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Abstract: West Nile virus (WNV) and Usutu virus (USUV) are neurotropic mosquito-borne flaviviruses
that may infect humans. Although WNV is much more widespread and plays a much larger role in
human health, the two viruses are characterized by similar envelope antigens, clinical manifestations,
and present overlapping in terms of geographic range of transmission, host, and vector species.
This review highlights some of the most relevant aspects of WNV and USUV human infections in
Europe, and the possible implications of their co-circulation.
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1. Introduction

West Nile virus (WNV) and Usutu virus (USUV) are neurotropic mosquito-borne flaviviruses
within the family Flaviviridae. The genus Flavivirus is comprised of more than 70 recognized viruses,
including some of the most significant arboviral pathogens of humans. Both are members of the
Japanese encephalitis virus (JEV) serocomplex, sharing cross-neutralization antibodies with other
important viruses that cause encephalitis in humans, as well as viruses that are either rare or less
well-established causes of disease [1].

WNV and USUV are maintained by a sylvatic cycle between different species of birds as
amplifying hosts and Culex mosquitoes as major vectors. Humans and other mammals may be
infected by mosquitoes; however, they are not able to sustain transmission and are therefore considered
dead-end hosts. WNV infection represents nonetheless a serious burden to human and animal health
because of its capacity to cause unforeseen and large epidemics [2].

In their transmission cycle, the two viruses share some of the same vectors and hosts,
and co-circulation in the same environment has been reported [3]. USUV appears to be more
pathogenic and lethal for some bird species compared with WNV, while it rarely causes disease in
humans. However, the clinical manifestations show many similarities, which may complicate the
diagnosis of febrile conditions. This review highlights some of the most relevant aspects of WNV and
USUV human infections in Europe, and the possible implications of their co-circulation.

2. Transmission

The natural life cycle of WNV and USUV is similar to that of other flaviviruses belonging to the
JEV serocomplex [4], as it involves ornithophilic mosquitoes as vectors and birds as main amplifying
hosts and, under certain environmental conditions, it spills over to human settlements. Mammals,
including humans and equines, can incidentally become infected with both viruses, but they generally
do not develop sufficient viraemia to sustain transmission [5,6].
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The main vector in outbreaks of WNV infection in Europe seems to be Culex pipiens [7]. USUV
co-circulates with WNV in many European countries, in terms of geographic range of transmission,
host and vector species, since Cx. pipiens is also the most common vector for USUV [8].

The overlap in the range of bird hosts is substantial: 34 species of 11 orders have been shown to
be susceptible to both WNV and USUV [3]. Most of the species found susceptible to infection naturally
occur in Europe, such as Eurasian jays (Garrulus glandarius), common starlings (Sturnus vulgaris),
and Eurasian magpies (Pica pica) [3]. Half of the identified species are at least partially migratory,
which plays a part in the circulation and diffusion of both viruses.

In the great majority of cases, WNV infection is acquired as a consequence of the bite of a mosquito.
Alternative modes of transmission have been reported, such as organ transplants, blood transfusions,
and vertical transmission either during pregnancy, delivery, or breastfeeding [9]. These routes of
transmission have not been described for USUV yet.

3. Virology

3.1. WNV

WNV is an enveloped virus with icosahedral symmetry [10]. Image reconstructions and electron
microscopy showed its structure is similar to the dengue fever virus, characterized by a 45–50 nm
virion [10]. The RNA genome is linear, plus sense, single-stranded, and approximately 11 kb long.
It is flanked by 5′ and 3′ non-coding stem loop structures, with a clustering of coding regions for
structural proteins at the 5′ end and nonstructural proteins at the 3′ end. The envelope is characterized
by glycoprotein E and pre-membrane protein (prM). The former mediates binding to the host cells and
promotes viral entry into the host cells, while the latter is necessary for virion assembly and maturation
by assisting envelope folding [10].

The nucleocapsid is composed of C proteins, each 105 aa in size, which form the capsid and are
bound to the genomic RNA.

