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Magnetic molecules, modelled as finite-size spin systems, 
are test-beds for quantum phenomena1 and could constitute 
key elements in future spintronics devices2–5, long-lasting 
nanoscale memories6 or noise-resilient quantum computing 
platforms7–10. Inelastic neutron scattering is the technique of 
choice to probe them, characterizing molecular eigenstates on 
atomic scales11–14. However, although large magnetic molecules 
can be controllably synthesized15–18, simulating their dynamics 
and interpreting spectroscopic measurements is challenging 
because of the exponential scaling of the required resources 
on a classical computer. Here, we show that quantum com-
puters19–22 have the potential to efficiently extract dynamical 
correlations and the associated magnetic neutron cross-sec-
tion by simulating prototypical spin systems on a quantum 
hardware22. We identify the main gate errors and show the 
potential scalability of our approach. The synergy between 
developments in neutron scattering and quantum processors 
will help design spin clusters for future applications.

To understand the spin dynamics from inelastic neutron scatter-
ing (INS) experiments, we need to compute the magnetic neutron 
cross-section (T = 0) as a function of the transferred energy (E) and 
momentum vector (Q)23:
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Here, Fi(Q) is the (known) magnetic form factor for ion i, |0〉 and 
|p〉 are the ground and excited molecular eigenstates with energies 
E0 = 0 and Ep, and Rij are the relative positions of the magnetic ions 
with spin components αsi . Excitation energies Ep and the products of 
spin matrix elements ⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩α βs p p s0 0i j  are the Fourier frequen-
cies and coefficients of dynamical spin–spin correlation functions:
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These are the key ingredients for computing I(Q, E) and are the 
hard task for classical computers. Indeed, the calculation of C αβ t( )ij  
for many interesting molecules is presently unfeasible. Here, we pro-
pose the following strategy: use a quantum computer (QC) to simu-
late C αβ t( )ij ; extract the excitation energies and products of matrix 
elements by fitting C αβ

ij  or by performing a classical Fourier trans-
form; calculate the neutron cross-section on a classical computer by 
combining the extracted coefficients with known quantities such as 

form factors and positions of the ions. The simulation of dynamics 
on classical computers is limited to a few dozens of spins. However, 
such a simulation is exponentially (with the number of spins) more 
efficient on a QC24. Thanks to the speed-up of a quantum proces-
sor, the procedure can be repeated many times for different sets of 
Hamiltonian parameters, thus providing a method to fit the INS 
data of complex spin systems.

We experimentally test this method by computing the INS cross-
section for prototype spin clusters on IBM chips and address scal-
ability. Experiments are performed on 5-qubit (ibmqx4), 16-qubit 
(ibmqx5) and 20-qubit (ibmq20) superconducting processors25 
composed of fixed-frequency Josephson-junction-based transmon 
qubits26. Qubit control and readout are achieved using individual 
superconducting coplanar waveguides (CPWs), while another set 
of CPW resonators (quantum buses), organized as in Fig. 1a (for 
ibmqx4), provide the necessary inter-qubit connectivity. Qubits 
are cooled to 25 mK in a dilution refrigerator and thus initialized 
in their ground state (see Methods). All experiments are run with 
a large number of measurements (8,192) to reduce statistical error.

The benchmark molecules are characterized by the Hamiltonian 
(N = 2, 3, 4):
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We first introduce the simple N = 2 case to illustrate our 
approach. As recently demonstrated14, the four-dimensional 
(4D) INS approach allows one to quantify entanglement in effec-
tive spin dimers. This is achieved by applying a sizable magnetic 
field ≫B J( )i

x y,  such that the ground state is factorized and can be 
exploited as a reference to investigate entanglement in the excited 
states. Indeed, modulations in the I(Q) of each transition directly 
reflect the concurrence of the corresponding excited state (see 
below). Hence, we exploit the ibmqx4 chip to compute the neutron 
cross-section of spin dimers characterized by different degrees of 
entanglement, with parameters =αJ Ji , gi = g (molecule 1), =αJ Ji , 
g1 ≠ g2 (molecule 2) and = = ≠J J J g g0, ,i

x y
i
z,

1 2
 (molecule 3).

