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Abstract

Aims

Soil sample preservation is a challenging aspect in molecular stud-

ies on soil microbial communities. The demands for specialized 

sample storage equipment, chemicals and standardized protocols 

for nucleic acid extraction often require sample processing in a 

home laboratory that can be continents apart from sampling sites. 

Standard sampling procedures, especially when dealing with RNA, 

comprise immediate snap freezing of soils in liquid nitrogen and 

storage at −80°C until further processing. For these instances, organ-

izing a reliable cooling chain to transport hundreds of soil samples 

between continents is very costly, if possible at all. In this study we 

tested the effect of soil sample preservation by freeze-drying with 

subsequent short-term storage at 4°C or ambient temperatures com-

pared to −80°C freezing by comparative barcoding analyses of soil 

microbial communities.

Methods

Two grassland soil samples were collected in Central Germany in 

the Biodiversity Exploratory Hainich-Dün. Samples were freeze-

dried or stored at −80°C as controls. Freeze-dried samples were 

stored at 4°C or ambient temperature. Investigated storage times for 

both storage temperatures were 1 and 7 days. Total DNA and RNA 

were extracted and bacterial and arbuscular mycorrhizal (AM) fun-

gal communities were analyzed by amplicon 454 pyrosequencing 

of the 16S (V4-V5 variable region) and 18S (NS31-AM1 fragment) of 

ribosomal RNA (rRNA) marker genes, respectively.

Important Findings

Bacterial communities were sufficiently well preserved at the 

rDNA and rRNA level although storage effects showed as slightly 

decreased alpha diversity indices for the prolonged storage of 

freeze-dried samples for 7 days. AM fungal communities could be 

studied without significant changes at the rDNA and rRNA level. 

Our results suggest that proper sampling design followed by imme-

diate freeze-drying of soil samples enables short-term transportation 

of soil samples across continents.
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INTRODUCTION

Biodiversity research on soil microorganisms is conducted 

throughout the world (Ramette and Tiedje 2007; Tedersoo 

et  al. 2012). This interest is triggered by the pivotal contri-

butions of microorganisms to ecosystem functioning (Torsvik 

and Øvreås 2002; van der Heijden et al. 2008), and the vast 

diversity of bacterial and fungal species (Curtis et  al. 2002; 

Dykhuizen 1998; O’Brien et  al. 2005). In depth analysis 

of microbial communities is realized by high-throughput 

sequencing generating millions of nucleic acid reads using 

next generation sequencing (NGS) platforms (Caporaso et al. 

2012; Shokralla et  al. 2012; Taberlet et  al. 2012). However, 

nucleic acids are prone to degradation (Wackernagel 2006) 

and optimal sampling and sample processing methods include 

the immediate freezing of soil samples until processing. 
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Whenever sampling location and processing laboratories are 

distantly apart, the reliable freezing of samples in liquid nitro-

gen tank or dry ice during transportation is challenging, costly 

and not always realizable.

Though the advance in NGS and the possibility to analyze 

large number of samples lead to large scale and integrated 

biodiversity studies at a global scale, soil sample storage and 

transportation across continents still remain a big challenge. 

Storage of samples at elevated temperatures presumably 

after chemical preservation, air-drying or freeze-drying are 

potential alternatives. In several molecular studies, storage 

of untreated soil samples at ambient temperatures resulted 

in only minor changes of microbial communities (Rubin et al. 

2013; Tzeneva et al. 2009) or none at all (Brandt et al. 2014; 

Klammer et al. 2005; Lauber et al. 2010; Tatangelo et al. 2014). 

Nevertheless sample- and microbial type dependent changes 

were observed (Cui et al. 2014; Rissanen et al. 2010). Chemical 

preservatives directly interact with the sampled materials, and 

discrepancies in preservation efficiencies for variable sample 

characteristics (Rissanen et  al. 2010; Tatangelo et  al. 2014) 

might be inherently expected.

Freeze-drying is the process where water is removed via 

sublimation from the frozen sample due to the application 

of vacuum (Adams 2007). Nucleic acids in soils are liable to 

degradation by microbial nucleolytic enzymes (Antheunisse 

1972; Greaves and Wilson 1970; Wackernagel 2006). Water 

removal by freeze-drying prohibits diffusion of molecules 

in the soil matrix and withdraws the protein hydrate shell 

synced diminishing enzyme activity (Ball 2008; Kurkal et al. 

2005). The freeze-drying process is non-toxic. Dried samples 

do not require temperature control during transportation, 

are reduced in weight, harbor no risk of solution leakage and 

can be declared as inactivated samples (Adams 2007). Freeze-

dryers have a wide application in industry and science. In the 

vicinity of the specific sampling site they could be accessible 

via collaborations or bought in variable configurations. To our 

knowledge only two studies evaluated freeze-drying of soil 

samples in relation to investigations of bacterial communi-

ties. Larson et al. (2013) successfully applied pyrosequencing 

in a DNA based study on several freeze-dried soil samples. 

Sessitsch et  al. (2002) accomplished RNA-based terminal 

restriction fragment length polymorphism (T-RFLP) analysis 

on a single freeze-dried soil substrate. Both studies indicate 

promising potential of freeze-drying for soil sample preserva-

tion. However, their investigations were not comprehensive 

as restricted to only one microbial target (bacteria) and one 

soil sample in the RNA study. Furthermore, the effect of stor-

age conditions of freeze-dried samples for sample transporta-

tion was not investigated.

In the present study we assessed the application of 

freeze-drying as soil storage and safe sample transportation 

method. We investigated the DNA and RNA based bacte-

rial and arbuscular mycorrhizal (AM) fungal communities 

on two freeze-dried grassland soils using pyrosequencing. 

Sample transportation across continents is fastest by airplane. 

However, an airport might be several hours or days apart from 

the sampling site. We assumed that transportation from field 

site to processing lab could be accomplished in a minimum of 

1 and a maximum of 7 days. Transportation across temper-

ate regions could be done without additional cooling while in 

subtropical and tropical regions storage of freeze-dried sam-

ples in refrigerated boxes at 4°C could be necessary. But even 

across temperate regions cooling could be required during 

very hot summer weathers. Therefore, we analyzed the effect 

of freeze-drying and subsequent short-term storage (1 day or 

7 days) at different temperatures (4°C or room temperature) 

on microbial community recovery, Shannon diversity and 

community composition. We hypothesized that freeze-drying 

is a suitable soil sample treatment prior to short-term storage 

and transportation to (i) preserve both microbial DNA and 

RNA and (ii) enable unbiased detection of fungal and bacte-

rial communities using NGS approaches.

METHODS
Sampling site and sample processing

In August 2011, soil samples were collected in the German 

Biodiversity Exploratory Hainich-Dün (Fischer et  al. 2010; 

Solly et al. 2014). The Hainich-Dün region is located in Central 

Germany (Thuringia) and is characterized by large spruce for-

ests of various age classes and cultivated grasslands. Two grass-

land plots of different soil and land use types (Table 1, online 

supplementary Fig. S1) were selected. HEG01 was a fertilized 

meadow, mown twice a year, and HEG08 an unfertilized pas-

ture grazed by cattle. On both plots, a subplot of 1 m × 1 m 

area was defined. In total, five soil cores with a diameter of 

5 cm were collected in the edges and the center of each subplot 

in a depth of 0–10 cm. The rooted surface layer was removed 

and the five soil cores of one subplot were combined to a 

composite sample. The soil was sieved through a 2 mm mesh 

Table 1: sampling site characteristics

HEG01 HEG08

Area Großenlupnitz Unstruttal

Land-use fertilized meadow unfertilized pasture 
grazed by cattle

Coordinates N50° 58.29983, E10° 
24.32067

N51° 16.2765, E10° 
25.07533

LUI (2006–2010) High (2.8) Medium (1.6)

Soil type Cambisol Stagnosol

Soil texture Silty clay Silty clay

pH 6.65 7.17

Water content 31% 27%

Total C (g kg−1 soil) 54.78 60.63

Total N (g kg−1 soil) 5.46 5.78

CN ratio 9.89 9.86

Land-use intensity (LUI) category was assigned according to Wiesner 
et al. (2014).
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and mixed with a sterilized spoon. For each plot, HEG01 and 

HEG08, 14 replicate sample flasks (30 ml HDPE wide-mouth 

screw cap bottles purchased from VWR International GmbH, 

Germany) were filled with approximately 10 g homogenized 

soil from the respective composite soil sample. Samples were 

snap frozen in liquid nitrogen and transported on dry ice to 

the laboratory. Two replicate samples of each plot were stored 

as controls at −80°C until extraction and 12 replicate samples 

of each plot were freeze-dried immediately. In total, four soil 

samples were stored at −80°C as controls and 24 soil samples 

were freeze-dried (online supplementary Fig. S2).

Freeze-drying and subsequent storage conditions

The freeze-dryer (ALPHA 2–4, Martin Christ Gefriertroc-

knungsanlagen, Germany) was run for 39 h at 0.021 mbar 

at an ice condenser temperature of −84°C. For the first 22 h, 

utility space was set to 0°C and afterwards increased to 15°C 

for another 17 h. The soil samples had a temperature of −75°C 

at the start of the freeze-drying process, which rapidly settled 

to −35°C. At the end of the freeze-drying process a sample 

temperature of 20°C was reached. Freeze-dried samples were 

stored in the presence of blue silica gel within sealed plastic 

bags. Six freeze-dried replicates of each plot were stored either 

at room temperature or 4°C. For each temperature treatment 

three replicates were stored for either 1 day or 7 days (online 

supplementary Fig. S2). Freeze-dried samples were subse-

quently stored at −80°C which is the standard procedure for 

the storage of environmental samples after their transporta-

tion from the field to the laboratory if they are subjected to be 

analyzed at the RNA level. Nucleic acids of all samples were 

extracted in the same run.

Nucleic acid extraction and reverse transcription

Total RNA and DNA were co-extracted from 1 g dry weight soil 

using the Power Soil RNA Isolation Kit and RNA Power Soil 

DNA Elution Accessory Kit (MoBio Laboratories, Carlsbad, 

CA). For the withdrawal of soil sampling material, soil sample 

flasks were kept on ice and relocated to the −80°C storage as 

soon as possible. Sample material could be gained from con-

trol samples without prior thawing. Thus, the 24 freeze-dried 

soil samples resulted in 24 DNA and 24 RNA extracts, a total of 

48 molecular samples. Furthermore, two DNA and two RNA 

extracts were obtained from frozen control samples of each 

plot. Summing up the number of nucleic acid extracts of con-

trol samples and freeze-dried samples, we analyzed 28 DNA 

and 28 RNA extracts, in the following referred to as a total 

of 56 samples. RNA extracts were treated with RQ1 RNase-

Free DNase (Promega, USA) and purified by phenol-chloro-

form extraction. Nucleic acid extracts were quantified with 

the NanoDrop ND-8000 (Peqlab, Germany). Complementary 

DNA (cDNA) was synthesized from 25 ng RNA with the 

Monster-Script 1st strand Kit (Epicentre Biotechnologies, 

USA) using random nonamer primers. For each experimen-

tal treatment nucleic acid extracts of one sample replicate 

were subjected to quality analysis by gel electrophoresis. 

DNA extracts were loaded on an 1.5% Agarose gel, stained 

with Ethidium Bromide and photographed in a GeneGenius 

Gel Bio Imaging System (Syngene, Cambridge, UK). RNA 

extracts were loaded onto an Eukaryote Total RNA Nano Chip 

(Agilent Technologies, USA) and analyzed in an Agilent 2100 

Bioanalyzer with software version 2.6 (Agilent Technologies, 

USA). Schroeder et al. (2006) described the sophisticated soft-

ware algorithm of the instrument that considers a plethora 

of electropherogram features e.g. peak areas, peak heights 

and peak ratios to calculate an integrity (quality) value for 

the RNA sample ranging from 1 (most degraded) to 10 (most 

intact).

Multiplexed amplicon pyrosequencing

Amplicon libraries were prepared with pyrosequencing fusion 

primers. Polymerase chain reaction (PCR) primer sequences 

are shown in online supplementary Table S1. The bacterial 16S 

rRNA gene was amplified with the reverse primer 907R coupled 

to a barcode and the pyrosequencing adapter B. The forward 

primer 341F was coupled to pyrosequencing adapter A. PCR 

reactions were done in triplicate in a final volume of 50 µl and 

consisted of 1× GoTaqGreen Master Mix (Promega, USA), 25 

pmol primers each and 10 ng DNA or 1 µl cDNA. Cycling con-

ditions for primers 907R/341F were: initial activation at 98°C 

for 1 min, 95°C for 45 s, 57°C for 45 s, 72°C for 1.5 min and 

PCR cycle repeated 30 times ending with a final extension of 

72°C for 10 min. The AM fungal 18S rRNA gene was ampli-

fied using a nested PCR approach, see Morris et al. (2013) for 

details. In short, the first PCR was performed using the primer 

pair GlomerWT0/Glomer1536 followed by two parallel nested 

PCR setups with the primer NS31 paired either with AM1A or 

AM1B. The forward primer NS31 was fused to the barcode and 

the pyrosequencing adapter B while both PCR reverse primers 

were coupled with the adapter A. One microlitre of a 10-fold 

dilution of the first PCR reaction was used as template for the 

nested PCR. Amplicon PCR replicates were pooled and puri-

fied with the QIAquick Gel Extraction Kit (Qiagen, Hilden, 

Germany). Quantitation was done with Quant-iT-PicoGreen 

ds DNA Assay Kit (Invitrogen). Equimolar sample pools 

were sequenced on a 454 GS FLX Titanium machine (Roche, 

Branford, USA). The sequencing plate was divided into four 

lanes. A pool of all AM fungal community samples comprising 

both DNA and cDNA amplicons was sequenced on one of the 

four lanes. Bacterial DNA and cDNA amplicon libraries were 

pooled separately and sequenced on one lane each.

Bioinformatics

Quality filtering of raw sequences was done with the Mothur 

software v.1.31.2 (Schloss et  al. 2009). Sequences were 

trimmed to 300 nt length (v4–v5 region) after removal of 

reads with an average quality value below 20, occurrence of 

ambiguous nucleotides or if barcodes exceeded more than one 

mismatch. As the bacterial rRNA gene was sequenced start-

ing with the gene reverse primer, bacterial sequences were 

flipped. Dereplicated sequences were globally aligned to the 
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SILVA 119 reference database (Quast et al. 2013), release April 

2015. Therefore, the reference database was either truncated 

for the BAC341F/BAC907R or NS31/AM1A-B primers for the 

respective bacterial and AM fungal target and thus two refer-

ence alignments were obtained to align our sequences against. 

Sequences which aligned at unusual alignment positions com-

pared to 95% of the sequences were removed and the align-

ment was filtered. In case the alignment still showed end gaps 

as for the bacterial dataset, uniform start and end positions 

were explicitly set for a second screening step. Chimera check 

was done with uchime (Edgar et  al. 2011) as implemented 

in Mothur and the remaining sequences were subsam-

pled. Quality sequences of uniform length were clustered by 

USEARCH (Edgar 2010) version 8.0.1623 after sorting them 

by abundance and excluding singletons in the clustering step 

which follows the manual recommendations. Thus, represent-

ative sequences obtained by USEARCH are based on abun-

dance. Bacterial representative sequences of each operational 

taxonomic unit (OTU) were taxonomically assigned using the 

GAST algorithm (Huse et al. 2008) against the v4–v5 truncated 

SILVA 111 database (Quast et al. 2013), release July 2012 and 

non-bacterial OTUs were removed from the dataset. The AM 

fungal sequences were quarried against the MaarjAM database 

(Öpik et al. 2010) on 10 February 2016. AM fungal representa-

tive sequences and their respective OTUs were removed from 

the dataset if the best blast hit showed less than 90% coverage 

or an E-value larger than 1e-50. Rare OTUs with less than four 

reads were removed from both datasets. Sequence reads were 

submitted to the European Nucleotide Archive with accession 

number PRJEB8238.

Statistics

Statistical analyses were done with R version 3.1.2 (R Core 

Team 2014). The experimental treatment effects were eval-

uated for the yield of nucleic acids and the alpha diversity 

indices observed species richness, Shannon diversity and 

Pielou’s evenness. Nucleic acid yields were log transformed. 

The outlier function of the outliers package was applied to 

identify datapoints that potentially needed removal from 

the dataset prior to alpha diversity analysis of variances 

(ANOVA). Identified outlying datapoints were only removed 

if a visible deviation appeared in diversity index plotting and 

Non-metric multidimensional scaling (NMDS) ordination 

plotting or if the violation of test assumptions (normality 

of model residuals and homogeneity of variances) could be 

avoided. The three treatment contrasts (i) Freeze-drying ver-

sus control storage, (ii) 4°C storage of freeze-dried samples 

versus room temperature storage of freeze-dried samples and 

(iii) 1-day storage of freeze-dried samples versus 7 days stor-

age of freeze-dried samples were analyzed in linear regres-

sion models. Specific formulation of treatment contrasts is 

shown in online supplementary Table S2. Linear regression 

models included the plot as fixed factor and the treatment 

with defined contrasts as fixed factor while interaction terms 

were only included if the model fit was much better as deter-

mined by a lower Akaike Information Criterion (AIC) value. 

Univariate ANOVA was applied to assess significant differ-

ences for the five single storage treatments which are (1) 

control samples stored at −80°C, (2+3) freeze-dried samples 

stored at 4°C for either 1 or 7 days and (4+5) freeze-dried 

samples stored at room temperature for either 1 or 7 days. 

Homogeneity of variance was assessed by Levene test, while 

normal distribution of model residuals was inspected by 

Shapiro tests. In case significant ANOVA results were found, 

Tukey HSD post hoc test was applied as implemented in the 

agricolae package by the HSD.test function to determine sig-

nificant pairwise treatment comparisons and variance par-

titioning with the varpart function of the vegan package 

(Oksanen et al. 2013) was done to assess the effect size of the 

significant factors identified in the linear regression analysis 

of treatment contrasts. NMDS was done with the metaMDS 

function of the vegan package. For NMDS and Permanova, 

OTU count data was Hellinger transformed and converted to 

a Bray–Curtis dissimilarity matrix. Permanova analysis was 

carried out by the adonis function (vegan package) to deter-

mine the significance of the factors sampling plot, freeze-

drying, storage duration and storage temperature on the 

bacterial and AM fungal community.

Table 2: nucleic acid yields of frozen and freeze-dried soil samples

Sample Mean DNA (µg g−1 soil) SD Mean RNA (µg g−1 soil) SD

Control 1 61.0 17.2 12.3 5.7

8 52.9 1.2 14.7 12.1

FD 4°C 1 day  1 78.0 29.2 7.2 2.0

8 45.6 13.0 7.5 4.5

FD RT 1 day 1 49.0 2.4 8.1 3.2

8 64.0 41.1 6.3 1.3

FD 4°C 7 days 1 53.9 5.2 6.3 2.7

8 37.9 7.2 9.3 3.1

FD RT 7 days 1 40.5 9.5 6.1 1.9

8 29.9 7.1 8.9 1.2

Abbreviation: SD = standard deviation. Freeze-dried (FD) soil samples were stored at room temperature (RT) or 4°C for 1 or 7 days.
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RESULTS
Quality and quantity of nucleic acids

High-molecular weight DNA was recovered from frozen and 

freeze-dried soil samples (online supplementary Fig. S3a). DNA 

yields (Table 2) were not affected by freeze-drying but a sig-

nificant decrease of DNA yields (P < 0.05) was detected with 

the prolonged storage time of 7 days for freeze-dried samples 

(Table 3). RNA yields were neither affected by freeze-drying nor 

by storage time or temperature. RNA integrity numbers (RIN) 

were about 7 for all treatments and electropherograms clearly 

showed an 18S and 23S rRNA peak (online supplementary Fig. 

S3b). The cDNA transcription and PCR amplification of target 

microbial communities could be accomplished for all samples.