Replication takes place in the cytoplasm of the host cell. Here, the nucleic acid of the virus is
translated into a single polyprotein; after this step, cellular and viral enzymes proceed to the cleavage
of the polyprotein into both functional and structural proteins.

WNV is part of the JEV serocomplex, sharing cross-neutralization antibodies with viruses including
Japanese encephalitis virus, Murray Valley encephalitis virus, and St Louis encephalitis virus, which
are able to cause encephalitis in humans, as well as viruses which are rarely cause of human disease,
such as Usutu [1].

3.2. USUV

Like WNV and most other flaviviruses, USUV virions are small and spherical, with a diameter of
40–60 nm, consisting of a dense core with an adherent lipid envelope derived from host cell membrane.
USUV is a positive-sense, single-stranded RNA virus. The genome is about 11 kb in length, has no
3′ poly(A) tail, and shows a similar organization to others flaviviruses [11], with a 5′ cap structure,
a unique open reading frame (ORF), and two untranslated regions (UTRs), which may vary in length
among different strains (95–96 nt for 5′, and 631–664 nt for 3′) [12], and are involved in the translation
and replication processes. The ORF is translated in a single polyprotein which is post-translationally
processed into eleven proteins, of which three are structural (capsid, envelope, and pre-membrane)
and eight nonstructural. Like other flaviviruses, the genes encoding for structural proteins are located
on the 5′ end of viral genome [4,13]. The capsid proteins (C) form the central core of the virion and are
associated with the viral RNA.

The nonstructural proteins cater to different functions during infection, which were deduced
on the basis of their similarity with other flavivirus genomes [14]. NS1 exists in both a cellular and
a secreted form, and is necessary for replication and virion maturation [15]. NS2A, NS2B, NS4A,
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and NS4B play a role in the assembly of the virus and the inhibition of interferon response [16]. NS3
and NS5 present enzymatic activity.

4. Clinical Aspects

4.1. WNV

WNV-associated illness was initially considered to be a negligible disease, even asymptomatic;
however, it became a public health issue at the end of the 1990s as severe, even fatal, neurological
manifestations followed several outbreaks of infection [17,18]. Understanding of the clinical
epidemiology of WNV infection is complicated by the high number of asymptomatic cases, as well as
patients that fail to seek medical attention due to symptoms being perceived as mild. However, it is
estimated that around 30% of infected people develop West Nile fever, with symptoms ranging from a
flu-like syndrome to encephalitic diseases, and reported fatality rates range from 3% to 17% [19,20].
The symptomatology has been better defined by a 2010 study as the presence of at least three indicator
symptoms, which involve generalized weakness, severe muscle and joint pain, fever, headache, painful
eyes, or new rash [21].

Neuroinvasive disease is a potentially fatal complication of epidemic WNV infection, presenting
as encephalitis, meningitis, or acute flaccid paralysis. This is developed by less than 1% of the infected
individuals, although the proportion increases with age [22,23]. Some population groups were reported
to be at greater risk of severe neurological disease or death: along with the elderly, male patients
with underlying diseases, such as cardiovascular conditions, cancer, or diabetes, were shown to be at
increased risk of neuroinvasive disease compared with female patients without underlying disease [24].
Moreover, the genetic variation of WNV is important in determining its pathogenicity, including
the tendency to invade the meninges [25]. The fatality rate in neuroinvasive cases is approximately
10% [26].

Present evidence, gathered on the basis of nucleic acid homology, supports the thesis that WNV
divides into at least seven lineages, where the major divergence in nucleotide sequence is of 25%–30%.
Lineages 1 and 2 present a homology in nucleotide sequence of around 75%; these are the only lineages
so far associated with human disease [24].

Unlike acute morbidity and mortality, the long-term sequelae associated with WNV infection
were not well characterized until 2015, when the clinical outlook of WNV-related illness in North
America and Western Europe was reviewed [27]. The evidence suggested that WNV-related illness is
associated with severe long-term outcomes. Although the incidence, length, and nature of the sequelae
were shown to be highly variable, patients with WNV-related neuroinvasive manifestations or with
West Nile fever presented persistent signs of cognitive, functional, and physical nature [27].

