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1 General introduction 

Hepatitis E is mainly a self-limiting human disease, basically characterised by 

acute or chronic hepatitis, which is caused by infection with the hepatitis E virus (HEV) 

(KAMAR et al. 2015; REIN et al. 2012). Large outbreaks have been described in 

developing countries, where hepatitis E is known to be endemic (PURCELL and 

EMERSON 2008). However, the disease is also increasingly recognised in 

industrialised countries like Germany e.g., with 3.275 notified HE cases in 2018 and it 

is grouped into emerging infectious diseases (PURCELL and EMERSON 2008; RKI 

2019). Generally, the case fatality rate is low, ranging between 1–4%, though mortality 

rates up to 25% have been described for pregnant women during fulminant outbreaks 

in endemic regions (KAMAR et al. 2012; KUMAR et al. 2013; KHUROO et al. 1995). 

Dependent on the distinct genotype, hepatitis E viruses particularly can be transmitted 

zoonotically or by the consumption of faecally contaminated water, undercooked meat 

and sausage products (PAVIO et al. 2017). Domestic pig (Sus scrofa domestica) and 

wild boar (Sus scrofa) represent the major reservoirs for human-pathogenic, zoonotic 

genotypes (GTs) 3 and 4 (PAVIO et al. 2010). Besides domestic pig and wild boar, 

HEV or HEV-related viruses have been detected in several other domestic, wildlife, pet 

and zoo animal species (DÄHNERT et al. 2018; JOHNE et al. 2014; ZHANG et al. 

2008). 

1.1 Discovery of HEV 

During the 1970s and the 1980s, multiple hepatitis outbreaks enforced the 

development of novel sensitive and specific diagnostic tools for the identification of 

human infections with hepatitis A (HAV) and hepatitis B virus (HBV). However, the 

novel diagnostic tools failed to determine the causative agents in certain cases 

(KHUROO 1980; WONG et al. 1980). Thus, the unidentified virus causing human 

hepatitis was named non-A-/non-B hepatitis (NANBH) virus (REYES et al. 1990). 

In 1980, KHUROO (1980) and WONG et al. (1980) reasserted the hypothesis 

of the existence of a NANBH virus transmitted by the faecal-oral route. Neither antigens 

nor antibodies (ab) of both, HAV and HBV were identified as the aetiological agent of 

the hepatitis outbreak in Kashmir Valley, India (KHUROO 1980). The authors therefore 

assumed the existence of an additional virus causing hepatitis in humans (KHUROO 

1980). According to epidemiological analysis, a stream used as resource for drinking 

water was strongly indicated as the source of infection (KHUROO 1980). Retrospective 
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investigations of human sera from New Delhi, India, date the first HEV outbreak in 

1955 (WONG et al. 1980). The Delhi epidemic (1955–1956), the Ahmedabad epidemic 

(1975–1976) and some sporadic hepatitis cases in Pune (1978–1979) were 

epidemiologically associated with faecally contaminated drinking water (WONG et al. 

1980). The number of hepatitis cases with unknown aetiological agent increased and 

evidence was growing for the existence of an enterically transmitted virus (ET-NANBH) 

similar to HAV, but yet unknown, being responsible for a major proportion of hepatitis 

cases in India (BALAYAN et al. 1983). 

In 1983, about 30.000 persons were sickened by a water-borne hepatitis 

infection nearby Tashkent, caused by ET-NANBH (BALAYAN et al. 1983). After an 

experimental faecal-oral infection of Mikhail Balayan himself, the Russian Scientologist 

and his team were able to purify and visualise virus-like particles (VLPS) with diameters 

of 27 to 30 nm in stool samples, using immune electron microscopy (BALAYAN et al. 

1983). Five years later, in 1988, the virus was given its current name “hepatitis E virus” 

by PURCELL and TICEHURST (1988). Furthermore, the molecular characterisation 

and cloning of the genome was successfully reached in 1990/1991 for the first time 

(REYES et al. 1990; TAM et al. 1991). 

In the same year, BALAYAN and his colleagues (1990) first claimed the 

possibility of a zoonotic HEV transmission when the experimental transmission of a 

human HEV strain resulted in the successful infection of a domestic pig. The first 

animal strain (swine HEV) was detected in domestic pigs from the United States seven 

years later (MENG et al. 1997). Since swine HEV and human HEV are closely related 

to each other, a zoonotic way of transmission was now more evident (ERKER et al. 

1999; MENG et al. 1997). 

A HEV-like virus associated with Big Liver and Spleen Disease (BLSD) was 

discovered in chicken (Gallus gallus domesticus) from Australia and designated as 

avian HEV in the year 2001 (HANDLINGER and WILLIAMS 1988; HAGSHENAS et al. 

2001; PAYNE et al. 1999). BLSD is associated with decreased egg production and a 

slightly increased mortality in chicken flocks (GERBER et al. 2014; RITCHIE and 

RIDDELL 1991). In 2010, rat HEV was first identified in Norway rats (Rattus 

norvegicus) from Hamburg, Germany, using a broad-spectrum RT-PCR assay 

(EASTERBROOK et al. 2007; JOHNE et al. 2010a; JOHNE et al. 2010b). This virus 

was subsequently detected worldwide in different rat species (LI et al. 2013b; 

MULYANTO et al. 2014; PURCELL et al. 2011). Another virus, widely spread in 
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spawning adult trout from California, USA, was first detected in 1991 (HEDRICK et al. 

1991). The virus could be isolated in cell culture and was termed the cutthroat trout 

virus (CTV) (HEDRICK et al. 1991). In 2011, genome sequence analyses of CTV lead 

to the affiliation into the family Hepeviridae, since then known as fish HEV (BATTS et 

al. 2011). Avian, rat and fish HEV seem to be mainly host-specific with no or low 

potential of zoonotic transmission to humans. 

1.2 Taxonomy 

HEV was first classified within the family Caliciviridae due to structural and 

genomic similarities (BRADLEY and BALAYAN 1988; OKAMOTO 2007). In 2005, the 

genus Hepevirus was created, but not assigned to any virus family (EMERSON et al. 

2005). This genus comprised two species: the hepatitis E virus, containing the 

mammalian HEV isolates, and a tentative species containing avian hepatitis E virus 

(EMERSON et al. 2005). Soon after, a new taxonomic proposal created the new family 

Hepeviridae, including the genus Hepevirus and the type species hepatitis E virus 

(MAYO and BALL 2006). Since a large variety of HEV-like viruses was identified in 

animals and humans between 2001 and 2014, Smith et al. suggested to divide the 

family Hepeviridae into two genera: Orthohepevirus and Piscihepevirus (SMITH et al. 

2014) (Tab. 1). Instead, the genus Hepevirus was deleted. 

Currently, the International Committee on Taxonomy of Viruses (ICTV) assigns 

all human, mammalian and avian GTs to the genus Orthohepevirus, whereas the 

genus Piscihepevirus only contains one single species from cutthroat trout 

(Oncorhynchus clarkii) and related fish species (ICTV 2014) (Tab. 1). The genus 

Orthohepevirus is associated with for species, containing in turn various genotypes: 

Orthohepevirus A (isolates from mammals: human, domestic pig, wild boar, rabbit, 

deer, mongoose dromedary and Bactrian camel), Orthohepevirus B (isolates from 

chicken), Orthohepevirus C (isolates from Norway rat, black rat, greater bandicoot, 

Asian musk shrew, ferret, mink and red fox) and Orthohepevirus D (isolates from 

different bat species) (SMITH et al. 2014) (Tab. 1). Eight genotypes are assigned to 

the species Orthohepevirus A: HEV-1 and HEV-2 (restricted to humans), zoonotic 

HEV-3 (human, domestic pig, wild boar, rabbit, deer, mongoose), zoonotic HEV-4 

(humans, domestic pig, wild boar), HEV-5 and HEV-6 (restricted to wild boar), zoonotic 

HEV-7 (dromedary camel and human) and HEV-8 (Bactrian camel) (NIDAIRA et al. 

2012) (Tab. 1). Orthohepevirus B consists of avian HEV that are divided into four 

proposed subtypes (I-IV) (SMITH et al. 2014). HEV-C1 (isolates from rats) and HEV-
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C2 (isolates from wild carnivores: ferret, mink, red fox) are assessed to the species 

Orthohepevirus C (SMITH et al. 2014) (Tab. 1). Orthohepevirus D strains have been 

detected in various bat species (DREXLER et al. 2012; SMITH et al. 2014) (Tab. 1). 

 

 
*, no genotype existing. 

Table 1: Taxonomic classification of HEV within the family Hepeviridae. 

1.3 Morphology 

The hepatitis E virus is a small non-enveloped RNA-virus with an icosahedral 

capsid of about 27 to 34 nm in diameter (MENG et al. 2010). Recent analyses suggest 

the presence of an additional outer membrane in a fraction of HEV particles in patient 

sera and cell culture supernatant (YIN et al. 2016). The virus’ morphology resembles 

the morphology of caliciviruses (Fig. 1). The virus particle is mainly composed of the 

capsid protein encoded by the open reading frame (ORF) 2. Enveloped particles 

additionally contain the small phosphoprotein encoded by ORF3 (JOHNE et al. 2014). 



1 General introduction 

 5 

 
With permission from Dr. Valerij Akimkin, CVUA, Stuttgart, Germany, 2014. 

Figure 1: TEM picture of HEV from German wild boar. 

1.4 Genomic organisation 

The viral genome consists of a linear, single-stranded RNA with positive polarity 

and a length of 6.6–7.3 kb (kilo bases) (RYLL et al. 2017). The genome contains typical 

sequence elements of an eukaryotic mRNA: it is capped at the 5´-end with 7-

methylguanosine and polyadenylated at the 3´-end (KABRANE-LAZIZI et al. 1999; 

REYES et al. 1990; TAM et al. 1991). The regions adjacent to the poly A-tail and the 

cap structure are non-coding regions, which seem to have essential influence on the 

viral replication and protein translation (CAO et al. 2012; CHANDRA et al. 2008; TAM 

et al. 1991). The virus genome contains three major open reading frames (ORF1, 

ORF2 and ORF3) (JOHNE et al. 2014). Strains of genotype HEV-C1 (rat HEV and 

ferret HEV) contain an additional open reading frame (ORF4), overlapping with the 5’-

region of ORF1. The genome of avian HEV is 600 base pairs shorter compared to 

mammalian HEV or fish HEV and shares only 50% nucleotide (nt) sequence identity 

with them. A schematic presentation of the genomes of mammalian, avian and fish 

HEV is presented in Fig. 2. 
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Adapted from MENG 2016; 

CRE, cis-reactive element; Hel, helicase; HVR, hypervariable region; MT, methyltransferase;  

NCR, non-coding regions; ORFs, open reading frames; P, papain-like cysteine protease;  

RdRp, RNA-dependent RNA polymerase; X, macro domain. 