Bacterial and AM fungal community analysis

From the total of 56 nucleic acid samples, 159 010 bacterial 16S 

raw sequences were obtained. After quality filtering, the num-

ber of bacterial sequences was normalized to the minimum 

number of sequences per sample resulting in 1646 bacterial 

reads per sample, which clustered into 1114 bacterial abun-

dant OTUs containing at least three reads. The true bacterial 

diversity still exceeded the recovered OTUs as indicated by rar-

efaction curves (online supplementary Fig. S4a). About 68% of 

the bacterial OTUs could be assigned to family level. The bac-

terial community comprised 14 phyla and six candidate divi-

sions (online supplementary Table S3). Proteobacteria (40%), 

Actinobacteria (16%), Bacteroidetes (13%), Acidobacteria 

(10%) and Chloroflexi (9%) were the dominant phyla account-

ing for 87% of the bacterial OTUs found. In terms of sequence 

abundance, the top ten bacterial phyla contributed to 99% of 

all bacterial sequences and were dominated by Proteobacteria 

(38%), Actinobacteria (23%), Acidobacteria (20%), Chloroflexi 

(7%), Bacteroidetes (6%), Firmicutes (2%) and 1% of each 

Gemmatimonadetes, Nitrospirae, Candidate division WS3 and 

Verrucomicrobia. The 10 most abundant bacterial classes con-

tributed to 80% of total bacterial sequence reads and were 

composed of Acidobacteria and Alphaproteobacteria (each 

17%) followed by Deltaproteobacteria (13%), Thermoleophilia 

(8%), Acidimicrobia (8%), Actinobacteria (6%) and the 

Betaproteobacteria, Gammaproteobacteria, Sphingobacteria 

and Cytophagia each contributing less than 5%.

The AM fungal dataset of 18S reads comprised 83 796 

sequences. After quality filtering, the number of AM fun-

gal sequences was normalized to the minimum number of 

sequences per sample resulting in 730 AM fungal reads 

per sample, which clustered into 66 abundant OTUs. Most 

AM fungal rarefaction curves (online supplementary Fig. 

S4b) did not reach saturation but came closer to saturation 

level than the bacterial samples. The dominant AM fun-

gal orders were Glomerales (48%), Archaeosporales (35%), 

15% Paraglomerales and (2%) Diversisporales based on the 

total number of OTUs. Based on the relative abundances of 

sequences reads, AM fungi were dominated by Glomerales 

(79%), followed by Archaeosporales (13%), Diversisporales T
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(6%) and Paraglomerales (2%). We detected six AM fun-

gal families which were dominated in sequence abundance 

by Claroideoglomeraceae (41%), Glomeraceae (39%), fol-

lowed by Archaeosporaceae (8%), Diversisporaceae (6%), 

Ambisporaceae (5%) and Paraglomeraceae (2%).

One Paraglomus OTU could be identified as Paraglomus 

majewskii by BLAST (Altschul et al. 1990) nucleotide search.

Impact of freeze-drying, storage time and 

temperature conditions on microbial diversity

On average, 79% of the bacterial OTUs detected in frozen soil 

samples were shared by freeze-dried samples (Table 4), while 

mean OTU richness was equal. At the DNA level, observed bac-

terial species richness was statistically higher (P < 0.01) on plot 

HEG08 with an average of 380 OTUs compared to an average of 

364 OTUs on plot HEG01 while no significant difference could 

by found at the RNA level. Bacterial diversity was not affected 

by freeze-drying of soil samples itself but by a prolonged stor-

age duration of 7 days (Table 5, online supplementary Fig. S5). 

At the DNA level, the observed species number and Shannon 

diversity were significantly lower for freeze-dried samples 

stored for 7 days than for freeze-dried samples stored only for 

1 day. At the RNA level, this phenomenon was observed for the 

Pielou’s evenness index. At the DNA level, 13% of explained 

variance in observed bacterial species numbers could be inde-

pendently attributed to storage time while 26% were explained 

by the sample plot origin as well as 10% of explained variance 

in bacterial Shannon diversity could be independently attrib-

uted to storage time while 69% were explained by the sam-

ple plot origin. At the RNA level, 18% of explained variance in 

Pielou’s evenness could be independently attributed to storage 

time while 42% were explained by the sample plot origin.

About 85% of AM fungal OTUs were shared between fro-

zen and freeze-dried soil samples while mean OTU richness was 

about 116% (Table 4). At the RNA level the mean OTU rich-

ness of freeze-dried samples compared to control samples and the 

number of shared OTUs with the control varied strongly between 

sampling plots and treatments. For example, the number of 

shared OTUs between freeze-dried and control samples reached 

a minimum of 59% while the mean OTU richness of freeze-dried 

samples reached a maximum of even 193% compared to the 

control samples. Nevertheless, neither freeze-drying nor tested 

storage conditions were found to significantly affect the detected 

alpha diversity of AM fungi in the soil samples (Table 6, online 

supplementary Fig. S6). At the RNA level, AM fungal OTU num-

bers were higher on plot HEG08 than HEG01 (P = 0.01).

Impact of freeze-drying, storage time and 

temperature conditions on microbial community 

composition

NMDS ordination plots showed a clear clustering of bacterial 

communities in respect to plot and nucleic acid origin (Fig.1a). 

In the RNA based analysis bacterial communities were enriched 

for Deltaproteobacteria (online supplementary Fig. S7, online 

supplementary Table S4). Freeze-dried samples clustered with 

respective controls in general. Permanova analysis showed a 

significant effect of the sample plot origin on the detected bacte-

rial community but no significant effect of freeze-drying, stor-

age time or storage temperature was found (Table 7).

The NMDS ordination plots showed that, AM fungal com-

munities clustered on the plot at DNA level but exhibited no 

clear pattern in the ordination of RNA-based AM fungal com-

munities (Fig. 1b). Permanova analysis showed a significant 

effect of the sample plot origin on the detected AM fungal 

community but no significant effect of freeze-drying, storage 

time or storage temperature was found (Table 7).

DISCUSSION

Freeze-drying preserved high quality nucleic acids in the soil 

samples with high molecular weight DNA recovered and 

RNA extracts showing RIN with number of about 7.  Fleige 

and Pfaffl (2006) recommended RIN values greater than 5 as 

good total RNA and RIN larger than 8 as perfect total RNA 

Table 4: comparison of OTU richness between frozen (C) and freeze-dried soil samples stored under different time (1 day or 7 days) and 

temperature conditions (room temperature or 4°C)

Bacteria C mean OTUs

Mean OTU richness

Total OTUs C

Shared OTUs with control

RT_1d RT_7d 4°C_1d 4°C_7d RT_1d RT_7d 4°C_1d 4°C_7d

HEG01 DNA 371 372 (100%) 344 (93%) 365 (98%) 371 (100%) 506 396 (78%) 379 (75%) 396 (78%) 398 (79%)

HEG01 RNA 362 382 (106%) 367 (101%) 387 (107%) 384 (106%) 496 410 (83%) 387 (78%) 399 (80%) 400 (81%)

HEG08 DNA 383 386 (101%) 374 (98%) 388 (101%) 369 (96%) 520 415 (80%) 400 (77%) 415 (80%) 386 (74%)

HEG08 RNA 372 382 (103%) 395 (106%) 385 (103%) 362 (97%) 509 392 (77%) 410 (81%) 405 (80%) 388 (76%)

AM fungi C mean OTUs

Mean OTU richness Shared OTUs with control

RT_1d RT_7d 4°C_1d 4°C_7d Total OTUs C RT_1d RT_7d 4°C_1d 4°C_7d

HEG01 DNA 44 39 (89%) 42 (95%) 39 (89%) 41 (93%) 48 43 (90%) 46 (96%) 45 (94%) 45 (94%)

HEG01 RNA 16 15 (94%) 16 (100%) 21 (131%) 13 (81%) 22 13 (59%) 14 (64%) 16 (73%) 13 (59%)

HEG08 DNA 41 40 (98%) 43 (105%) 43 (105%) 41 (100%) 53 45 (85%) 49 (92%) 48 (91%) 46 (87%)

HEG08 RNA 14 19 (136%) 27 (193%) 21 (150%) 27 (193%) 23 21 (91%) 22 (96%) 21 (91%) 22 (96%)

Percentage values are given in brackets.
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for downstream applications like real time PCR or gene 

expression studies. DNA yields decreased with storage time. 

Rehydration of desoxyribonucleases (Dnases) from air mois-

ture could have occurred while freeze-dried Ribonuclease 

(Rnase) A was described to form insoluble precipitates during 

storage (Townsend and DeLuca 1991). Optimal exclusion of 

air moisture could be achieved by closing sample flasks directly 

in the freeze-dryer after purging them with an inert gas like 

nitrogen. Our bench top freeze-dryer did not provide this 

sophisticated feature and our sample flasks probably did not 

seal air-tight. As cheap alternative method we had stored the 

closed sample flasks in sealed plastic bags with blue silica gel.

Impact of freeze-drying, storage time and 

temperature conditions on soil microbial 

diversity

Soil microbes appear in patchy distributions (Mummey and Rillig 

2008; Raynaud et  al. 2014) inhabiting mechanically resistant 

micro-aggregates (<250 µm) (Tisdall and Oades 1982; Vos et al. 

2013). A true homogenization of soil samples with complete cov-

erage of OTUs between replicate sample flasks is thus impossible. 

Therefore, 70–80% overlap of OTUs between control and treat-

ment samples can be considered as satisfactory. Our sequencing 

effort of the bacterial community did not completely assess the 

whole bacterial diversity present in the soil which also accounts 

for an incomplete recovery of OTUs. Considering this, a recov-

ery of OTUs with an average of 79% still proves the validity of 

the study. Sequencing of AM fungi was closer to saturation level 

and explained the enhanced recovery rate of 85% of the OTUs 

between control and freeze-dried samples. A major factor influ-

encing bacterial species richness and community composition 

is soil pH (Tripathi et al. 2012). At the DNA level, bacterial OTU 

numbers were indeed highest on the unfertilized pasture with 

near neutral pH. At the RNA level no difference could be found, 

indicating that the pH difference between both plots is quite small 

and the fertilized plot with a pH of 6.65 still reasonable neutral. 

Storage of freeze-dried samples for 7 days showed a statistical sig-

nificant reduction of bacterial OTU numbers and Shannon diver-

sity at the DNA level and of Pielou’s evenness at the RNA level. 

However, the effect size of this reduction was small as at least 

93% of bacterial OTU numbers were recovered from freeze-dried 

samples compared to the control and the explained variance in 

Shannon diversity attributed to storage duration was only 10% 

in comparison to 69% of variance explained by plot origin.

At the RNA level, total AM fungal OTU richness was higher 

on the unfertilized pasture than on the fertilized meadow. 

A higher diversity of AM fungi in sites with lower anthropo-

genic impact as HEG08 compared to the more intensively used 

site HEG01 was reported before (Lumini et al. 2010). Several 

direct and indirect mechanisms affiliated with fertilization 

Figure 1: non-metric multidimensional scaling plots of bacterial (a) and AM fungal (b) communities. Frozen control samples: filled diamonds, 
freeze-dried samples stored under different conditions: room temperature (square), 4°C (circle), 1 day (open symbols), 7 days (grey-filled sym-
bols). Polygons indicate plot origin while elipses indicate DNA or RNA derived microbial communities.

Table 7: permanova analysis of treatment effects on bacterial and AM fungal community composition at the DNA and RNA level

Bacteria AM fungi

DNA RNA DNA RNA

Factor F P F P F P F P

Sampling plot 5.5 0.001 4.8 0.001 46.5 0.001 9.9 0.001

Freeze-drying 1.5 — 1.1 — 1.5 — 1.7 —

Storage duration 0.96 — 0.95 — 0.67 — 1.2 —

Storage temperature 0.95 — 0.93 — 1.5 — 0.8 —

Statistical significant P values (P < 0.05) are given in bold.
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were identified (Alguacil et al. 2014). We found no effect of 

freeze-drying or subsequent storage conditions on the AM 

fungal alpha diversity measures.

Impact of freeze-drying, storage time and 

temperature conditions on microbial community 

composition

Relative abundances of the five most abundant bacterial phyla 

were similar for the fertilized meadow and the unfertilized pas-

ture. Riber et  al. (2014) also found bacteria to be unaffected 

at the phylum level for the application of animal, urban and 

waste fertilizers. Nevertheless, NMDS ordination plots showed 

distinct clusters for both sampling sites. As we investigated only 

two soil samples, the major environmental drivers for this dis-

tinction cannot be identified. In terms of storage conditions, 

we found no significant effects of freeze-drying, storage tem-

perature or storage time on the detected bacterial communities.

Several studies found Glomerales to be a widespread and a 

dominant class in AM fungal communities, which was also the 

case for the investigated grasslands. Gosling et al. (2014) reported 

a potential negative impact of intensive agricultural manage-

ment on Paraglomus spp. and we found Paraglomerales on both 

grassland plots (medium and high land use index) in low relative 

abundances of about 2–3%. AM fungal communities were well 

separated for sampling plots in NMDS analysis, which could be 

due to the differing land use of mowing and grazing (Morris et al. 

2013). AM fungal community composition was not affected by 

freeze-drying, storage time or storage temperature.

Our findings strongly advocate the use of freeze-drying 

prior to short-term storage and long-distance transporta-

tion of soil samples for molecular studies. Furthermore, the 

sample transportation is non-hazardous and even huge sam-

ple numbers can be transported cost efficiently and reliably 

across countries and continents. Projects with huge sampling 

efforts in remote areas, such as the one of Shi et al. (2017), 

will benefit from using lyophilizaton. Using lyophilization 

would also allow projects on large-scale soil chararacteristics 

(see Scholten et al. 2017) or litter decomposition (see Li et al. 

2017) to include microbial charateristics among the tradition-

ally analyzed chemical properties.
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Supplementary Tables  

 

Table S1 PCR primer sequences. 

Name Sequence (5’-3’) Reference 

907R CCGTCAATTCMTTTGAGTTT Lane et al. (1985) 

341F CCTACGGGAGGCAGCAG Muyzer et al. (1993) 

NS31 TTGGAGGGCAAGTCTGGTGCC Simon et al. (1992) 

GlomerWT0 CGAGDWTCATTCAAATTTCTGCCC Wubet et al. (2006) 

Glomer1536 AATARTTGCAATGCTCTATCCCCA Wubet et al. (2006) 

AM1A CTTTGGTTTCCCRTAAGGYGCC modified after Helgason et al. 

(1998) 

AM1B CTTTGGTTTCCCATARGGTGCC modified after Helgason et al. 

(1998) 

 

Table S2 Formulation of treatment contrasts for linear regression model analysis by 

contrasts function in r. C: Controle samples, RT: freeze-dried samples stored at room 

temperature, 4°C: freeze-dried samples stored at 4°C. 

 Contrast 1) 

Freeze-drying 

versus controle 

Contrast 2)  

4°C versus RT 

storage of freeze-

dried samples 

Contrast 3) 

1 day versus 7 days 

storage of freeze-

dried samples 

Controle 4 0 0 

RT stored 1day -1 1 1 

RT stored 7 days -1 1 -1 

4°C stored 1 day -1 -1 1 

4°C stored 7 days -1 -1 -1 



Table S3 Overview of detected bacterial phyla, occurrence of Proteobacteria subphyla 

and classes of arbuscular mycorrhizal fungi. 

 

Phylum 

Number of 

OTUs 

 

Class Number of OTUs 

1 Proteobacteria 448 1 Glomerales 32 

2 Actinobacteria 178 2 Archaeosporales 23 

3 Bacteroidetes 142 3 Paraglomerales 10 

4 Acidobacteria 107 4 Diversisporales 1 

5 Chloroflexi 96    

6 Firmicutes 36    

7 Gemmatimonadetes 25  Proteobacteria Number of OTUs 

8 Candidate division WS3 15 1 Delta- 221 

9 Cyanobacteria  15 2 Alpha- 114 

10 Verrucomicrobia 13 3 Gamma-  67 

11 Nitrospirae 10 4 Beta- 39 

12 Chlorobi 9 5 Candidate divisions  5 

13 Elusimicrobia 7  unclassified 2 

14 Candidate division BHI80-139 3    

15 Planctomycetes  3    

16 Candidate division JL-ETNP-Z39 2    

17 Fibrobacteres 2    

18 Candidate division BRC1 1    

19 Candidate division TM6  1    

20 Candidate division WCHB1-60 1    

     



Table S4 Treatment specific relative abundances of the twelve most abundant bacterial 

phyla. Visualization by bar plots Fig. S7. RT: storage of freeze-dried samples at room 

temperature, 4°C: storage of freeze-dried samples at 4°C, C: control, storage time one day 

(1d) or seven days (7d). 

  DNA RNA 

H
E

G
0
1
 

C RT1d RT7d 4°C1d 4°C7d C RT1d RT7d 4°C1d 4°C7d 

Proteobacteria 0.31 0.28 0.29 0.31 0.31 0.48 0.47 0.46 0.45 0.49 

Actinobacteria 0.29 0.32 0.37 0.30 0.31 0.17 0.15 0.16 0.17 0.14 

Acidobacteria 0.21 0.20 0.17 0.21 0.19 0.21 0.19 0.19 0.21 0.20 

Bacteroidetes 0.08 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.05 0.05 

Chloroflexi 0.07 0.09 0.08 0.09 0.09 0.06 0.08 0.09 0.07 0.07 

Gemmatimonadetes 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 

Nitrospirae 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Candidate division WS3 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 

Verrucomicrobia 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 

Chlorobi 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 

Firmicutes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cyanobacteria 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 

H
E

G
0
8
 

Proteobacteria 0.31 0.31 0.29 0.30 0.30 0.54 0.48 0.44 0.47 0.41 

Actinobacteria 0.25 0.22 0.19 0.21 0.21 0.14 0.15 0.19 0.12 0.13 

Acidobacteria 0.22 0.26 0.30 0.27 0.28 0.18 0.20 0.19 0.18 0.16 

Bacteroidetes 0.09 0.07 0.06 0.08 0.07 0.06 0.07 0.06 0.08 0.10 

Chloroflexi 0.06 0.08 0.10 0.08 0.08 0.04 0.05 0.08 0.06 0.05 

Gemmatimonadetes 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 

Nitrospirae 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Candidate division WS3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

Verrucomicrobia 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

Chlorobi 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 

Firmicutes 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.06 0.11 

 Cyanobacteria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

  



Table S5 Treatment specific relative abundances of arbuscular mycorrhizal fungi classes. 

Visualization by bar plots Fig. S7. RT: storage of freeze-dried samples at room 

temperature, 4°C: storage of freeze-dried samples at 4°C, C: control, storage time one day 

(1d) or seven days (7d). 

  DNA RNA 

 C RT1d RT7d 4°C1d 4°C7d C RT1d RT7d 4°C1d 4°C7d 

H
E

G
0
1
 

Glomerales 0.65 0.67 0.70 0.66 0.68 0.73 0.76 0.82 0.69 0.84 

Archaeosporales 0.28 0.27 0.26 0.26 0.26 0.24 0.20 0.11 0.10 0.12 

Diversisporales 0.04 0.04 0.02 0.04 0.04 0.03 0.02 0.07 0.18 0.01 

 Paraglomerales 0.03 0.02 0.02 0.04 0.02 0.00 0.03 0.00 0.02 0.03 

H
E

G
0
8
 

Glomerales 0.74 0.79 0.80 0.78 0.82 0.87 0.96 0.88 0.93 0.93 

Archaeosporales 0.24 0.19 0.18 0.19 0.17 0.05 0.01 0.04 0.02 0.03 

Diversisporales 0.01 0.02 0.01 0.02 0.01 0.04 0.02 0.06 0.03 0.04 

Paraglomerales 0.01 0.00 0.00 0.01 0.00 0.03 0.01 0.02 0.03 0.00 

  



Supplementary Figures 

 

 

 

 

Fig. S1 Sampling site: subplots 1 m x 1 m on a) a fertilized meadow, HEG01, and b) an 

unfertilized pasture grazed by cattle, HEG08. Circles indicate the location of the five soil 

cores on each subplot that were combined to a composite soil sample at each plot.  

 

Fig. S2 Experimental design. RT: room temperature.  

Filling of replicate sample flasks  with 10 g soil composite soil samples 

HEG01 HEG08 Control samples  stored at -80°C Freeze-dried samples 1 day storage 7 days storage 

1 day storage 7 days storage 

Control samples  stored at -80°C Freeze-dried samples 4°C storage RT storage 4°C storage RT storage 

b a 



 

 

Fig. S3 Quality assessment of extracted nucleic acids a) DNA extract of a freeze-dried 

soil sample stored at 4°C for 7 days loaded on an agarose gel with GeneRuler DNA 

ladder mix b) RNA extract (RIN 7.5) of a freeze-dried soil sample stored for 7 days at 

room temperature analyzed by capillary gel electrophoresis on an Agilent2100 

Bioanalyzer. 

