine the causal role and behavioral consequences of
Amg activity during non-conscious perception of low spatial
frequencies expressions, we have recently tested two patients with
affective blindsight in a combined behavioral/fMRI experiment
(de Gelder and Tamietto, in press). Neutral and fearful facial
expressions were filtered in high or low spatial frequency.
We reasoned that, if non-conscious emotion perception during
sensory unawareness relies on subcortical pathway to Amg
and magnocellular channels, then the patients should display
affective blindsight only in response to low spatial frequency
images and this above-chance guessing behavior should be
associated with Amg activity. Conversely, above-chance guessing
should be abolished by high spatial frequency images and Amg
response should drop significantly. Preliminary evidence is in
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keeping with our hypothesis and lends support to the causal
role of subcortical structures in affective blindsight and non-
conscious emotion perception (de Gelder and Tamietto, in
press).

CONSEQUENCES OF Amg ACTIVITY
DURING NON-CONSCIOUS EMOTION
PERCEPTION

What are the consequences of Amg activity without stimulus
awareness? Do they alter on-going behavior, psychophysiological
reactions, or expressive responses toward normally seen
environmental stimuli? And, lastly, are these responses felt
consciously, even though they cannot be linked to the external
triggering event?

Non-conscious perception of emotional stimuli associated
with Amg activity often induces behavioral consequences that
are associated with characteristic psychophysiological correlates
or changes in the bodily state of the unaware observer. These
behavioral and psychophysiological outcomes are quantitatively
and qualitatively different from those occurring during conscious
emotion perception, as they tend to be stronger and faster when
awareness is lacking (Williams et al., 2004a; Tamietto et al., 2009,
2015). This suggests that non-conscious perception of emotional
stimuli is not simply a degraded version of conscious perception,
but a different mode of processing the same stimuli.

For example, emotional stimuli that are unattended,
nevertheless interfere with on-going tasks (Eastwood et al., 2003;
Hart et al., 2010), and behavioral consequences include delayed
disengagement of attention (Georgiou et al., 2005), faster and
easier detection than what reported for neutral stimuli, as shown
in visual search (Hansen and Hansen, 1988; Ohman et al., 2001),
attentional blink paradigms (Anderson, 2005) or in patients
with neglect (Vuilleumier and Schwartz, 2001a,b; Williams and
Mattingley, 2004; Tamietto et al., 2005, 2007). Notably, damage
to the Amg abolishes some of these behavioral effects (Anderson
and Phelps, 2001). Similarly, if a neutral stimulus is paired
with, or primed by, a non-consciously perceived emotional
stimulus, then preferences or attitudes toward the former are
shifted accordingly (Niedenthal, 1990; Anders et al., 2009). For
instance, consumption behaviors or preference judgments can
be influenced by preceding masked facial expressions, despite
subjective feelings remain unaltered (Winkielman and Berridge,
2004; Winkielman et al., 2005). Notably, however, when subjects
are aware of the presence and nature of the emotional stimuli
these effects sometimes disappear (Niedenthal, 1990; Tamietto
et al., 2006).

Psychophysiological changes that are associated with non-
conscious perception of emotional stimuli include enhanced
skin conductance (Esteves et al., 1994; Glascher and Adolphs,
2003) increased magnitude of eye blink (indicating startle
reactions or avoidance) (Hamm et al., 2003), changes in
stress hormone levels (van Honk et al., 1998), increased pupil
dilation (Tamietto et al., 2009, 2015) and heart rate changes
(Ruiz-Padial et al., 2005). These changes index arousal or
the processing of affective valence, and their function is to

prepare the organism for reacting to impeding and salient
events. Notably, Amg lesions are associated with reduced eye
blink to negative stimuli (Angrilli et al., 1996). Similarly,
electromyography (EMG) studies have shown that masked
or unseen emotional stimuli also trigger spontaneous facial
reactions coherent with the emotional content of the stimuli
(Dimberg et al., 2000; Tamietto and de Gelder, 2008b; Tamietto
et al., 2009). This spontaneous tendency to synchronize our facial
expressions with the emotional meaning of other individuals’
expressions is likely to play a part in social interactions (Frith,
2009).

A different source of evidence on the impact of stimulus
processing without awareness comes from studies that used
indirect manipulations. For example, indirect methods have
been used to sample interference or integration between
seen and unseen stimuli in patients with affective blindsight
or during masking in healthy observers (de Gelder et al.,
2001; Tamietto and de Gelder, 2008a; Bertini et al., 2013;
Cecere et al., 2014). A typical example of indirect methods
is the redundant target effect (RTE), in which one single
stimulus is projected to the intact field or is presented
simultaneously with another stimulus in the opposite blind
field. Typically, reaction times (RTs) to the seen stimulus
are faster during redundant stimulation than during single
presentation to the intact field (Celeghin et al., 2015c). With
such method, interactions between seen and unseen visual
emotional stimuli, and also between (unseen) visual and
(perceived) auditory stimuli, have been observed in such patients.
For example, presenting an incongruent facial expression
to the blind field biases the judgment of the emotional
prosody of a sentence fragment (de Gelder et al., 2002,
2005), together with enhanced Amg activity during congruent
conditions. These findings converge with the notion that emotion
processing with and without stimulus awareness co-exist and
interact in the intact brain, though they can be dissociated
because of focal brain damage or experimental manipulation.
Additional evidence on the motor influence of emotion
perception is provided by transcranial magnetic stimulation
(TMS) studies (Borgomaneri et al., 2015a,b). Although these
studies did not manipulate directly visual awareness, they
found extremely rapid sensory-motor modulation in response
to fearful bodily expressions, supposedly underlying freezing
mechanisms. As these effects are related to changes in
the excitability of cortico-spinal downstream projections, but
not in cortical excitatory mechanisms, the authors suggest
that they are mediated by fast and automatic amygdala
responses that rapidly modulate cortico-subcortical interactions
before visual stimuli can be fully processed at a conscious
level.