Figure 2: Genomic organisation of mammalian, avian and fish HEV. 

The ORF1 is the largest part of the genome with 4.6–5.2 kb, positioned at the 

5´-end of the genomic map and directly translated (MENG et al. 2010). It encodes one 

polyprotein, which in turn is processed into various non-structural proteins with 

enzymatic activities (MENG et al. 2010). Between ORF1 and ORF3, there is a junction 

region for mammalian HEV and avian HEV, containing a stem-loop structure and a cis-

reactive element (CRE), which initiates the synthesis of a sub genomic mRNA 

encoding ORF2 and ORF3. 

ORF2 encodes the capsid protein of 600–675 amino acids, with binding activity 

to cell surface heparin sulphate proteoglycans (YAMASHITA et al. 2009). This capsid 

protein is positioned at the 3´-end of the genome. The capsid protein is capable of self-

assembly into virus-like particles (CHANDRA et al. 2008). 

The ORF3 overlaps with ORF2 and encodes a small phosphoprotein of largely 

varying length in avian, mammalian and fish HEV (HOLLA et al. 2013; JOHNE et al. 

2014; ZAFRULLAH et al. 1997). Functions in viral infectivity and immunosuppression 

of the host have been suggested (CHANDRA et al. 2008). ORF4 is an additional ORF 

of 522 nt, only described for rat HEV and ferret HEV. This ORF4 overlaps with ORF1 

at its 5´-end and its function is still unknown (JOHNE et al. 2010b; RAJ et al. 2012). 

1.5 Viral replication 

HEV is a hepatotropic virus mainly infecting hepatocytes and Kupffer cells of the 

liver (LEE et al. 2009). The virus replication cycle is shown schematically in Fig. 3. 
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Adapted from CAO and MENG 2012; 

ER: endoplasmatic reticulum; putative attachment receptors: HSPGs, heparin sulphate proteoglycans;  

HSC70, heat shock cognate protein 70; HSP90, heat shock cognate protein 90;  

GrP78, glucose-regulated protein 78; NSP, non-structural polyprotein; Golgi, Golgi apparatus. 

Figure 3: Replication cycle of HEV.  

Primarily, the HEV particle binds to the cell surface using heparin sulphate 

proteoglycans and a still unknown receptor molecule before entering the cell. The viral 

RNA is then released from the capsid into the cytoplasm with the help of heat shock 

protein 90 and glucose-regulated protein 78 (CAO and MENG 2012). The released 

positive-sense genomic RNA serves as a template for translation of the ORF1-

encoded non-structural polyprotein (NSP), which is subsequently processed by cellular 

proteases (CHANDRA et al. 2008). One product of the NSP is the viral RNA-dependent 

RNA polymerase (RdRp). An ER transmembrane domain in the RdRp is involved in 

the replication complex of HEV and interacts with the 3´-end of the genomic HEV RNA 

(AGGARWAL et al. 2001). In the first replication cycle, the positive strand is transcribed 

into a negative strand. This negative strand serves as template for the genomic positive 

strand and for the sub genomic positive strand in a second replication cycle. The 

structural proteins (capsid protein and phosphoprotein) encoded by ORF2 and ORF3 

are then translated from this bicistronic sub genomic RNA (GRAFF et al. 2006). The 
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ORF2-encoded capsid protein thereafter packages the genomic viral RNA and new 

virions are assembled (CAO and MENG 2012). Thereafter, progeny virions are 

transported to the cell membrane and exit the infected liver cells by the help of the 

ORF3-encoded phosphoprotein (CAO and MENG 2012). It has been suggested that 

the released HEV particles originally contain a membrane derived from the cell and 

associated with the ORF3 protein, which is removed by bile salts and trypsin during 

the egress of the virus through the bile duct and intestine (OKAMOTO 2013; 

OKAMOTO, 2011). Therefore, HEV particles shed by stool are non-enveloped 

(OKAMOTO 2013; OKAMOTO, 2011). 

1.6 Hepatitis E in humans 

HEV represents one of the five major human hepatotropic viruses (hepatitis A–

E), which primarily affect the liver. In particular, infection with HEV is the most common 

cause for acute hepatitis in humans worldwide (REIN et al. 2012). Annually about 3.5 

million patients worldwide come up with an acute hepatitis caused by HEV proceeding 

to lethal disease in more than 65,000 cases and 3,000 stillbirths (REIN et al. 2012). 

After incubation for two to eight weeks, mild to moderate influenza-like symptoms arise 

at first, developing to emesis, fever, pain of the limbs, headache or epigastralgia, 

before signs of acute hepatitis can occur. On the basis of clinical symptoms only, 

hepatitis E is hard to distinguish from other viral infections causing hepatitis or non-

infectious liver diseases due to abuse of alcohol or medication, toxins, storage 

diseases, Alpha 1-antitrypsin deficiency or autoimmune hepatitis (RKI 2015). 

Hepatomegaly and increased levels of the liver enzymes bilirubin, alanine 

transaminase (ALT) and gamma-glutamyltransferase (gamma-GT) are indicators for 

an acute liver disease (PAVIO et al. 2010). These changes of the liver function occur 

within 4–6 weeks post infection and are often accompanied by decolouration of the 

stool and dark urine (SCHIELKE 2011). 

Generally, the case/fatality rate is low, ranging between 0.2% and 4% (KUMAR 

et al. 2013). In developing countries, large outbreaks of hepatitis E may occur due to 

improper hygiene, leading to faecal contamination of drinking water with HEV. In these 

countries, the HEV-IgG seroprevalence within adults ranges between 30–80% (WHO 

2015). For endemic regions as China, India, Somalia and Uganda, high mortality rates 

up to 25% have been observed in pregnant women with fulminant hepatitis after 

infection with HEV genotype 1 (KAMAR et al. 2012). In contrast, sporadic 

asymptomatic cases of human hepatitis are common in industrialised European 
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countries (ADLHOCH et al. 2016). These cases are still comparatively rare, but the 

disease is also increasingly recognised during the past ten years (ADLHOCH et al. 

2016). Here, the HEV-IgG seroprevalence ranges between 16% (Southwestern 

England) and 53% (Southwestern France) (FABER et al. 2012). 

The disease is mostly self-limiting, and the patients fully recover after a few 

weeks (FABER et al. 2012). However, chronic HEV infections, which may develop to 

liver cirrhosis, have been repeatedly described in immunosuppressed transplant 

patients after infection with HEV genotype 3 (KAMAR et al. 2015; KAMAR et al. 2014b; 

KAMAR et al. 2013). 

Since HEV does not cause a cytopathic effect in liver cells or hepatocyte 

cytolysis, hepatitis E is assumed to be an immune-mediated disease, which is induced 

by the host immune response against the infected liver cells (PAVIO et al. 2010). The 

viremic phase starts in the prodromal stage, about 2 weeks after infection, when HEV-

RNA can be detected in serum (Fig. 4). About one week later, viral excretion via faeces 

begins, continuing until 2–3 weeks after the onset of jaundice (PAVIO et al. 2010). 

Clinical symptoms and liver enzyme values usually decrease within 6 weeks (Fig. 4). 

IgM ab are first detected in serum after about 2 weeks post infection; however, their 

concentration declines within 3 months. IgG ab occur in parallel or later and may persist 

for several years (Fig. 4). 

 
Adapted from PEREZ-GRACIA et al. 2015. 

Figure 4: Time course of HEV infection in humans. 
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1.7 Tools for HEV diagnosis 

The haemograms of human patients with clinical symptomatology typically show 

increased levels of AST and ALT, which are disproportionately high compared to the 

increase of AP and gamma-GT (RKI 2015). Especially for icteric disease courses, the 

serum bilirubin level, and the urobilinogen level, are significantly elevated (RKI 2015). 

Several immunoassays (e.g. ELISA’s or western blots) are available for the 

detection of HEV antigens or HEV-specific IgG or IgM ab (SCHIELKE 2011). Acute 

HEV infection in humans is typically detected, using HEV-specific IgM ab ELISAs. For 

HEV diagnosis in animals, the use of anti-HEV-IgG ELISAs is more common. However, 

to date, there is no immunoassay, which serves as “gold standard” for the detection of 

HEV-specific ab. 

Nowadays HEV diagnosis is mostly done using molecular methods, such as 

conventional, nested or real time reverse transcription polymerase chain reaction (RT-

PCR) (JOTHIKUMAR et al. 2006; SCHIELKE 2011). Several real time RT-PCR 

protocols enable the detection of the four major human-pathogenic GTs HEV-1 to 

HEV-4 (JOTHIKUMAR et al. 2006). A nested broad-spectrum RT-PCR can be used 

for the broad detection of HEV strains from species Orthohepevirus A, B and C 

(JOHNE et al. 2010b). Several other specific RT-PCR assays have been developed, 

e.g. for detection of rat HEV (WOLF et al. 2013). 

Generally, it is also possible to detect HEV via isolation in cell culture. However, 

this diagnostic tool has no relevance for routine laboratory diagnosis, as it is very 

sophisticated, time-consuming and mostly not successful (RKI 2015). Other 

techniques like electron microscopy and immunohistochemical staining techniques are 

only used sporadically for demonstration of HEV in specific tissue samples (RKI 2015). 

1.8 Therapy 

Ribavirin monotherapy, what is also successfully used for therapy of HIV and 

HCV, has repeatedly been described as an effective drug that inhibits the replication 

of HEV in vivo and induces a sustained antiviral response in immunocompromised 

transplant patients with chronic HEV infections (DEBING et al. 2014; KAMAR et al. 

2014a; KAMAR et al. 2010). Although it has been shown to be effective in several 

patients, in Germany the hepatitis E therapy with ribavirin has no approval yet (ANON. 

2017; LEE et al. 2016; SRIDHAR et al. 2015). 
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1.9 Animal infections with HEV and HEV-like viruses 

Domestic pig, wild boar, rabbit (Oryctolagus cuniculus) and dromedary camel 

(Camelus dromedarius) are known as the main reservoirs of the zoonotic genotypes 

HEV-3, -4 and -7 (ABRAVANEL et al. 2017; DOCEUL et al. 2016; MENG et al. 2009). 

Transmission of HEV-3 from deer to humans has also been described repeatedly, 

although deer most probably undergoes “spillover infections” from wild boar, rather 

than being a true reservoir (ANHEYER-BEHMENBURG et al. 2017; MATSUURA et al. 

2007; TEI et al. 2003). The HEV infection in animals seems to be generally 

asymptomatic (DE CARVALHO et al. 2013). 