 

 

 
 

Fig. S4 Rarefaction curves a) bacterial OTUs b) AM fungal OTUs.  

b a 
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Fig. S5 Boxplots of the Shannon diversity and Pielou`s evenness index for bacterial 

communities. Control (C) samples were frozen and stored at -80°C while freeze-dried 

(FD) samples were stored under different conditions: room temperature (RT) or 4°C for 

one or seven days. In case letters are shown, treatments without shared letters indicate 

significant differences at p<0.05.  
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Fig. S6 Boxplots of the Shannon diversity and Pielou`s evenness index for AM fungal 

communities. Control (C) samples were frozen and stored at -80°C while freeze-dried 

(FD) samples were stored under different conditions: room temperature (RT) or 4°C for 

one or seven days upon extraction.  
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Fig. S7 Taxonomic distribution of microbial communities at different soil sample storage 

conditions. a) twelve most abundant bacterial phyla b) four classes of AM fungi. C: 

frozen control samples, RT: freeze-dried and stored at room temperature, 4°C: freeze-

dried and stored at 4°C. 
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Deconvoluting the relative contributions made by specific biotic and abiotic drivers to soil

fungal community compositions facilitates predictions about the functional responses

of ecosystems to environmental changes, such as losses of plant diversity, but it is

hindered by the complex interactions involved. Experimental assembly of tree species

allows separation of the respective effects of plant community composition (biotic

components) and soil properties (abiotic components), enabling much greater statistical

power than can be achieved in observational studies. We therefore analyzed these

contributions by assessing, via pyrotag sequencing of the internal transcribed spacer

(ITS2) rDNA region, fungal communities in young subtropical forest plots included in

a large experiment on the effects of tree species richness. Spatial variables and soil

properties were the main drivers of soil fungal alpha and beta-diversity, implying strong

early-stage environmental filtering and dispersal limitation. Tree related variables, such as

tree community composition, significantly affected arbuscular mycorrhizal and pathogen

fungal community structure, while differences in tree host species and host abundance

affected ectomycorrhizal fungal community composition. At this early stage of the

experiment, only a limited amount of carbon inputs (rhizodeposits and leaf litter) was

being provided to the ecosystem due to the size of the tree saplings, and persisting

legacy effects were observed. We thus expect to find increasing tree related effects on

fungal community composition as forest development proceeds.

Keywords: BEF-China, experimental forest, forest biodiversity experiment, fungal functional groups, host

preference, metagenomics, mycorrhizal fungi, soil

INTRODUCTION

Soil fungi are a highly diverse group of organisms (possibly including several million species;
Blackwell, 2011; Taylor et al., 2014), providing many ecosystem services such as organic matter
decomposition, element cycling, plant nutrition and plant protection (van der Heijden et al.,
2015). They can be assigned to functional guilds based on the primary classes of resources they
exploit (Nguyen et al., 2016a), and the composition of their communities is governed by multiple,
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strongly interacting abiotic, biotic and spatial variables
(Figure 1). Unraveling the relative contributions of these
potential drivers to fungal community composition will greatly
facilitate predictions about ecosystem functioning in response to
environmental changes, particularly reductions in plant diversity.

Land plants and fungi share intimately associated natural
histories (Buscot, 2015). From the onset of the colonization
of terrestrial habitats, plants have gained crucial support from
arbuscular mycorrhizal (AM) fungi (Humphreys et al., 2010),
which provide their plant symbionts with substantial proportions
of their phosphorus requirements (Smith and Smith, 2011).
Saprotrophic fungi evolved to be the most prominent group
of microorganisms capable of decomposing complex plant
residues (Floudas et al., 2012), and their descendants include
ectomycorrhizal (EcM) fungi. The latter mainly decompose
nitrogen-rich polymers, and trade nitrogen and micronutrients
against photosynthates with their plant symbionts, thereby
greatly extending the plants’ ability to acquire both mineral and
organic soil resources (Bruns and Shefferson, 2004). Pathogenic
fungi can substantially impair plant growth and fecundity
(Zeilinger et al., 2016), or even destroy large populations of their
hosts, but they also play important roles in maintaining plant
diversity and mediating plant succession in forest ecosystems
(Gilbert, 2002).

In natural ecosystems, biotic and abiotic components often
show strong interdependencies as plant communities coevolve
with the abiotic soil matrix, and they interact to affect the
physico-chemical conditions of the soils (Augusto et al., 2002;
Ayres et al., 2009; Condit et al., 2013; Zemunik et al., 2016).
Hence in observational studies it is methodologically difficult
to assess the contributions made by each specific factor to the
development of ecosystems and their responses to environmental
changes (Peay et al., 2010; Martínez-García et al., 2015; Schappe
et al., 2017). Correlations between biotic and abiotic factors
must be taken into account in order to allow inferences
about causal relationships underlying community assemblies and

FIGURE 1 | Conceptual overview of the main drivers of soil fungal community

assembly.

confirmation of insights gained by the multitude of observational
studies conducted on regional (e.g., Gao et al., 2015; Martínez-
García et al., 2015; Urbanova et al., 2015; Tedersoo et al., 2016;
Schappe et al., 2017) and global (Tedersoo et al., 2014; Davison
et al., 2015; Prober et al., 2015) scales. While Tedersoo et al.
(2014) and Prober et al. (2015) postulated that plant and fungal
alpha diversity are independent on the global scale (EcM fungi
being an exception), several studies have detected significant
regional relationships between these variables (tropics: Peay et al.,
2013; subtropics: Liang et al., 2015; temperate: Martínez-García
et al., 2015; Urbanova et al., 2015; Tedersoo et al., 2016). In
terms of community composition, Prober et al. (2015) found a
strong correlation between AM fungal and plant beta-diversity in
grasslands. Moreover, regional correlations between subtropical
tree and AM fungal communities and between tropical tree and
non-AM fungal communities have been found by, respectively,
Liang et al. (2015) and Schappe et al. (2017). In contrast, EcM
fungal communities have been reported to be related to host
identity (Ishida et al., 2007; Tedersoo et al., 2008, 2010) and
host richness and abundance (Tedersoo et al., 2014), at both
host species and higher phylogenetic levels, including host genera
(Gao et al., 2013) and families (Tedersoo et al., 2012).

Experimental assembly of host plant species makes it possible
to separate the effects of plant community composition (biotic
components) and soil properties (abiotic components) on the
plant-fungus relationships and associated functional responses
of ecosystems. Information about microbial communities in
experimental forests will increase in the coming years as many
experimental forest platforms have been established recently
(Verheyen et al., 2016; Grossman et al., 2018; Paquette et al.,
2018). Currently, though, published studies on soil fungal
diversity are scarce. To the best of our knowledge, the only
published studies on soil fungi conducted in tree biodiversity
experiments are those by Nguyen et al. (2016b) and Tedersoo
et al. (2016). Nguyen et al. (2016b) focused on relationships
among tree and EcM fungal and saprotroph communities
in young temperate-boreal forests in the Cloquet IDENT
experiment (United States), which includes both American and
European tree species. These were assembled in 12 monoculture
and 4 six-species mixture plots (replicated four times in a block
design, resulting in a total of 64 plots). They detected significant
correlations between the beta-diversities of the trees and both the
EcM and saprotroph soil fungal communities, but no significant
correlations between fungal and tree alpha diversities. Tedersoo
et al. (2016) found context-dependent tree diversity and species
identity effects on soil fungi among tree experimental forest
sites in Finland (the Satakunta experiment) and Estonia. Tree
richness was positively correlated with soil fungal groups in
Estonia and with EcM fungi in Finland. Communities of soil
biota were generally driven by spatial eigenvectors in Finland and
soil properties in Estonia. Furthermore, fungal richness was most
strongly associated with herb cover and tree basal area.

Here, we extend these findings by reporting the results of
a study of fungal communities in plots in a young large-scale
subtropical experimental forest in China planted with 1, 2,
4, 8, or 16 native tree species included in a Biodiversity-
Ecosystem Functioning experiment designated BEF-China
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(Bruelheide et al., 2014). We assessed the contributions made by
biotic (tree community variables), abiotic (soil properties and
topography) and spatial information to the soil fungal richness
and community patterns of the four main fungal functional
groups: saprotrophic, pathogenic, AM and EcM fungi.

The interplay between plant-driven and abiotic processes and
soil fungal communities is likely to vary in strength among fungal
functional groups, since they differ in their degree of association
with particular plant species. We hypothesized that AM and EcM
fungi would show strong, but distinct, correlations with both
plant community composition and abiotic soil properties. This
is because both groups associate directly with plant roots and
the soil matrix, but the ratio of host to symbiont diversity differs
between the two types of mycorrhiza (Buscot, 2015). In contrast,
necrotrophic parasites and saprotrophic fungi do not depend
directly on living plants (Zeilinger et al., 2016), and we expected
communities of these groups to be more strongly affected by
abiotic soil properties than by the plant community.

MATERIALS AND METHODS

Sampling Site
The samples analyzed in this study were collected from plots
hosting 1–16 native subtropical tree species at the BEF-China
site (Bruelheide et al., 2014), which was established in 2009 on
a hillside in Southeast China, Jiangxi Province (29◦07′26.0′′N
117◦54′29.0′′E). The climate there is subtropical with warm
wet summers and cold dry winters. January and July are the
coldest and warmest months, with mean temperatures of 0.4 and
34.2◦C, respectively. The mean annual temperature is 17.4◦C
and mean annual rainfall amounts to 1635 mm (Yang et al.,
2013). Before 2008, the site was in forestry use and hosted
an approximately 20-year-old mixed planted stand of trees of
the economically important timber species Pinus massoniana
(EcM) and Cunninghamia lanceolata (AM), which were clear-cut
directly before establishment of the experiment. Monoculture
plots of both tree species were present in the BEF-China
experimental plantation scheme but were not included in the
sampling design of the present study. The planted forest plots are
located in the hill altitudinal zone, spanning elevations from 105
to 275 m a.s.l. and varying considerably in inclination, with an
average slope of 25◦ (Scholten et al., 2017). The soils are mainly
Cambisols and Cambisol derivatives, falling into the reference
soil groups Regosols, Cambisols, Acrisols, and Gleysols (IUSS
Working Group WRB, 2014), with Cambisols and Regosols on
ridges, spurs and crests, Cambisols and Acrisols along slopes
and colluvic Cambisols and Gleysols occurring predominantly
on foot slopes and in valleys (Scholten et al., 2017). Soil samples
collected for this study had pH values (H2O) of 4.1–5.6, total
nitrogen contents of 0.08–0.31%, carbon to nitrogen ratios of
10–24, effective cation exchange capacities of 35–91 µmol g−1

soil and base saturation values of 6–92%.
A broken-stick design determined the experimental planting

schemes of the 31 forest plots investigated here, i.e., the set of
16 native subtropical tree species was repeatedly sub-divided
into subsets of eight, four, two, and one species to establish

communities with lower diversity levels (Supplementary

Figure S1). Each of the 16 tree species was represented once at
each diversity level (monocultures, and mixtures of 2, 4, 8, and
16 tree species) and less diverse plots were nested within more
diverse plots (Bruelheide et al., 2014). The total tree species pool
has equal numbers of AM- and EcM-forming tree species, but
lower diversity plots do not necessarily have equal proportions of
AM and ECM trees (see Supplementary Figure S1). Each forest
plot covers 25.8 m × 25.8 m, and tree species compositions were
randomly assigned to plots. In each plot, 400 trees were planted
at 1.29 m spacing, in a regular grid with assigned species being
randomly allocated planting positions within the plot. We took
samples for this study in October 2011 after the third growing
season following planting. At this time the mean total tree height
ranged from 52 to 301 cm depending on tree species (Li et al.,
2014). Before sampling for our study, the herb layer was removed
by weeding.

Soil Sampling
In October 2011, we randomly selected five trees per species in
each plot (where possible) for sampling of soil in their root zones.
Thus we planned to collect five replicate samples of soil in root
zones of all 16 tree species at each diversity level (400 samples in
total). However, treemortality prevented collection of six samples
in Castanopsis eyrei root zones (five in the four-tree species plot
and one in the 16-tree species plot), resulting in a final number of
394 samples.

Soil samples were collected within 7 days. Loose stones
and litter were removed from the soil surface and the upper
10 cm of the mineral soil was sampled, by removing four cores
(6 cm in diameter and 10 cm deep) at points 20–30 cm from
each selected tree trunk in cardinal compass directions using
an auger. The four soil cores obtained from the root zone
of each selected tree were mixed, sieved (2 mm mesh size)
and homogenized to form a composite soil sample. Two 15 g
subsamples were immediately flash-frozen in liquid nitrogen for
molecular analysis. One was stored permanently at −80◦C as a
backup. The other was freeze-dried for 48 h and subsequently
stored at −80◦C in a vacuum-sealed plastic bag containing
silica gel prior to transportation to the processing laboratory in
Germany. Freeze-dried soil samples were transported by airplane
within 4 days, following the recommendation of Weißbecker
et al. (2017), and immediately stored at −80◦C until required for
molecular analysis.

Soil Chemical Analysis
Soil samples were air-dried, and a 50 g subsample of each
sample was ground with a ball mill. The pH of sieved samples
(<2 mm) resuspended in 25 ml double-distilled water was
measured potentiometrically using a Sentix 81 electrode (WTW,
Weilheim, Germany). Total organic carbon (Ctot) and total
nitrogen (Ntot) contents of ground samples were measured
using a Vario El III CN-analyzer (Elementar, Hanau, Germany).
Because of the acidic soil conditions, no inorganic carbon was
present, so Ctot represented the soil organic carbon content.
The sieved soil samples were percolated with an unbuffered
1 M NH4Cl solution and the effective cation exchange capacity
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(CEC) of the extracts was measured with a DV 5300 inductively
coupled plasma atomic emission spectrometer (PerkinElmer).
Soil moisture content was assessed from water loss after freeze-
drying.

Nucleic Acid Extraction and Multiplexed
Amplicon Pyrosequencing
Microbial DNA was extracted with a PowerSoil R© htp 96 Well Soil
DNA Isolation Kit, RNA using a PowerSoil R© Total RNA Isolation
Kit (MO BIO Laboratories Inc., Carlsbad, CA, United States).
When using the first of these kits, 0.25 g samples of freeze-dried
soil were extracted twice. When using the second kit, 1 g
samples of freeze-dried soil were re-wetted with 1 ml clean water
for 5 min before extraction. After RNA extraction, an RNA
PowerSoil R© DNA Elution Accessory Kit was used according to
the manufacturer’s instructions. A negative control with no soil
was included in each batch of samples subjected to nucleic acid
extraction. Initially, we intended to produce a cDNA dataset
based on the extracted RNA as reported by, for example, Baldrian
et al. (2012). However, we did not succeed in generating high
quality sequences based on cDNA.

The nucleic acid extracts were quantified with a NanoDrop
ND-8000 spectrophotometer (Peqlab, Germany). Fungal ITS
rDNA amplicon libraries were generated using the fungal-specific
ITS1F primer (Gardes and Bruns, 1993) containing Roche 454
pyrosequencing adaptor B, the universal primer ITS4 (White
et al., 1990), Roche 454 pyrosequencing adaptor A and a
sample-specific multiplex identifier sequence (MID). The ITS
region has been proposed as an universal fungal barcode in
metagenomic studies (Schoch et al., 2012) but it has also
been reported to lack optimal resolving power for AM fungi
(Stockinger et al., 2010). Nevertheless, Berruti et al. (2017)
found similar patterns of diversity in AM fungal communities
assessed by means of an ITS2 and an AM fungal specific 18S
primer pair. The community-structuring effects of location and
environment could be resolved correctly by the ITS2 targeting
primers. Similar numbers of AM fungal operational taxonomic
units (OTUs) have been found in Panamanian rainforest soils
using fungal ITS and AM fungus-specific primers (Schappe
et al., 2017). We amplified the ITS region sequences by
PCR using 50 µl reaction mixtures containing 10 ng DNA
template in 1 µl extraction buffer, 25 µl GoTaq Green Master
Mix (Promega, Mannheim, Germany) and 1 µl of a solution
providing 25 pmol of each of the ITS region-specific primers,
as described by Wubet et al. (2012). All samples were amplified
in triplicate. The PCR replicates were pooled, then purified
using a gel extraction kit (Qiagen, Hilden, Germany). DNA
concentrations of the purified amplicon products were measured
using a Cary Eclipse fluorescence spectrophotometer (Agilent
Technologies, Waldbronn, Germany). Equimolar pools of c.
60 sample amplicons were produced and processed according
to instructions supplied with the GS FLX+ sequencing kit
(Roche, Mannheim, Germany). The sequencing plate was divided
into four lanes and one processed amplicon library pool was
assigned to each lane. The amplicons were then sequenced
by unidirectional pyrosequencing from the ITS4 ends using
a Roche GS-FLX+ 454 pyrosequencer (Roche, Mannheim,

Germany) at the Department of Soil Ecology, Helmholtz Centre
of Environmental Research (UFZ, Halle, Germany).

Bioinformatics Analysis
Multiple levels of sequence processing and quality filtering were
applied using an in-house metabarcode analysis pipeline for
grid engines based mainly on the MOTHUR (version 1.39.5,
Schloss et al., 2009) and OBITools (version 1.2.11, Boyer et al.,
2016) software suites. Initially, sequences with any barcode
mismatches or four primermismatches were removed. All primer
and barcode sequences were discarded. Sequences with any
ambiguous bases or homopolymers exceeding eight nucleotides
were removed. Flows were denoised and reads were trimmed,
using FlowClus (Gaspar and Thomas, 2015), to uniform 360 bp
long read fragments spanning the ITS2 and the 5.8S rRNA gene.
Chimeric reads were detected and removed from each sample
using the UCHIME algorithm as implemented in MOTHUR
(Edgar et al., 2011). Dereplicated quality-filtered sequences were
sorted by decreasing abundance and clustered into OTUs using
the vsearch algorithm (version 2.4.4, Rognes et al., 2016) with a
sequence similarity threshold of 97%. Representative (the most
abundant) sequences for each OTU were taxonomically assigned
based on reference sequences from the UNITE database (version
v7_2, Kõljalg et al., 2013) using the naïve Bayesian classifier
(Wang et al., 2007), as implemented inMOTHUR, at a consensus
threshold of 60%. The sequences identified as fungal were further
classified against the full version of the unite.v7_2 database
augmented with non-fungal eukaryotic ITS sequences retrieved
fromGenBank to improve taxonomic annotation and detect non-
target OTUs. In addition, taxonomic assignments of the first 2500
OTUs were manually refined by inspection of the first 15 INSDC
database blast search results. Assignments with E-values smaller
than eˆ-50 were assumed to be reliable and sequence similarity
thresholds of 75, 80, 85, 90, and 95% were applied for class, order,
family, genus and species classifications, respectively. Putative
functions were annotated using the FUNGuild fungal database
(version 1.1, Nguyen et al., 2016a). Functional annotations were
further refined using information accessible through the APSnet
search engine of the American Phytopathological Society1 and the
MycoBank database (Robert et al., 2013).

Statistical Analysis
Fungal OTUs with at least four sequence reads were included
in the statistical analyses; singletons, doubletons and tripletons
were discarded. Non-metric multidimensional scaling (NMDS)
ordinations based on 30 random starts were calculated from the
abundant fungal OTUdataset (containing at least four sequences)
and the original dataset containing all OTUs. Procrustes
correlation analysis conducted on both ordinations revealed that
fungal community composition was not significantly affected by
the presence or absence of rare fungal and potentially artificial
OTUs (Procrustes correlation coefficient = 0.9987, p < 0.001).
Procrustes analysis was carried out applying the protest function
(Peres-Neto and Jackson, 2001) of the vegan package (Oksanen
et al., 2013). Zhan et al. (2014) found OTUs generated

1http://www.apsnet.org
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by pyrosequencing containing more than three sequences to
be highly reproducible between sequence runs whereas the
reproducibility of OTUs containing three (tripletons), two
(doubletons) or one (singletons) sequence read(s) was drastically
lower.

Statistical analyses were performed using R version 3.4.2 (R
Core Team, 2014). The data matrices for taxonomic information,
environmental variables measured and OTU abundances were
merged using the phyloseq package (McMurdie and Holmes,
2013) to facilitate further splitting of the dataset into data
pertaining to each of the fungal functional groups under
consideration. For the individual fungal functional group
analyses, samples were included in the statistical analysis only if
an arbitrary read count of 20 (215 samples), 40 (178 samples),
210 (190 samples) and 250 (361 samples) was met for AM,
pathogenic, EcM and saprotrophic fungi, respectively. These
sequence thresholds correspond to approximately a tenth of the
maximum read count for the respective functional groups in a
sample. Due to missing tree community data, three samples had
to be excluded from the statistical analysis.

