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a b s t r a c t

Mineral inclusions entrapped in other minerals may record the local stresses at the moment of their
entrapment in the deep Earth. When rocks are exhumed to the surface of the Earth, residual stresses and
strains may still be preserved in the inclusion. If measured and interpreted correctly through elastic
geobarometry, they give us invaluable information on the pressures (P) and temperatures (T) of meta-
morphism. Current estimates of P and T of entrapment rely on simplified models that assumes that the
inclusion is spherical and embedded in an infinite host, and that their elastic properties are isotropic. We
report a new method for elastic geobarometry for anisotropic inclusions in quasi-isotropic hosts. The
change of strain in the inclusion is modelled with the axial equations of state of the host and the in-
clusion. Their elastic interaction is accounted for by introducing a 4th rank tensor, the relaxation tensor,
that can be evaluated numerically for any symmetry of the host and the inclusion and for any geometry
of the system. This approach can be used to predict the residual strain/stress state developed in an in-
clusion after exhumation from known entrapment conditions, or to estimate the entrapment conditions
from the residual strain measured in real inclusions. In general, anisotropic strain and stress states are
developed in non-cubic mineral inclusions such as quartz and zircon, with deviatoric stresses typically
limited to few kbars. For garnet hosts, the effect of the mutual crystallographic orientation between the
host and the inclusion on the residual strain and stress is negligible when the inclusion is spherical and
isolated. Assuming external hydrostatic conditions, our results suggest that the isotropic and the new
anisotropic models give estimations of entrapment conditions within 2%.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

After entrapment, mineral inclusions can develop residual
strains and stresses as a result of the contrast in elastic properties
with their hosts. If the elastic strains and stresses are preserved
after entrapment and exhumation to room conditions, they can be
used to estimate the entrapment conditions using elastic geo-
barometry. Several studies have reported examples of successful
application of elastic geobarometry (e.g., Enami et al., 2007;
Thomas and Spear, 2018). However, some discrepancies still exist
that pose limitations to the applicability of the current methodol-
ogies mostly because the available models (e.g., Zhang, 1998;
Guiraud and Powell, 2006; Angel et al., 2017b) are based on a
simplified geometry of the system (with a spherical inclusion
sitting in an infinite host) and the use of isotropic elastic properties
(M.L. Mazzucchelli).

ier B.V. This is an open access artic
for both the host and the inclusion. Mazzucchelli et al. (2018)
showed how to apply elastic geobarometry to systems with non-
ideal geometry, but still with the assumption that both the host
and the inclusion are elastically isotropic. However, no mineral is
elastically isotropic and the anisotropy might significantly affect
the results of elastic geobarometry even for a simple spherical in-
clusion (e.g., Zhang, 1998; Burnley and Schmidt, 2006; Angel et al.,
2014; Campomenosi et al., 2018). Here, we present a new solution
for elastic geobarometry that includes the elastic anisotropy of the
mineral pair assuming that the geometry of the system is ideal,
with a spherical inclusion embedded in an effectively infinite host.
We show that deviatoric strain and stress fields are developed
during exhumation in inclusions with crystallographic symmetry
lower than cubic. For garnet hosts and assuming a simple geometry
of the system, the new anisotropic model and the isotropic model
predict similar residual values of the volume strain developed in
the inclusion after exhumation, that are usually within the typical
uncertainties on the measurements of the strain in natural in-
clusions. As a consequence, the back-calculation of the entrapment
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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conditions with the isotropic and the anisotropic models gives re-
sults within 2%. Extensions of this analysis to the real geometries of
natural samples are also discussed.
2. Background

When the host mineral is elastically isotropic, it will expand
isotropically upon exhumation and recovery to room conditions. A
spherical inclusion within the host will therefore be forced to
change in size but will always remain spherical (Fig. 1). It is
therefore subject to an isotropic strain. If the inclusion is isotropic it
will have isotropic compressibility and it will therefore exhibit
isotropic stress equal in all directions; the normal stresses in any
three perpendicular directions will be equal, and the inclusion will
be subject to a hydrostatic pressure. The final pressure in the in-
clusion at any external pressure (P) and temperature (T) applied to
the host can be calculated in two steps. The first is the calculation of
the volume change of the host due to the change in P and T. This
volume change is then applied to the inclusion, resulting in a
pressure Pthermo that is purely the consequence of the contrast in
the Equations of State (EoS) of the two minerals. For most P and T
changes, the inclusion will exhibit a Pinc that is different from the
external pressure on the host. This pressure difference drives a
mutual elastic relaxation that always decreases the contrast be-
tween the Pinc and the external pressure. The calculation of the
pressure change due to relaxation is the second step in any calcu-
lation of the final inclusion pressure.