In 1997, the first animal strain of HEV, swine HEV, was detected in domestic 

pigs from the United States (MENG et al. 1997) (Fig. 5). In the following years, several 

studies from different countries (USA, New Zealand, Mexico, Spain, France) gave 

evidence for a worldwide distribution of HEV in domestic pigs (CARUSO et al. 2016; 

DOCEUL et al. 2016; PAVIO et al. 2010). The reported anti-HEV-IgG seroprevalences 

in swine herds are usually high, ranging between 23% and 100%, with increasing 

seroprevalence with higher age, suggesting that HEV is enzootic in swine herds all 

over the world (CARUSO et al. 2016; DOCEUL et al. 2016; PAVIO et al. 2010). Anti-

HEV-antibodies (anti-HEV-ab) or HEV-RNA can be detected in sera, faeces, slurry or 

livers of infected pigs. The close relationship between swine HEV and human HEV 

strains led to the assumption, that zoonotic transmission may be possible (VAN DER 

POEL et al. 2001). Therefore, domestic pigs are regarded as the most important 

reservoir of HEV (SCHIELKE 2011). Successful experimental transmission of HEV-3 

strains to domestic pigs and non-human primates provided evidence for zoonotic 

transmission of human-pathogenic HEV strains (DE CARVALHO et al. 2013; XU et al. 

2014). 

As anti-HEV-ab were repeatedly detected in domestic pigs, it was speculated, 

that wild boars may represent a reservoir for HEV, too (DOCEUL et al. 2016; JOHNE 

et al. 2014; KACI et al. 2008). The detection of HEV-RNA in sera, bile, faeces or liver 

from wild boars in different countries supported this hypothesis (MENG 2010). The first 

genome of a wild boar HEV strain from Japan was published in 2004 (SONODA et al. 

2004) (Fig. 5). Another four years later, wild boar HEV was even detected in the 

European wild boar population (KABA et al. 2010; MARTELLI et al. 2008, REUTER et 

al. 2009). Besides domestic pigs, wild boars are regarded as the second most 

important animal reservoir of HEV. 
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Mongoose and rabbit are also known as animal reservoirs of HEV-3. For the 

first time, anti-HEV-3-ab and a full HEV-3 genome sequence were detected in Javan 

mongooses (Herpestes javanicus) from Okinawa, Japan in 2006, suggesting that these 

animals represent an additional reservoir for HEV-3 (LI et al. 2006; NAKAMURA et al. 

2006) (Fig. 5). In 2009, anti-HEV-ab and HEV-RNA were detected in 57.0% (191/335) 

and 7.5% (25/335) of the sera from farmed rex rabbits (Oryctolagus cuniculus 

domesticus) from China, respectively (ZHAO et al. 2009). Subsequently, the new HEV 

genotype was named rabbit HEV (ZHAO et al. 2009) (Fig. 5). In 2014, rabbit HEV was 

grouped as a distinct subtype of HEV-3 (SMITH et al. 2014). HAMMERSCHMIDT et 

al. (2017) succeeded in the detection of anti-HEV-3-antibodies in European brown 

hares (Lepus europaeus). HEV-RNA was also detected in livers from wild rabbits 

(HAMMERSCHMIDT et al. 2017). 

A new human-pathogenic HEV-GT (HEV-7) was recently described in 

dromedary camels from the Middle East, which seems to be widely distributed among 

these animals (RASCHE et al. 2016; WOO et al. 2014) (Fig. 5). Evidence for the 

zoonotic potential of HEV-7 was given in 2016, when it was detected in a chronically 

infected transplant patient from the United Arab Emirates, who regularly consumed 

camel meat and milk (LEE et la. 2016; SRIDHAR et al. 2017). 

Rat HEV was first detected in Norway rats from Germany, in 2010, and 

subsequently in different rat species, worldwide (JOHNE et al. 2012; RYLL et al. 2017; 

WIDÉN et al. 2014). Primarily, host specificity of rat HEV was suggested and 

evidenced, using experimentally infected laboratory rats and other mammals 

(COSSABOOM et al. 2012; LI et al. 2013c). The detection of rat HEV in bandicoot rats 

and Asian musk shrews, however, suggested a broader host range or common 

“spillover infections” (GUAN et al. 2013; MULYANTO et al. 2013; RYLL et al. 2017). 

Therefore, rats have been suspected as HEV animal reservoir for several years, 

besides the main reservoirs of zoonotic genotypes HEV-3, -4 and -7, (LI et al. 2013a; 

LI et al. 2013b; RYLL et al. 2017). Although some serological reports gave incidence 

for a zoonotic potential of rat HEV and in contrast, few Norway rats were reported to 

be HEV-3 positive, rats are still discussed controversially as a potential zoonotic 

reservoir (DREMSEK et al. 2012; LACK et al. 20120; KANAI et al. 2012). 
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Figure 5: Important discoveries about HEV in humans and animals. 

Additional HEV-like viruses have been detected in a wide range of animal 

species, including chicken, fish, bat, ferret, mink and fox (HSU and TSAI et al. 2014; 

KROG et al. 2013; RAJ et al. 2012) (Fig. 5). This includes detections in wild, farmed 

and zoo animals (BODEWES et al. 2013; PERALTA et al. 2009; ZHANG et al. 2008a). 

So far, these viruses show only a distant genetic relationship to the human-pathogenic 

genotypes and are therefore suspected to have a low potential of transmission to 

humans. However, the general involvement of a large variety of animal species in the 

HEV transmission cycles and their involvement in virus transmission to humans have 

not been determined so far. 
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1.10 Experimental infections of animals 

Experimental infections of various animals with different HEV species and 

genotypes have been used to assess the infection routes, excretion, host range, organ 

tropism and pathogenesis of viruses and the vaccine efficiency (DOCEUL et al. 2016). 

Domestic pigs and various non-human primate species, among them 

macaques, tamarin, langur monkey and chimpanzee (Pan troglodytes), served as 

excellent primary model organisms for successful infections with HEV 1–4, including 

zoonotic infections (ARANKALLE et al. 1988; MA et al. 2009; TSAREV et al. 1995; 

TSAREV et al. 1994; VITRAL et al. 1998; YU et al. 2010). Non-human primates 

infected intravenously with high doses of HEV show typical clinical symptoms 

resembling those of human hepatitis E, e.g. elevation of liver enzymes, viremia and 

seroconversion (YUGO et al. 2014; TICEHURST et al. 1992). 

A variety of animal species served as models to assess the zoonotic character 

of HEV-3 and HEV-4. HEV-3 strains from human and swine were successfully used 

for experimental cross-species transmission to non-human primates and domestic pigs 

(FEAGINS et al. 2008; HALBUR et al. 2001; MENG et al. 1998a; MENG et al. 1998b). 

Intravenously infected domestic pigs showed viremia and seroconversion, however, 

mostly without clinical signs (LEE et al. 2009; WILLIAMS et al. 2001). Rabbit HEV-3 

strains can be transmitted to domestic pigs, non-human primates and rabbits (CHENG 

et al. 2012; COSSABOOM et al. 2012; LIU et al. 2013). Experimental inoculation of 

non-human primates, swine and rabbits with human and swine HEV-4 strains has also 

been demonstrated (CHENG et al. 2012). Mongolian gerbils (Meriones unguiculatus) 

and [immunodeficient] house mice (Mus musculus) were used as small animal models 

demonstrating experimental cross-species transmissions of swine HEV-4 strains 

(DOCEUL et al. 2016). 

1.11 Geographical distribution 

HEVs and HEV-related viruses are distributed worldwide. However, the human-

pathogenic HEV genotypes (HEV-GTs) are differently distributed in geographically 

distinct regions of the world. HEV-1 mainly occurs in Eastern Asia (e.g. India, Pakistan, 

Russia and Japan) as well as in Northern and Eastern Africa (KAMAR et al. 2017) 

(Fig.6, yellow). HEV-2 has primarily been isolated in Mexico but can also be found in 

some areas of Africa (KAMAR et al. 2017) (Fig. 6, yellow). HEV-3 has been identified 

as the major GT in Europe and the USA, but was also detected in Australia, Africa, 
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Argentina and Japan (DE PAULA et al. 2013; KAMAR et al. 2017) (Fig. 6, orange). In 

contrast, HEV-4 is mainly confined to South-Eastern Asia with focus on China, Japan 

and Indonesia (KAMAR et al. 2017) (Fig. 6, blue and green). 

HEV and HEV-like viruses do have various animal reservoirs with “complex 

ecology and genetic diversity” worldwide (SRIDHAR et al. 2015) (Fig. 6). As already 

mentioned in chapter 1.9, this includes a wide range of different animal species. 

Domestic pig and wild boar are the main reservoirs of zoonotic HEV-3 and HEV-4 

(CARUSO et al. 2016; LAPA et al. 2015; MENG et al. 2009). These animals are widely 

distributed all over the world and the geographical distributions of HEV-3 and HEV-4 

in these animals are similar to that in humans (Fig. 6). HEV-5 and -6 have only been 

detected in single wild boars from Japan so far and HEV-7 seems to be mainly confined 

to the Middle East (LI et al. 2017; TAKAHASHI et al. 2014; TAKAHASHI et al. 2011; 

ZHOU et al. 2015). HEV-8 has so far only been detected in Bactrian camels (Camelus 

bactrianus) from a farm in China (WOO et al. 2016). A significant number of studies 

describes the detection of avian HEV and rat HEV in different countries of the world 

suggesting a worldwide distribution of these viruses (RYLL et al. 2017; ZHANG et al. 

2017; ZHANG et al. 2014). For the other HEV-like viruses, only scattered information 

is available on their geographical distribution. 

 

 
Adapted from KAMAR et al. 2017. 

Figure 6: Geographical distribution of HEVs. 
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1.12 Transmission pathways 

The distinct transmission pathways of human-pathogenic HEV are especially 

dependent on the GT of the virus (JOHNE et al. 2014). HEV-1 and HEV-2 are mainly 

transmitted via faecally contaminated drinking water (Fig. 7, yellow). For HEV-3, HEV-

4 and HEV-7, a foodborne transmission pathway has been shown, which is mainly 

based on consumption of raw milk and undercooked food prepared from infected 

animals (CHOI et al. 2013; LEE et al. 2016; RIVERO-JUAREZ et al. 2016) (Fig. 7, red 

and green/blue). In addition, transmission of HEV-3 and HEV-4 via contaminated blood 

products or organ transplantation has been shown (KAMAR et al. 2015; KAMAR et al. 

2014b; KAMAR et al. 2008). Several other transmission pathways, e.g. through 

environmental contamination with faeces (berries and shellfish) or direct contact to 

animals and humans, have been proposed, but often their evidence is proven scarcely 

(BRASSARD et al. 2012; CROSSAN et al. 2012; GAO et al. 2015; KHUROO et al. 