We applied linear regression analyses to determine the
contributions of tree community variables, soil properties,
topography and spatial variables to fungal alpha and
beta-diversity relationships. The tree species of the selected
tree at each sampling position and its eight nearest neighbors
were recorded. The tree community variables assessed included
the following: tree species richness, Shannon and Simpson
diversity indices of the trees, abundance and richness of EcM
and AM trees, tree species identity, their mycorrhizal (ecto
vs. arbuscular) type and tree community composition. The
abiotic variables included the following soil properties: pH;
total nitrogen (Ntot), total carbon (Ctot), and moisture contents;
C:N ratio; effective cation exchange capacity (CEC); and base
saturation (BS); all of these are important indicators of soil
fertility (Lincoln et al., 2014; Scholten et al., 2017; Bünemann
et al., 2018). In addition, two major topographical variables
(altitude and slope) were taken into consideration because the
experimental site is located on steep hills. The GPS coordinates
of sampling locations were included in the statistical analysis as
pairwise sampling distances or spatial eigenvectors.

All analyses were carried out at plot level. For all samples
taken from the root zone of the same tree species in a plot,
fungal read information was summed for richness analysis, and
Hellinger-transformed fungal abundance counts were averaged.
Due to the sequence thresholds applied, not all statistical
sampling units contained the sequence information from five
core replicates (per tree species per plot). While most samples
were retained for the analysis of saprotrophic fungi, the number
of core replicates was nearly evenly distributed from one to five
sampling cores for the remaining fungal groups, AM, EcM and
plant pathogenic fungi (Supplementary Table S1).

Fungal Alpha Diversity Analysis
Species richness information in the fungal count data was derived
using the vegan package (Oksanen et al., 2013) and regressed
against the square root of the number of reads it was based
upon. The resulting fungal richness residuals were included

in model calculations. This approach is an alternative method
for sequence normalization which is applied to avoid severe
loss of valid sequence information (McMurdie and Holmes,
2014; Tedersoo et al., 2014, 2016). We applied a forward model
selection procedure to identify significant drivers of fungal
alpha diversity. Soil properties, topographic, and tree richness
variables (excluding Shannon and Simpson diversity indices)
were transformed by the natural logarithm. Coordinates of
sampling locations were transformed into principal coordinates
of neighborhood matrices (PCNM, Legendre et al., 2009) using
the vegan package (Oksanen et al., 2013). The resulting vectors
were incorporated into mixed effect models with the variable
forest plot identity as a random factor. Correlations of the
selected variables were inspected by variance inflation analysis
(vif) carried out with the fmsb package using a threshold of
10. We applied a forward model selection procedure with linear
mixed-effect models using the lme4 package (Bates et al., 2015)
based on the Akaike Information Criterion corrected for small
sample sizes (MuMIn package, Barton, 2018). The significance
of model parameters was assessed by linear mixed effect models
using the nlme package (Pinheiro et al., 2017) followed by
Analysis of Variance (ANOVA) type II tests implemented in the
car package (Fox and Weisberg, 2011). Shapiro–Wilk tests were
applied to confirm that model residuals met normal distribution
assumptions. The VarCorr function of the lme4 package was
applied to derive the extent to which fungal richness variation
was attributable to the random factor forest plot. Explained
variance was partitioned to fixed effect factors using the hier.part
package (Walsh and MacNally, 2013). The conditional and
marginal coefficients of determination for the mixed effect
models were calculated using theMuMIn package (Barton, 2018).
The marginal coefficients of determination represent the amount
of variance explained by the fixed factors while the conditional
coefficients of determination indicate the amount of variance
explained by both fixed and random factors (Nakagawa et al.,
2013).

Fungal Beta-Diversity Analysis
Beta-diversity values for the fungal and tree communities were
calculated in terms of pairwise Bray–Curtis dissimilarities based
on averaged (per tree species per plot) Hellinger-transformed
abundance counts, representing percentage differences in
community composition (Legendre and De Cáceres, 2013).
Tree community abundance counts were based on the sampled
trees and their eight neighboring tree individuals. Geographic
distances between sampling locations, soil properties and
topographic variables were standardized by natural logarithm
transformation and averaged data were transformed to Euclidean
distances.

To identify the environmental variables that explained the
most fungal beta-diversity, multiple regressions of distance
matrices were applied using the MRM function in the ecodist
package (Goslee and Urban, 2007). The identity of forest plots
was included as a fixed factor to account for the differences
in pairwise sample comparisons within and between plots.
Only variables showing significant correlation with fungal
beta-diversity in partial Mantel tests after accounting for
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variations in geographical distances between sampling locations
were considered for multiple regression analysis. Furthermore,
variables were excluded if they had a variance inflation factor
(vif) greater than 10, calculated using the vif function in the
fmsb package (Nakazawa, 2014). Best subset model selection was
carried out to identify the parameters that best explained fungal
community turnover. The complete list of best model subsets
is shown in Supplementary Tables S4–S7. The percentages
of explained variance contributed by the remaining variables
were calculated using the varpart function in the vegan package
(Oksanen et al., 2013).

RESULTS

Fungal Taxonomic Assignment
Pyrosequencing generated 1,155,299 raw sequences in total from
the 394 soil samples collected. Clusters of least four of the 737,907
reads that passed the quality filtering were assigned to 5,665
fungal OTUs. Rarefaction curves for each fungal functional group
investigated are available in Supplementary Figure S2. In total,
72, 56, and 49% of the fungal OTUs were classified at the order,
family and genus levels, respectively.

We could assign 54% of the fungal OTUs to a functional
group: 31% (1,768 OTUs), 7% (410 OTUs), 5% (320 OTUs),
and 5% (310 OTUs) to saprotrophic, EcM, AM, and pathogenic
fungi, respectively (Supplementary Figure S3). On the basis of
the OTU numbers, saprotrophic fungi were predominantly
Ascomycota (57%), followed by Basidiomycota (37%),
Mucoromycota (5%) and Chytridiomycota (1%). Agaricales
was the most diverse order of saprotrophic fungi, accounting for
about 20% of the OTUs (Supplementary Table S2). Pathogenic
fungi were predominantly plant pathogens (76%), followed by
mycoparasites (11%) and animal parasites (11%). This group
was strongly dominated by Ascomycota (87% of the OTUs),
followed by Basidiomycota (10%) and Chytridiomycota (2%).
The five most diverse orders of pathogenic fungi were the
Capnodiales (26%), Pleosporales (14%), Hypocreales (12%), and
Cantharellales (5%, Supplementary Table S3). AM fungi, which
are monophyletic Glomeromycota, were clearly dominated
by members of the order Glomerales (76% of the OTUs),
followed by Archaeosporales (10%), Diversisporales (4%) and
Paraglomerales (4%). EcM fungi were almost completely made
up of Basidiomycota (86% of the OTUs) and Ascomycota (13%).
The most diverse orders of these fungi were Agaricales (24%)
and Thelephorales (22%).

Effects of Spatial, Soil Property and Tree
Diversity Variables on Soil Fungal Alpha
Diversity
Mean numbers of saprotrophic, pathogenic, AM and EcM fungal
species per tree species within a forest plot were 78, 20, 14,
and 9, respectively. The relative abundances of EcM fungal
sequences were greater in the rooting zones of EcM-forming
tree species than in those of AM-forming trees, especially in
the tree monocultures (Figure 2). Linear regression analysis

of fungal richness residuals and tree alpha diversity (Simpson
indices) revealed no significant correlations (Figure 3). For
the four fungal groups investigated, the final models selected
by the forward selection procedure did not include any tree
richness related variables (Table 1). In total, spatial variables
and soil properties explained 75, 53, 46, and 44% of AM,
saprotrophic, EcM and pathogenic fungal richness residual
variance, respectively. Thus about 28–57% of the variation in
fungal richness remained unexplained. Most of the explained
variance of the fungal richness residuals was attributable to
the PCNM spatial eigenvectors: 47, 27, 26, and 18% for AM,
EcM, saprotrophic and pathogenic fungi, respectively. Of the soil
properties tested, Ntot contributed significantly to the explained
variation in saprotrophic fungal richness residuals (8%), soil
water content to EcM fungal (16%) and soil water content, slope
and effective cation exchange capacity to AM fungal richness
residuals (25%). The residual richness of pathogenic fungi was
correlated only with the spatial PCNM eigenvectors. The variable
forest plot, which was included as a random factor in the linear
mixed effect models, contributed strongly to the total amount
of variance explained by the final models for saprotrophic (17%)
and pathogenic fungi (13%). It did not affect the model strength
for the mycorrhizal fungi richness residuals.

Effects of Differences in Spatial, Soil
Property and Tree Community Variables
on Soil Fungal Community Structure
Partial Mantel tests, after accounting for differences in geographic
distances between samples, showed that at least one of
the tree community variables investigated was significantly
correlated with differences in pathogenic, AM and EcM fungal
community structure (Table 2). The correlation between tree
and saprotrophic community composition was close to the
Bonferroni-corrected α = 0.05 significance level. Differences in
AM fungal and pathogen community structure were significantly
correlated with tree community composition. EcM fungal
community structure was significantly correlated with sample
tree identity, sample tree mycorrhiza type (EcM vs. AM), EcM
tree abundance and EcM tree richness.

Scatterplots of pairwise Bray–Curtis dissimilarities showing
correlations between tree beta-diversity and that of the
specific fungal groups differed visibly (Figure 4). Saprotrophic
fungal communities showed the least community turnover of
all fungal groups, partly overlapping throughout the study
site as the dissimilarity value for all pairwise community
comparisons was <1 (which would represent 100% community
dissimilarity). Community turnover within forest plots was
much smaller than that between forest plots. There was no
detectable trend in saprotroph community turnover associated
with tree community composition. AM and pathogen fungal
communities showed less pronounced separation of within-
and between-forest plot community comparisons, implying
some correlation with tree community structure. Strongly
differing fungal communities were detected in some comparisons
of soil samples from plots with ≥30% differences in tree
community composition. EcM fungi formed very distinct
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FIGURE 2 | Relative abundances of fungal functional groups in tree monocultures. The mycorrhizal type (EcM or AM) of each tree species is indicated in brackets.

Atypically high numbers of EcM fungal sequences were found in two and one of the five replicates of Liquidambar formosana and Sapindus saponaria rooting zone

soil samples, respectively (10-fold higher than in the other replicates). These numbers are not displayed in this graphic, but they were included in the statistical

analyses.

communities and many pairwise sample comparisons showed
no overlap of fungal species. EcM fungal communities showed
the highest pairwise community dissimilarities of the four
functional groups, with a mean Bray–Curtis dissimilarity of
0.89, followed by 0.78, 0.74, and 0.69 for AM, pathogenic
and saprotrophic fungal communities, respectively. However,
EcM fungal communities also showed the highest overlap
of two sampled communities of a fungal functional group
(approximately 80% EcM fungal community similarity). Tree
communities with differences in composition as low as 13%
had non-overlapping EcM fungal communities. There were no
indications of any correlation between EcM fungal and tree
community composition.

Following partial Mantel test analysis we selected the best
model subsets for identifying the parameters that best explained
differences in fungal community structure (Table 3). Abiotic
soil properties explained the most variance in saprotrophic,
pathogenic and AM community composition. The relevant
abiotic variables for saprotroph community turnover were soil
total carbon amount, carbon to nitrogen ratio, effective cation
exchange capacity, base saturation and soil water content.
Carbon to nitrogen ratio was also included in the final
models of pathogenic and AM fungal community structure; in
addition the latter model contained the abiotic soil properties
pH and effective cation exchange capacity. The influence of
tree community variables on fungal species turnover was
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FIGURE 3 | Correlation of fungal richness residuals with tree diversity (A). The scatterplots show residuals of saprotrophic (closed circles), pathogenic (star),

ectomycorrhizal (filled squares) and arbuscular mycorrhizal (open squares) fungal richness. Bar plots (B) show contributions of the following abiotic and spatial

variables to variations in fungal richness, in decreasing intensity of shading: soil chemistry, geographical principal component neighborhood matrix eigenvectors,

forest plot and the joint contribution of the last two factors. The three-dimensional elevation map (C) of the study area highlights the locations of forest plots, with

color coding indicating the diversity levels of monocultures (yellow), two-species mixtures (orange), four-species mixtures (red), eight-species mixtures (blue), and

16-species mixture (purple).

TABLE 1 | Final model explaining fungal richness residuals in correlations of saprotrophic, pathogenic, ectomycorrhizal and arbuscular mycorrhizal fungi as functions of

spatial, environmental and tree diversity variables.

Saprotrophic fungi Pathogenic fungi Ectomycorrhizal fungi Arbuscular mycorrhizal fungi

Chisq Df P Chisq Df P Chisq Df P Chisq Df P

Ntot 6.2 1 0.013 PCNM36 10.7 1 0.00 SWC 19.7 1 0.000 PCNM25 9.2 1 0.002

PCNM8 8.5 1 0.004 PCNM24 5.4 1 0.02 PCNM5 9.7 1 0.002 PCNM13 18.8 1 0.000

PCNM21 6.4 1 0.011 PCNM40 5.2 1 0.02 PCNM12 6.2 1 0.012 PCNM34 4.8 1 0.029

PCNM3 6.0 1 0.014 PCNM1 6.0 1 0.014 SWC 30.9 1 0.000

PCNM29 5.5 1 0.019 PCNM3 29.5 1 0.000

R2
m 0.36 R2

m 0.19 PCNM14 4.1 1 0.043 PCNM4 15.4 1 0.000

R2
c 0.53 R2

c 0.44 SLOPE 24.0 1 0.000

R2
m 0.46 PCNM5 10.0 1 0.002

R2
c 0.46 PCNM9 9.4 1 0.002

CEC 7.1 1 0.008

PCNM22 7.1 1 0.008

PCNM35 4.6 1 0.031

PCNM32 4.4 1 0.036

R2
m 0.75

R2
c 0.75

SWC, soil water content; CEC, effective cation exchange capacity; PCNM, Principal Component Neighborhood Matrices of geographical sampling locations. Linear mixed
effect models include experimental forest plot as a random factor. Values reported are the marginal amounts of explained variance (R2

m) attributed to the fixed variables
only and the conditional amount of explained variance (R2

c) attributed to the summed contributions of fixed and random factors (forest plot).
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TABLE 2 | Partial Mantel correlations, after accounting for dissimilarities in geographic location, of fungal and environmental as well as tree community dissimilarities for

the fungal functional groups indicated.

Saprotrophic fungi Pathogenic fungi AM fungi EcM fungi

Variable R P R P R P R P

(1) Forest plot 0.21 0.0001 0.16 0.0001 0.14 0.0001 0.16 0.0001

(2) Tree community composition 0.11 0.0024 0.22 0.0001 0.15 0.0003 0.07 0.0292

(3) Tree species identity 0.01 0.1668 0.02 0.0738 0.03 0.0492 0.13 0.0001

(4) Sample tree AM/EcM type 0.02 0.0677 0.00 0.306 0.03 0.0729 0.32 0.0001

(5) Tree richness 0.00 0.8481 0.03 0.1732 0.01 0.3838 0.05 0.0901

(6) Tree Shannon diversity 0.00 0.8736 0.03 0.1685 0.01 0.3561 0.05 0.0885

(7) Tree Simpson diversity 0.00 0.8903 0.04 0.162 0.03 0.2673 0.03 0.2373

(8) EcM tree abundance 0.00 0.5179 0.05 0.1991 0.00 0.7535 0.21 0.0004

(9) AM tree abundance 0.00 0.5649 0.02 0.3418 0.08 0.0905 0.06 0.0863

(10) EcM tree richness 0.00 0.7971 0.06 0.1652 0.00 0.9385 0.19 0.0003

(11) AM tree richness 0.00 0.6219 0.00 0.4885 0.00 0.4695 0.00 0.1234

(12) pH (H20) 0.38 0.0001 0.20 0.0028 0.41 0.0001 0.12 0.0141

(13) Ntot 0.13 0.0214 0.06 0.1714 0.08 0.1225 0.07 0.0979

(14) Ctot 0.22 0.0001 0.19 0.0016 0.26 0.0004 0.09 0.0418

(15) C:N ratio 0.41 0.0001 0.31 0.0001 0.40 0.0001 0.08 0.0497

(16) BS 0.35 0.0001 0.19 0.0038 0.35 0.0001 0.04 0.2378

(17) CEC 0.23 0.0001 0.07 0.0956 0.26 0.0002 0.11 0.0272

(18) Soil water content 0.18 0.0005 0.18 0.0092 0.12 0.0368 0.09 0.0331

(19) Altitude 0.00 0.96 0.00 0.8169 0.00 0.644 0.00 0.948

(20) Slope 0.07 0.0798 0.00 0.4638 0.06 0.1671 0.00 0.6141

CEC, effective cation exchange capacity; BS, base saturation; Ntot, total nitrogen content; Ctot, total carbon content; C/N ratio, total carbon to total nitrogen ratio.
Dissimilarity matrices of all the given variables were used in the partial Mantel test analysis. The significant alpha level (<0.05) was Bonferroni-corrected based on the
number of variables tested (α < 0.0023). Bolded values indicate variables that are significantly correlated.

strongly dependent on the fungal functional group investigated.
Collectively, the tree-related variables that were found to
be significant in the partial Mantel tests explained 11% of
differences in EcM fungal community structure in the final MRM
models. Although significant correlations were detected between
tree community dissimilarity and both pathogenic and AM
fungal community structure, the percentages of variance these
correlations explained were very low: 5 and 2%, respectively.
Spatial variables explained a large part of saprotroph and EcM
fungal community variation but were only negligibly correlated
with pathogenic and AM fungal community composition.
Thus all of the three variable classes, biotic, abiotic and
spatial variables, showed important correlations with soil fungal
community structure, but the extent to which they did so
greatly varied among the functional fungal groups. The best
model subsets explained 54, 43, 26, and 23% of differences
in saprotrophic, AM, EcM and pathogenic fungal community
structure, respectively, leaving a large part of fungal community
variation unexplained.

DISCUSSION

Soil fungi are a diverse (Blackwell, 2011; Taylor et al., 2014)
and very heterogeneous group of organisms (Nguyen et al.,
2016a). Our unprecedented study comprised the systematic
analysis of four main fungal functional subgroups: saprotrophic,

plant pathogenic, AM and EcM fungi. The subtropics constitute
a zone of transition from temperate forests dominated by
ectomycorrhizal symbiosis to tropical forests dominated by
arbuscular mycorrhizal symbiosis. The subtropics thus harbor
a high diversity of evergreen and deciduous tree species, and
the number of AM and EcM forming trees occurring there is
balanced, enabling the investigation of a broad range of fungal
functional groups (Toju et al., 2014). Furthermore, the availability
of a large-scale experimental assembly of native subtropical tree
species enabled the quantification of the independent individual
contributions made by tree community structure and soil
properties and topography to soil fungal assembly. In contrast,
tree community composition and richness (biotic variables) and
soil properties (abiotic variables) are intermingled in naturally
evolved forests. Our results provide evidence for a highly
differentiated pattern in fungal-tree and fungal-environment
(abiotic) relationships for all the fungal groups investigated.
As expected, EcM fungal community assembly showed the
strongest correlation with tree community variables, while
saprotroph community assembly was driven only by abiotic
spatial variables and soil properties. Against our expectations,
AM fungal and tree community structure were significantly but
weakly related. Fungal richness was not correlated with any of
the tree community variables assessed. The strong influence of
spatial variables and abiotic soil properties on fungal community
assembly implies considerable early-stage environmental filtering
and dispersal limitation.
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FIGURE 4 | Relationship between fungal and tree beta-diversity (expressed as pairwise Bray–Curtis dissimilarities). Black circles show results of across forest plot

comparisons and blue circles results of within forest plot comparisons (between differing tree species).

Spatial Variables and Abiotic Soil
Properties Contributed to Variation in
Fungal Richness
It was predominantly spatial variables, but also soil properties,
that influenced fungal richness. The strong spatial effects might
result from variations in recent fungal spore inputs, and
unknown legacy effects of the vegetation previously at the site
may also contribute. Such effects would be extremely difficult to
quantify. The experimental site was directly surrounded by forest
plantations to the north, west and east. Inputs from these forests
would depend on multiple factors, including their composition,
maturity and climatic factors. Similarly, the two tree species that
were dominant in the clear-cut forest plantation are known—
Cunninghamia lanceolata (AM) and Pinus massoniana (EcM)—
but they were randomly distributed and the exact previous
positions of these species and other minor components of the
previous stands were not recorded.