Can we experience consciously the bodily changes and
emotional feelings determined by the exposure to an unseen
and unperceived emotional stimulus? The classical view is that
we become aware of such bodily responses when we can link
them to the conscious representations of their external or
internal determinants (e.g., an angry expression or a sudden
noise, or our thoughts, respectively). In fact, some evidence
indicates that we are unable to report a conscious feeling
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despite the fact that, at the same time, our behavior reveals
the presence of an affective reaction triggered by the exposure
to an external stimulus of which we are unaware. Despite this,
however, it is conceivable that we can become aware of our
physiological changes without a conscious representation of
their external causes. This seems to be a common situation in
clinical conditions such as alexithymia, pathological anxiety or
depression. Also, one study on patients with affective blindsight
has shown that the presentation of an unseen stimulus previously
paired with an aversive event enhances eye-blink startle reflex,
and this enhancement corresponded to the reported level of
negative emotional feelings (Anders et al., 2004).

CONCLUDING CONSIDERATIONS

If emotional stimuli can be processed without awareness, activate
the Amg, and still induce coherent responses, what role is
left for consciousness in emotions? Some clues come from
the observation that the responses observed when emotion
processing is accompanied by awareness are often different from
those induced by unconscious processing. Enhanced influence
of non-consciously perceived emotional signals on physiological
or expressive responses is in keeping with results showing
that cortical activity and awareness can exert an inhibitory
modulation over subcortical areas or automatic responses (Bush
and Sejnowski, 1996; Panksepp, 2011). The fact that such
inhibition is absent or less prominent during non-conscious
perception of emotional stimuli could also explain the apparently
paradoxical finding that subcortical activity can be enhanced
during non-conscious compared to conscious perception of
emotional stimuli in healthy subjects (Anderson et al., 2003;
Williams et al., 2004b). Likewise, conscious perception of the
eliciting stimulus can overrule subjective affective experience
in response to an aversively conditioned stimulus, and the
decoupling between conscious feelings and physiological changes
correlates with increased activity in the ventro-lateral prefrontal
cortex (Anders et al., 2009). These findings contradict the
common assumption that emotional feelings merely reflect
cortical readouts of peripheral and autonomic arousal. Therefore,
the added value of awareness in emotion seems primarily
that of integrating representations of the external and internal
world in order to achieve context-dependent and higher-
order decoupling and flexibility between sensory input and
behavioral output. Consciousness also allows control and
planning, as well as anticipation of desirable or functional
responses.

From the opposite vantage point, emotions seem to play
a prominent role in the generation and development of
state consciousness, which refers to the different degrees of
vigilance, such as wakefulness, alertness, drowsiness, or coma
that apply to the whole organism. Our homeostatic regulation
depends indeed by the continuous mapping of bodily states
and integration of interoceptive information. These homeostatic
processes contribute to generate the sense of invariance

that accompanies contingent subjective experience, and thus
instantiate a neurobiological mechanism for the invariance of the
sense of self and the continuity of our first-person experience
of the world (Damasio, 1999; Tsuchiya and Adolphs, 2007;
Park and Tallon-Baudry, 2014). Neurophysiological responses
induced by emotional signals, even when they are unseen,
alter homeostatic balance and overlap with changes affecting
the general level of state consciousness (Damasio, 1999;
Zeman, 2001; Damasio and Carvalho, 2013). It is indeed
noteworthy that the bodily responses triggered by emotions
are controlled by neural structures in the brainstem that
also control the level of consciousness. Accordingly, several
scholars consider raw emotional feelings as the precursors
or basic forms of consciousness, and have rooted it in
subcortical processes rather than (only) in full-blown subjective
cognitions implemented in higher-order cortical structure
(Panksepp, 2005; Panksepp, 2011; Damasio and Carvalho,
2013; Damasio et al., 2013; LeDoux, 2015). In keeping with
this perspective, children with total congenital absence of the
cerebral cortex can nevertheless exhibit appropriate affective
responses and feelings can be even strengthened (Shewmon
et al., 1999). Moreover, direct electrical brain stimulation in
subcortical and brainstem structures that evoke observable
behavioral and physiological reactions associated with reward
and punishment in animals, also induce conscious affective
feelings when stimulated in humans (Panksepp, 2005; Panksepp,
2011). Thus, also when we are not aware of the external
determinants of an emotional response, because the triggering
signal does not become a content of our conscious visual
experience, the cascade of physiological reactions it generates
in the organism contributes to modulate our state of vigilance
and behavior, which are constitutive components of state
consciousness.
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