2009; MAUNULA et al. 2013; MESQUITA et al. 2016) (Fig. 7, dotted arrows). 

 

 
Adapted from SPAHR at al. 2018b. 

Figure 7: Transmission routes of human-pathogenic HEV-GTs. 



1 General introduction 

 17 

1.13 Epidemiology 

In developing countries, HEV is responsible for more than 50% of acute viral 

hepatitis cases including over 50% cases in India, about 25% in Africa and 15–20% in 

the Eastern Orient (PURCELL and EMERSON 2008). In Africa, Asia and Latin 

America, human-pathogenic, zoonotic HEV-1 and HEV-2 are known to be endemic 

(OKAMOTO 2007; PUCRELL and EMERSON 2001). For Africa and Eastern Asia, 

approximately 20 million HEV infections are reported per year (REIN et al. 2012). One-

third of the world’s population – comprising more than two billion people – are living in 

areas highly endemic for HEV-1 and HEV-2 (WHO 2015). In these areas with poor 

sanitation conditions, e.g. China, India, Sudan, Chad and Uganda, large waterborne 

outbreaks and epidemics with thousands of cases were reported (AYE et al. 1992; 

MÉRENS et al. 2009; NAIK et al. 1992; TESHALE et al. 2010). Young to middle-aged 

male adults (15–40 years) seem to be afflicted predominantly (CHANDRA et al. 2008). 

Infections with HEV-1 are often associated with high mortality rates (15%–25%) in 

pregnant women (KHUROO et al. 1995). 

In industrialised countries, the human-pathogenic, zoonotic HEV-3 and HEV-4 

are predominant. HEV-3 is known to be endemic in European countries and is detected 

in 5–15% of the acute hepatitis cases (ADLHOCH et al. 2016; DALTON et al. 2008; 

LAPA et al. 2015). Out of these, most patients got infected, traveling to the above-

mentioned developing countries, preserving blood transfusions or regularly consuming 

pig meat (LAPA et al. 2015). However, the reported anti-HEV-antibody prevalence in 

European blood donors, up to 52% in France, gave evidence, that subclinical HEV 

infections are very common in industrialised countries (LAPA et al. 2015). It is 

estimated, that about 30% of the adult German population undergoes a mostly 

asymptomatic HEV infection within their lives (ANON. 2017). During the last years, the 

number of recorded autochthonous clinical hepatitis E cases has steeply been 

increased in many Western European countries (e.g. France, Germany, England and 

Wales), whereas in Northern and Southern European countries less cases were 

notified (ADLHOCH et al. 2016). As the management of the disease is subject to 

national policies, the notification, prevention and control is not implemented 

consistently in all countries. Figure 8 illustrates the development of the number of 

annually reported hepatitis E cases in Germany since 2001, when hepatitis E became 

a notifiable infectious disease (RKI 2019). The increase of recorded hepatitis cases 
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may be a result of the availability of novel diagnostic tools, enhanced awareness of 

human doctors or a raised public attention (ADLHOCH et al. 2016; PAVIO et al. 2010). 

 

 
Numbers adapted from RKI 2019. 

Figure 8: Number of recorded annual HE cases in Germany. 

1.14 Prevention 

In developing countries, prevention and control of human HEV infections with 

HEV-1 and HEV-2 is extremely important, as morbidity and mortality of the disease are 

relatively high. Improvement of hygiene and access to clean drinking water are the 

most effective ways to control HEV infections in these regions (PAVIO et al. 2010). 

Additionally, the consumption of insufficiently heated food, which may be contaminated 

during preparation, should be avoided (BfR FAQs 2016). 

In industrialised countries, where higher sanitation standards are common, the 

focus should be laid on the prevention of zoonotic HEV transmissions. 

Food-borne HEV infections with HEV-3 or HEV-4 are most common in 

industrialised countries. They can be prevented by complying with a good kitchen 

hygiene and cooking thoroughly meat products from pig, wild boar and deer (BfR FAQs 

2016). Heating over 70°C (degree Celsius) for at least 20 minutes inactivates the HEV 

(BARNAUD et al. 2012; JOHNE et al. 2016). 

People occupationally working with animals and animal samples, e.g. 

veterinarians, keepers, swine handlers, slaughterhouse workers and hunters, are at 
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higher risk of HEV-3 and HEV-4 infections (BfR FAQs 2016; PAVIO et al. 2017). This 

group of people should therefore be trained on hygienic measures while handling 

animals or animal products, e.g. for hunters to use gloves during evisceration of wild 

boars (SCHIELKE et al. 2015). Specific recommendation for veterinarians and animal 

keepers may be difficult as long as the distinct host range of HEV and HEV-like viruses 

and therefore the risk of infection by contact to a specific animal species are not known. 

Vaccination of the population, especially of groups of persons with higher risk 

for HEV infections, such as old, pregnant or immunocompromised persons with liver 

diseases, would be reasonable. However, a vaccination against HE is currently 

accredited in China only and has no concession for Europe (RKI 2015). 

As up to 50% of immunocompromised transplant patients come up with a 

chronic HEV infection after receiving repeated blood transfusions, blood donors and 

organ transplants should be routinely screened for HEV (ANON. 2017). In England, 

Ireland and the Netherlands HEV screening of donated blood has already been 

regulated in 2017 (ANON. 2017). To protect immunocompromised patients in Germany 

likewise, the screening of therapeutic blood products was very recently prescribed by 

the Paul-Ehrlich-Institut (PEI) (Deutsches Ärzteblatt 2018). Starting September, the 

30th 2019, blood products need to be proofed for HEV genome and declared HEV 

negative before application (Deutsches Ärzteblatt 2018). 
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2 Aims of the study 

The human-pathogenic zoonotic HEV-3, -4 and -7 are well-known to infect 

reservoir animals, such as domestic pig, wild boar, rabbit, deer and dromedary camel. 

In addition, other HEV-related viruses have been described in rodents, bats and fish, 

as well as in many other domestic and wildlife mammal and avian species. In most 

cases, the presence of HEV in these animals may be explained by “spillover 

infections”, but the available data are mostly rare. Non-human primates are known to 

be susceptible to a variety of human pathogens, including influenza, herpes and 

hepatitis B viruses. Using experimental infection trials, their susceptibility to HEV has 

been demonstrated. In contrast, little is known about natural HEV infections in non-

human primates. Also, the distinct role of other mammal species besides the well-

known reservoirs, in transmission of HEV to humans and other animals, is mostly not 

known so far. 

Against this background, the following major aims arose for this study. 

 

1. Review of the current knowledge about HEV infection in various animal 

species. The collation of published data on this topic should enable an 

overview on the occurrence of HEV infections in different animal species 

and taxons. 

2. Assessment of the incidence of natural HEV-infections in zoo-housed 

non-human primates. As these animals are known to be susceptible to 

human-pathogenic HEVs, the risk of virus transmission to humans may 

be high. 

3. The assessment of the prevalence of HEV in other mammal zoo animal 

species. Zoos are housing a huge species diversity within a small area, 

therefore offering excellent opportunities for research on zoonotic 

agents, which may give new insights into the general host range of HEV. 

4. Unravel potential transmission pathways of HEV in a zoo-setting. By in-

vestigating the HEV transmission between animals (different species, 

wild or from zoo) potential new starting points for prevention of HEV in-

fections in animals and humans may be identified. 

 

All animals should be tested for serological and molecular markers of HEV 

infection, using available detection methods for the analysis of sera and transudates. 
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Since rats have been suspected as HEV animal reservoir for several years, wild-living 

and feeder rats from two German zoos should be additionally investigated for the 

presence of rat HEV-RNA. Genomic and phylogenetic analysis of the detected animal 

HEV strains should clarify the transmission routes. 

The results of the study should help to assess the distribution of HEV and HEV-

related viruses among zoo-housed mammals and thus serve for decisions about 

possible human health risk and pest management in zoological gardens. 
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3 Publications 

3.1 Publication I 

 

Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review 
 

Carina Spahr, Tobias Knauf-Witzens, Thomas W. Vahlenkamp, Rainer G. Ulrich and 

Reimar Johne 

 

Zoonoses and Public Health 2018 Feb., 65(1):11-29, Epub 2017 Sep. 24, 

<https://dx.doi.org/10.1111/zph.12405>. 

 

3.1.1 Summary of Publication I 

Hepatitis E is a human disease with zoonotic potential, which is increasingly 

recognised worldwide. Serologic and molecular evidence of HEV infection has been 

additionally described for many mammalian and avian species, suggesting the 

possibility of infection with HEV or HEV-like viruses in a wide range of animal species. 

However, the descriptions are mainly scattered into a large number of single 

publications, making general conclusions about the host range of HEV and the 

potential of distinct animal species for zoonotic HEV transmission difficult. Here, a large 

part of the available scientific literature on this topic has been reviewed and the findings 

were collated. 

According to the available literature, domestic pig, wild boar, rabbit and 

dromedary camel represent well-known animal reservoirs for human-pathogenic, 

zoonotic HEV-GTs HEV-3, HEV-4 and HEV-7. In addition, evidence for HEV infection 

has been described for about 50 other animal species originating from 19 taxonomic 

orders, including 19 avian species out of 10 taxonomic orders. However, in most of 

these animal species, HEV or HEV-related viruses have been detected sparsely and 

with low detection rates, which may be indicative for “spillover infections”. Many of the 

publications only describe the detection of HEV-reactive antibodies, what does not 

allow any conclusion on the involved virus strain and its zoonotic potential. In contrast 

to humans, animals generally seem to be infected asymptomatically with HEV. In 

addition to field investigations, experimental infections of several animal species have 
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been performed, which may also be used to clarify the epidemiology, transmission 

pathways and host range of HEV. 

In conclusion, many domestic, wildlife and zoo animal species have to be 

considered as potential carriers of HEV or HEV-related viruses in addition to the major 

reservoir animals (domestic pig and wild boar). Therefore, especially persons with 

occupational contact to these animals, e.g. breeders, hunters, slaughterhouse 

workers, animal keepers or veterinarians, are at higher risk for HEV infections. Natural 

HEV infections in animal species apart from the well-known virus reservoirs are clearly 

under investigated. Therefore, research on HEV infection in those animal species is 

needed to estimate the risk of zoonotic HEV transmission and to develop effective 

protection strategies for people in contact with the animals. 