Abiotic soil properties moderately impacted the variation in
fungal richness of saprotrophic (8%, total nitrogen content),
EcM (16%, soil water content) and AM fungi (25%, soil water
content, slope, effective cation exchange capacity). The significant
effect of soil nitrogen on saprotroph richness could be explained
by the major limitation of this soil resource in our forests,
where plant-microbial competition for soil nitrogen was reported
previously (Pei et al., 2016). AM fungi depend on carbon
provided by their host plants. The link between AM fungal
richness and the two abiotic variables slope and effective cation
exchange capacity could be related to this dependency. At our
experimental site, slope was one of the main predictors of
soil fertility (Scholten et al., 2017) which might impact tree
productivity, thereby influencing the amount of rhizodeposition
by host plants. Cation exchange capacity can be attributed mainly
to soil aluminum content and aluminum negatively affects tree
height (Scholten et al., 2017). Aluminum stress has been reported
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TABLE 3 | Best subsets of environmental dissimilarity models explaining fungal beta-diversity.

Saprotrophic fungi Pathogenic fungi Arbuscular mycorrhizal fungi Ectomycorrhizal fungi

Model Variance Model Variance Model Variance Model Variance

Plot location 16% Location 2% Location 3% Plot location 14%

Tree comp 5% Tree comp 2% Sample tree ID

Sample tree

AM/EcM type

EcM tree abundance∗

11%

Ctot

CN

CEC

BS

SWC

19% CN 9% pH

CN

CEC

22%

R2
,
P 54% 0.0001 23% 0.0001 43% 0.0001 26% 0.0001

Environmental predictors are those that were retained in the best subsets of multiple regression models. All environmental variables and species information were
transformed to dissimilarity matrices (see section “Materials and Methods”). CEC, effective cation exchange capacity; BS, base saturation; SWC, soil water content; Tree
comp, tree community composition; variance, specific contributions of summarized soil variables, topography and tree composition to the total amount of variance. ∗EcM
tree abundance could be replaced by the variable EcM tree richness, which showed very similar model performance.

to hamper fine root growth and nutrient acquisition by trees
(Marschner, 1991; Kinraide, 2008; de Wit et al., 2010). The
detectable decrease in tree fitness due to metal toxicity might
have led to fewer resources being translocated to the mycorrhizal
fungal partner and fewer colonization sites due to negative
impacts on root structure. None of the topographic variables and
abiotic soil properties analyzed correlated with plant pathogen
fungal richness. This could be due to the primary dependency of
the pathogenic fungi on the living plant tissue. However, many
pathogens spend their lifecycle partly as saprotrophs and thus a
correlation with abiotic soil properties would have been expected
(Kabbage et al., 2015).

None of the fungal groups analyzed, saprotrophs, pathogens,
AM or EcM fungi, showed significant correlations between
species richness and tree diversity. Similarly, no causal
relationship of fungal richness and richness of fungal functional
groups with plant diversity was found in a global study by
Tedersoo et al. (2014). Only ectomycorrhizal fungal richness
was globally correlated with the relative proportion and richness
of EcM plants. In addition, in a regional study, Tedersoo et al.
(2016) concluded that soil resources and tree species identity
have greater effects on the diversity of soil biota than tree species
richness per se. This is also supported by the observational
study of Scheibe et al. (2015) conducted in German temperate
broadleaved forests. Specific tree fungal richness relationships
were found by Liang et al. (2015) and Nguyen et al. (2016b).
Nguyen et al. (2016b) reported, from the American IDENT
experimental site, a correlation between EcM fungal richness and
plant phylogenetic diversity which was caused by the host specific
EcM fungal species associated with gymno- and angiosperms.
Several local and regional observational studies have reported
strong tree species effects (Urbanova et al., 2015) and a
correlation between plant and fungal richness (Gao et al., 2013;
Martínez-García et al., 2015). Liang et al. (2015) found a negative
relationship between AM fungi and tree diversity in subtropical
restoration sites, which was attributed to a (presumably) higher
carbon flux to the belowground compartment in less diverse

and fast-growing forests compared to diverse but light-limited
secondary forests.

We determined fungal richness based on the presence and
absence of diagnostic sequences in DNA extracted from bulk
soil samples. However, tree community effects might first be
discernible in changes in fungal abundances, before fungal species
disappear from the detectable soil DNA pool. Fungal species
could be detectable for several years through DNA content
extracted from inactive spores, dead mycelium and extracellular
DNA (Levy-Booth et al., 2007; Nielsen et al., 2007) even
when they are not actually living under present-day conditions.
Furthermore, plants must be successfully colonized by fungi
before differences in their fungal symbionts’ efficiency can have
any effect (Dickie et al., 2015), so relatively inefficient fungi may
reside in habitats spanning fairly wide ranges of environmental
conditions for considerable periods. In grassland experiments,
time lags of several years were reported before changes in the
plant community composition led to detectable changes in the
composition of the soil microbial community (Eisenhauer et al.,
2010). Thus the effects of tree species identity and tree species
richness on fungal richness could still become detectable in future
years of forest development. In comparison, the experimental
forests in the study of Tedersoo et al. (2016) were well-grownwith
a closed canopy.

Differences in Tree Community Variables
Significantly Affected Community
Structure for Fungal Groups Other Than
Saprotrophs
Consistent with their dominant influence on fungal richness,
spatial variables and abiotic soil properties also had the strongest
effects on fungal community assembly. These variables explained
a large proportion of saprotroph beta-diversity without there
being any effect of tree related variables. At the time of the study,
tree saplings (including many evergreen tree species) provided
only limited belowground carbon input through rhizodeposits
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and leaf litter. As saprotrophic fungi depend on dead rather than
living plant tissue, this community was likely sustained by the
carbon stock residing in stumps and dead roots from the previous
forest plantation. Several other studies have also revealed a
strong influence of abiotic conditions on saprotroph and whole
fungal communities (Wu et al., 2013; Prévost-Bouré et al., 2014;
Tedersoo et al., 2014; Pei et al., 2016) while significant impacts of
tree species community composition on saprotroph community
structure have been found as well (Nguyen et al., 2016b; Schappe
et al., 2017). This divergence in results regarding the impact
of spatial, biotic and abiotic drivers on soil fungal community
composition is also evident from studies focusing on the AM and
EcM fungal subgroups (Öpik and Peay, 2016). Many AM fungi
are distributed globally (Davison et al., 2015) with global AM
fungal diversity (about 300 described to 3000 estimated species,
Krüger et al., 2011; Buscot, 2015) being extremely low compared
to that of AM host plants (several hundreds of thousands, Wang
and Qiu, 2006). The AM fungi have therefore long been thought
to be host generalists. Many studies report strong environmental
filtering of AM fungal communities by soil properties such as pH
(Dumbrell et al., 2010), distance and CN (Dumbrell et al., 2010;
Davison et al., 2016), soil texture and soil moisture (Freitas et al.,
2014), and temperature and soil P (Davison et al., 2016). The
AM fungal communities in our young subtropical forests were
strongly structured by abiotic (pH, CEC, and CN) and spatial
variables. However, several studies found that host plant identity
has effects on AM community assembly (Öpik et al., 2009; Wubet
et al., 2009;Martínez-García et al., 2015) and it has been suggested
that discrete regional and habitat specific fungal pools exist,
indicating context dependent host specificity (Öpik and Peay,
2016). We found a significant but weak effect of tree community
composition on AM fungal community structure. It should be
noted that a rich herb layer, dominated in terms of biomass by
ferns, developed at our experimental forest site in addition to the
tree saplings planted there (Germany et al., 2017). In Southwest
China, Zhang et al. (2004) found that the majority of the fern
species they investigated were AM hosts. Substantial amounts of
fern-associated AM fungi presumably persisted in the soil and
could have impacted the tree-associated AM fungal community
composition that we identified and potential relationships with
tree variable effects.

The evolutionary development of EcM fungi from white
and brown rot fungi took place convergently multiple times
during the past 125 million years, reaching an EcM fungal
species diversity approximately equal to that of EcM host plants
(about 6000, Buscot, 2015). Thus EcM fungi have been assumed
to be specific in nature (Öpik and Peay, 2016) and many
studies, including our results, support a strong host effect (Ishida
et al., 2007; Tedersoo et al., 2008, 2010; Ding et al., 2011).
The linkage between tree and EcM communities, together with
the high diversity of EcM fungi found, presumably reflects an
early stage in the establishment of a complete EcM fungal
community at our experimental site. However, the true host
preference of EcM fungi may rely causally on the specific
environmental conditions created by the host (Öpik and Peay,
2016), since strong environmental drivers of EcM community
composition have been reported previously (Huang et al., 2014;

Glassman et al., 2017; van der Linde et al., 2018), to the extent that
EcM species can be indicators for key environmental variables
(van der Linde et al., 2018). At our site, spatial and tree
related variables structured EcM community composition while
abiotic soil properties did not. Pathogenic fungal community
composition was related to tree community structure, spatial and
abiotic variables (CN content). The simultaneous lack of host
effects (as indicated by a lack of correlation with differences in
tree species identity) could indicate that local tree diversity and
non-host neighboring tree species have played prominent roles.
A similar pattern was found for biotrophic foliar pathogens in
a young temperate experimental forest (Hantsch et al., 2014).
Hantsch et al. (2014) concluded that particular non-host species
(fast growing conifers in their study) in the vicinity of a target
tree species (Tilia cordata and Quercus petraea) may impede or
facilitate fungal pathogen infection depending on the identity of
the species and its proportion in the local neighborhood.

A large proportion of the variation in fungal community
structure and richness remained unexplained by the variables
that we studied. There are numerous possible reasons for this
finding (Bahram et al., 2015). Some significant effects may
have been missed, because influential environmental variables
were not measured. For example, Tedersoo et al. (2016) found
herb cover and tree basal area to be strongly associated with
fungal richness. These variables were not quantified within the
framework of our study. In addition, manganese was present
in high concentrations, and this has been reported to have a
negative influence on tree height (Scholten et al., 2017) and
potentially also to have a negative impact on EcM fungal diversity
(Huang et al., 2014). However, stochastic processes may also have
major effects on fungal community assembly (Powell et al., 2015;
Bahram et al., 2016). Furthermore, our sequence-based data on
fungal community composition may be insufficiently precise and
representative, and this would certainly account for most of the
unexplained variation.

CONCLUSION

We quantitatively assessed the independent contributions made
by spatial, abiotic (soil properties and topography) and biotic
(tree community structure) variables to soil fungal community
structure in a study facilitated by the experimental set-up
of the tree diversity forest plots that we investigated. Our
results suggest that strong environmental filtering and dispersal
limitation were the most important drivers of fungal community
assembly in young subtropical forests. The influence of biotic tree
community variables could already be detected in mycorrhizal
and pathogen fungal groups. Due to the limited size of the
tree saplings and thus of the carbon input to the ecosystem by
rhizodeposits and leaf litter, we expect there to be increasingly
strong tree related effects on fungal community composition
as forest development proceeds. Despite focusing on an early
stage of forest development, our study clearly indicates that
different functional groups of soil fungi respond specifically to
different soil and vegetation variables, and that these specific
responses may be at either the species richness or the community
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composition level. Ongoing studies on context-dependent
community assembly of soil fungi should therefore take into
account functional guilds within the fungi.
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 Tree species Type No.  Tree species Type No. 

 Castanea henryi (Skan) Rehd. & Wils. EcM 5 x 5  Cyclobalanopsis glauca (Thunb.) Oerst. EcM 5 x 5 

 Nyssa sinensis Oliver AM 5 x 5  Quercus fabri Hance EcM 5 x 5 

 Liquidambar formosana Hance AM 5 x 5  Rhus chinensis Mill. AM 5 x 5 

 Sapindus saponaria Linn. AM 5 x 5  Schima superba Gardner & Champion AM 5 x 5 

 Choerospondias axillaris (Roxb.) Burtt & Hill AM 5 x 5  Castanopsis eyrei (Champ.) Tutcher/ C. carlesii (Hemsl.) 

Hay. 

EcM 5 x 5 

 Triadica sebifera (L.) Small AM 5 x 5  Cyclobalanopsis myrsinifolia (Blume) Oerst. EcM 5 x 5 

 Quercus serrata Murray EcM 5 x 5  Lithocarpus glaber (Thunb.) Nakai AM 5 x 5 

 Castanopsis sclerophylla (Lindl.) Schott. EcM 5 x 5  Koelreuteria bipinnata Franch. AM 5 x 5 

 Number of soil samples  200  Number of soil samples  200 

 

Supplementary Figure 1. Broken-stick-design of the experimental forest plots. Plot design presented for the Biodiversity and Ecosystem 

Functioning (BEF) experiment China, study site A. The 16 species mix was sub divided in two times eight species mixtures. These were 

likewise partitioned in four, two and one tree species communities. Tree species are shown as symbols. Similarity of symbols was only 

chosen to emphasize the experimental design and does not imply any similarities or dissimilarities of tree species. No.: Number of samples. 



   

 

Supplementary Figure 2. Rarefaction curves for the main fungal functional groups after sequence 

quality filtering and removal of singleton, doubleton and tripleton operational taxonomic units 

(OTUs). 



   

 

Supplementary Figure 3. Taxonomic composition of the main fungal functional groups based on 

operational taxonomic unit (OTU) counts. Taxonomic composition of saprotrophic, pathogenic and 

ectomycorrhiza fungi is given by phyla while it is presented by orders for arbuscular mycorrhiza 

fungi. 
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Supplementary Table 1. Frequencies of the actual number of soil samples replicates included in the 

statistical sampling units.  

 

Number of replicates 

included in a 

statistical sampling 

unit 

Number of sampling units containing the sequence information of the 

respective number of sample replicates 

Saprotrophic 

fungi 

Plant 

pathogenic 

fungi 

Ectomycorrhizal 

fungi 

Arbuscular 

mycorrhizal 

fungi 

1 - 15 17 13 

2 2 17 6 16 

3 10 18 6 15 

4 15 11 14 11 

5 53 6 17 16 



   

Supplementary Table 2. Taxonomic phyla and orders of saprotrophic soil fungi detected. 

 Saprotrophic fungi OTU count    Saprotrophic fungi OTU count 

1 Agaricales 378   38 Dothideales 5 

2 Eurotiales 143   39 Myrmecridiales 5 

3 Hypocreales 139   40 Ostropales 5 

4 Archaeorhizomycetales 127   41 Phallales 4 

5 Pleosporales 99   42 Tritirachiales 4 

6 Helotiales 81   43 Tubeufiales 4 

7 Tremellales 78   44 Onygenales 4 

8 Mortierellales 75   45 Trichosporonales 4 

9 Chaetothyriales 71   46 Agaricostilbales 4 

10 Sordariales 69   47 Boliniales 3 

11 Xylariales 45   48 Sporidiobolales 3 

12 Trechisporales 40   49 Annulatascales 2 

13 Geminibasidiales 39   50 Atractiellales 2 

14 Orbiliales 26   51 Chytridiales 2 

15 Saccharomycetales 24   52 Filobasidiales 1 

16 Venturiales 24   53 Hysteriales 1 

17 Auriculariales 24   54 Kriegeriales 1 

18 Corticiales 21   55 Lichenostigmatales 1 

19 Polyporales 20   56 Magnaporthales 1 

20 Chaetosphaeriales 18   57 Pleurotheciales 1 

21 Coniochaetales 16   58 Pyrenulales 1 

22 Geoglossales 14   59 Rhizophydiales 1 

23 GS31 14   60 Chytridiales 1 

24 Geastrales 14   61 Filobasidiales 1 

25 Cantharellales 12      

26 Capnodiales 11      

27 Russulales 10      

28 Umbelopsidales 10      

29 Conioscyphales 9      

30 Microascales 8    Ascomycota 1015 

31 Spizellomycetales 8    Basidiomycota 653 

32 Boletales 8    Mucoromycota 80 

33 Dacrymycetales 7    Chytridiomycota 14 

34 Hymenochaetales 6    Zoopagomycota 6 

35 Kickxellales 6      

36 Ophiostomatales 6      

37 Pezizales 6      



   

Supplementary Table 3. Taxonomic phyla and orders of pathogenic fungi, arbuscular mycorrhizal 

(AM) fungi and ectomycorrhizal fungi (EcM). 

Pathogenic fungi OTU number    AM Fungi OTU numbers 

1 Capnodiales 80   1 Glomerales 243 

2 Pleosporales 43   2 Archaeosporales 33 

3 Hypocreales 36   3 Diversisporales 15 

4 NA 34   4 Paraglomerales 15 

5 Cantharellales 16      

6 Glomerellales 14    Glomeromycota 320 

7 Xylariales 14      

8 Helotiales 13      

9 Magnaporthales 9    EcM Fungi OTU numbers 

10 Diaporthales 8   1 Agaricales 98 
11 Botryosphaeriales 7   2 Thelephorales 89 
12 Togniniales 6   3 Sebacinales 61 
13 Chaetothyriales 5   4 Russulales 33 
14 Polyporales 5   5 Cantharellales 31 
15 Entorrhizales 3   6 Helotiales 23 
16 Platygloeales 3   7 Boletales 22 
17 Hymenochaetales 2   8 Corticiales 15 
18 Phacidiales 2   9 Chaetosphaeriales 9 
19 Phaeomoniellales 2   10 Pezizales 7 
20 Spizellomycetales 2   11 Atheliales 4 
21 Coniochaetales 1   12 Endogonales 1 
22 Ophiostomatales 1   13 Eurotiales 1 
23 Rhizophydiales 1   14 Hysterangiales 1 
24 Rhytismatales 1      

25 Ustilaginales 1    Ascomycota 54 

26 Venturiales 1    Basidiomycota 355 

      Mucoromycota 1 

 Ascomycota 270      

 Basidiomycota 31      

 Chytridiomycota 5      

 Entorrhizomycota 3      

 



   

Supplementary Table 4. Best subsets model selection for saprotrophic fungal community composition. The lower gray marked model 

constitutes the one presented in the manuscript. It was chosen as all model variables were significant and for the number of included 

variables it showed the highest F value. The upper model was marked as there is additionally an increase in explained variance (R^2) of at 

least 5% for the addition of one variable compared to the best model subset with one variable less. No.: Running number of the model, V1: 

number of variables included in the model, Int: Intercept, Ctot: total carbon content, CN: carbon to nitrogen ratio, CEC: effective cation 

exchange capacity, BS: base saturation, SWC: soil water content. 
No V1 F F.pval R2 pval Int Plot location pH Ctot CN CEC BS SWC 