The most common physical sequelae consisted of muscle weakness, fatigue, and myalgia; memory
loss, depression, and difficulty concentrating were among the most common cognitive long-term
effects, while difficulties ambulating or with daily activities were the most reported functional sequelae
(Table 1). Lengthy recovery seemed to be common [27].

At present, there are no available human vaccines or specific antiviral treatments for WNV-related
disease. Severely affected patients may need to be hospitalized to receive supportive treatment,
while over-the-counter pain relievers are used in milder cases. Community-level mosquito control
programs to reduce vector densities and repellents are the most efficient precautionary measures. Most
European countries have implemented passive or active surveillance networks which have improved
the quality of available epidemiological data. Nonetheless, outbreaks remain temporally and spatially
unpredictable [28].
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Table 1. Most widely reported West Nile virus (WNV)-related sequelae (>5% patients).

Physical Sequelae

15%–20% patients Muscle weakness, fatigue, myalgia
10%–15% patients Headache

5%–10% patients Balance problems, visual impairment, joint weakness or pain, tremor, neck pain
or stiffness

Cognitive and Psychological Sequelae

15%–20% patients Memory loss
10%–15% patients Depression, difficulty concentrating

5%–10% patients Agitation or increased sensitivity, confusion, altered mental status, aggressivity or
anger, anxiety, emotional lability

Functional Sequelae

40%–50% patients Difficulty performing daily living activities
<10% patients Decreased activity, difficulty ambulating

4.2. USUV

Although far less common, the clinical manifestations of USUV infection are rather similar to
WNV. Infection in humans may be asymptomatic or be associated to a wide range of symptoms
which vary from moderate (rash, fever, and headache) to severe, presenting as meningoencephalitis,
encephalitis, polyneuritis, or facial paralysis [29–31].

USUV can be divided into eight lineages which are distinct into an African and a European group
based on their origin of isolation [12]. The nucleotide identity between isolates is higher than 94%,
with the exception of the lineage Africa 1, which only includes the strain CAR-1969, with an identity of
78.3% [11,13].

As USUV and WNV show considerable similarities and that an accurate laboratory diagnosis
presents some difficulties, an underestimation of the burden of USUV-related disease might be likely.

5. Diagnosis

5.1. WNV

The clinical presentation of WNV infection is highly diverse and overlapping with other flaviviruses.
Laboratory diagnosis is essential, with several techniques currently available to this end [32].

Molecular methods, usually real-time RT-PCR assays, are the most common diagnostic tool that is
used to detect viral RNA in a variety of specimens. Identification of WNV genome in the cerebrospinal
fluid (CSF) or serum of a patient during the acute stages of neurological manifestations is generally
considered to be a confirmatory diagnostic parameter [33].

The laboratory diagnosis of WNV infection in humans still heavily relies on the detection of specific
antibodies. When the presence of viral RNA is not demonstrable by molecular assays, the observation
of a specific IgM immune response might be considered anindicator of the early stages of an infection.
CSF or serum are the specimens of choice. The presence of IgM antibodies for WNV, however, is not
necessarily a sign of an acute WNV infection as they have been reported to persist for more than a year
in certain patients. A combination of IgM levels with IgG avidity determination has been shown to help
differentiate a current WNV infection from IgM seropositivity due to the previous WNV transmission
season [34].

Seroconversion during the convalescent phase of the infection (indicated by a four-fold or
higher increase in the level of IgG in the serum) is required as confirmation. Immunofluorescence
assays or enzyme immunoassays can be used to detect WNV-specific antibodies [32]. However,
the widespread immunological cross-reactions among closely related flaviviruses impact unfavorably
on these techniques, significantly lowering their specificity [35]. To overcome this limit, positive results
should be confirmed with a plaque reduction neutralization assay (PRNT); only a few laboratories in
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Europe are capable of routinely performing this test, however, due to the complexity of the technique
and the need for viable virus isolates, a BSL-3 safety condition is required [36].