3.1.2 Key messages of Publication I 

• HEV-3, -4 and -7 can be transmitted to humans from the reservoir 

animals domestic pig, wild boar, rabbit and dromedary camel 

• serological and molecular evidence of infection with HEV or HEV-like vi-

ruses is available for a wide range of other domestic, wildlife and zoo 

animal species 

• in contrast to reservoir animals, HEV is only sparsely detected in other 

animal species, which may indicate “spillover infections” 

• natural HEV infections in animals generally seem to be asymptomatic 

• experimental animal infections may contribute to elucidate transmission 

pathways and host range of HEV 

• further research on HEV in non-reservoir species is necessary for risk 

estimation of zoonotic HEV transmission and development of protection 

strategies for people in contact with the animals 

3.1.3 Own contribution to Publication I 

For this review, I performed intensive scientific literature research. I prepared all 

tables, as well as figure 1. 

I wrote the following chapters of the paper: the summary, the introduction, the 

chapters 3.1 and 3.2, 4.1.1 – 4.1.2, 4.2.1, the paragraphs 4, 5, 6, 9, 10, 11 of chapter 

4.2.2, as well as the chapters 4.2.3 and 5. 
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3.2 Publication II 

 

Detection of HEV-specific antibodies in four non-human primate species, 
including great apes, from different zoos in Germany 

 

Carina Spahr, Tobias Knauf-Witzens, Lisa Dähnert, Martin Enders, Markus Müller, 

Reimar Johne and Rainer G. Ulrich 

 

Epidemiology and Infection 2018 Jan., 146(1):119-124, Epub 2017 Nov. 23, 

<https://dx.doi.org/10.1017/S0950268817002606>. 

 

3.2.1 Summary of Publication II 

The number of diagnosed cases of human infections with zoonotic HEV-GTs is 

currently increasing in many European countries. In order to unravel the HEV 

transmission pathways, contact to non-human primates should be considered, as 

these animals are known to be susceptible for a variety of other human pathogens like 

influenza, herpes and hepatitis B virus. It is also well-known that various non-human 

primate species can be experimentally infected with HEV, showing viremia and virus 

shedding, sometimes accompanied by clinical symptoms of hepatitis. However, little is 

known about natural HEV infections in non-human primates and the corresponding risk 

of zoonotic infections. 

In this study, 259 individual sera of clinically healthy non-human primates of 14 

species, from nine German zoos, were serologically and molecularly investigated for 

the presence of HEV. Using a double-antigen-sandwich ELISA (AXIOM® HEV-AB EIA, 

Bürstadt, Germany) and an IgG-ELISA (Mikrogen® recomWell HEV-IgG, Neuried, 

Germany), ten animals (3.9%) reacted positive in at least one assay. The HEV-specific 

antibodies were found in Western lowland gorillas (Gorilla gorilla gorilla), bonobos (Pan 

paniscus), lar gibbons (Hylobates lar) and drills (Mandrillus leucophaeus). No history 

of clinical symptoms of hepatitis was recorded in these animals. Testing for anti-HEV-

IgM antibodies by ELISA (Mikrogen® recomWell HEV-IgM, Neuried, Germany) and for 

viral RNA by RT-qPCR resulted in negative results. 

It can be concluded that non-human primates in zoos can get infected with HEV 

or HEV-related viruses, without showing obvious clinical signs of hepatitis.  Compared 
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to three other studies, the non-human primates analysed in this study showed 

surprisingly low detection rates of markers of HEV infection. The source of infection 

with HEV or HEV-related viruses for the primates is unknown but may be through 

contact with excretions or contaminated food/water. Despite the low detection rates 

observed, the possibility of virus transmissions from non-human primates to humans 

in contact with them should be considered. 

3.2.2 Key messages of Publication II 

• evidence of natural infection with HEV or HEV-related viruses of three 

great ape species and one ape species in European zoos: 

- bonobo (Pan paniscus) 

- gorilla (Gorilla gorilla gorilla) 

- lar gibbon (Hylobates lar) 

- drill (Mandrillus leucophaeus) 

• 3.9% (10/259) of the investigated animals were anti-HEV-IgG positive 

• no history of clinical signs of hepatitis in the seropositive animals 

• negative PCR and anti-HEV-IgM results indicate absence of acute HEV 

infections 

• comparatively low HEV seroprevalences in non-human primates 

• nevertheless, the possibility of virus transmissions from non-human 

primates to humans in contact with them should be considered 

3.2.3 Own contribution to Publication II 

I was responsible for the serum collection, including own sampling, request for 

samples from the participating zoos and shipment of samples. Additionally, I gathered 

information on the physical health status of each non-human primate, using ZIMS 

Species 360 and databases of the zoos. I performed the Axiom® HEV-Ab EIA, RNA 

isolation and RT-qPCR. I analysed the data and wrote the following parts of the paper: 

summary, introduction, material part, results, discussion and conclusion. 
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3.3 Publication III 

 

Serological evidence of hepatitis E virus infection in zoo animals and 
identification of a rodent-borne strain in a Syrian brown bear 

 

Carina Spahr, René Ryll, Tobias Knauf-Witzens, Thomas W. Vahlenkamp, Rainer G. 

Ulrich and Reimar Johne 

 

Veterinary Microbiology 2017 Dec., 212:87-92, Epub 2017 Nov. 9, 

<https://dx.doi.org/10.1016/j.vetmic.2017.11.005>. 

 

3.3.1 Summary of Publication III 

Hepatitis E is a human disease, which can be zoonotically transmitted from 

animals. HEV infections have been repeatedly described with high detection rates in 

domestic pig and wild boar, representing the major reservoir animals for HEV. 

Furthermore, HEV and HEV-related viruses have been detected in a variety of other 

mammal and avian species. However, the occurrence of natural HEV infections in zoo 

animals has only scarcely been investigated so far. 

In this study, 244 individual sera of 66 zoo-housed mammal species from three 

zoos in Germany were serologically investigated. A double antigen sandwich ELISA, 

based on the HEV-1 capsid protein, was used for species-independent detection of 

HEV-specific antibodies. Molecular analysis for detection of HEV- or rat HEV-RNA was 

performed using three different PCR protocols. As a result, 16 animal species were 

tested positive for HEV-specific antibodies, with the highest detection rates in suids 

(33.3%) and carnivores (27.0%). RNA of human-pathogenic HEV-1 to HEV-4 was not 

detected in any of the samples. However, rat HEV-RNA was detected in the serum of 

a clinically healthy female Syrian brown bear (Ursus arctos syriacus). Analysis of 

subsequent serum samples confirmed a HEV seroconversion in this animal. Closely 

related rat HEV-sequences were found in pest rats (Rattus norvegicus) from the same 

location, whereas molecular and serologic investigations of feeder rats (Rattus 

norvegicus forma domestica) resulted in negative results. 

In conclusion, evidence for infection with HEV or HEV-related viruses was 

shown for many mammalian zoo animal species. Therefore, the possibility of virus 
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transmissions to other animals and humans has to be considered. Besides the 

expected high seroprevalence in suids, the high detection rate in carnivores warrants 

further investigations on their possible function as reservoir animals. The detection of 

rat HEV in the Syrian brown bear suggests a higher zoonotic potential of this virus as 

expected in earlier studies. A “spillover infection” from pest rats living in the zoo is most 

likely. Further investigations on consequences of HEV and rat HEV infections for zoo 

animals and humans should be initiated. 

3.3.2 Key messages of Publication III 

• evidence of natural infection with HEV or HEV-related viruses in 16 zoo 

animal species from European zoos 

• highest seroprevalences were found in suids (33.3%) and carnivores 

(27.0%) 

• detection of rat HEV-RNA in the serum of a Syrian brown bear, that also 

showed seroconversion 

• closely related rat HEV-strains were found in pest rats from the same 

location indicating a “spillover infection” 

• many zoo animals have to be considered susceptible to HEV or HEV-

related viruses 

• the role of carnivores as potential additional reservoir animals for HEV 

should be investigated in future 

3.3.3 Own contribution to Publication III 

I was responsible for the serum and rat collection, including own sampling, 

request for samples at the participating zoos and shipment of samples. I implemented 

the dissection of rats and participated in the dissection of died zoo animals and 

sampling of livers at the CVUA Fellbach. Additionally, I gathered information on the 

physical health status of the female Syrian brown bear using databases of the zoo. I 

performed the Axiom® HEV-Ab EIA, RNA isolation from sera and liver samples, as 

well as PCR analyses. I analysed the data and wrote the following chapters of the 

paper: the abstract and the chapters 1, 2.1 – 2.3, 3.1, 3.3, 4 and 5. 
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4 General discussion 

4.1 HEV infections in various animal species 

Since more than thirty years, attempts have been made to ascertain the animals 

that are susceptible to HEV infections – either by natural infection, or by experimental 

infection trials. The results of the studies presented in this thesis further lead to an 

increase of the number of animal species, which showed serological evidence of HEV 

infection. Taken together these data with those published by others, HEV and HEV-

like viruses or antibodies specific against them have been detected in more than 100 

animal species, including 19 avian species (Tab. 2) out of 10 taxonomic orders, about 

80 mammal species (Tab. 3 and Tab. 4) out of 9 taxonomic orders, as well as fish so 

far. The susceptible species include various wild, domestic and zoo animal species. 
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+, positive; n.d., not determined; *, laboratory animals. 

Table 2: Natural HEV infections in birds. 

Domestic pig (HEV-3 / HEV-4), wild boar (HEV-3 / HEV-4), rabbit (HEV-3), deer 

(HEV-3) and dromedary camel (HEV-7) are well known to serve as reservoir animals 

that can be infected with the human-pathogenic HEV types (HUANG et al. 2016; LI et 

al. 2005; RUTJES et al. 2010; SRIDHAR et al. 2017). However, infections with zoonotic 

HEV-3 and HEV-4 are not restricted to these reservoir animals and humans only 

(PAVIO et al. 2015; YAN et al. 2016). They have been reported for several avian and 

mammal species including ungulates (cow, goat), non-human primates (rhesus 

macaque, chimpanzee), rodents, predators, wales and avian species (LI et al. 2015; 

MONTALVO VILLALBA et al. 2017; YAMAMOTO et al. 2012; ZHANG et al. 2008a). 

Especially in low income countries, many people are housing several kinds of free-

ranging livestock to nourish their families. Therefore, different livestock species could 

come in close contact to each other or to wild animals. In these countries, for traditional 

reasons, intimate human animal contact and the consumption of raw milk and raw meat 

together with only basal hygienic standards may enforce the transmission of zoonotic 

HEV types to humans (HUANG et al. 2016; LEE et al. 2016; LONG et al. 2017). 

Additional HEVs have been described in further reservoir animals: mongoose 

(HEV-3), moose (moose HEV), wild boar (HEV-5 and HEV-6), Bactrian camel (HEV-

8), rodents (HEV-C1), red fox, ferret and mink (all HEV-C2), lagomorphs (rabbit HEV), 

bat (bat HEV), birds (avian HEV) and fish (fish HEV) (SPAHR et al. 2018b). New and 
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undefined HEVs have been reported in chimpanzee, falcons, and little egret (Egretta 

garzetta) (REUTER et al. 2016a,b; ZHOU et al. 2014). 