When both the inclusion and the host mineral are isotropic, the
calculation of the residual pressure in the inclusion relies on the
concept of entrapment isomeke of the two minerals (Angel et al.,
2015b, 2014b). Along an entrapment isomeke the pressure in an
isotropic inclusion remains equal to the external pressure on the
host, and the stress field inside the inclusion is homogeneous and
isotropic. This uniform stress state is critical to the calculation of the
relaxation for isotropic systems with spherical symmetry (Angel
et al., 2017b, 2014b). For spherical systems the pressure change in
the inclusion due to the relaxation (DPrelax) can be calculated from
the change in volume of the host during exhumation and the non-
Fig. 1. Exhumation of the host from entrapment to room conditions: (a) if the host is isotrop
to force an inclusion crystal into the cavity is isotropic if the inclusion is elastically isotrop
elastically anisotropic the shape of the cavity changes upon exhumation. In this case, the s
inclusion is elastically isotropic.
linear variation of the bulk modulus of the inclusion with pressure
(its equation of state). The DPrelax can also be calculated from a
measured final Pinc and used to back-calculate possible conditions
of entrapment of an inclusion. For non-spherical systems the
amount of relaxation is also function of the overall geometry of the
system, i.e. the shape of the inclusion and its position within the
host (Mazzucchelli et al., 2018).

However, minerals are always elastically anisotropic. Cubic
minerals are a special class. They are elastically anisotropic because
their elastic stiffness (which depends on the 4th rank elasticity
tensors, Nye, 1985) varies with direction, with the two extreme
values along the <1 1 1> and <1 0 0> families of directions (Nye,
1985). However, the response of a crystal to hydrostatic stress is
governed by the 2nd rank compressibility tensor, which is isotropic
for cubic crystals (e.g Angel et al., 2009; Nye, 1985). Therefore, due
to their high crystallographic symmetry, under hydrostatic stress
cubic crystals will always develop isotropic strain, similarly to
isotropic materials. Therefore, a cubic host will impose an isotropic
strain on the inclusion if the external conditions are hydrostatic.
But if the inclusion has a symmetry lower than cubic, the imposed
isotropic strain field must generate an anisotropic stress field, in
which the stresses are different in different directions. The devel-
opment of anisotropic stresses in inclusions can also be understood
by a thought experiment (Fig. 1). Consider a spherical inclusion
crystal trapped in a spherical cavity within the host at the P and T
conditions of entrapment. For simplicity we consider the case of the
inclusion being softer than the host. Now remove the inclusion
crystal from the host and bring both the host and inclusion crystals
to room conditions. Both crystals will expand according to the
normal behaviour of free crystals under hydrostatic pressure, with
the inclusion expanding more than the cavity of the host. If both
crystals are elastically isotropic or cubic, then both the cavity in the
host and the inclusion crystal remain spherical, and an isotropic
stress (i.e. a hydrostatic pressure) is required to force the crystal
back into the cavity (Fig. 1a). The inclusion must therefore be under
a hydrostatic stress in this case. If the inclusion is anisotropic it will
expand more in some directions than others so that it will become
an ellipsoid at room pressure (Fig. 1a). It is clear that an anisotropic
ic or cubic the spherical cavity remains spherical after exhumation. The stress required
ic, but an anisotropic stress is required for an anisotropic inclusion. (b) If the host is
tress required to push the inclusion back into the cavity is anisotropic, even when the
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stress is required to force the inclusion to fit back into the cavity of a
cubic host, and these anisotropic stresses will therefore be present
in the trapped inclusion recovered to room conditions. For an
anisotropic host, an isotropic inclusion crystal will remain spherical
when recovered to room conditions but requires anisotropic stress
to force it into the ellipsoidal cavity developed on exhumation of an
anisotropic host (Fig.1b).When both phases are non-cubic the non-
hydrostatic stress required (Fig. 1b) depends on the mutual crys-
tallographic orientation of the host and inclusion crystals.