The quantum circuit used to compute dynamical correlation 
functions is reported in Fig. 1b and exploits an ancillary qubit (‘a’) to 
measure correlations between qubits 1 and 227 (see Methods). Real 
(red circles) and imaginary (blue) parts of C αβ t( )ij  evaluated with the 
ibmqx4 chip for molecule 1 are reported in Fig. 1c. The comparison 
between the experimental raw data and the exact evolution (lines) 
shows a clear overall attenuation and a phase error, mixing real and 
imaginary parts, mainly originating from systematic coherent errors 
(discussed in the following). As shown in Fig. 1d, simple and general 

Quantum hardware simulating four-dimensional 
inelastic neutron scattering
A. Chiesa1,5, F. Tacchino   2,5, M. Grossi   2,3, P. Santini1, I. Tavernelli4, D. Gerace2 and S. Carretta   1*

NATure PhySICS | VOL 15 | MAY 2019 | 455–459 | www.nature.com/naturephysics 455

mailto:stefano.carretta@unipr.it
http://orcid.org/0000-0003-2008-5956
http://orcid.org/0000-0003-1718-1314
http://orcid.org/0000-0002-2536-1326
http://www.nature.com/naturephysics


Letters NaTure PHysIcs

conditions on C αα(0)ii  allow us to systematically fix these discrepan-
cies (see Methods). The phase of C αα(0)ii  is corrected by imposing 
a real positive value on it and then the same phase correction is 
applied to the whole time domain. To restore the correct amplitude, 
we apply a circuit-depth dependent scaling factor, obtained from 
the general sum rule C⟨ ⟩ = + = ∑α

ααs s s( 1) (0)i i i ii
2 . After application  

of this phase-and-scale (PaS) procedure, the correct dynam-
ics is perfectly recovered (Fig. 1d). Energies Ep and coefficients 
⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩α βs p p s0 0i j  entering the cross-section are then extracted 

by fitting the time dependence with a combination of −e iE tp  terms 
(equation (2)) (see Methods). While z − z correlations are constant, 
we find that x − x ones have two Fourier components. The extracted 
coefficients are reported in the table in Fig. 1d, and are in excellent 
agreement with the exact values (shown in square brackets). The 
resulting neutron cross-section I(Qx, Qy, Qz = 0, E) is shown in Fig. 1e  
(see Methods). Correlations evaluated with the IBM chip for mol-
ecule 2 are shown in Fig. 1f, after application of our PaS correction. 
Non-commuting terms of the target Hamiltonian (due to g1 ≠ g2)  
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Fig. 1 | Correlation functions and INS cross-section for spin dimers. a, Representation of the ibmqx4 chip and connectivity of the five qubits, with arrows 
pointing towards the target qubit of CNOT gates. b, Quantum circuit exploiting the ancilla (a) for computing C ⟨ ⟩ ⟨ ⟩= + ∕βα t s i s( ) ( ) 2x y

21 a a  (α, β = x, y, z)27 (see 
Methods). U(τ) is the time evolution operator for each elementary time step τ = t/n of the second-order Suzuki–Trotter decomposition. The two-body 
evolution is decomposed into a sequence of single-qubit rotations Rα(ϑ) = exp(−iϑsα) and three CNOTs29. c, Raw dynamical correlations for molecule 1 
calculated on ibmqx4 QC (circles) with Bg = 3J, compared to the exact dynamics (lines). d, Phase-and-scale (PaS) corrected dynamical correlations for 
1 and corresponding fit (continuous lines) using equation (2), with coefficients listed in the table. Exact results are reported in square brackets and are in 
excellent agreement. e, Inelastic neutron scattering cross-section I(Qx, Qy, Qz = 0, E) calculated with the above coefficients, using the form factor and typical 
inter-atomic distance (5 Å along x axes) of the dicopper diporphyrines reported in ref. 30. f, PaS-corrected correlation functions for molecule 2 (Bg1 = 10J, 
Bg2 = 12.5J), calculated on the ibmqx4 chip (circles). The coefficients obtained from the fit (lines) are in very good agreement with exact results, as shown in 
the table. g, I(Qx, Qy = 0, Qz = 0, E = E1) cuts, fitted with the analytical expression reported in the Methods (black line) to obtain the concurrence (see table). 
Different colours refer to molecules 1–3 as indicated in the legend.
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imply the use of a Trotter decomposition, with n = 2 for up to 
Jt = 2.0 and n = 4 for 2.0 < Jt ≤ 6.0 (see Supplementary Information). 
Although this leads to a much longer circuit (64 gates in total), the 
agreement between measured and calculated Fourier coefficients 
(see table in Fig. 1f) is still very good. Experiments performed 
with the parameters of cluster 3 lead to completely monochromatic 
oscillations of the autocorrelation functions and negligible cross-
correlations (see Supplementary Information). The Q dependence 
of the neutron spectra obtained in the present experiments allows 
us to extract the concurrence C, a measure of entanglement14 (see 
Methods). A clear decrease in the amplitude of the I(Qx) modu-
lations (Fig. 1g) fingerprints a decrease in entanglement. Indeed, 
we obtain C = 1.0(1), 0.4(1) and 0.0(1) for molecules 1, 2 and 3, in 
agreement with the exact calculations.