1 1 1556 1.00E-04 0.33 1.00E-04 1 1.00E-04 NA NA NA NA NA NA NA 

2 1 1478 1.00E-04 0.32 1.00E-04 1 NA 1.00E-04 NA NA NA NA NA NA 

3 1 883 1.00E-04 0.22 1.00E-04 0.882 NA NA NA NA 1.00E-04 NA NA NA 

4 2 1258 1.00E-04 0.44 1.00E-04 1 1.00E-04 NA NA NA 1.00E-04 NA NA NA 

5 2 1219 1.00E-04 0.44 1.00E-04 1 NA 1.00E-04 NA NA 1.00E-04 NA NA NA 

6 2 1212 1.00E-04 0.43 1.00E-04 1 1.00E-04 NA 1.00E-04 NA NA NA NA NA 

7 3 1043 1.00E-04 0.50 1.00E-04 1 1.00E-04 NA NA NA 1.00E-04 NA 1.00E-04 NA 

8 3 1003 1.00E-04 0.49 1.00E-04 1 1.00E-04 NA 1.00E-04 NA 1.00E-04 NA NA NA 

9 3 984 1.00E-04 0.48 1.00E-04 1 NA 1.00E-04 NA NA 1.00E-04 NA 1.00E-04 NA 

10 4 838 1.00E-04 0.52 1.00E-04 1 1.00E-04 NA NA NA 1.00E-04 0.0011 1.00E-04 NA 

11 4 832 1.00E-04 0.51 1.00E-04 1 1.00E-04 NA NA 6.00E-04 1.00E-04 NA 1.00E-04 NA 

12 4 816 1.00E-04 0.51 1.00E-04 1 1.00E-04 NA 1.00E-04 NA 1.00E-04 3.00E-04 NA NA 

13 5 690 1.00E-04 0.52 1.00E-04 1 1.00E-04 0.0011 NA NA 1.00E-04 7.00E-04 1.00E-04 NA 

14 5 690 1.00E-04 0.52 1.00E-04 1 1.00E-04 NA NA 3.00E-04 1.00E-04 NA 1.00E-04 0.0054 

15 5 687 1.00E-04 0.52 1.00E-04 1 1.00E-04 NA NA NA 1.00E-04 0.0014 1.00E-04 0.0242 

16 6 598 1.00E-04 0.53 1.00E-04 1 1.00E-04 2.00E-04 NA 7.00E-04 1.00E-04 NA 1.00E-04 0.0019 

17 6 594 1.00E-04 0.53 1.00E-04 1 1.00E-04 3.00E-04 NA NA 1.00E-04 0.002 1.00E-04 0.0063 

18 6 587 1.00E-04 0.53 1.00E-04 1 1.00E-04 NA NA 0.0129 1.00E-04 0.0324 1.00E-04 0.0123 

19 7 522 1.00E-04 0.54 1.00E-04 1 1.00E-04 2.00E-04 NA 0.0149 1.00E-04 0.0477 1.00E-04 0.0027 

20 7 516 1.00E-04 0.53 1.00E-04 1 1.00E-04 2.00E-04 0.203 3.00E-04 1.00E-04 NA 0.0014 0.0023 

21 7 513 1.00E-04 0.53 1.00E-04 1 1.00E-04 3.00E-04 0.1494 NA 1.00E-04 0.0019 0.0083 0.0087 

22 8 460 1.00E-04 0.54 1.00E-04 1 1.00E-04 5.00E-04 0.1501 0.0147 1.00E-04 0.0397 0.0039 0.0037 
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Supplementary Table 5. Best subsets model selection for fungal plant pathogen community composition. The lower gray marked model 

constitutes the one presented in the manuscript. It was chosen as all model variables were significant and for the number of variables 

included it showed the highest F value. The upper model is marked as there was also an increase in explained variance (R^2) of at least 5% 

for the addition of one variable compared to the best model subset with one variable less. No.: Running number of the model, V1: number of 

variables included in the model, Int: Intercept, Ctot: total carbon content, CN: carbon to nitrogen ratio, CEC: effective cation exchange 

capacity, BS: base saturation, SWC: soil water content.          No V1 F F.pval R2 pval Int Plot location Tree Ctot CN 

1 1 308.06 1.00E-04 0.12 1.00E-04 0.9999 NA NA NA NA 1.00E-04 

2 1 265.93 1.00E-04 0.11 1.00E-04 1 1.00E-04 NA NA NA NA 

3 1 232.92 1.00E-04 0.10 1.00E-04 1 NA NA 1.00E-04 NA NA 

4 2 291.93 1.00E-04 0.21 1.00E-04 1 NA NA 1.00E-04 NA 1.00E-04 

5 2 255.09 1.00E-04 0.19 1.00E-04 1 1.00E-04 NA NA NA 1.00E-04 

6 2 236.75 1.00E-04 0.18 1.00E-04 1 NA 1.00E-04 NA NA 1.00E-04 

7 3 215.38 1.00E-04 0.23 1.00E-04 1 NA 3.00E-04 1.00E-04 NA 1.00E-04 

8 3 213.20 1.00E-04 0.22 1.00E-04 1 1.00E-04 NA 1.00E-04 NA 1.00E-04 

9 3 201.29 1.00E-04 0.21 1.00E-04 1 NA NA 1.00E-04 0.1423 1.00E-04 

10 4 165.61 1.00E-04 0.23 1.00E-04 1 NA 4.00E-04 1.00E-04 0.1844 1.00E-04 

11 4 164.74 1.00E-04 0.23 1.00E-04 1 1.00E-04 NA 1.00E-04 0.1515 1.00E-04 

12 4 162.57 1.00E-04 0.23 1.00E-04 1 0.3434 0.1789 1.00E-04 NA 1.00E-04 

13 5 133.51 1.00E-04 0.23 1.00E-04 1 0.2849 0.2235 1.00E-04 0.1834 1.00E-04 



   

Supplementary Table 6. Best subsets model selection for ectomycorrhizal fungi community composition. The lower gray marked model 

constitutes the one presented in the manuscript. It was chosen as all model variables were significant and for the number of variables 

included it showed the highest F value. The upper model is marked as there was also an increase in explained variance (R^2) of at least 5% 

for the addition of one variable compared to the best model subset with one variable less. No.: Running number of the model, V1: number of 

variables included in the model, Int: Intercept, Ctot: total carbon content, CN: carbon to nitrogen ratio, CEC: effective cation exchange 

capacity, BS: base saturation, SWC: soil water content. 
No V1 F F.pval R2 pval Int Plot location Sample_Tree Tree Myco EcM_ab EcM_richness 

1 1 290.94 1.00E-04 0.14 1.00E-04 1 1.00E-04 NA NA NA NA NA 

2 1 245.56 1.00E-04 0.12 1.00E-04 1 NA 1.00E-04 NA NA NA NA 

3 1 171.37 1.00E-04 0.09 1.00E-04 0.1066 NA NA NA 1.00E-04 NA NA 

4 2 275.54 1.00E-04 0.24 1.00E-04 1 1.00E-04 NA NA 1.00E-04 NA NA 

5 2 247.28 1.00E-04 0.22 1.00E-04 1 NA 1.00E-04 NA 1.00E-04 NA NA 

6 2 181.87 1.00E-04 0.17 1.00E-04 1 1.00E-04 NA NA NA 0.0013 NA 

7 3 194.15 1.00E-04 0.25 1.00E-04 1 1.00E-04 NA NA 1.00E-04 0.0452 NA 

8 3 193.50 1.00E-04 0.25 1.00E-04 1 1.00E-04 NA NA 1.00E-04 NA 0.016 

9 3 187.17 1.00E-04 0.24 1.00E-04 1 1.00E-04 NA 0.003 1.00E-04 NA NA 

10 4 148.76 1.00E-04 0.25 1.00E-04 1 1.00E-04 0.0452 NA 1.00E-04 0.03 NA 

11 4 148.39 1.00E-04 0.25 1.00E-04 1 1.00E-04 NA 0.0022 1.00E-04 0.0392 NA 

12 4 148.32 1.00E-04 0.25 1.00E-04 1 3.00E-04 0.0454 NA 1.00E-04 NA 0.0112 

13 5 121.32 1.00E-04 0.26 1.00E-04 1 1.00E-04 0.0405 0.0024 1.00E-04 0.0285 NA 

14 5 120.98 1.00E-04 0.26 1.00E-04 1 3.00E-04 0.0406 0.0024 1.00E-04 NA 0.0092 

15 5 120.75 1.00E-04 0.25 1.00E-04 1 2.00E-04 0.0313 NA 1.00E-04 0.1838 0.1034 

16 6 102.60 1.00E-04 0.26 1.00E-04 1 1.00E-04 0.039 0.0019 1.00E-04 0.1752 0.0985  



   

Supplementary Table 7. Best subsets model selection for arbuscular mycorrhizal fungal community composition. The lower gray marked 

model constitutes the one presented in the manuscript. It was chosen as all model variables were significant and for the number of variables 

included it showed the highest F value. The upper model is marked as there was also an increase in explained variance (R^2) of at least 5% 

for the addition of one variable compared to the best model subset with one variable less. No.: Running number of the model, V1: number of 

variables included in the model, Int: Intercept, Ctot: total carbon content, CN: carbon to nitrogen ratio, CEC: effective cation exchange 

capacity, BS: base saturation, SWC: soil water content. 
No V1 F F.pval R2 pval Int Plot location Tree pH Ctot CN CEC BS 

1 1 705.65 1.00E-04 0.22 1.00E-04 0.3903 NA NA NA 1.00E-04 NA NA NA NA 

2 1 647.55 1.00E-04 0.21 1.00E-04 0.8591 NA NA NA NA NA 1.00E-04 NA NA 

3 1 588.33 1.00E-04 0.19 1.00E-04 1 NA 1.00E-04 NA NA NA NA NA NA 

4 2 607.70 1.00E-04 0.33 1.00E-04 1 NA 1.00E-04 NA 1.00E-04 NA NA NA NA 

5 2 605.46 1.00E-04 0.33 1.00E-04 1 1.00E-04 NA NA 1.00E-04 NA NA NA NA 

6 2 585.57 1.00E-04 0.32 1.00E-04 1 NA 1.00E-04 NA NA NA 1.00E-04 NA NA 

7 3 510.16 1.00E-04 0.38 1.00E-04 1 NA 1.00E-04 NA 2.00E-04 NA 1.00E-04 NA NA 

8 3 509.51 1.00E-04 0.38 1.00E-04 1 1.00E-04 NA NA NA NA 1.00E-04 NA 1.00E-04 

9 3 508.00 1.00E-04 0.38 1.00E-04 1 NA 1.00E-04 NA NA NA 1.00E-04 NA 1.00E-04 

10 4 436.50 1.00E-04 0.41 1.00E-04 1 NA 1.00E-04 NA 2.00E-04 NA 2.00E-04 0.0011 NA 

11 4 433.89 1.00E-04 0.41 1.00E-04 1 1.00E-04 NA NA NA NA 1.00E-04 0.0015 1.00E-04 

12 4 433.53 1.00E-04 0.41 1.00E-04 1 1.00E-04 NA NA 1.00E-04 NA 2.00E-04 7.00E-04 NA 

13 5 379.32 1.00E-04 0.43 1.00E-04 1 NA 1.00E-04 1.00E-04 1.00E-04 NA 2.00E-04 0.0015 NA 

14 5 371.93 1.00E-04 0.43 1.00E-04 1 NA 1.00E-04 2.00E-04 NA NA 1.00E-04 0.0014 3.00E-04 

15 5 368.84 1.00E-04 0.43 1.00E-04 1 1.00E-04 NA 1.00E-04 2.00E-04 NA 1.00E-04 8.00E-04 NA 

16 6 320.02 1.00E-04 0.44 1.00E-04 1 NA 1.00E-04 1.00E-04 0.0421 NA 1.00E-04 0.0012 0.172 

17 6 319.34 1.00E-04 0.44 1.00E-04 1 NA 1.00E-04 1.00E-04 1.00E-04 0.2156 1.00E-04 0.0054 NA 

18 6 316.94 1.00E-04 0.43 1.00E-04 1 0.3477 0.0054 2.00E-04 1.00E-04 NA 2.00E-04 0.0016 NA 

19 7 277.21 1.00E-04 0.44 1.00E-04 1 NA 1.00E-04 1.00E-04 0.0325 0.2133 1.00E-04 0.0061 0.1659 

20 7 275.34 1.00E-04 0.44 1.00E-04 1 0.2736 0.0066 1.00E-04 0.048 NA 1.00E-04 0.0018 0.1558 

21 7 274.40 1.00E-04 0.44 1.00E-04 1 0.3712 0.0029 1.00E-04 1.00E-04 0.2293 1.00E-04 0.0044 NA 

22 8 243.43 1.00E-04 0.44 1.00E-04 1 0.282 0.0063 1.00E-04 0.0392 0.2152 1.00E-04 0.0047 0.146 

 





CHAPTER 3  
Linking soil fungal generality to biodiversity in young subtropical 

Chinese forests 

 

 

Christina Weißbecker, Anna Heintz-Buschart, Helge Bruelheide, François Buscot, 

Tesfaye Wubet 

Microorganisms,  

Submitted on 20 October 2019 





  
Microorganisms 2019, 7, x; doi: FOR PEER REVIEW www.mdpi.com/journal/microorganisms 