Minerals with symmetry less than cubic develop deviatoric
stresses when an isotropic strain is applied to them. Therefore, if at
least one of the host and the inclusion is not cubic, the entrapment
isomeke is no longer a valid basis for calculating the relaxation,
even for spherical inclusions, because the stress in the inclusion
does not remain isotropic and therefore it cannot be equal to the
hydrostatic pressure in the host. Instead, we introduce a thermo-
dynamic calculation that considers explicitly the variation in length
of the axes of the inclusion imposed by the change in size of the
host cavity during the exhumation from entrapment to room
conditions. The resulting strain in the inclusion is then relaxed to
find the final stress and strain in the inclusion. In this case the
anisotropic relaxation can only be calculated using numerical
simulations following the procedure developed and described in
this paper.
3. Methods

3.1. Extension to elastic anisotropy

The extension of elastic geobarometry to include elastic
anisotropy is best illustrated with the forward-calculation from the
entrapment conditions (Ptrap, Ttrap) to the final residual strain and
stress developed in the inclusion after the exhumation to the
Earth’s surface. As for the case of isotropic geobarometry, this
calculation is split into two steps: thermodynamic calculation and
relaxation.

Instead of using the entrapment isomeke as a basis for the
calculation of relaxation (Angel et al., 2014b) we use the thermo-
dynamic calculation. For isotropic minerals, when the host is at the
final external pressure and temperature Pend and Tend, the inclusion
is constrained to the volume of the cavity within the host at these
conditions. We will call this cavity volume VhostðPend; TendÞ. The
pressure Pthermo in the inclusion is determined by the EoS of the
inclusion and this volume at the final temperature Tend. Under these
conditions the volume change of the cavity in the host from
entrapment to the final conditions is the same as the inclusion from
entrapment to Pthermo, which can be expressed as:

Vhost
�
Ptrap; Ttrap

�
VhostðPend; TendÞ

¼ Vinc
�
Ptrap; Ttrap

�
VincðPthermo; TendÞ

(1)

Because we have only one constraint on the state of the inclu-
sion, its pressure Pinc or equivalently its volume strain, we are not
able to define a unique P and T of entrapment, but only a line in the
P-T space.

Eq. (1) shows that entrapment conditions are also defined as
states where there are no strain gradients across the host and in-
clusion, and this insight allows a new approach to be developed for
other cases. For isotropic and cubic materials, the cube-root of the
volume change is equal to the change in linear dimensions, so Eq.
(1) can also be written as:

�
Vhost

�
Ptrap; Ttrap

�
VhostðPend; TendÞ

�1=3
¼

�
Vinc

�
Ptrap; Ttrap

�
VincðPthermo; TendÞ

�1=3
(2)

This emphasises that the conditions for entrapment are that the
linear dimensions of the free host and inclusion crystals must be
equal at the time of entrapment in order to not have stress or strain
gradients across the system. If the inclusion phase is non-cubic, we
canwrite for any crystallographic direction of length li (with i¼ 1, 2,
3) that the entrapment conditions in a cubic host mineral are
defined by:

�
Vhost

�
Ptrap; Ttrap

�
VhostðPend; TendÞ

�1=3
¼ li;inc

�
Ptrap; Ttrap

�
li;incðPthermo; TendÞ

(3)

For a uniaxial inclusion (e.g. quartz and zircon), if the variation
of unit-cell parameters of the inclusion with P and T are known,
then each of the a and c axes allows a line of possible entrapment
conditions to be calculated from Eq (3). The intersection of these
two lines provides a unique P and T of entrapment. For a biaxial
inclusion (e.g., orthorhombic crystals), three independent lines can
be calculated. If the three lines do not intersect at a single point
within the uncertainties, this would be a signal of deviatoric
stresses being present at the time of entrapment. The same prin-
ciple expressed in Eq. (3) can be applied to non-cubic inclusions
trapped in non-cubic hosts by replacing the left-hand side with the
lattice spacing of the direction in the host parallel to li;inc.

Eq. (3) can be rearranged to refer the change in length of each
crystallographic direction of the inclusion during exhumation to
the length li;incðPend; TendÞ it would have as a free crystal at the final
Pend; Tend of the host:

"
VhostðPend; TendÞ
Vhost

�
Ptrap; Ttrap

�
#1=3

¼ li;incðPthermo; TtendÞ
li;incðPend; TendÞ

li;incðPend; TendÞ
li;inc

�
Ptrap; Ttrap

�
(4)

Using Voigt’s notation (Voigt, 1910), in which the strain tensor
can be represented as a vector, the normal strains imposed by a
cubic host on the inclusion are:

ε
unrel
i ¼ li;incðPthermo; TtendÞ

li;incðPend; TendÞ
� 1

¼
"
VhostðPend; TendÞ
Vhost

�
Ptrap; Ttrap

�
#1=3

li;inc
�
Ptrap; Ttrap

�
li;incðPend; TendÞ

� 1 (5)

where ε
unrel
i is the unrelaxed strain relative to a free crystal calcu-

lated along the i-th direction of the inclusion. As shown by Eq. (5)
the unrelaxed strain can be calculated if the variation with P and
T of the volume of the host (i.e. its volume EoS) and of the axes of
the inclusion (i.e. the ‘axial’ EoS, e.g., Angel et al., 2014a) are known.
This state of strain corresponds to a stress field in the inclusion that
is in general anisotropic and different to the stress state in the host
(that is at room P). Therefore, the stresses in the inclusion are not
balanced out in the host, and this forces the relaxation of the sys-
tem until mechanical equilibrium is reached again. When one or
both of the host and the inclusion are elastically anisotropic, the
relaxation (even for a spherical inclusion) is different in each di-
rection. The amount of relaxation along a given direction depends
on the full state of stress in the inclusion, the full anisotropic elastic
properties, and the mutual crystallographic orientation of the pair.
To a first approximation, the amount of relaxation along a specific
direction in the inclusion is a consequence of both the stiffness of
the host and of the inclusion along that direction. If the inclusion
and the host both have cubic symmetry the relaxation is equal
along each of the crystallographic axes of the inclusion. If the in-
clusion has a symmetry lower than cubic and the host is cubic, the
largest relaxation is along the stiffest direction of the inclusion.
However, the relaxation is a force-balance process and, as a
consequence, more stressed directions tend to relax more.
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Therefore, the amount of elastic relaxation depends on the overall
balance between the stiffnesses of the host and of the inclusion and
the magnitude of the unrelaxed stress along each direction.

The problem of calculating the variation of the stress and strain
fields due to the relaxation is related to Eshelby’s equivalent in-
clusion problem, that provides an analytical solution for the strain
in an ellipsoidal inclusion embedded in an infinite isotropic host
through the application of the so-called Eshelby’s tensor (Eshelby,
1957). This solution was extended to other specific crystallo-
graphic symmetries (e.g., transversely isotropic symmetry, Chiang,
2017), but not to those typical of minerals from high-pressure
metamorphic rocks (e.g., garnets, zircon), nor to faceted inclusion
shapes. For the latter, the change in strain upon relaxation must be
found with numerical calculations such as finite element analysis
(Hughes, 2012). This approach does not introduce any restriction
given by the elastic anisotropic properties of the host and of the
inclusion and their reciprocal orientation. However, the entire
procedure would be time consuming and would greatly restrict the
routine applicability of elastic geobarometry because a new finite
element analysis is in principle required for any specific initial
unrelaxed strain state. This can be avoided by assuming that the
elastic properties of both the host and the inclusion remain con-
stant during the relaxation. Under this assumption, we can intro-
duce a fourth order non-symmetric tensor (the relaxation tensor
Rijkl) to transform the unrelaxed strain into the relaxed strain, and
vice versa. Once the relaxation tensor is calculated for a specific
geometry and mutual orientation it can be applied to relax any
unrelaxed strain state for that system, with no need for further
finite element analyses.
3.2. The relaxation tensor (R)

Adopting Voigt’s notation (i.e. expressing the strain as a six-
component vector), to express the relaxation we look for a linear
mapping f : R61R6 that relates the relaxed and the unrelaxed
strain, f ðεunrelÞ ¼ ε

rel: This linear mapping can be defined through a
matrix R2 ℝ6�6. The columns of R are found from the response,
computed by means of finite element analysis, to six predefined
strain states, each characterized by only one non-zero component.
The matrix Rij, that has 6 columns and 6 rows, is the representation
in Voigt notation of the relaxation tensor Rijkl which is a 4th rank
tensor because it relates two 2nd rank tensors (the tensors of the
relaxed and unrelaxed strain). The Rijkl tensor does not possess the
major symmetries and can have up to 36 independent components,
and, as consequence, the Rij matrix also has up to 36 non-zero
components and is non-symmetric. The components of R depend
on the elastic properties of the host and the inclusion and the ge-
ometry of the system (e.g. the shape of the inclusion). Moreover, if
both the inclusion and the host are elastically anisotropic, the
components of the relaxation tensor will depend upon the mutual
crystallographic orientation of the host and the inclusion and must
be recalculated for each orientation. Therefore, in general, a relax-
ation tensor is applicable only to systems with the specific geom-
etry and mutual orientation for which it was calculated. It can be
applied to calculate the relaxed strain in the inclusion from the
unrelaxed strain (obtained from Eq. (5)) and vice versa. In Voigt
notation:

ε
rel
i ¼ Rijε

unrel
j

ε
unrel
i ¼ R�1

ij ε
rel
j (6)

The R tensor is calculated under the assumption of linear elas-
ticity (small strains and constant elastic properties), which is not
true in general for geological materials. However, this is a good
approximation for inclusions since R is only applied to compute
small changes in strain during the relaxation at room temperature
which correspond to stress variations typically much smaller than
1 GPa. Moreover, R depends on the difference in the elastic moduli
of the host and the inclusion which, for minerals, have a similar
dependence on pressure. Furthermore, the estimated errors in the
change of the strain during relaxation are smaller than those arising
from the combined uncertainties on the measured strains and
those on the elastic tensor coefficients, which amount to about 1%.
The advantage of this approach is that the R tensor then becomes
independent of the magnitude of the residual strains. Once the R
tensor has been calculated for a specific host-inclusion system, it
can be used for any inclusion and host with the same properties,
geometry and orientation. Further details about the definition and
the derivation of the relaxation tensor are reported in the supple-
mentary data.

The relaxation tensor can be only applied to relax the strain in
the inclusion, and not directly to the stress. The final stress in the
inclusion must be calculated from the strain using the elastic
stiffness tensor (written in Voigt notation as a matrix, Cinc

ij ) of the
inclusion:

srel
i ¼ Cinc

ij ε
rel
j ¼ Cinc

ij

�
Rjkε

unrel
k

�
(7)

However, the inclusion is not at room P but usually under a
deviatoric stress field, and the components of the stiffness tensor
vary as a function of the stress state. Unfortunately, the stress de-
pendency of the Cij of minerals is not yet known and it cannot be
directly inferred from their pressure dependency measured
experimentally (e.g. Wang et al., 2015). For stiff minerals, such as
diamond or garnets, the Cij values do not vary much with the small
stress variation due to the elastic relaxation and the use of room
pressure elastic properties leads to very small uncertainties on the
final stress components calculated with Eq. (7). However, un-
certainties become larger for soft materials such as quartz, whose
elastic properties change rapidly with pressure (Wang et al., 2015).

We have calculated the R tensor for a number of cases, varying
the contrast in stiffness between the host and the inclusion but
keeping a simple geometry of the system (i.e. a spherical inclusion
in a practically infinite host). This allows us to show in the following
section the calculation of the final strain and stress developed
during the exhumation of several host-inclusion systems typical of
ultra-high pressure metamorphic rocks.

4. Examples

In our examples we use aluminosilicate garnets (e.g., pyrope and
grossular) as hosts and diamond, quartz and zircon as inclusions.
This choice of pairs allows us to focus on how the anisotropy and
the stiffness of the inclusion affects the calculation. Garnets are
highly resistant to viscous relaxation (e.g. Karato et al., 1995; Zhong
et al., 2018) even at high P and T metamorphic conditions. This
enables us to calculate the final strain and stress in the inclusion as
a function of the entrapment conditions within the elastic limit for
most cases. For each host-inclusion system we defined a grid of
entrapment conditions. For each initial point of entrapment, we
combined the thermodynamic calculation and the elastic relaxa-
tion to compute the strain and the stress developed in the inclusion
during the exhumation and the difference between the true volume
strain obtained from the anisotropic model and that calculated
with the isotropic solution (Angel et al., 2017b). Moreover, by
comparing the two models we also show the magnitude of the
errors in the calculation of the entrapment pressure if one assumes
that minerals are isotropic. The EoS for pyrope and grossular used
for the thermodynamic part of the anisotropic calculation and for
the isotropic calculation are from Milani et al. (2017, 2015). The
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stiffness tensors for the calculation of the relaxation tensor are from
Sinogeikin and Bass (2002) and Isaak et al. (1992) respectively
(further details in the supplementary data).