Virus isolation in cell cultures from CSF and serum samples is a third potential diagnostic
alternative. Although very specific, this technique is characterized by a low sensitivity and requires
the continuous availability of cell cultures under BSL-3 conditions [37]. For these reasons, this method
is generally only performed in research laboratories.

5.2. USUV

The same diagnostic issues presented for WNV infection are valid for USUV. USUV infection can
be diagnosed directly, through the detection of viral nucleic acid or by virus isolation in cell culture,
or indirectly, by targeting specific antibodies.

The direct diagnosis of acute USUV infection is based on the detection of USUV RNA in clinical
specimens (blood and CSF) by nucleic acid amplification methods. Currently, there are no validated
commercial assays available, although several in-house methods have been described, usually real-time
RT-PCR assays which specifically target USUV [38,39]. Alternatively, a nested RT-PCR has been
described which targets highly conserved genome sequences among flaviviruses [40], followed by the
sequencing of amplicons to identify the virus.

Indirect diagnosis of USUV infection relies on serology. Antibody detection is performed through
enzyme-linked immunoassays (ELISA) or immunofluorescence tests [41]; as for WNV, any positive
result must be confirmed by more specific tests, such as PRNT, to rule out cross-reactivity with
antibodies against closely related flaviviruses. Seroconversion should be demonstrated to confirm
the infection.

6. Epidemiology

6.1. WNV

This virus was first isolated from the blood of a febrile patient in 1937 in the West Nile district
of Uganda [42] and has subsequently spread worldwide. WNV has been circulating in Europe
and in the Mediterranean Basin since at least the late 1950s [43], where it has caused both sporadic
infections and outbreaks in humans [44]. Most of human and/or equine infections were characterized
by moderate pathogenicity, with the exception of a large outbreak in 1996, reported in Romania with
over 390 confirmed cases. This is the largest outbreak of WNV infection in humans to date inside the
EU [45].

WNV lineage 1 was the only one involved in such manifestations until 2004, and the predominant
lineage causing outbreaks up to 2010 [45–47]. WNV lineage 2 was initially isolated in 2004 (Hungary)
and in 2008 (Austria), and then dispersed to other countries in central and southern Europe, gradually
replacing WNV lineage 1 strains [48,49]. Analysis of WNV genome sequences demonstrated that
WNV strains that previously caused outbreaks appeared to be displaced by new strains. This can
be explained by positive selection, or by suitable ecological conditions that favored a particular viral
strain [50].

Since 2010, WNV epidemiological pattern has evolved from a very low level of endemicity to a
sudden increase of the incidence of animal and human neurological cases. A major WNF epidemic
occurred in 2010 in Central Macedonia, Greece, with 262 clinical human cases and 35 fatalities [51].

The burden of WNV-related disease in Europe is relevant. According to epidemiological data
from ECDC, a total of 1832 human cases of West Nile neuroinvasive disease were detected in the EU in
the 2011–2017 period and in neighboring countries [52]. In 2018, 1503 human cases were reported in the
EU/EEA and 580 cases by the EU neighboring countries, more than seven times the number of infections
reported in 2017, with a proportion of West Nile neuroinvasive disease among symptomatic cases
of 68% [53]. A total of 180 deaths have been reported. The total number of reported autochthonous
infections exceeds the total number from the previous seven years [53]. Of interest is the fact that in
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almost all countries, the first cases were observed in areas close to wetlands, such as the Po river delta
in Italy or the Axios river delta in Greece. Such areas attract migrating birds, as well as abundant Culex
mosquito populations [26].

6.2. USUV

First isolated in South Africa in 1959 [54], USUV emerged for the first time in Europe in 1996
causing deaths among common blackbirds (Turdus merula) in the Tuscany region of Italy [55]. The first
case of human USUV infection was reported in Central African Republic in 1981 [56].