To show the effectiveness of our scheme on more complex 
Hamiltonians, we apply it to isotropic (molecule 4, = = =J J J Ji

x
i
y

i
z ,  

gi = g) and anisotropic (molecule 5, = = − .J J J0 5i
x

i
y

i
z) spin trimers. 

To further lower the symmetry, in the latter we assume two differ-
ent exchange bonds = .α αJ J( 0 7 )2 1 . For the calculations we exploit 
two chips which, thanks to the different coupling topology, allow us 
to probe both nearest-neighbour (on ibmqx4, Fig. 2a) and next-to-
nearest-neighbour correlation functions (on ibmqx5, Fig. 2b). We 
also employ the new and optimized ibmq20 chip (Fig. 2c) to compute 
correlations for molecule 5. Thanks to its improved connectivity, 

it allows us to probe both nearest-neighbour and next-to-nearest-
neighbour correlation functions on the same device. The quantum 
circuit is reported in Fig. 2d, while examples of the resulting C ij

xx 
for molecule 4 are displayed in Fig. 2e and in the Supplementary 
Information. We use a Trotter decomposition with n = 2, which 
allows us to extract the correct Fourier coefficients (Supplementary 
Tables 2 and 3) and to accurately compute the 4D INS spectrum. 
The latter is shown in Fig. 2f,g for molecules 4 and 5 and is very 
close to that obtained by diagonalizing H (Supplementary Figs. 21 
and 22). These results are remarkable and show that the propagation 
of gating errors is well recovered by PaS.

To assess the scalability of the scheme, we address the various 
errors and their propagation by comparing targeted experiments 
on the real hardware to numerical noisy simulations including all 
main errors. In particular, we consider systematic-coherent errors 
(SCEs), measurement errors (MEs) and incoherent errors (IEs), 
including relaxation and dephasing. By focusing on elementary 
gates, we quantify all these errors and identify SCEs as the most 
important ones (see Methods). Then, to test our error model (Fig. 
3), we compare the numerical simulation of dynamical correlation 
functions (involving a sequence of many noisy gates) to experi-
mental results on 3, 4 and 5 qubits (including the ancilla). Different 
classes of errors can be distinguished easily, because they produce 
different features on the computed correlations: while IEs essen-
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tially yield an overall attenuation in the oscillations of dynamical 
correlations, the concatenation of SCEs can significantly alter the 
dynamics. The comparison between our noisy simulation and the 

raw data for molecule 1 is shown in Fig. 3a. Both attenuation and 
phase errors are well reproduced by our model and mostly fixed by 
the PaS correction (see Methods). However, residual off-resonant-
rotation (ORR) errors28 lead to significant effects with increasing 
N. Some of these are highlighted by blue circles in the experimen-
tal data shown in Fig. 3b (N = 3) and Fig. 3d (N = 4). Remarkably, 
these features are well captured by our errors model. It is also worth 
noting that such discrepancies originate mainly from SCEs, as  
it is clearly demonstrated in Fig. 3c, while IEs alone yield an  
overall attenuation.