In general, when both the host and the inclusion are elastically
anisotropic the strain and the stress calculated in the inclusion are
also a function of the relative crystallographic orientation between
the two crystals. However, since garnets are cubic, the relative
orientation between the host and the inclusion does not affect the
thermodynamic calculations. If the initial (entrapment) and final
(Proom; Troom) conditions are under external lithostatic stress, a
cubic host will develop an isotropic strain field. Therefore, an in-
clusion with symmetry less than cubic, that is forced to deform as
the cavity in the host, will develop an anisotropic stress field which
is not affected by its relative orientation within the host. However,
when the elastic interaction between the host and the inclusion is
computed (i.e. the relaxation step) their mutual orientation be-
comes relevant, because the stiffness of minerals (even cubic
minerals, see discussion above) varies with the direction. For
example, if the stiffest direction of the inclusion points toward the
softest direction of the host the relaxation along that direction will
be maximized. Therefore, the final residual strain in the inclusion is
also function of the mutual crystallographic orientation between
the host and the inclusion and the components of the relaxation
tensor must be recomputed for each orientation. However, we
show that for garnet hosts, that are almost isotropic, the relative
orientation of a spherical inclusion introduces deviations in the
residual strain that are negligible when compared to the un-
certainties in the measurements on natural samples. To prove this
concept, for each inclusion-garnet pair we investigated two
representative orientations, aligning the stiffest direction of the
inclusion with the stiffest and softest directions of the host
respectively (more details in the supplementary data).
4.1. Cubic inclusion in cubic host: diamond in garnet

We show the results for a spherical inclusion of diamond with
its [1 1 1] direction aligned with the [1 1 1] direction of the garnet
(i.e. pyrope and grossular) host. The EoS and the stiffness tensor of
diamond are from Angel et al. (2015) and Zouboulis et al. (1998),
respectively. We follow the usual convention for which the strain
and the stress are defined in a Cartesian reference system for which
the normal components of the strain and of the stress are parallel to
Fig. 2. Difference between the volume strain in the inclusion after exhumation from the
anisotropic models. (a) diamond in pyrope; (b) diamond in grossular. Dashed line is the gr
the <1 0 0> crystallographic directions.
After the thermodynamic calculation from entrapment to the

final temperature (Tend), a cubic inclusion in a cubic host is subject
to isotropic strain and stress and, as a result, the strain (and the
stress since the crystal is cubic) are isotropic before relaxation (see
Eq. (2)). This together with the symmetry of the top left block of the
R tensor (i.e. R11 ¼ R22 ¼ R33; R12 ¼ R13 ¼ R23, see Table S2.4)
guarantees that the final strain in the inclusion after exhumation is
isotropic for any entrapment P and T. We calculated the volume
strain developed in the inclusion after exhumation from a wide
range of entrapment Ptrap; Ttrap to room conditions. Fig. 2 shows
that the final inclusion volume strain calculated with the aniso-
tropic model (εanisoV ¼ ε1 þ ε2 þ ε3) is practically equal to the result
of the isotropic model (εisoV ). The small deviation is due to the non-
linear elasticity used for the isotropic relaxation and to the elastic
anisotropy of the host and the inclusion. Since cubic minerals are
not elastically isotropic, their Reuss (GR) and Voigt (GV ) shear
moduli are not equal as they would be in an isotropic material,
leading therefore to a different elastic relaxation. From our calcu-
lation it is evident that the difference ε

iso
V � ε

aniso
V is slightly smaller

for the grossular host that is stiffer than pyrope (compare Fig. 2 a
and b). From a practical point of view, the isotropic model can be
considered a good approximation if the difference in the final
volume strain ε

iso
V � ε

aniso
V is smaller than the typical uncertainties

associated with the measurements of the volume strain in natural
inclusions. For diamond inclusions the residual strain ðεV Þ can be
determined by X-ray diffractionmeasurements with an uncertainty
in the order of magnitude dðεV Þ z 10�4 (Angel et al., 2016). As a
consequence, Fig. 2 shows that the isotropicmodel gives the correct
volume strain for both pyrope and grossular hosts, suggesting that
for a diamond inclusion in garnet it may also be used to obtain a
reliable estimation of the entrapment pressure. For example, for an
entrapment at 4.2 GPa and 1000 �C, the final volume strain in the
inclusion after the exhumation would be 5:5 ,10�4. If that volume
strain is measured (with X-ray diffraction or Raman spectroscopy)
and used in an isotropic model, the recalculated entrapment
pressure is Ptrap ¼ 4.15 GPa (1% deviation from the true initial
value). This result is particularly relevant when the measurement is
performed with Raman spectroscopy, that for cubic minerals only
gives the volume strain and therefore only allows the application of
isotropic geobarometry (Angel et al., 2018). Moreover, Fig. S.2.2 (in
supplementary data) shows that, despite the large contrast in
Ptrap ; Ttrap of entrapment to room conditions calculated with the isotropic and the
aphite-diamond phase boundary from Day, 2012.
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elastic properties between the diamond inclusion and the garnet
host, their relative crystallographic orientation does not signifi-
cantly affect the final volume strain in the inclusion. Therefore, the
determination of their relative orientation is not necessary for the
calculation of reliable entrapment conditions.
4.2. Non-cubic inclusion in cubic host