Article 1 Linking soil fungal generality to tree richness in young subtropical 2 Chinese forests 3 Christina Weißbecker 1*, Anna Heintz-Buschart 1,2, Helge Bruelheide3,2, François Buscot1,2 and 4 Tesfaye Wubet 1,2 5 1 Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120 Halle; 6 christina.weissbecker@ufz.de, anna.heintz-buschart@ufz.de, francois.buscot@ufz.de, tesfaye.wubet@ufz.de 7 2 German Centre for Integrative Biodiversity Research (iDiv) Jena – Halle – Leipzig, Deutscher Platz 5e, 04103 8 Leipzig;  9 3 Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle, 10 Germany, Am Kirchtor 1, 0108 Halle; helge.bruelheide@botanik.uni-halle.de 11  12 * Correspondence: christina.weissbecker@ufz.de; 13 Received: date; Accepted: date; Published: date 14 Abstract: Soil fungi are a highly diverse group of microorganisms that provide many ecosystem 15 services. The mechanisms of soil fungal community assembly must therefore be understood to 16 reliably predict how global changes such as climate warming and biodiversity loss will affect 17 ecosystem functioning . To this end, we assessed fungal communities in experimental subtropical 18 forests by pyrosequencing of the ITS2 region, and constructed tree-fungal bipartite networks based 19 on the co-occurrence of fungal OTUs and tree species. The characteristics of the networks and the 20 observed degree of fungal specialization were then analyzed in relation to the level of tree species 21 diversity. Unexpectedly, plots containing two tree species had higher network connectance and 22 fungal generality values than those with higher tree diversity. Most of the frequent fungal OTUs 23 were saprotrophs. The degree of fungal specialization were highest in tree monocultures. 24 Ectomycorrhizal fungi had higher specialization coefficients than saprotrophic, arbuscular 25 mycorrhizal, and plant pathogenic fungi. High tree species diversity plots with 4 to 16 different tree 26 species sustained the greatest number of fungal species, which is assumed to be beneficial for 27 ecosystem services because it leads to more effective resource exploitation and greater resilience 28 due to functional redundancy.  29  30 Keywords: bipartite network; diversity; fungal community assembly, soil, specialization, 31 subtropics 32  33 1. Introduction 34 Soil fungi are a highly diverse group of microorganisms [1,2] that are crucial for soil health [3] 35 and provide many ecosystem services including decomposition, element cycling, plant nutrition, 36 and plant protection [4]. The mechanisms of soil fungal community assembly must therefore be 37 understood to reliably predict how global changes such as climate warming and biodiversity loss 38 will affect ecosystem functionality. Fungal community assembly is influenced by abiotic, biotic and 39 stochastic factors. Key drivers of fungal community composition and richness include soil moisture 40 [5], soil nutrient content [6,7], precipitation [8], and vegetation [9,10]. Tree species loss is a likely 41 consequence of global change, so it is important to determine how such losses could affect soil 42 fungal communities. We have previously characterized the effects of tree diversity on specific 43 functional groups of soil fungi in subtropical young forests [11]. Here, we extend this analysis by 44 investigating the effects of tree diversity on fungal specialization and tree-fungal network patterns.  45 
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Tree species are known to strongly affect ecosystem conditions including soil properties [12-14] 46 and microclimate [15,16]. Therefore, regions of high tree diversity have less homogeneous soil and 47 environmental conditions than those with tree monocultures. Additionally, the local conditions in 48 regions of high tree diversity depend strongly on the tree species that are present. The neighborhood 49 conditions of a tree can also result in niche shifts. For example, niche differentiation based on crown 50 height was observed in communities with high tree diversity [17,18]. Similarly, fine root niche 51 complementarity [19] was shown to increase resource capture in mixed stands [20,21], and tree 52 species richness was found to correlate positively with the filling of the soil volume by fine roots 53 [19].  54 The performance of species under different environmental conditions can differ strongly [22]. 55 Some species can cope with a broad range of environmental conditions and thus occur frequently in 56 many different habitats. Other species, known as specialists, only perform well in a narrow range of 57 environmental conditions. Therefore, it is assumed that well-adapted specialists will outperform 58 generalists in homogenous environments, while the reverse will be true in heterogeneous 59 environments. In molecular soil fungal ecology, the abundance of a fungal taxon can be regarded as 60 a proxy for its performance because it is assumed that well-performing species will be more able to 61 proliferate and will thus have a greater chance of being detected.  62 Network analysis is a technique that originated in the social sciences but has been widely used 63 in community macroecology, for instance to characterize pollinator-plant or predator-prey 64 interaction networks. The advent of molecular high throughput sequencing technologies has 65 enabled this technique to also be used in microbiology to clarify the mechanisms that structure 66 fungal communities in a way that complements descriptive investigations based on alpha and beta 67 diversity relationships [23-25]. Network analysis can be used to assess the ecological interactions 68 between functionally different partners and to deduce their ecosystem-level consequences in a more 69 integrated manner than is possible by intraspecific investigation. Network analyses inherently 70 account for the fact that all components of an ecosystem are interconnected [26]. Consequently, 71 ecological network analyses are increasingly being used to evaluate the effects of environmental 72 change on ecosystems [27,28]. For example, Tylianakis, et al. [29] found that anthropogenic habitat 73 modification did not affect species richness but significantly influenced the network structure of 74 bees, wasps, and their parasitoids, affecting parasitism rates and thus pollination. Plant-fungal 75 networks have been analyzed to support or better understand disease management [30], ecosystem 76 development [25], succession and seasonality [31], latitudinal gradients [32], and host preferences 77 [33-37]. However, to our knowledge, this work is the first to examine the effects of tree species 78 diversity on tree-soil fungal network structure and soil fungal specialization, and the likely 79 consequences of global tree species loss. The data analyzed here were derived from the biodiversity 80 and ecosystem functioning experiment China (BEF China) [38,39], which features plots having 1, 2, 81 4, 8, and 16 different tree species.  82 We performed a tree-fungal bipartite network analysis using a subsampling approach and 83 evaluated the network metrics specified below in relation to three tree diversity levels. Additionally, 84 we analyzed the specialization of fungal OTUs based on the phi coefficient [40] and assessed 85 differences in the specialization of specific fungal functional groups. Our analysis is based on several 86 network structure metrics, including the main metrics of nestedness, modularity, and connectance, as 87 well as generality – a measure of network asymmetry. The latter metric was included because studies 88 on consumer-prey networks have shown that environmental change can affect consumer-prey 89 asymmetries without strongly affecting other network metrics [27]. The fungal C score was also 90 computed to deduce possible mechanisms of fungal community assembly [41].  91 Nestedness measures the extent to which specialist species of higher trophic levels (e.g. 92 pollinators) interact with generalist species of lower trophic levels (e.g. plants). Each generalist 93 species typically interacts with many higher trophic level species [28]. Highly nested communities 94 are assumed to be stable because most of the interactions involve generalist species, so the overall 95 network structure will not be greatly affected if a disturbance removes a specialist species. 96 Non-nested patterns may be either modular or checkerboard (anti-nested). In modular patterns, 97 
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there are sets of species that interact more strongly with one-another than with species outside the 98 set. Such patterns may result from evolutionary processes that favor the emergence of highly 99 co-adapted species (for example, species that form symbiotic interactions [42]) or modules that 100 independently perform specialized functions [43]. To assess general network structure in terms of 101 nestedness, computed nestedness values were compared to those for a randomized dataset (a null 102 model). Connectance is the ratio of the number of interactions in the network to the total number of 103 possible interactions, while fungal generality is defined as the mean number of tree species per fungal 104 species.  105 We hypothesized that increasing tree diversity would increase connectance and fungal 106 generality while reducing modularity, fungal C score, and fungal specialization as measured by the 107 phi coefficient. 108  109 2. Materials and Methods  110 We used previously published amplicon sequencing data to construct interaction networks [11]. 111 For details of the soil sampling, soil sample preparation, nucleic acid extraction, 454 pyrosequencing, 112 and bioinformatics analysis procedures, please see the work of Weißbecker, Wubet, Lentendu, 113 Kühn, Scholten, Bruelheide and Buscot [11]. Here we briefly outline the experimental design and 114 major sample processing procedures, and describe in detail the data processing steps involved in the 115 network and statistical analyses.  116 2.1. Sampling Site 117 Our study was conducted in the frame of the biodiversity and ecosystem functioning 118 experiment China [BEF China, 38]. In 2009, experimental forest plots were established on a hillside 119 in Southeastern China, Jiangxi Province (29°C07´26.0´´N 117°C54´29.0´´E). The site’s climate is 120 subtropical with warm wet summers and cold dry winters. A broken-stick design was used to 121 determine the experimental planting schemes of the 31 forest plots investigated here: a set of 16 122 native subtropical tree species was repeatedly sub-divided into subsets of eight, four, two and one 123 species to establish communities with lower tree diversity levels (Figure S1). The total species pool 124 had equal numbers of AM- and EcM- forming tree species. Each forest plot covered 25.8 m x 25.8 m. 125 In each plot, 400 trees were planted with a spacing of 1.29 m. In October 2011, the mean total tree 126 height ranged from 52 to 301 cm depending on tree species [44]     127 2.2. Soil Sampling 128 In October 2011, we randomly selected five tree individuals per tree species in each plot (where 129 possible) for root zone sampling, which was performed by using an augur to remove four soil cores 130 (6 cm in diameter and 10 cm deep) at points 20-30 cm from the tree trunk in each of the cardinal 131 compass directions. The four soil cores were then mixed, sieved (2 mm mesh size), and homogenized 132 to form a composite soil sample. The experimental plots were planted according to a broken-stick 133 design (Figure S1), and the number of experimental plots chosen for sampling decreased with 134 increasing tree diversity while the number of samples collected per plot increased (Figure S1). Two 135 15 g subsamples from each pooled sample were immediately flash-frozen in liquid nitrogen. One 136 subsample was then freeze-dried [45] and transported by airplane within 4 days to the processing 137 lab in Germany, where it was immediately stored at -80°C until needed for molecular analysis.  138 2.3. Nucleic acid extraction and multiplexed amplicon pyrosequencing 139 Microbial DNA was extracted with a PowerSoil® htp 96 Well Soil DNA Isolation Kit or a 140 PowerSoil® Total RNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, CA, United States) in 141 combination with a PowerSoil® DNA Elution Accessory Kit. Fungal ITS rDNA amplicon libraries 142 were generated using the fungal-specific ITS1f primer [46] containing Roche 454 pyrosequencing 143 adaptor B, the universal ITS4 [47], Roche 454 pyrosequencing adaptor A, and a sample-specific 144 
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multiplex identifier sequence (MID). All samples were subjected to three replicate PCR reactions.  145 PCR products were cleaned, quantified, and processed using the GS FLX+ sequencing kit (Roche, 146 Mannheim, Germany). The amplicons were sequenced by unidirectional pyrosequencing from the 147 ITS4 ends using a Roche GS-FLX+ 454 pyrosequencer (Roche, Mannheim, Germany) at the 148 Department of Soil Ecology, Helmholtz Centre of Environmental Research (UFZ, Halle, Germany). 149 2.4. Bioinformatic analysis 150 Multiple levels of sequence processing and quality filtering were applied using an in-house 151 metabarcode analysis pipeline for grid engines based mainly on the MOTHUR [48] and OBITools 152 [49] software suites. Sequences with ambiguous bases, barcode mismatches, or homopolymers 153 exceeding eight nucleotides were discarded. FlowClus [50] was used to denoise flows and trim reads 154 into uniform 360 bp long read fragments spanning the ITS2 region and the 5.8S rRNA gene. 155 Chimeric reads were removed using UCHIME [51] and quality filtered sequences were clustered 156 into operational taxonomic units (OTUs) using vsearch [52] with a sequence similarity threshold of 157 97%. OTUs were taxonomically assigned using the UNITE database [version v7_2, 53]. Putative 158 functions were annotated using the FUNGuild fungal database [54]. 159 2.4. Data processing 160 Data processing and statistical analyses were performed using R [version 3.5.2, 55]. The 161 phyloseq package [56] was used to combine and process OTU count and environmental data. Rare 162 fungal OTUs comprising only singleton, doubleton, and tripleton sequences were discarded [57]. 163 Sequences were rarefied to 700 sequences per sample. All remaining OTUs with at least 10 sequences 164 in the total rarefied dataset were considered in subsequent analyses [30]. The abundance data were 165 transformed into incidence data. Other R packages used for data management and visualization 166 included BiocManager [58], biomformat [59], dplyr [60], data.table [61], extrafont [62], gdata [63], 167 ggplot2 [64], plyr [65], prodlim [66] and vegan [67]. 168 2.5. Tree-fungal bipartite analysis in a subsampling approach 169 We performed a fungal-tree bipartite network analysis based on observations of fungal-tree 170 co-occurrence using the bipartite package [68]. In accordance with our sampling design, we sampled 171 each of the 31 forest plots of the broken-stick design. No replicates of tree species mixtures were 172 sampled. For each tree species, we collected five samples at each diversity level. The number of 173 collected samples per plot thus increased with the diversity level: five samples were collected from 174 each monoculture plot, whereas 80 (16×5) samples were collected from the 16 tree species mixture 175 plot. Because the number of forest plots decreased as the tree diversity level increased, we 176 aggregated the data for the 4, 8, and 16 tree species mixture plots into a single “high tree diversity” 177 dataset (Figure 1a). Thus, the “high tree diversity dataset” represented seven independent forest 178 plots compared to eight two-tree species mixtures and 16 tree monoculture plots. We therefore 179 constructed our bipartite networks (see Figure 1c) using a subsampling approach in which each 180 subsample was based on seven plots per tree species diversity level and seven tree species This 181 ensured that all networks were based on the same number of individual plots and the same number 182 of samples within a plot.  183  184 
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 (a) (b) (c) (d) Figure 1. The bipartite network analysis procedure. Data were pooled into three tree diversity levels (a). An 185 illustrative subsampling set (b). For each subsampling combination, a bipartite network was generated (c) and 186 network characteristics such as fungal generality were computed (d). Statistical differences between the tree 187 diversity levels could be analyzed by considering the combined network characteristics of 576 possible 188 subsampling combinations at each tree species diversity level. 189  190 Within a given subsampling combination, the same seven tree species were investigated at all 191 three diversity levels and only one tree species was sampled per plot (Figure 1b). For the two tree 192 species mixtures, there were 1024 (8×27) valid subsamples based on seven independent plots with 193 one tree species per plot. However, the tree species Castanopsis eyrei suffered severe mortality and 194 comparatively few individuals of this species were planted initially. Therefore, at the time of 195 sampling, only a few individuals of this species remained in the experiment, so it was excluded from 196 our analysis. Consequently, there were 576 independent combinations of seven tree species and 197 seven two-species plots that could be used to generate bipartite networks. Bipartite networks were 198 generated based on tree-fungal co-occurrence (Figure 1c) for each of the possible co-occurrence 199 thresholds. That is to say, networks were generated based on the observation of tree-fungus 200 co-occurrence in 1, 2, 3, 4, or 5 of the five soil samples collected for each tree species at each diversity 201 level. We only considered presence-absence data. Network topological characteristics (Figure 1d) 202 were calculated at the network and fungal OTU levels using the networklevel and grouplevel 203 functions of the bipartite package, respectively. For each tree diversity level, we calculated the 204 fungal richness, Shannon diversity, and the following network characteristics: number of fungal 205 OTUs, nestedness (NODF), network connectance, fungal generality, mean number of shared fungal 206 partners, and fungal C score. The Kruskal-Wallis test was used to assess the statistical significance of 207 differences in network characteristics between tree diversity levels based on the 576 data points 208 generated by the subsampling approach. The Kruskal-Wallis test for multiple comparisons (as 209 implemented in the pigrmess package [69]) was used as a post hoc test to perform pairwise group 210 comparisons between the three tree diversity levels. 211 According to Almeida-Neto, et al. [70] the nestedness metric NODF (Nestedness metric based 212 on Overlap and Decreasing Fill) is more robust than the nested temperature metric; higher NODF 213 values indicate greater nestedness. NODF values of our data were statistically compared them to 214 NODF values generated using a simulated null model. The null model was created by shuffling the 215 OTU abundance data before it was divided into subsets corresponding to different tree diversity 216 levels. The column and row sums of the data were kept constant during shuffling. We then used the 217 nullmodel function of the vegan package with the “r2dtable” method to create the null models. 218 2.6. Specialization analysis 219 To complement the bipartite network analysis, we assessed the degree of fungal specialization 220 across the tree diversity levels and among the fungal functional groups. The specialization of each 221 fungal OTU for each tree species was assessed by computing the φ (phi) specialization coefficient 222 based on presence/absence data using Equation 1 [40]. 223 
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Φ = ± √(X^2/N) = (a∙d-b∙c)/ √((a+b) ∙(c+d) ∙(a+c) ∙(b+d)) (1) Equation 1: Χ2 is the chi-square statistic for a 2 x 2 contingency table with N being the total 225 number of observations, a the number of occurrences of a fungal OTU in a plot containing a 226 particular tree species, b the number of occurrences in plots without that species, c the number of 227 times the fungal OTU is absent in plots containing that species, and d the number of times the fungal 228 OTU is absent in all other plots. The phi coefficient ranges from -1 to 1; the extrema of this range 229 indicate a fungal OTU that always avoids the tree species in question and one that is only found in 230 association with that tree species, respectively.  231  232 We determined the median phi coefficient for each of the 576 subsampling combinations (see 233 section 2.6), generating seven plots for each of the three tree diversity levels. The median value of the 234 tree-specific positive phi coefficients of the present OTUs was then calculated for each subsampling 235 combination. Boxplots were used to visualize the median phi coefficients of the subsampling 236 combinations for each tree diversity level. We also determined whether the phi coefficient differed 237 between fungal functional groups and analyzed the differences in the calculated positive phi values. 238 The Kruskal-Wallis test and the Kruskal-Wallis test for multiple comparisons with the Bonferroni 239 correction were used to assess the statistical significance of observed differences. For each fungal 240 OTU, we calculated the maximum phi coefficient across all tree species and identified the 200 fungal 241 OTUs with the highest maximum phi coefficients. The phi coefficients of these fungal OTUs were 242 visualized in a heatmap and clustered using Euclidean distance-based hierarchical clustering 243 dendrograms. The R packages used for this purpose were gplots [63], colorspace [71], and 244 dendextend [72]. We also determined the taxonomic identities of the 20 fungal OTUs with the 245 highest positive phi coefficients.  246 To complement the specialization pattern analysis, we also assessed the taxonomic identity of 247 the most frequent fungal species in all the subsampling combinations. We defined a fungal OTU as 248 being frequent if it occurred in all seven plots of at least one subsampling combination. All fungal 249 OTUs showing this high occurrence pattern at all three diversity levels in at least one subsampling 250 combination were identified taxonomically. In addition, we identified all of the fungal OTUs that 251 were only frequent at one diversity level (which we termed “unique frequent fungal OTUs”) and 252 investigated their occurrence patterns at the diversity levels in which they were not frequent.  253 3. Results 254 Taxonomic assignments of fungal OTUs, the assignments of OTUs to functional groups, and the 255 effects of environmental, spatial, and biotic factors on fungal community composition and diversity 256 were reported by Weißbecker, Wubet, Lentendu, Kühn, Scholten, Bruelheide and Buscot [11]. 257 Briefly, pyrosequencing generated 1,155,299 raw sequences from the 394 collected soil samples. 258 Among the major fungal functional groups, saprotrophic fungi dominated, accounting for 31% of 259 the detected OTUs. Less common functional groups were EcM fungi (7% of all OTUs), AM fungi 260 (5%), and plant pathogens (5%); 46% of the fungal OTUs could not be assigned to a functional group. 261 The final dataset for the following analyses (rarefied to a uniform number of 700 sequences per 262 sample and pruned to exclude OTUs not containing at least 10 sequence reads) comprised 248,026 263 sequences that were clustered into 1,926 fungal OTUs. The analysis was based on three data subsets 264 representing: i) tree monoculture plots ii) two tree species mixture plots, and iii) high tree diversity 265 plots (i.e. plots with 4, 8, or 16 tree species). Rarefaction curves for these data subsets are shown in 266 Figure S2.  267 3.1. Tree-fungal bipartite network analysis with a subsampling approach 268 The network analysis was based on a subsampling approach (see Method section 2.6 and Figure 269 1), which was used to generate all the results presented below. The topological characteristics of the 270 tree-fungal bipartite network were calculated at the network and group levels for all possible 271 
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tree-fungal co-occurrence link thresholds (Table S1). Although the specific values of the network 272 parameters depended on the choice of link threshold, the general trends between tree diversity 273 levels were robust (Figure 2). Increasing the link threshold generally reduced the number of fungal 274 OTUs retained in the bipartite networks (Figure 2a) from about 1000 fungal OTUs for a threshold of 275 1/5 to about 50 OTUs for a threshold of 5/5. Table 1 presents the full set of results obtained using a 276 link threshold of 3/5 (meaning that the bipartite network only included a link between an OTU and a 277 tree species if at least three of the five samples collected for that tree species showed the presence of 278 that fungal OTU). The fungal richness, fungal Shannon diversity, and fungal C score for the 279 monocultures and the two tree species mixtures did not differ significantly but were significantly 280 lower than those for the high tree diversity mixtures (Table 1, Figure S3).     281 At the network level, we analyzed nestedness, network modularity, and network connectance. 282 Tree-fungal networks were less nested (i.e. had lower NODF values) than the null model (Table 2). 283 The two tree species diversity level had the lowest network modularity value and the highest network 284 connectance and fungal generality. All calculated networks consisted of a single module.  285  286 

  (a) (b) 
  (c) (d) 

 Figure 2. Dependence of the calculated network characteristics on the link threshold for tree species – fungal 287 OTU co-occurrence in the bipartite network analysis. The charts show the median values (based on 576 288 subsamples) of four key network characteristics: fungal OTU number (a), network connectance (b), fungal 289 generality (c) and fungal C score (d). A table showing all of the computed network characteristics is available in 290 the Supplementary Material (Table S1). 291  292  293  294  295  296  297  298  299  300  301  302 
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Table 1. Calculated network metrics for different levels of tree species diversity based on 576 tree-fungal 303 bipartite subsamples and three tree diversity levels: monocultures (“Mono”), two-tree species mixtures (“Two 304 mix.”) and high tree diversity mixtures (“High”). The Kruskal-Wallis test was used to identify significant 305 differences in network values across the tree diversity levels. The median values of the network characteristics 306 are reported for each tree diversity level. The Kruskal-Wallis test for multiple comparisons with the 307 Bonferroni-Holmes correction was used to assess the significance of pairwise differences in network 308 characteristics across tree diversity levels (n.s.: no significant difference detected). Numbers indicate the tree 309 diversity levels: 1-monocultures, 2-two tree species mixtures, 3-high diversity tree species mixtures. Results are 310 shown for networks generated using a tree species-fungal OTU co-occurrence threshold of 3/5.  311  312  313 number OTUs modularity connectance1 fungal generality2 fungal  C score3 mean number of shared  fungal partners4 Fungal OTU richness Fungal Shannon diversity Kruskal.p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Median Mono Two mix. High 206 198 251 0.52 0.51 0.58 0.22 0.22 0.2 2.26 2.33 2 0.67 0.68 0.74 9.43 9.57 8.48  1004 1017 1187  4.99 5.06 5.34 Pairw.p 1-2 1-3 2-3 <0.001 <0.001 <0.001 n.s. <0.001 <0.001 n.s. <0.001 <0.001 <0.001 <0.001 <0.001 n.s. <0.001 <0.001 n.s. <0.001 <0.001 n.s. <0.001 <0.001  n.s. <0.001 <0.001 
1Network connectance: Realized proportion of possible links, 2Fungal generality: Mean effective number of tree 314 species per fungal species, 3Fungal C score: Average degree of co-occurrence for all possible pairs of fungal 315 OTUs. Values close to 1 indicate evidence for disaggregation, e.g. through competition. Values close to 0 316 indicate aggregation of species (i.e. no repelling forces between species), 4Mean number of shared fungal 317 partners: Mean number of fungal species that interact with at least two tree species. 318   319 Table 2. Median nestedness (NODF) values for three tree diversity levels (monocultures, two tree species 320 mixtures, and high tree diversity mixtures) based on null models and bipartite networks generated for 576 321 subsamples. Networks were generated using a tree species-fungal OTU co-occurrence threshold of 3/5.  322  323  324  325  326  327  328  329 3.2. Fungal specialization patterns as evaluated using the phi coefficient  330 The specialization of the fungal community at the three tree diversity levels was assessed by 331 computing the median phi coefficients for the 576 subsampling combinations. Specialization was 332 lowest in the two tree species mixtures plots and highest in the tree monocultures (Figure 3). The 333 