We now quantitatively investigate the scalability of the method 
for a spin chain by including in our noisy simulations a realistic 
propagation of errors. Relaxation and dephasing errors depend on 
the total gating time. Since the simulation of odd and even bonds 
can be performed in parallel, our results show that these are not cur-
rently hindering the quantum calculation (see Methods). Figure 4 
shows some examples of dynamical correlations, numerically simu-
lated by including all the errors determined above. Using a realistic 
noise model, the maximum N enabling a reliable computation is 
N ≈ 6 (Fig. 4a). A simple halving of SCEs (keeping fixed IEs) should 
already enable a good simulation with N = 12 (Fig. 4b). Figure 4c 
shows that, by removing the main SCEs while keeping IEs, the sim-
ulation for N = 12 performs very well, making larger calculations 
possible in the future. Hence, SCEs are currently the main limit-
ing factor and their mitigation will enable scaling to an interesting 
number of qubits, even without improving IEs. Our approach can 
be extended with forthcoming technological progress to a number 
of spins that would make a non error-corrected quantum hardware 
much more efficient than a classical device for the practical inter-
pretation of many experimental data. These results, combined with 
remarkable developments occurring in neutron scattering facilities, 
open new avenues in the design and understanding of molecular 
spin systems.
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Methods
Experimental implementation of the gates. The ibmqx4 5-qubit processor 
is described schematically in Fig. 1a. All five transmon qubits are coupled 
individually with CPW resonators for both qubit control and readout. Two 
additional shared CPW resonators are used to couple the central qubit, a, with all 
other qubits (1 to 4) as well as qubit 2 with 4, and 1 with 3. The ibmqx5 quantum 
processor is composed of 16 transmon qubits organized as depicted in Fig. 2b. In 
this case, four qubits (enclosed by orange circles in Fig. 2b) are used to compute 
next-to-nearest neighbour correlations on the trimer, which cannot be directly 
obtained with the connectivity of the ibmqx4 device of Fig. 2a. The new ibmq20_
Tokyo processor consists of 20 transmon qubits organized as schematically 
shown in Fig. 2c. Thanks to the improved connectivity, it allows us to implement 
bidirectional CNOT gates (double-headed arrows) between several pairs of 
qubits, and to measure both nearest-neighbour and next-to-nearest-neighbour 
correlations using the same set of qubits (a, 1, 2, 3 in Fig. 2c, enclosed by orange 
circles). Furthermore, it is optimized to reduce noise in the implementation of 
the elementary gates (see parameters reported on the IBM QX web page (https://
quantumexperience.ng.bluemix.net/qx/devices).

The qubits are controlled by microwave pulses that are sent from the 
electronics operating at room temperature to the quantum chip through attenuated 
coaxial lines. Single qubit gates are operated at their specific fixed frequencies as 
specified on the IBM QX web page (https://quantumexperience.ng.bluemix.net/qx/
devices). Two-qubit cross-resonance gates are obtained by driving a selected qubit 
Qc (characterized by a fixed frequency ωc) at frequency ωt of the target qubit. The 
pairs of control-target qubits are defined by the coupling map in Figs. 1a and 2a–c. 
Note that in ibmqx4 and ibmqx5 CNOT gates can only be implemented between 
two connected qubits with a fixed orientation that defines control and target qubits 
(arrows in Fig. 2a,b). The state of each qubit is measured at its readout resonator 
frequency—the reflected readout signals are amplified first by a Josephson 
parametric converter followed by high electron mobility transistor amplifiers 
operating at 4 K.

It is important to note that all non-elementary quantum operations need to 
be decomposed into elementary operations of the fundamental gate set (Bloch 
sphere rotations and CNOT gates) before coding them in the IBM processors (see 
Supplementary Information).

Quantum circuit for dynamical correlation functions. The quantum circuit 
(see Fig. 1b for the N = 2 case) used to measure correlation functions of the form 
⟨ ⟩†A B  (where A and B are unitary operators) exploits an ancillary qubit ‘a’27. In 
this work we compute spin–spin correlation functions, so we focus on A = σβ = 2sβ 
and B = σα = 2sα. Two X gates are used to bring the system, initially cooled 
with all qubits in 0, to the ground state of the target Hamiltonian |↓↓〉 ≡ |11〉. 
Conversely, a Hadamard (H) gate initializes the ancilla in ∣ ⟩+ ∣ ⟩0 1

2
. We then make 

two controlled evolutions: the first applies B to the system if the ancilla is in |1〉; 
the second evolves the system by A if the ancilla is in |0〉. Finally, the expectation 
value of σ σ σ= ++ i2 x y

a a a  gives the result ⟨ ⟩†A B . This is obtained by repeating the 
computation twice, alternately rotating the state of the ancilla by π/2 about the x 
or y axis before measuring in the z basis. Computation of dynamical correlation 
functions can be done analogously by including the quantum simulation of the 
target system time evolution (represented by the unitary operator H= −U e i t) 
between the two controlled operations in which the ancilla acts as a control27. In 
this way we obtain σ σ σ⟨ ⟩ = ⟨ ⟩ ≡ ⟨ ⟩β α+ †U AUB t2 ( )a .