4.2.1. Quartz in garnet
Here we report the results for a spherical quartz inclusion with

its crystallographic c-axis aligned with the [0 0 1] direction of the
garnet (i.e. pyrope and grossular) host. As shown by Eq. (5), the
strain field developed during exhumation in a non-cubic inclusion
in a cubic host is in general anisotropic, because quartz is uniaxial
and the a and c crystallographic axes of the inclusion behave
differently under changes of the external pressure and tempera-
ture. The EoS for quartz are from Angel et al. (2017a) and Alvaro
et al., 2020 and explicitly include the effects of the a - b transi-
tion in quartz. The stiffness tensor is from Lakshtanov et al. (2007).
We again follow the usual convention for which the strain and the
stress are defined in a Cartesian reference system for which the ε1;

s1 and ε2; s2 components lie in the crystallographic a-b plane and
the ε3; s3 component is parallel to the c-axis.

Fig. 3a shows the differential strain ε3 � ε1 calculated in the
inclusion after exhumation from the Ptrap; Ttrap of entrapment to
room conditions. Since ε3 is not necessarily the maximum strain in
the inclusion, the difference ε3 � ε1 can be either positive or
negative depending on the entrapment conditions. The strain in the
inclusion is isotropic only for a narrow range of entrapment con-
ditions in P-T space. Since quartz is trigonal, when the relaxed strain
is isotropic the relaxed stress is not hydrostatic (see Fig. 3). When
the strain is compressive (i.e. stresses are negative) and isotropic,
the s3 component of the stress is more negative than s1 ¼ s2
(because the quartz c-axis is stiffer than the a¼ b axes). As a
consequence, s3 � s1 is negative as can be seen by comparing
Fig. 3a and b. On the other hand, when the compressive stress in
quartz is isotropic the strain components ε1 ¼ ε2 are more negative
than ε3, and ε3 � ε1 is positive.

Fig. 4 shows that for entrapment at conditions in the a-quartz
Fig. 3. Quartz in pyrope showing (a) differential strain and (b) differential stress in the inc
quartz is trigonal, when the relaxed strain is isotropic the relaxed stress is not hydrostatic (co
ε3 � ε1 > 0 at higher Ptrap and the other with ε3 � ε1 < 0 at lower Ptrap. This is due to the
a- and b-axes (see elastic properties reported in the supplementary data). Dotted line is th
quartz phase boundary (Angel et al., 2017a). The quartz-coesite phase transition is not inc
conditions above the phase boundary do not represent the real behaviour of coesite.
stability the true final volume strain in the inclusion obtained from
the anisotropic model (εanisoV ) is more negative than the result of the
isotropic model (εisoV ), and the difference ε

iso
V � ε

aniso
V is therefore

positive. This difference is due to the use of the anisotropic elastic
properties of the inclusion and to the assumption of constant elastic
properties in the calculation of the anisotropic relaxation. The re-
sidual strain in natural quartz inclusions can be determined with
Raman spectroscopy and X-ray diffraction (e.g. Murri et al., 2018).
The uncertainty of the measurements of the Raman peak positions
(evaluated as the reproducibility in multiple measurements of a
standard reference crystal) is typicallyz 0.3 cm�1. For quartz in-
clusions, by using the concept of phonon-mode Grüneisen tensors
(Angel et al., 2018), this translates into an uncertainty on each
component of the residual strain (εi) and on the volume strain (εv)
of about 10�3. X-ray diffraction, has a better precision in the mea-
surements and provide an uncertainties in the strains of about
10�4. Therefore, for a quartz inclusion in garnet the discrepancy
between the isotropic and the anisotropicmodels would be smaller,
or of the same order of magnitude, of the uncertainties in the
experimental measurement of the volume strain. As a consequence,
the isotropic model lead, to errors in the estimation of the
entrapment pressure that are relatively small even at higher
entrapment pressures, provided the true stress state of the inclu-
sion is measured (Bonazzi et al., n.d.) For example, for an entrap-
ment at 2.70 GPa and 800 �C, close to the quartz-coesite phase
boundary, the final volume strain in the quartz after the exhuma-
tion would be � 2:709 ,10�2. The entrapment pressure recalcu-
lated from this volume strain using the isotropic model is Ptrap
¼ 2.75 GPa, with a discrepancy of 2% (less than 0.5 kbar) from the
true initial value.