A total of 25 human cases of USUV infection have been described to date (Table 2), with 22 cases
of USUV-related neuroinvasive infection documented in Europe. Italy reported the highest number of
cases (n = 15), but USUV infections were also found in Croatia, Germany, and France [57–61].

Table 2. Human cases of Usutu virus (USUV) infection.

Country Year Clinical Presentation N◦ of Cases

Central African Republic 1981 Fever and rash 1
Burkina Faso 2004 Fever 1

Italy 2008–2009 Neuroinvasive disease 15
Croatia 2013–2018 Neuroinvasive disease 6

Germany 2016 None 1
France 2016 Neuroinvasive disease 1

Recently, USUV infection has been described in healthy blood donors testing positive for WNV by
nucleic acid amplification technique (NAT) in Germany, Italy, and Austria [60,62–64]. Most notably,
Austria also reported for the first time a blood donor who was found to have a double infection with
both WNV and USUV [64].

Seroprevalence studies on the subject have also provided evidence that the prevalence of USUV
infection seems to be even higher than WNV infection in areas where both viruses co-circulate (7% and
3% respectively) [65,66].

7. Vectors

At present, four European mosquito species have been demonstrated as competent vectors for
WNV (Cx. pipiens, Cx. modestus, Aedes albopictus, and Aedes detritus) [67–70]. Cx. pipiens, which is highly
abundant during summer, showed the highest transmission rates [71], and is therefore considered the
main vector for WNV in Europe with Culex modestus playing a role in specific regions [72]. The life
cycles of the mosquito, virus, amplifying and incidental hosts, and the interactions between them,
are influenced by environmental parameters, particularly temperature [73]. As a result of this, outbreaks
of WNV infection are sporadic and focalized, showing high variability in their development and
incidence [74].

Currently, mosquitoes belonging to 7 genera (Aedes, Anopheles, Coquillettidia, Culex, Culiseta,
Mansonia, and Ochlerotatus) have been shown to be positive for USUV [3]. Like WNV, USUV is
mainly transmitted by Culex mosquitoes and, among European mosquito species, it is mostly found in
Cx. pipiens [8].

USUV and WNV co-circulate in parts of southern Europe, but the distribution of USUV extends
into central and northwestern Europe. As human cases are virtually absent in northern Europe, bird
and mosquito surveillance programs are necessary to monitor WNV in these regions. However, not all
European countries implement routine surveillance plans, and most WNV infections in humans are
asymptomatic, making WNV circulation likely to be underestimated [75].

The lower number of human WNV cases reported in northern Europe may be explained by a
lower susceptibility of bird populations, or by a lower vectorial capacity of the mosquitoes. Data on
the viraemia of birds obtained both in field and laboratory studies indicate that bird hosts do not seem



Microorganisms 2019, 7, 184 7 of 13

to be a limiting factor for WNV transmission, so a lowered vectorial capacity in the mosquitoes might
be an alternative explanation [75].

Vectorial capacity depends on several parameters, such as the feeding behavior, abundance,
and survival of the mosquitoes, as well as the environment [76]. Vector competence also plays an
important role in vectorial capacity: analysis of this aspect helps in identifying species that might
be important contributors to WNV transmission and implementing control measures to reduce the
potential of WNV transmission [77]. The vector competence of the mosquito to transmit a certain
arbovirus is determined by a combination of vector species, and lineage and strain of the virus.
For a mosquito exposed the virus to become infectious, WNV has to overcome a range of anatomical
barriers [75,77] which can limit the infection either mechanically or through immune response.

While no intrinsic differences in vector competence are detectable between northern and southern
European Cx. pipiens [78], temperature impacts strongly on vectorial capacity [77], and correlates
positively with the dispersal of WNV [79]. In the temperature range from 18 to 28 ◦C, transmission
rates of northern European Cx. pipiens have been shown to increase of approximately 30% [8].