PaS correction. Raw experimental data are treated by means of the PaS correction, 
which can systematically correct for a phase error in the measured values of 
Cαβ t( )ij , as well as for an overall attenuation of the experimental oscillations. 
From equation (2) we note that Cαα(0)ii  corresponds to a sum of squared absolute 
values. Hence, independently of the target Hamiltonian, we can impose on it 
a real positive value, thus determining the initial phase correction and then 
extending it to the whole time domain. Conversely, the overall attenuation is 
fixed by a scale factor increasing with the circuit depth, through the general sum 
rule C⟨ ⟩ = + = ∑α

ααs s s( 1) (0)i i i ii
2  reported in the main text, depending only on 

the values of the local spin operators. It is finally worth noting that such overall 
attenuation, as well as a small constant shift in the observed value of 〈sz〉, probably 
due to asymmetric measurement errors, is not relevant for calculating the inelastic 
cross-section (usually measured in arbitrary units), and the oscillation frequencies 
are very well reproduced.

Fitting dynamical correlation functions. Cαβ t( )ij  is fitted with a combination of 
oscillating functions:
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Here, we have recast the Fourier coefficients 
ω ω⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩ = +α β αβ αβs p p s A iB0 0 ( ) ( )i j ij p ij p  to separate the real and imaginary parts 

of Cαβ t( )ij , corresponding to the second and third lines of equation (4). Some general 
conditions impose constraints on the parameters of the fit. First, we note that the 
eigenstates of the Heisenberg and Ising models are known to be real, thus leading to 
real matrix elements for sx and sz and imaginary ones for sy. This yields ω =ααB ( ) 0ij p
, thus reducing the number of parameters. In addition, we have checked by 
simulating the related time evolution on the chip (see Supplementary Information) 
that only Cαα t( )ij  dynamical correlations contribute to the cross-section (C t( )ij

xz  and 
C t( )ij

yz  are identically zero, while C t( )ij
xy  and C t( )ij

yx  cancel out). Furthermore, we 
found that ⟨ ⟩s t s( )i

z
j
z  are independent of time (thus not contributing to the inelastic 

cross-section). Finally, the results fulfil the axial and permutational symmetries of 
the target Hamiltonian, when present. The former leads to equivalence between C ij

xx 
and Cij

yy contributions, the latter between Cαα
ij  and Cαα

ji . Since Cij
yy involves a larger 

number of gates and is thus more error-prone than C ij
xx, leading to more noisy 

correlation functions, we use only C ij
xx for calculating the final cross-section (see 

comparison in the Supplementary Information).
Frequencies ωp and Fourier coefficients were extracted from correlations by 

combining a Fourier analysis with the FMINUIT package. In the examined spin 
dimers, we found that only two frequencies have non-negligible weight, while in 
the trimer three frequencies are needed to reproduce the measured oscillations of 
the correlation functions.

Suzuki–Trotter decomposition of the spin dynamics. To reduce the total 
number of gates while keeping the digital error as small as possible, we employ the 
decomposition reported in ref. 29 for a general two-spin interaction (for details see 
Supplementary Information) and for molecule 2 a second-order Suzuki–Trotter 
expansion:

H H H H Hτ τ= = +τ τ τ τ− ∕ − − ∕ − +U O( ) e e e e ( )i i i i2 2 ( ) 31 2 1 1 2

with H = +B g s g s( )z z
1 1 1 2 2  and H = ⋅Js s2 1 2 indicating one- and two-body terms of 

the target spin Hamiltonian.