  NODF median Wilcox.p Tree monocultures 21.51 <0.001 Null model 57.6 Two tree species mixtures 22.59 <0.001 Null model 57.48 High tree species mixtures 15.66 <0.001 Null model 57.32 
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EcM fungi exhibited a greater degree of specialization than the other fungal functional groups 334 (Figure 4; a table showing the phi coefficients of all the fungal OTUs is available at the zenodo 335 archive); the degrees of specialization of the other groups (saprotrophs, plant pathogens, and AM 336 fungi) did not differ significantly. Additionally, the degree of specialization of saprotrophic fungi in 337 plots with AM tree species was significantly higher than in those with EcM tree species (data not 338 shown). We visualized the distributions of the 200 most frequently identified fungal OTUs in a 339 heatmap covering all the studied tree species (Figure 5). Taxonomic identifications of the 20 most 340 highly specialized fungal OTUs are presented in Table S2; eight of these OTUs were EcM fungi, four 341 were saprotrophs, one was an orchid mycorrhizal OTU, and seven belonged to unknown fungal 342 functional groups. Fifteen fungal OTUs were identified as frequent fungal species at all three tree 343 diversity levels (Table S3). Most (nine) of these frequent fungal OTUs were saprotrophs (9 OTUs), 344 but two were plant pathogens and one arbuscular mycorrhizal fungal OTU was also identified. All 345 fungal taxa that were frequent at only one tree diversity level also occurred at the other tree diversity 346 levels at lower frequencies (Figure S4). 347  348  349 Figure 3. Boxplots of phi coefficients for the three tree diversity levels. The Kruskal-Wallis rank sum test and 350 Kruskal-Wallis test for multiple comparisons were used to evaluate the significance of group differences. 351  352 
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 353 Figure 4. Boxplot showing phi specialization coefficients for the main fungal functional groups. 354  355  356 Figure 5. Heat map showing the distribution patterns of the 200 fungal OTUs with the highest phi 357 specialization coefficients among the 16 tree species. 358 4. Discussion 359 
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In this study, we analyzed the relationship between tree diversity, tree-fungal bipartite network 360 structure, and fungal specialization in young subtropical forest plantations. Weißbecker, Wubet, 361 Lentendu, Kühn, Scholten, Bruelheide and Buscot [11] previously found that local tree species 362 richness had no effect on soil fungal OTU richness. Here, using a network analysis approach that 363 combines tree diversity levels, we found that plots with high tree species diversity (i.e. plots 364 containing 4 to 16 different tree species) exhibited increased fungal diversity. We also observed 365 differences in the network structure of fungal-tree bipartite networks and differences in the degree 366 of fungal specialization between tree diversity levels.  367  4.1. Increased fungal alpha diversity in plots with high tree species diversity  368 The fungal alpha diversity (richness and Shannon diversity) was significantly greater for the 369 high diversity tree species mixtures than for tree monocultures and two tree species mixtures. Tree 370 species richness enhances forest productivity [73-75] and can thus yield higher productivity 371 compared to monocultures (overyielding). Therefore, in addition to providing a greater variety of 372 distinct niches, increasing tree species diversity could increase the quantity of resources (e.g. 373 rhizodeposits, litter input, and fine root turnover) available to fungi, thereby increasing the fungal 374 diversity that can be sustained. A more diverse fungal community might also enhance tree 375 productivity; the two effects could thus be complementary. Accordingly, in a separate study 376 conducted at the site considered here, Fichtner, et al. [76] found that local neighborhood tree species 377 richness increased tree community productivity due to facilitation and competitive reduction. Our 378 previous study [11] revealed no comparable positive effects of tree species diversity on fungal 379 richness. However, that study was conducted at the local neighborhood scale, with tree species 380 diversity values ranging from one to eight because only one focal sampling tree and its eight nearest 381 neighbors were considered. In this work, we instead focused on abundant fungal OTUs (i.e. those 382 represented by at least 10 sequence reads) and binned data representing five diversity levels into 383 three wider diversity categories, increasing the statistical power of our analysis. This resulted in the 384 detection of a positive effect of tree species richness on the abundance of fungal taxa.  385 4.2. The connectance and fungal generality of tree-fungal bipartite networks are highest at the two tree species 386 diversity level  387 Next to investigate the relationship between fungal and tree species diversity, we investigated 388 tree species - fungal OTU co-occurrence patterns. The computed network characteristics revealed 389 significant differences between the low tree diversity plots (monocultures and two tree species 390 mixtures) and those with high tree diversity (4, 8, or 16 tree species; see Table 1). Independently of 391 the chosen link threshold, none of the network characteristics of the tree-fungal bipartite networks 392 differed significantly between the monocultures and the two tree species mixtures. However, 393 contradicting our hypotheses relating to network characteristics, we found that the high tree 394 diversity plots had i) lower median connectance and fungal generality values than the monoculture 395 and two tree species mixture plots as well as ii) higher modularity values and fungal C scores.  396 Our hypothesis about fungal specialization patterns was supported by the finding that 397 monoculture plots had the highest degree of fungal specialization, which suggests that fungal 398 specialists outcompete generalists in the relatively homogeneous environments created when only 399 one tree species is present. The two tree species networks had higher network connectance and a 400 lower degree of fungal specialization than those for monocultures. These observations also support 401 our hypothesis that generalist fungi can cope adequately with the more heterogeneous 402 environments created by the presence of two tree species, and outcompete specialist fungi that only 403 perform well in one of the two niches created by the two tree species. However, our initial 404 hypothesis was not supported by the finding that high tree diversity mixtures had a greater degree 405 of specialization and lower network connectance than the two tree species mixtures. Planting several 406 tree species together presumably creates more environmental niches than are present in 407 monocultures due to both species diversity and interaction effects/processes. Additionally, highly 408 
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diverse tree species mixtures may offer habitats suitable for fungi specialized in connecting different 409 tree species, i.e. those fungi that need resources from different trees to which they are connected. 410 Frequent species are believed to provide crucial network structure support and resilience [77] 411 because they are not limited by resource or partner availability [78]. Therefore, a high number of 412 frequent species is sometimes taken as an indicator of ecosystem stability. On the other hand, 413 specialist species broaden functionality and resource use. Of the three tree species diversity levels 414 considered in this work, the high diversity level may be ecologically preferable in terms of fungal 415 richness and the number of specialist and frequent taxa for three reasons. First, it has the highest 416 number of fungal species. Second, these fungal species include more specialized fungal taxa than are 417 present in plots with less diverse tree species mixtures, meaning that the fungal community’s 418 resource usage is broader. Third, the frequent species found at the lower tree diversity levels are also 419 present at the high diversity level, albeit at reduced frequencies. In the event of tree diversity loss 420 from the high tree diversity plots (which could cause the loss of some specialized fungi), these 421 fungal species may increase in abundance and become frequent, taking over ecological processes 422 such as decomposition, tree protection, and tree nutrition. 423 EcM fungal OTUs exhibited a significantly higher degree of specialization than the other fungal 424 functional groups (saprotrophic fungi, AM fungi, and plant pathogens). Moreover, unlike other 425 fungal functional groups, EcM fungal communities reportedly exhibit significant host effects [11]. In 426 general, evolutionary history suggests that EcM fungi are more highly specialized than AM fungi 427 [79]. The number of plant host species and EcM fungal species is similar [about 6000 428 species,1,80,81,82], while AM plants comprise around 80% of all plant species [1,83] but only around 429 300 AM fungal morphospecies have been described [84]. Nevertheless, some degree of host 430 preference has been reported for AM fungi [85-87]. Bennett, et al. [88] found a higher degree of 431 specialization in tree-AM fungal networks of old forests (>130 years) than in young forests (25 years), 432 and proposed that specialization in AM fungi will become more pronounced as a forest develops 433 after clear-cutting. These authors also suggested that post-disturbance (clear-cutting) associations 434 might reflect the local availability of fungal taxa rather than the intrinsic host preferences of AM 435 fungi.  436 4.3. Comparison with other bipartite network studies 437 In general, our tree-fungal bipartite networks exhibited low to moderate network connectance 438 (0.20-0.27), high modularity (0.41-0.58), and non-nested structures. For comparative purposes, the 439 network characteristics determined in other plant-soil fungal studies are presented in Table 2. 440 Network metrics depend strongly on the number of nodes included, and care must be taken when 441 comparing network metrics from different studies. For example Fodor [41] found a high network 442 connectance in mature forests (55-100 years old) and concluded that mycorrhizal fungi (which were 443 predominantly generalists) acted as connector organisms linking the tree species. This pattern did 444 not exist in our young forests (which were sampled in the third growing season after planting) even 445 though many EcM tree species and tree individuals were present. The fungal communities at our 446 sampling site were characterized by limited dispersal and a high beta-diversity across and within 447 plots [11]. This indicates that mycorrhizal networks had not yet been established at the plot scale; the 448 fungal communities (especially those of EcM fungi) differed strongly between samples within the 449 same plot [11]. Whereas the tree-EcM networks analyzed by Fodor [41] showed a nested pattern, 450 Bahram, et al. [89] found tree-EcM networks to be non-nested. While some studies suggest that 451 mutualistic networks have inherently nested structures [e.g. 90], nestedness patterns in soil fungal 452 communities span the full spectrum of possible structures, ranging from nested [23,41,90] to 453 non-nested [91; this study] and even anti-nested [32] (Table 2). Nestedness is a core network metric 454 because it has been suggested to be related to network persistence [92].  455 In contrast to previous bipartite network studies, all our networks consisted of a single module 456 with high modularity, “indicating the possible presence of community structure” [93].  A modular 457 structure indicates that groups of nodes perform different functions with some independency from 458 one-another [43]. For example, Toju, Guimaraes, Olesen and Thompson [91] found eight 459 
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interconnected modules with differing fungal functional group compositions. The high modularity 460 [>0.4, 94] of our networks may indicate the presence of different fungal functional groups that 461 assemble in different ways relative to the tree community [11]. The computational method used in 462 this work only divides networks into multiple modules if the number of edges between 463 communities is lower than expected [93], which was not the case for our networks. The low number 464 of modules per network (one) may be another indicator of the early developmental state of our 465 networks, indicating that they have yet to form densely interconnected modules. 466 Table 3. Network metrics reported in previously published plant-fungal network studies. 467  468  This study [90] [32] [91] [41] [88]* [24]* [23] Study system 16 subtropical tree species in a forest biodiversity experiment Semi natural grasslands, 33 plant species cool-temperate, warm-temperate and subtropical forests Temperate forest with 33 tree species  Temperate forests, mainly Quercus and Carpinus 33 understory plant species in temperate spruce forest Xeric shrubland Country China Estonia Japan Japan Romania Estonia Mexico Age 3 years    55-100 years 25 years and 130 years 130 years  Treatment Tree species diversity Host plant functional group Latitudinal gradient   Succession and seasonality   Samples Soil within tree rooting zone Root samples Root samples Root samples aboveground EcM fructifications Root samples Root samples Study target Soil fungi AM fungi Soil fungi, fungal groups Soil fungi EcM fungi AM fungi AM fungi Nestedness Less nested (15.66-29.42,) than random (53.87-60.04) NODF More nested than random (27) nestedness temperature) Anti-nested (-9 – 4) weighted NODF) Less nested (25-35,) than random (32-40) weighted NODF More nested (16) than random (38, 31) nestedness temperature)   More nested (14.36-54.83) than random, NODF Number of modules 1 5  8 4  5-9  Modularity 0.41-0.58 Higher than random 0.18  Moderate to low modularity (0.35-0.42), higher than random (0.32-0.38) Low modularity 0.24 0.3-0.44  Modular 0.30-0.57 Connectance 0.20-0.27 Less connected than random 0.52 0.07 0.1-0.55 High connectance 0.42   Low connectance 0.05-0.15 Fungal generality 1.95-2.73     2.25-4.0   Fungal C score 0.63-0.74    No difference of observed    
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(0.59) and random value (0.58) * these studies re-evaluated the data from [86]; empty fields indicate no available information 469  470  471  472 5. Conclusions 473 In accordance with our hypothesis, tree monocultures had the highest frequencies of specialist 474 fungi. However, the degree of fungal specialization and network segregation were higher in plots 475 with high tree diversity than in those with only two tree species. There is ongoing and global interest 476 in clarifying the impact of tree diversity on sustainable forest plantations [95,96]. Plots with high tree 477 diversity (i.e. those with 4 to 16 different tree species) supported the greatest number of fungal 478 species, which is assumed to be beneficial for ecosystem service provision because greater fungal 479 diversity enables more effective resource exploitation and confers greater resilience due to 480 functional redundancy. 481 Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 482 Broken-stick-design of the experimental forest plots, Figure S2: Rarefaction curves, Figure S3: Fungal richness, 483 Figure S4: Occurrence patterns of unique frequent fungal OTUs. Table S1: Network characteristics for 484 tree-fungal bipartite analysis based on co-occurrence, Table S2: Top 20 specialist fungal OTUs based on 485 maximum phi coefficient values, Table S3: Frequent fungal OTUs at all three tree diversity levels. 486 Data availability: Relevant materials and protocols will be made available upon request. Datasets of the raw 487 sequences generated for this study can be found in the European Nucleotide Archive (https://www. 488 ebi.ac.uk/ena/data/view/PRJEB12020) [97]. The bioinformatically processed sequence dataset and metadata can 489 be found in the Zenodo repository (https://zenodo.org/ record/1215505)[98]. The R scripts generated for the 490 statistical analyses and the table with the fungal OTU phi coefficients will be made available in a public 491 repository during the revision process. 492 Author Contributions: conceptualization, C.W., T.W., F.B. and H.B.; formal analysis, C.W., A.HB., T.W. and 493 H.B.; investigation, C.W.; data curation, C.W.; writing—original draft preparation, C.W.; writing—review and 494 editing, C.W., A.HB, F.B., H.B. and T.W.; 495 Funding: This research was funded by the German Research Foundation (DFG) within the framework of the 496 Research Unit FOR 891 `BEF-China´ (grant numbers BU 941/12-2 and BR1698/10-2), ´GFBio II´ (grant number 497 BU 941/23-2) and the Helmholtz Impulse and Networking Fund through the Helmholtz Interdisciplinary 498 Graduate School for Environmental Research (HIGRADE)[99]. Anna Heintz-Buschart was funded by the 499 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig of the German Research 500 Foundation (FZT 118).  501 Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 502 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 503 publish the results. 504 References 505 1. Blackwell, M. The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 2011, 98, 426-438. 506 2. Peay, K.G.; Kennedy, P.G.; Talbot, J.M. Dimensions of biodiversity in the earth mycobiome. Nat Rev 507 Microbiol 2016, 14, 434-447. 508 3. Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial diversity in soil: Selection microbial populations 509 by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 2004, 42, 510 243-270. 511 4. van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The unseen majority: Soil microbes as 512 drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 2008, 11, 296-310. 513 
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         Tree species Type No.  Tree species Type No.  Castanea henryi (Skan) Rehd. & Wils. EcM 5 x 5  Cyclobalanopsis glauca (Thunb.) Oerst. EcM 5 x 5  Nyssa sinensis Oliver AM 5 x 5  Quercus fabri Hance EcM 5 x 5  Liquidambar formosana Hance AM 5 x 5  Rhus chinensis Mill. AM 5 x 5  Sapindus saponaria Linn. AM 5 x 5  Schima superba Gardner & Champion AM 5 x 5  Choerospondias axillaris (Roxb.) Burtt & Hill AM 5 x 5  Castanopsis eyrei (Champ.) Tutcher/ C. carlesii (Hemsl.) Hay. EcM 5 x 5  Triadica sebifera (L.) Small AM 5 x 5  Cyclobalanopsis myrsinifolia (Blume) Oerst. EcM 5 x 5  Quercus serrata Murray EcM 5 x 5  Lithocarpus glaber (Thunb.) Nakai AM 5 x 5  Castanopsis sclerophylla (Lindl.) Schott. EcM 5 x 5  Koelreuteria bipinnata Franch. AM 5 x 5  Number of soil samples  200  Number of soil samples  200 Figure S1. Broken-stick-design of the experimental forest plots. Plot design presented for the biodiversity and ecosystem functioning (BEF) experiment China, study site A. The 16 species mix was sub-divided in two times eight species mixtures. These were likewise partitioned into four, two and one tree species communities. Tree species are shown as symbols. Similarity of symbols was only chosen to emphasize the experimental design and does not imply any similarities or dissimilarities of tree species traits. No.: Number of samples.  



   Figure S2. Rarefaction curves of monoculture (A) two tree species mixtures (B) high tree diversity mixtures (4, 8 or 16 tree species mixtures).   Figure S3. Fungal richness (A) and fungal Shannon diversity (B) across the 576 subsampling permutations. 
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Frequent fungal species unique to monocultures Monocultures Two tree species mixtures High tree diversity mixtures    Frequent fungal species unique to two tree species mixtures Two tree species mixtures Monocultures High tree diversity mixtures    Frequent fungal species unique to high tree diversity mixtures High tree diversity mixtures Monocultures Two tree species mixtures    Figure S4. Occurrence patterns of unique frequent fungal OTUs of one tree diversity level across all tree diversity levels. Frequent fungal OTUs were defined as those, occurring on all seven plots in at least one permutation. 



Table S1. Network characteristics for tree-fungal bipartite analysis based on co-occurrence. Network metrics (A) were compared between the tree diversity levels, while network nestedness (B) was compared against a null model. Networks were calculated for all possible link thresholds (one to five out of five samples) in which co-occurrence was observed. The Kruskal-Wallis test was applied to test for a significant difference of each network characteristic, the p value is reported. Median values of  the 576 subsampling routines are given for the three tree diversity levels and below stated whether the Kruskal-Wallis test for multiple comparisons was significant (T=TRUE) or not (F=FALSE) for the group comparisons (indicated by numbers).  A number OTUs modularity connectance fungal generality fungal C score mean shared  fungal partners 1 co-occurrence <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Median mono two mix. high 1004 1017 1187 0.43 0.41 0.46 0.26 0.27 0.24 2.61 2.73 2.39 0.64 0.63 0.67 69.17 77.98 66.67 1-2/1-3/2-3 F/T/T/ T/T/T/ T/T/T/ T/T/T/ T/T/T/ T/T/T/ 2 co-occurrences <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Median mono two mix. high 423 427 550 0.50 49 0.55 0.22 0.23 0.21 2.27 2.33 2.06 0.68 0.68 0.72 20.19 21.14 20.71 1-2/1-/.2-3 F/T/T/ T/T/T/ T/T/T/ T/T/T/ F/T/T/ T/_F/T/ 3 co-occurrences <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Median Mono two mix. high 206 198 251 0.52 0.51 0.58 0.22 0.22 0.2 2.26 2.33 2 0.67 0.68 0.74 9.43 9.57 8.48 1-2/1-3/2-3 T/T/T/ F/T/T/ F/T/T/ T/T/T/ F/T/T/ F/T/T/ 4 co-occurrences <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Median mono two mix. high 96 83 117 0.51 0.49 0.56 0.22 0.23 0.2 2.35 2.53 2.08 0.65 0.63 0.72 4.83 4.86 4.43 1-2/1-3/2-3 T/T/T/ T/T/T/ T/T/T/ T/T/T/ T/T/T/ F/T/T/ 5 co-occurrences <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Median mono two mix. high 45 39 56 0.52 0.51 0.58 0.22 0.23 0.2 2.33 2.37 1.95 0.66 0.65 0.72 2.19 2.05 1.9 1-2/1-3/2-3 T/T/T/ F/T/T/ T/T/T/ F/T/T/ F/T/T/ T/T/_F/  

  NODF B median Wilcox.p 1 co-occurrence Mono 27.83 <0.001 Nullmodel 56.71 Two mix. 29.42 <0.001 Nullmodel 56.83 High 24.61 <0.001 Nullmodel 56.66 2 co-occurrences Mono 22.18 <0.001 Nullmodel 54.74 Two mix. 23.67 <0.001 Nullmodel 53.87 High 17.8 <0.001 Nullmodel 54.24 3 co-occurrences Mono 21.51 <0.001 Nullmodel 57.6 Two mix. 22.59 <0.001 Nullmodel 57.48 High 15.66 <0.001 Nullmodel 57.32 4 co-occurrences Mono 22.91 <0.001 Nullmodel 59.76 Two mix. 26.3 <0.001 Nullmodel 60.04 High 16.85 <0.001 Nullmodel 58.71 5 co-occurrences Mono 21.47 <0.001 Nullmodel 59.63 Two mix. 24.25 <0.001 Nullmodel 58.67 High 14.98 <0.001 Nullmodel 59.37  Network modularity: A high value indicates stronger connections within than between modules, Network connectance: Realized proportion of possible links, Fungal generality: Mean effective number of tree species per fungal species, Mean number of shared fungal partners: Mean number of fungal species that two tree species interact with, Fungal C score: Average degree of co-occurrence for all possible pairs of fungal OTUs. Values close to 1 indicate that there is evidence for disaggregation, e.g. through competition. Value close to 0 indicate aggregation of species (i.e. no repelling forces between species); NODF: nestedness metric (nestedness metric based on overlap and decreasing fill.



Table S2. Top 20 specialist fungal OTUs identified by maximum phi coefficient values.     Fungal_guild Phylum Class Order Family Genus Otu00046 Ectomycorrhizal Basidiomycota Agaricomycetes Agaricales Hymenogastraceae Hymenogaster Otu00561 Ectomycorrhizal Basidiomycota Agaricomycetes Agaricales Entolomataceae Entoloma Otu01026 Ectomycorrhizal Basidiomycota Agaricomycetes Thelephorales Thelephoraceae Tomentella Otu01059 Unknown Rozellomycota GS11 NA NA NA Otu01081 Unknown NA NA NA NA NA Otu01112 Ectomycorrhizal Basidiomycota Agaricomycetes Thelephorales Thelephoraceae Tomentella Otu01197 Unknown Rozellomycota GS11 NA NA NA Otu01234 Orchid Mycorrhizal Basidiomycota Agaricomycetes Cantharellales Tulasnellaceae Epulorhiza Otu01639 Saprotroph Ascomycota Archaeorhizomycetes Archaeorhizomycetales Archaeorhizomycetaceae Archaeorhizomyces Otu01746 Unknown Ascomycota Leotiomycetes Helotiales NA NA Otu01872 Saprotroph Mucoromycota NA Mortierellales Mortierellaceae Mortierella Otu01993 Ectomycorrhizal Basidiomycota Agaricomycetes Cantharellales Ceratobasidiaceae Ceratobasidium Otu02009 Unknown Ascomycota Eurotiomycetes NA NA NA Otu02292 Ectomycorrhizal Basidiomycota Agaricomycetes Thelephorales Thelephoraceae Tomentella Otu02384 Unknown Ascomycota Xylonomycetes GS34 NA NA Otu02663 Saprotroph Basidiomycota Agaricomycetes Agaricales Clavariaceae Clavaria Otu02893 Saprotroph Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium Otu03239 Unknown Ascomycota NA NA NA NA Otu03384 Ectomycorrhizal Basidiomycota Agaricomycetes Agaricales Entolomataceae Entoloma Otu04209 Ectomycorrhizal Basidiomycota Agaricomycetes Sebacinales Sebacinaceae Sebacina 



Table S3. Frequent fungal OTUs at all three tree diversity treatments (monocultures, two tree species mixtures and high tree diversity mixtures). Frequent fungal species were defined as fungal OTUs appearing at least once on all seven plots of one subsampling permutation.  Fungal_guild Kingdom Phylum Class Order Family Otu00002 Saprotroph Fungi Ascomycota Archaeorhizomycetes GS31 NA Otu00003 Saprotroph Fungi Basidiomycota Geminibasidiomycetes Geminibasidiales Geminibasidiaceae Otu00005 Saprotroph Fungi Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Otu00009 Saprotroph Fungi Ascomycota Sordariomycetes Hypocreales Hypocreaceae Otu00012 Unknown Fungi Ascomycota Leotiomycetes Helotiales NA Otu00019 Saprotroph Fungi Mucoromycota NA Mortierellales Mortierellaceae Otu00034 Saprotroph Fungi Basidiomycota Agaricomycetes Trechisporales Hydnodontaceae Otu00038 Arbuscular Mycorrhizal Fungi Glomeromycota Glomeromycetes Glomerales Glomeraceae Otu00068 Unknown Fungi NA NA NA NA Otu00080 Plant Pathogen Fungi Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Otu00084 Saprotroph Fungi Ascomycota Sordariomycetes Hypocreales Hypocreaceae Otu00203 Saprotroph Fungi Basidiomycota Agaricomycetes Agaricales Clavariaceae Otu00211 Unknown Fungi Basidiomycota Agaricomycetes Agaricales NA Otu00273 Saprotroph Fungi Mucoromycota NA Mortierellales Mortierellaceae Otu00298 Plant Pathogen Fungi Ascomycota Sordariomycetes Xylariales Sporocadaceae    
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