Additionally, the species Cx. pipiens comprises two different biotypes, pipiens and molestus.
The former shows a preference for avian hosts, while the molestus biotype is more likely to target
mammals [80]. Therefore, the two biotypes are respectively important for the natural transmission
cycle and in the spillover of WNV to humans. While no disparity has been shown in vector competence
among the two biotypes, the response to temperature was different [78], which implicates an additional
level of significance of this parameter, and therefore geography, in the dissemination of WNV.

Despite differences in infectivity and transmissibility, northwestern European mosquitoes show
infection rates for USUV which are comparable with values obtained for WNV, with an overlapping
distribution throughout Europe [8]. USUV activity is also found in more temperate regions, however,
the infectivity in Cx. pipiens showed a stronger correlation to temperature compared to WNV.
Additionally, at higher temperatures, mosquitoes were shown to be more effectively infected and
therefore more competent for USUV (90% at 28 ◦C) than for WNV (58% at 28 ◦C [8].

8. WNV and USUV Co-Circulation

WNV is a well-known emerging pathogen and is considered the most widespread flavivirus
globally [81]. USUV is less prominent, but still caused significant mortality among bird populations and
has been detected in many European countries [4,82]. While the two viruses differ substantially in their
significance for human health, they overlap on several aspects and may interact at the population level.

Since the first report of USUV in Europe, the virus has spread to several European countries,
overlapping substantially with the circulation of WNV (Figure 1). Co-circulation of WNV and USUV
occurs in terms of species of vectors and amplifying hosts, as well as in the geographic range of
distribution [81]. This implies the potential of WNV to spread to areas where only USUV has been
observed to date, and viceversa [3], especially when paired with the fact that WNV and USUV were
shown to be able to infect several bird species which are at least partially migratory [81].

Additionally, WNV and USUV envelope proteins are highly similar in terms of amino acid
sequence [83,84]. This is the main target of the antibody responses to flaviviruses and implies a close
antigenic relationship, which has been confirmed by seroneutralization as well as cross-reactivity and
potential cross-immunity [85]. As previously demonstrated, subsequent infections by two closely
related viruses, such as those belonging to the JEV serocomplex, can modify the susceptibility to
infection and progression of disease [3].



Microorganisms 2019, 7, 184 8 of 13

Figure 1. Geographic distribution of WNV (green) and USUV (red) in Europe. Co-circulation, paired
with antigenic similarity and overlapping clinical expression of the infections, complicates the diagnosis
of febrile conditions, leading to suboptimal case management. More importantly, this may directly alter
the epidemiology of these viruses. This was shown in California, after the introduction of WNV caused
the displacement of Saint Louis encephalitis virus (SLEV), and in Thailand, with an increased severity
of dengue virus (DENV) infection symptoms in individuals with previous JEV infection [86,87].

Interestingly, five cases were reported of WNV infection in patients which presented USUV
neutralizing antibodies at the time of the first evaluation [88]. These patients were characterized by
an atypical immune response, with the presence of WNV RNA in blood and WNV IgG antibodies at
the time of diagnosis, but a blunted or absent IgM antibody response during follow-up. A similar
pattern of immune response was reported both in patients infected with DENV following a previous
infection with a heterologous DENV serotype [89] and in patients with previous DENV immunity who
were infected with Zika virus [90]. The reported cases were asymptomatic or presented mild fever,
suggesting a lack of disease enhancement [88].

The current situation predicts more frequent and prolonged temperature anomalies. This aspect,
paired with the presence of intrinsically competent vectors and susceptible avian hosts, prospects a
context with no obvious restrictions which could impede WNV circulation in northern Europe [75].
Considering USUV and WNV share a main vector, Cx. pipiens, and present comparable transmission
cycles and transmission rates, the circulation of USUV might be a prelude to WNV transmission [8].

Should the circulation of USUV have an effect on the transmission of WNV, a noteworthy human
pathogen, this would present significant implications for public health. Whether these interactions can
influence the patterns of virus circulation in Europe is yet to be clarified.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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