Concurrence from INS spectrum of spin dimers. The two-qubit entanglement 
can be quantified by means of the concurrence C (ref. 31). For pure two-qubit 
states |p〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, C = 2|ad − bc|. In the present cases we 
have found C t( )ij

zz  independent of time and hence d = 0 in the excited states 
corresponding to the two calculated INS peaks. By inserting the expression of |p〉 
in equation (1), we obtain

∝ ∣ ∣ + ∣ ∣ + + . .
=
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I Q F Q F Q b c bc
F Q F Q

b c bc Q R bc Q R

( ) ( ) *( ) ( *e h c )
( ) *( )

[ 2 Re( *)cos 2Im( *)sin ]

(5)
x x x

iQ R

x x

x x

1 2
2 2

1 2
2 2

x

where R12 = Rx. Hence, parameters b and c (and consequently C = 2|bc|) can be 
obtained from a fit of I(Qx). We note that the presence of only two peaks in the 
spectrum of Fig. 1e implies a = 0.

Characterization of errors on elementary gates. We start our investigation 
from single-qubit rotations. In particular, in the IBM hardware Rz rotations are 
implemented by simply adding the proper phase to subsequent operations, via 
classical control hardware and software28. Therefore, such a gate is essentially 
perfect and has no duration. Hence, we focus on arbitrary Rx,y rotations and 
perform full tomography of the qubit state after implementation of the (noisy) 
gate on the real hardware. To reduce the number of operations we initialize the 
qubit in its ground state and implement a generic Rx,y(ϑ) gate. Measurements in 
the z basis yield the diagonal elements of the final density matrix, while coherences 
are obtained by performing measurements in the x and y bases (in these latter 
cases error propagation was also accounted for in our analysis). Simulations were 
performed by ibmq-qasm-simulator (https://github.com/Qiskit/qiskit-terra/
tree/master/src/qasm-simulator-cpp), properly adapted to account not only 
for incoherent noisy channels, but also for imperfect coherent dynamics in the 
implementation of the gates (SCEs). Experimental data for an Rx(ϑ) gate on 
qubit 0 of the ibmqx4 chip, with 8,192 counts, are reported in the left panels of 
Supplementary Fig. 25. Similar results are obtained also for other qubits on the 
same chip. As shown in the Supplementary Information, our simulations (right 
panels of Supplementary Fig. 25) are able to catch the main discrepancies between 
the actually implemented gates and the ideal ones by including a systematic 
tilt of the rotation axis (ORR error). Such error has already been reported for 
similar devices (see, for example, ref. 28). It is important to note that none of the 
incoherent noisy Pauli channels can produce the same effect on the final density 
matrix. Asymmetric measurement errors could lead to a similar behaviour in the 
diagonal elements of the single-qubit density matrix, but would not yield the error 
propagation observed in our experiments when several rotations are concatenated 
(see main text). Hence, we assumed for simplicity a symmetric measurement 
error of about 4–5% (consistent with data reported on the IBM QX web page 
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(https://quantumexperience.ng.bluemix.net/qx/devices). This choice results in a 
pessimistic estimate of the scalability of our approach, because part of the error 
ascribed to ORRs could be due to a single asymmetric measurement error (at the 
end of the calculation and on a single qubit). Next, we investigate errors in the 
implementation of a CNOT gate. To fully characterize them (both in the amplitude 
and phase of the output), we initialize a pair of qubits on the ibmqx4 chip in one 
of the four factorized states ∣ ⟩± ∣ ⟩00 10