In most animal species, HEV is detected sparsely. On the one hand, this may 

be due to low sample numbers investigated for each of these species. On the other 

hand, “spillover infections” from reservoir species to host species resulting in only a 

few successful virus transmissions seem to be possible. In other animal species, HEV 

infections are more often described and/or with higher prevalence. Based on the data 

from this thesis and other published results, predators and hoofed animals show higher 

prevalences than other groups of animals and therefore seem to be predisposed for 

HEV infections (DÄHNERT et al. 2018; SPAHR et al. 2018a; SPAHR et al. 2017). The 

next chapters should give a more detailed overview and discussion on the prevalences 

of HEV infections in different groups of animal species. 

4.2 Prevalence of natural HEV infections in non-human primates 

Reports about natural HEV-infections in non-human primates are scarcely 

available, so far (Tab. 3). Besides, the detection rates of anti-HEV-ab are varying quite 

a lot between the different species and different studies (SPAHR et al. 2018a). For 

example, the reported IgG-seroprevalences in monkeys from India and China ranged 

from 2% (1/50) in langur monkeys (Semnopithecus entellus) up to 35.87% (33/92) or 

36.7% (36/98) in rhesus macaques from a breeding facility in Japan (ARANKALLE et 

al. 1994; HUANG et al. 2011). The IgG-seroprevalence in bonnet macaques was 

reported to be 19.1% (9/47) (ARANKALLE et al. 1994). Anti-HEV-IgM-ab were 

reported for 3/33 rhesus macaques from China and a small number of rhesus 

macaques in a breeding facility at the Primate Research Institute of the University of 

Kyoto, Japan, where seroconversion after HEV-3 infection was observed (HUANG et 

al. 2011; YAMAMOTO et al. 2012). The highest IgG-seroprevalence of 78.5% (96/121) 

was reported for rhesus macaques (YAMAMOTO et al. 2012). In contrast, only one out 

of nine lower primate species (1.2%, 1/86), showed HEV-reactive antibodies in the 

study presented in this thesis (SPAHR et al. 2018a). 

To date, the investigation of lower non-human primates is standing to the forth, 

as certain species are housed in laboratories and are therefore easily available for 

sampling. To widen the range of species, we investigated 259 zoo-housed individuals, 

belonging to 15 species, for the presence of anti-HEV-ab, which also included 172 

great ape samples (Hominidae) (SPAHR et al. 2018a). As a result, 3.9% (10/259) of 

the animals (7 gorillas, 1 bonobo, 1 lar gibbon, and 1 drill) were anti-HEV-IgG-ab 
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positive. Surprisingly, most seropositive animals were gorillas (15.2%, 7/46), followed 

by lar gibbons (9.1%, 1/11) and bonobos (4%, 1/25). There is only one additional report 

about natural HEV infection in chimpanzees from a Chinese zoo (ZHOU et al. 2014). 

A novel HEV-RNA was detected in the faeces of 7/24 (29.2%) of these chimpanzees 

(ZHOU et al. 2014). In contrast, anti-HEV-ab could not be detected in 70 chimpanzees’ 

sera from European zoos in the study described in this thesis (SPAHR et al. 2018a). 

Taken together, the study presented in this thesis was able to show that non-

human primates including great apes can show markers of HEV infection. However, 

the determined antibody prevalences were generally lower as compared to most other 

published studies. In addition, it showed a higher proportion of anti-HEV-IgG positive 

great apes (3.5%, 6/172) compared to the very lower prevalence in non-human 

primates (1.1%, 1/87). As the samples from the different studies originate from different 

areas, general differences due to the geographical origin of the samples may explain 

these findings. In addition, different assays have been used for analysis, which 

therefore cannot be compared directly. The IgG assay used in the study described in 

this thesis is originally adapted for human sera and may therefore be more sensitive 

for the closely related great apes than for lower non-human primate species. An 

additional problem in studying non-human primates is, that blood samples for HEV 

monitoring are mostly not available spontaneously. Therefore, many zoos established 

their own serum banks, storing sera from non-human primates, collected during 

immobilisations for different purposes. Long-term storage and frequent freeze-thaw 

cycles may have led to a decrease of HEV-ab amounts in the investigated sera. 

It can be concluded that non-human primates including great apes seem to be 

susceptible to HEV infections. However, the determined prevalences were low thus 

arguing against a role of these animal species as a reservoir for HEV. It cannot be 

decided if HEV infections lead to clinical disease in these species or not, because at 

the time of sampling, all investigated animals were HEV-RNA- and anti-HEV-IgM-

negative, indicating that no ongoing infections could be observed in this study. 

However, as no history of hepatitis was recorded in these animals, the presence of 

subclinical infections is likely. 
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+, positive; n.d., not determined; 0%, negative; %, positive in %; *, natural infection in laboratory monkeys. 

Table 3: HEV infections in non-human primates. 

4.3 Prevalence of natural HEV infections in other zoo-housed mammals 

In general, reports about HEV infections in zoo-housed animals (birds and 

mammals) are scarcely available so far (LI et al. 2015; ZHANG et al. 2008a; ZHOU et 

al. 2014). To better assess the role of zoo-housed mammals as reservoir or host 

species, we investigated 244 serum samples from 66 clinically healthy mammal 

species in the study described in this thesis (SPAHR et al. 2017).  As a result, anti-

HEV-specific-ab were found in the sera of 16 mammal species from European zoos. 

Besides the well-known reservoir species, swine (33.3%) and deer (8%), two species 

of goat and donkey, one antelope species and five carnivore species were anti-HEV-

IgG-positive (Tab. 4, zoo animals). 

Particularly, the high seroprevalence in carnivores (27.0%) was remarkable, 

thus justifying further investigations in this animal group. In summary, five out of seven 

analysed carnivore species were tested seropositive, including maned wolf, California 

sea lion (Zalophus californianus), Syrian brown bear (Ursus arctos syriacus), Persian 

leopard (Panthera pardus saxicolor) and snow leopard (Unica unica). Interestingly, rat 

HEV-RNA was detected in the serum of a female Syrian brown bear and 

seroconversion was demonstrated in the same animal (SPAHR et al. 2017). 

Conclusively, wild-ranging pest rats may have been the source of HEV infection for 

this animal. 

By summarising the findings of the study presented in this thesis and other 

published data, infections with HEV-3, HEV-4, HEV-C2 or rat HEV are reported for the 
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following carnivore species: Asiatic black bear (Ursus thibetanus), cat (Felis catus 

silvestris), California sea lion, clouded leopard (Neofelis nebulosa), dog, ferret (Mustela 

putorius), maned wolf (Chrysocyon brachyurus), mink (Mustela lutreola), mongoose 

(Herpestes javanicus), Persian leopard, raccoon (Procyon lotor), raccoon dog 

(Nyctereutes procyonoides), red fox, snow leopard and Syrian brown bear (Tab. 4). 

HEV infections in cats and dogs have been described before (LIANG et al. 2014; LIU 

et al. 2009; MOCHIZUKI et al. 2006). ARANKALLE et al. (2001) provided an indication 

that carnivores living in HEV-endemic areas are more susceptible to HEV infections. 

He ascertained an anti-HEV-IgG seroprevalence of 22.7% (10/44) in dogs from India 

(ARANKALLE et al. 2001). The high seroprevalence may be explained by the feeding 

behaviour of the straying dogs and the bad hygiene conditions in India. ZHANG et al. 

(2008a) first detected mammalian HEV-4-RNA in one clouded leopard and one Asiatic 

black bear. All animals were clinically healthy. The findings were explained by “spillover 

infection” from other animal species in this zoo, which were also tested positive in this 

study (ZHANG et al. 2008a). 

It can be concluded, that the available data show, that many mammalian 

species are susceptible to HEV infections. Most of these species show only low 

prevalences, which are suggestive for “spillover infections”. Porcine species clearly 

show high prevalences in congruence with their role as reservoir animals. Remarkably, 

carnivore species turn out more and more to also show higher seroprevalences. Very 

recently, DÄHNERT et al. (2018) reported high seroprevalences in raccoons (53.8%, 

43/80), raccoon dogs (34.3%, 25/73), pet dogs (56.6%, 47/83) and pet cats (32.3% 

(21/65) from Brandenburg, Germany. These recent findings underline the notion of 

carnivores being natural HEV hosts (DÄHNERT et al. 2018; SPAHR et al. 2017). The 

reasons for the indicated high seroprevalences are not known so far. Infection by 

ingestion of infected prey animals may be speculated. However, as mostly only (cross-

reacting) antibodies have been demonstrated, the HEV types responsible for the 

antibody production are not known in most cases. In addition, productive infection and 

transmission of virus needs to be demonstrated in future studies in order to clarify the 

role of carnivores in HEV epidemiology. 
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+, positive; -, negative; n.d., not determined; *, laboratory animals. This table does not include all references  

to the individual animal species. There are numerous publications on pigs in particular (PAVIO et al. 2017). 

Table 4: Natural HEV infections in mammals. 

4.4 Transmission pathways of HEV in a zoo-setting 

In a zoo-setting, different animal species live together in a comparatively 

confined space and wild animals mostly could come in contact with these. Therefore, 

various transmission pathways of HEV seem to be possible. Some of these 

transmission pathways are illustrated in Figure 9, using the example of the Syrian 

brown bear. In general, HEV transmission via direct (bold arrows) or indirect (dotted 

arrows) contact is delineated. 

Direct contact between reservoir species (e.g. swine, wild boar, rabbit, rat, fox, 

dromedary, human) and other species (e.g. brown bear, carnivores, non-human 

primates) can lead to transmissions of HEV. This transmission pathway seems to be 

very likely in a zoo-setting as contacts between neighboured animals and with wild 

animals (e.g. rats) cannot be excluded. As an evidence, we detected rat HEV-RNA in 

the Syrian brown bear and demonstrated seroconversion in the same animal (SPAHR 

et al. 2017). The additional PCR-screening of 73 free-ranging Norway rats from two 

German zoos (including the zoo, housing the Syrian brown bear) resulted in the 

detection of eight rat HEV-positive animals (11%). Sequence analysis revealed that all 

detected rat HEV sequences were closely related to each other and showed a high 

nucleotide sequence identity (94.6% – 97.8%) to the isolate from the bear. These 

results indicate that “spillover infection” from free-ranging pest rats (delineated in 

green), representing a known reservoir for rat HEV, is most likely in the case of the 

Syrian brown bear (SPAHR et al. 2017). Although pest control programmes are 

enforced, free-ranging pest rats or rabbits may enter outdoor enclosures from 

carnivores, that are able to catch and gorge them. 
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Additional transmission pathways may be theoretically possible within zoo 

settings. Direct transmission of HEV between fellow species (delineated in blue), e.g. 

via social behaviour or mating, seems to be one more possible pathway for HEV 

infection. On the basis of preservation measures for many zoo animal species, the 

pan-European and worldwide exchange of these animals between zoos involves the 

danger of HEV transmissions. Infected animals, that were captured in the wild, 

transferred into a zoo and socialised with the zoo population, portray a possible risk for 

HEV infection in the housed animal stock (SPAHR et al. 2018a). However, also the 

shipment of zoo-borne animal stock reveals a potential risk of HEV transmission 

between fellow species. 

Zoo animals, especially pigs and carnivores, may circulate and amplify the virus 

leading to a high virus release to the environment, which can thereafter be transmitted 

to other animal species by oronasal contact (SPAHR et al. 2017). Consumption of 

contaminated water resources may lead to HEV infections in animals, too (SPAHR et 

al. 2018b). Even feed (e.g. hay, straw, vegetables, fruits, grains, pelleted feed) could 

be contaminated with HEV by excretions of pest animals, dependent on storage 

conditions. Feeder animals (e.g. rat, rabbit), zoo animals killed for feeding purposes 

(e.g. deer, swine, camel, dromedary, antelopes, goat, sheep) or contaminated meat 

may also be a source of HEV infection in carnivorous zoo animal species. 

Staff may also play a part contributing to indirect HEV transmission. If keepers 

are changing between animal enclosures or using the very same dunghill for disposing 

excretions of swine, carnivores and non-human primates, HEV transmission via 

contaminated material (e.g. shoes, wheel barrow, bugs, pitchfork, dustpan, brush, 

rake, vehicles) seems to be possible and may even portray a risk for the transmission 

of zoonotic HEVs from reservoir species (delineated in red) as swine, wild boar, rabbit, 

deer, mongoose or dromedary camel. 

In conclusion, there are manifold possibilities for transmission of HEV and HEV-

related viruses in a zoo-like setting. Attempts should be done to minimize the degree 

of virus transmission by applying several hygienic measures and control of wild animals 

in order to prevent infections of zoo animals and – in specific situations – also of the 

staff. 
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Figure 9: Possible transmission pathways of HEV in a zoo-setting. 

4.5 Risk of virus transmission from zoo animals to humans 

Non-human primates, especially great apes, are closely related to human 

beings and are known to be susceptible to diverse human pathogens, including HEV 

(SPAHR et al. 2018a). Due to medical training and treatment, non-human primates 

kept in zoos are usually in close contact with their keepers. Although hygiene standards 

in the holding institutions are high and the staff is encouraged to use face masks and 

gloves, direct contact to infected animals cannot be ruled out as possible way of vertical 

HEV transmission (BUITENDIJK et al. 2014; FICKENSCHER and FLECKENSTEIN 

2001; MEALS et al. 2016). The relatively low seroprevalence rates in our field study 

with 3.9% (10/259) seropositivity in non-human primates argue against a high risk of 

HEV transmission to humans. Additionally, there was no direct evidence for an 

infection with zoonotic HEV-1 to HEV-4 in the animals in the study presented in this 

thesis as only antibodies were detected (SPAHR et al. 2018a). 

However, YAMAMOTO et al. (2012) reported on an HEV outbreak in a 

Japanese monkey breeding facility were anti-HEV-3-IgG-seroprevalences from the 

staff simultaneously increased with the decrease of anti-HEV-3-IgM-ab and anti-HEV-

3-IgG-ab from the animals. Anti-HEV-3-IgG-seroprevalence in humans was 6.9% 

(2007), 9.7% (2008) and 11.8% (2009) in comparison to the anti-HEV-3-IgM-

seroprevalence in the animals with 1.1% (2007) and 0% (2008, 2009). The authors 
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assumed, that the staff got infected by direct contact to the monkeys or their blood or 

excretions (YAMAMOTO et al. 2012). 

ZHANG et al. (2008a) detected mammalian HEV-4-RNA in carnivores, deer and 

birds from a Chinese zoo-like location. In parallel, seven workers including a 

veterinarian and six feeders, were tested for anti-HEV-ab (IgM and IgG) plus HEV-

RNA (ZHANG et al. 2008a). All sera were HEV-RNA negative, but one person was 

positive for IgM, 3 persons for IgG and another was positive for both IgM and IgG 

(ZHANG et al. 2008a). 

Infection of humans via direct contact to animals (e.g. wild boar), faeces, blood 

or aerosols from animals has previously been discussed as a possible transmission 

route (DREMSEK et al. 2013; DREMSEK et al. 2012). It is known, that people 

occupationally working with animals and animal products are at higher risk for HEV 

infections with zoonotic HEV-3 and HEV-4 (BfR FAQs 2016; PAVIO et al. 2017). In 

principle, staff working in a zoo-like setting has also to be considered to be exposed to 

HEV by contact to the animals and to their excretions. However, as the HEV 

prevalences seem to be lower in most zoo animal species as compared to domestic 

pigs, the risk of virus transmission has to be considered to be lower in general. In line 

with this, zoo animals of porcine species origin and carnivores should be considered 

of higher risk for HEV transmission. 

Another factor limiting the assessment of the virus transmission to humans is 

the missing information on the specific virus types present in the zoo animals. In fact, 

only rat HEV was convincingly demonstrated in the study presented in this thesis. 

Generally, the zoonotic potential of rat HEV for transmission to humans has been 

considered low for a long time due to its divergent phylogenetic relationship to the other 

human-pathogenic HEVs (JOHNE et al. 2014). However, very recently, a rat HEV 

infection leading to chronic hepatitis has been described in an immunosuppressed 

human patient from Hong Kong (SRIDHAR et al. 2018). Further studies are necessary 

to clarify if this represents only a single exception, or if rat HEV indeed represents a 

human pathogen. 
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5 Conclusion and perspectives 

Our results significantly increase the number of animal species with indications 

of natural infections with HEV or HEV-related viruses. In particular, predators and 

hoofed animals seem to be predisposed for HEV infections. 

Zoo-housed non-human primates, particularly gorillas, showed serological 

markers of HEV infection, although with low prevalences. This leads to the assumption, 

that non-human primates are accidental hosts, but not important reservoir animals for 

HEV. To clarify the variation in seroprevalences between bonobos, chimpanzees, 

orangutans and gorillas, human ELISAs should be assessed for their specificity and 

sensitivity in detecting anti-HEV-ab in sera from non-human primates. 

Based on the study presented in this thesis, the range of susceptible zoo-

housed mammals, which show HEV seroprevalences, contains canids, felids, otariids, 

ursids, suids, bovids, cervids and equines. Whereas the high seroprevalences were 

expected for the porcine-related species, they were somewhat surprising for the 

carnivores. However, only a few studies have analysed HEV-infections in carnivores 

so far. The high prevalences may indicate a role as reservoirs or transmitters for these 

animal species. However, especially in the carnivores, the high seroprevalences may 

also be explained by a reaction on frequent ingestions of HEV-infected animals, which 

not necessarily has to result in high virus replication and excretion. The identified rat 

HEV infection in the Syrian brown bear may reflect such an infection gained by 

ingestion of infected wild rats. Further studies should attempt to elucidate the HEV 

infection of carnivores in more detail including studies on the route of infection, the 

involved HEV types and the amount of excreted virus. 

The absence of the detection of any human-pathogenic HEV-GT-RNA in the 

animals investigated in the study presented in this thesis may suggest, that 

anthropozoonotic transmission is unlikely. However, as HEV-specific antibodies are 

known to cross-react between human-pathogenic and HEV-like viruses, the virus types 

originally infecting the animals are not known. People occupationally working with 

animals have been shown in several studies to be at higher risk for zoonotic HEV 

infections. Therefore, staff working in a zoo-like setting has also to be considered to 

be exposed to HEV by contact to the animals and to their excretions. However, the low 

HEV prevalences in most zoo animal species may indicate a lower risk for zoo workers 

as compared to workers in contact with domestic pigs. Future studies comparing the 

seroprevalences of zoo workers with that of non-exposed persons will be necessary to 
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clarify the risk of HEV transmission in zoo-like locations. In addition, in light of the 

recent publication of a human rat HEV infection, the zoonotic potential of rat HEV 

should be investigated in more detail as this virus was detected by us in a zoo animal. 

Future HEV monitoring in carnivores, hoof stock and non-human primates is 

highly recommended to prove their role as potential reservoirs for HEV or HEV-related 

viruses, to evaluate potential differences in the susceptibility of certain animal species, 

to identify potential transmission routes and to assess possible veterinary and public 

health risk consequences. This should also include known reservoir species living in 

zoos, such as pigs, deer, rabbits and rats, in order to identify the virus sources. To 

prevent virus transmissions, the control of pest animals and feeder animals used for 

carnivores and improved feeding hygiene should be considered in zoos. Additionally, 

specific material for cleaning work should be assigned separately to each species to 

prevent virus transmissions by the staff. 
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Introduction 

Hepatitis E is a worldwide distributed disease, which is caused by the hepatitis E 

virus (HEV). In addition to humans, domestic pigs, wild boars, rabbits and dromedaries 

can be subclinically infected as reservoir animals with the zoonotic HEV genotypes 3, 

4 and 7. In addition, HEV and HEV-like viruses have been described sporadically in 

other mammals, as well as in birds and fish, although their distinct role as reservoirs 

or carriers of the virus is still unclear. 

Aims 
The aim of the study was therefore to analyse in more detail the importance of 

different mammalian species, which do not belong to the known HEV reservoirs, for 

the epidemiology of HEV infections, thus enabling a better assessment of the risk of 

virus transmission by these animal species. 

Material and Methods 
Fourteen non-human primate species and 66 other mammal species, as well as 

Norway rats (Rattus norvegicus) and feeder rats (Rattus norvegicus forma domestica) 

from German zoos were selected for the investigations. In total 259 individual non-
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human primate sera and 244 individual mammalian sera of clinically healthy zoo 

animals were analysed for the presence of HEV-specific antibodies (ab) using a 

species-independent double-antigen sandwich ELISA. The non-human primate sera 

were additionally examined using a commercial human ELISA. Real-time reverse-

transcription (RT)-PCR, nested broad-spectrum RT-PCR and a rat HEV-specific RT-

PCR were used to detect the HEV genome in sera of mammals and rat liver samples. 

A commercial and an in-house method were used for the DNA sequencing. 