2
, ∣ ⟩± ∣ ⟩01 11

2
, which in an ideal implementation 

would lead to the entangled Bell basis states ∣ ⟩± ∣ ⟩00 11
2

, ∣ ⟩± ∣ ⟩01 10
2

. It should be noted 
that state preparation and final tomography require several rotations, each one 
affected by the SCEs discussed above. We find that the inclusion of such errors 
is already sufficient to satisfactorily reproduce the experimental results for the 
noisy CNOT. Conversely, typical coherent errors for the cross-resonance gate 
implemented in this device (ZZ, ZI, IX, reported for example in ref. 32) do not 
have an important effect on the final density matrix and are thus excluded from 
our simulations. Finally, incoherent errors slightly improve the agreement (see 
examples of a comparison between measured and simulated final density matrices 
in Supplementary Fig. 26). Hence, we have included them with typical values. 
The following error parameters are used in our numerical simulations. The first 
is systematic tilt of the x axis for Rx(ϑ) gates of π/16 towards z and π/8 towards y, 
and systematic tilt of the y axis for Ry(ϑ) gates of π/16 towards z and −π/12 towards 
x. The second is a symmetric measurement error pm = 0.05 (in agreement with 
data reported online for this chip). We note that readout errors are minimized 
in our circuit since only a single ancillary qubit must be measured. The third is 
the relaxation rate with typical T1 = 30 μs. The fourth comprises incoherent Pauli 
error channels with pu = 0.002 and pCNOT = 0.05 for single- and two-qubit gates, 
respectively, in line with gate errors reported for this device. These values were 
also tuned to reproduce the observed attenuation of correlation functions. Since 
from analysis of the dynamical correlations it was not possible to discriminate the 
effect of different Pauli channels, we assumed equally distributed probabilities for 
each of them (depolarizing channel), thus reducing the number of parameters. A 
Pauli-Z error channel is also used to model pure dephasing with typical T2 = 30 μs. 
The final parameter is thermal population of the excited qubit state p1 = 0.005, as 
reported in ref. 28 (practically negligible).

Scalability. To investigate the scalability of the proposed approach, we have 
considered, as a target system, an open spin chain with nearest-neighbour 
Heisenberg exchange interactions and examine dynamical correlations on one edge 
of the chain as a function of the number of sites, N. This choice ensures that an 
increase of N does not alter too much the observed quantities, and hence allows us 
to focus only on the propagation of errors.

As stated in the main text, relaxation (and dephasing) errors depend on the 
total gating time T, which does not increase for N > 3. Nevertheless, the error on 
the final state could scale with N in the worst case. Indeed, each qubit in the excited 
state (whose thermal population is negligible) has a probability −e T T/ 1 to still be 
excited after a time T. The worst-case fidelity33 would be obtained by starting from 
a state with all the qubits in the excited level, leading to a total error probability of 

− −(1 e )NT T/ 1 . Analogous considerations also hold for pure dephasing, leading to a 
decay of off-diagonal elements of the single-qubit density matrix and a consequent 
linear scaling of the dephasing error in the worst case8. However, here we focus 

on two-spin dynamical correlation functions on a factorized ground state, which 
provides a reference to study entanglement in the excited states14. Our numerical 
simulations show that in this case the overall attenuation factor does not strongly 
increase with N. This can be seen in Supplementary Fig. 27, where we report the 
overall attenuation factor induced by T1 and T2 on the oscillations of C ij

xx. For 
simplicity, errors affecting the ancilla in the idle phase were not included in the 
numerical simulations.

This analysis holds if the number n of Trotter steps (and hence the number 
of gates per site) is fixed. However, to mimic the dynamics of the real system, we 
need to digitalize the time evolution in such a way to preserve the same digital 
error at variable N. By considering (for simplicity) a first-order Suzuki–Trotter 
decomposition, the digital error is given by H Hϵ = τ [ , ]N 2 odd even

2
, where τ = t

n
, and 

H = ∑ ⋅−J s si i iodd 2 1 2  and H = ∑ ⋅ +J s si i ieven 2 2 1 are the two non-commuting terms of 
the target Hamiltonian in our one-dimensional chain. Hence

ϵ τ~ − ⋅ ⋅ ∝ −J N t
n

Ns s s s
2

( 2)[ , ] ( 2)N

2 2

1 2 2 3

2

2

In particular, for a given simulation time t and by fixing this error to that of the 
trimer (N = 3, n = 2, which ensures a very good determination of the INS spectrum, 
see Supplementary Information), we find that the number of needed steps slowly 
increases with N, that is = −n Nround[2 2 ] . This condition is applied to all the 
simulations at increasing N.

We finally examine the scaling of the total number of gates required to 
compute the whole neutron cross-section. Indeed, in general, we need to calculate 
correlations between any spin pair in the target system. Accordingly, the total 
number of dynamical correlations to be computed scales (polynomially) as N2. 
This, however, does not require an increase in the number of ancillae. Indeed, we 
only need to repeat the calculation on the quantum hardware a polynomial number 
of times, with slightly different circuits for each spin pair.

Code availability
The custom Python scripts for the quantum har-dware and original codes are 
available from the corresponding author upon reasonable request.

Data availability
The data that support the plots and other findings of this study are available from 
the corresponding author upon reasonable request.
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