Results 
HEV-specific ab were detected in 3.9% (10/259) of the non-human primate sera (4 

species) and 11.5% (28/244) of the mammalian sera (16 species). The highest 

detection rates were recorded with 33.3% (9/27) in porcines and with 27.0% (10/37) in 

carnivores. HEV-RNA was detected in a clinically healthy female Syrian brown bear 

(Ursus arctos syriacus) and in 8 of the investigated Norway rats. Sequence analysis 

identified the virus as rat HEV; the viruses from the bear and the free-ranging rats from 

the same zoo showed a high nucleotide sequence identity (94.6%–97.8%). Because 

of the small number of samples due to the small populations within the individual zoos, 

further statistical evaluations were not carried out. 

Conclusions 
The results show that non-human primates in zoos may be infected with HEV or 

HEV-like viruses; however, the low ab detection rates together with the negative 

genome detection argue against a high risk of virus transmission to humans. The study 

in other zoo-housed mammalian species was able to significantly increase the number 

of animal species with indications of HEV infections. In most animal species, only rare 

evidence and low detection rates were available, which can best be explained by 

“spillover-infections”. In addition to the expected high detection rate in porcine species, 

the high percentage of HEV antibody-positive carnivores is remarkable. Their role as 

possible HEV reservoir animals should therefore be clarified in further investigations. 

The detection of rat HEV in the serum of the bear and its high nucleotide sequence 

identity with the HEVs of the pest rodents provides first evidence of transmission of 

this virus species between rodents and carnivores. 
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Einleitung 

Hepatitis E ist eine durch das Hepatitis E-Virus (HEV) verursachte, weltweit 

verbreitete Erkrankung. Neben dem Menschen können Hausschwein, Wildschwein, 

Kaninchen und Dromedar als Reservoirtiere subklinisch mit den zoonotischen HEV-

Genotypen 3, 4 und 7 infiziert werden. Darüber hinaus wurden HEV und HEV-ähnliche 

Viren vereinzelt bei weiteren Säugetieren, sowie Vögeln und Fischen beschrieben, 

wobei deren genaue Rolle als Reservoir oder Überträger des Virus bislang unklar ist. 

Ziele 
Ziel der Arbeit war es deshalb, die Bedeutung verschiedener Säugetierarten, die 

nicht zu den bekannten HEV-Reservoiren gehören, für die Epidemiologie der HEV-

Infektionen besser zu erfassen und dadurch das Risiko einer Virusübertragung durch 

diese Tierarten besser abzuschätzen. 

Material und Methoden 

Vierzehn Affenarten und 66 weitere Säugetierarten, sowie Wanderratten (Rattus 

norvegicus) und Futterratten (Rattus norvegicus forma domestica) aus deutschen 

Zoos wurden für die Untersuchungen ausgewählt. Insgesamt wurden 259 individuelle 
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Affenseren und 244 individuelle Säugerseren klinisch gesunder Zootiere mittels eines 

Spezies-unabhängigen Doppel-Antigen-Sandwich-ELISAs auf das Vorhandensein 

von HEV-spezifischen Antikörpern (AK) untersucht. Die Affenseren wurden zusätzlich 

mittels eines kommerziellen humanen ELISAs untersucht. Real-time reverse-

transcription (RT)-PCR, nested broad-spectrum RT-PCR sowie eine Ratten-HEV-

spezifische RT-PCR wurden für den HEV-Genomnachweis in Seren der Säuger und 

in Ratten-Lebern verwendet. Für die DNA-Sequenzierungen wurden eine 

kommerzielle und eine In-house-Methode verwendet. 

Ergebnisse 
In 3,9% (10/259) der Affenseren (4 Arten) und 11,5% (28/244) der Säugerseren (16 

Arten) wurden HEV-spezifische AK nachgewiesen. Die höchsten Nachweisraten 

wurden mit 33,3% (9/27) in Schweineartigen und 27,0% (10/37) in Fleischfressern 

ermittelt. HEV-RNA wurde in einer klinisch gesunden Syrischen Braunbärin (Ursus 

arctos syriacus), sowie in 8 der untersuchten Wanderratten nachgewiesen. Die 

Sequenzanalyse identifizierte das Virus als Ratten-HEV; die Viren aus der Bärin und 

aus den wildlebenden Ratten desselben Zoos zeigten eine hohe Nukleotidsequenz-

Identität (94,6%–97,8%). Weitergehende statistische Auswertungen wurden wegen 

der geringen Probenzahlen aufgrund der kleinen Populationen innerhalb der einzelnen 

Zoos nicht durchgeführt. 
Schlussfolgerungen 
Die Ergebnisse zeigen, dass Affen in Zoos mit HEV oder HEV-ähnlichen Viren 

infiziert sein können, jedoch sprechen die geringen AK-Nachweisraten zusammen mit 

den negativen Genomnachweisen gegen ein hohes Übertragungsrisiko auf den 

Menschen. Die Studie an anderen Säugetierarten in Zoos konnte die Zahl der 

Tierarten mit Hinweisen auf HEV-Infektionen deutlich erhöhen. Bei den meisten 

Tierarten lagen nur seltene Nachweise und niedrige Detektionsraten vor, die am 

besten durch „Spillover-Infektionen“ erklärt werden können. Neben der erwarteten 

hohen Nachweisrate bei Schweineartigen ist der hohe Prozentsatz an HEV AK-

positiven Fleischfressern bemerkenswert, weshalb deren Rolle als mögliche HEV-

Reservoirtiere in weiteren Untersuchungen geklärt werden sollte. Der Ratten-HEV-

Nachweis im Serum der Bärin, sowie dessen hohe Nukleotidsequenz-Identität zu den 

HEVs der Schadnager geben erstmals Hinweise auf eine Übertragung dieser Virusart 

zwischen Nagern und Fleischfressern. 
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Family Animal Species Scientific name 
 
Atelidae 

 Black howler monkey Alouatta caraya 

 White-fronted spider monkey Ateles hybridus 

Bovidae 

 Addax Addax nasomaculatus 

 African buffalo Syncerus caffer nanus 

 Alpine ibex Capra ibex 

 Anoa Bubalus depressicornis 

 Barbary sheep Ammotragus lervia 

 Bezoar goat Capra hircus domestic bezoar 

 Bongo Tragelaphus eurycercus 

 Common waterbuck Kobus ellipsiprymnus 

 Congo dwarf goat Capra hircus domestic congo 

dwarf 

 Domestic cattle  

(Hinterwald cow) 

Bos taurus Taurus hinterwald 

 Domestic cattle  

(Limpurger cow) 

Bos taurus Taurus limpurger 

 Domestic goat  

(Damara goat) 

Capra hircus domestic damara 

 Domestic sheep  

(Cameroon sheep) 

Ovis aries aries cameroon 

 Domestic sheep  

(Skudde sheep) 

Ovis aries aries skudde 

 Dorcas gazelle Gazella dorcas 

 European wisent Bison bonasus bonasus 

 Greater kudu Tragelaphus strepsiceros 

 Lesser kudu Tragelaphus imberis 

 Markhor Capra falconeri 
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 Mishmi takin Budorcas taxicolor taxicolor 

 Rocky Mountain goat Oreamnos americanus 

Canidae 

 Bush dog Speothos venaticus 

 European grey wolf Canis lupus lupus 

 Fennec fox Vulpes zerda 

 Maned wolf Chrysocyon brachyurus 

 Red fox Vulpes vulpes 

Camelidae 

 Alpaca  Lama pacos domesticus 

 Bactrian camel Camelus bactrianus 

 Vicugna Vicugna vicugna 

Castordiae 

 Amercian beever Castor canadensis 

 Eurasian red squirrel Sciurus vulgaris 

Cebidae 

 Black-capped squirrel 

monkey 

Saimiri boliviensis 

Cercopithecidae 

 Drill Mandrillus leucophaeus 

 Gelada baboon Theropithecus gelada 

 Javan silvered leaf monkey Trachypithecus auratus 

 Japanese macaque Macaca fuscata 

 White-crowned mangabey Cercocebus atys lunulatus 

Cervidae 

 Mesopotamian fallow deer Dama mesopotamica 

Chinchillidae 

 Plains viscacha Lagostomus maximus 

Elephantidae 

 African elephant Loxodonta africana 

 Indian elephant Elephas maximus indicus 

Equidae 

 Dulmen pony Equus caballus caballus dulmen 

 Grevy’s zebra Equus grevyi 
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 Persian onager Equus hemionus onager 

 Poitou donkey Equus asinus domestic Poitou 

 Przewalski’s wild horse Equus caballus przewalskii 

 Somali wild ass Equus africanus somaliensis 

Felidae 

 Jaguar Panthera onca 

 Persian leopard Panthera pardus saxicolor 

 Serval Leptailurus serval 

 Snow leopard Uncia uncia 

 Sumatran tiger Panthera tigris sumatrae 

Giraffidae 

 Okapi Okapi johnstoni 

 Reticulated giraffe Giraffa camelopardalis reticulata 

Herpestidae 

 Banded mongoose Mungos mungo 

 Slender-tailed meerkat Suricata suricatta 

Hippopotamidae 

 Pigmy hippopotamus Choeropsis liberiensis liberiensis 

Hominidae 

 Bonobo Pan paniscus 

 Bornean orangutan Pongo pygmaeus 

 Chimpanzee Pan troglodytes 

 Lar gibbon Hylobates lar 

 Sumatran orangutan Pongo abelii 

 Western lowland gorilla Gorilla gorilla gorilla 

Hyaenidae 

 Spotted hyena Crocuta crocuta 

Hylobatidae 

 Lar gibbon Hylobates lar 

Macropodidae 

 Red kangaroo Macropus rufus 

Muridae 

 Norway rat Rattus norvegicus 
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 Norway rat Rattus norvegicus forma 

domestica 

Otariidae 

 California sea lion Zalophus californianus 

Phocidae 

 Harbor seal Phoca vitulina 

Pitheciidae 

 White-faced saki Pithecia pithecia 

Pteropus 

 Indian flying fox Pteropus giganteus 

Rhinocerotidae 

 One-horned rhinoceros Rhinoceros unicornis 

Suidae 

 African bush pig  Potamochoerus porcus pictus  

 Babirusa  Babyrousa babyrussa 

 Common warthog Phacochoerus africanus 

 Domestic pig  

(Kunekune pig) 

Sus scrofa scrofa kunekune 

 Domestic pig  

(Schwäbisch-Hall) 

Sus scrofa forma domestica 

 European wild boar Sus scrofa  

Tapiridae 

 Malayan tapir Tapirus indicus 

Tayasuidae 

 Collared peccary Pecari tajacu 

Tenrecidae   

 Common tenrec Tenrec ecaudatus 

Ursidae 

 Polar bear Ursus maritimus 

 South American coati Nasua nasua 

 Spectacled bear Tremarctos ornatus 

 Syrian brown bear Ursus arctos syriacus 
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