Because quartz is trigonal, the orientation of the inclusion
within the host could also affect the strain in the inclusion and
increase the errors associated with the isotropic model. Fig. 5
shows the variation of the two independent components (ε1 and
ε3) of the strain calculated with two extreme relative orientations
of the quartz inclusion in pyrope (further details are given in the
supplementary data). The component ε3 of the strain changes more
with orientation, because it is parallel to the c-axis that is the
stiffest crystallographic axis in quartz. Fig. S2.5 and S2.6 (in
lusion after exhumation from the Ptrap ; Ttrap of entrapment to room conditions. Since
mpare a and b). The line of isotropic strain divides the P-T space in two fields, one with
c-axis of quartz having a lower compressibility and thermal expansion compared to the
e quartz-coesite phase boundary (Bose and Ganguly, 1995), the dashed line is the a -b
luded in the thermodynamic calculation, and all the results calculated for Ptrap, Ttrap



Fig. 4. Difference between the volume strain in the inclusion after exhumation from the Ptrap ; Ttrap of entrapment to room conditions calculated with the isotropic and the
anisotropic models. (a) quartz in pyrope; (b) quartz in grossular. Dotted line is the quartz-coesite phase boundary (Bose and Ganguly, 1995), the dashed line is the a-b quartz phase
boundary (Angel et al., 2017a). The quartz-coesite phase transition is not included in the thermodynamic calculation, and all the results calculated for Ptrap, Ttrap conditions above the
phase boundary do not represent the real behaviour of coesite.

Fig. 5. Quartz in pyrope showing a comparison between the strain components ε1 (a) and ε3 (b) of the relaxed strain of the inclusion calculated for two different orientations: (or1)
c-axis of quartz aligned with the stiffest direction (direction [001]) of pyrope; (or2) c-axis of quartz aligned with the softest direction (direction [111]) of pyrope. Dotted line is the
quartz-coesite phase boundary (Bose and Ganguly, 1995), the dashed line is the a -b quartz phase boundary (Angel et al., 2017a). The quartz-coesite phase transition is not included
in the thermodynamic calculation, and all the results calculated for Ptrap, Ttrap conditions above the phase boundary do not represent the real behaviour of coesite.
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supplementary data) show the change of the strain in the quartz
inclusion taking grossular as host. Since grossular is slightly more
anisotropic than pyrope the magnitude of the variation is slightly
larger. However, for both pyrope and grossular hosts the change of
the strain with orientation is very small and cannot be resolved
with measurements such as X-ray diffraction or Raman spectros-
copy that have an uncertainty on the determination of the strain
components of dðεiÞ z 1,10�4. Therefore, the relative orientation
between the quartz inclusion and the garnet host does not signif-
icantly affect the strain in the inclusion.
4.2.2. Zircon in garnet
Zircon, as quartz, is uniaxial and as a consequence the strain

developed in a zircon inclusion during exhumation is in general
anisotropic. Fig. 6 shows the strain developed after the exhumation
to room conditions in a spherical zircon inclusion with its crystal-
lographic c -axis aligned with the [0 0 1] direction of the garnet (i.e.
pyrope and grossular) host. The EoS and the stiffness tensor of
zircon are from Zaffiro (2019) and €Ozkan et al. (1974), respectively.
We continue to use the convention for which the strain and the
stress are defined in a Cartesian reference system for which the ε1;

s1 and ε2; s2 components lie in the crystallographic a-b plane and
the ε3; s3 component is parallel to the c-axis.

The final strain in the inclusion is perfectly isotropic only for an
entrapment at low P and T conditions (Fig. 6). For any other
entrapment Ptrap; Ttrap the difference ε3 � ε1 is always positive
because the c-axis in zircon has a lower compressibility (is stiffer)
than the a¼ b axes (b0;c ¼ 0:929,10�3 GPa�1, b0;a ¼ 1:69,10�3

GPa�1) but a larger thermal expansion (a0;c ¼ 0:5095,10�5K�1,
a0;a ¼ 0:2817,10�5K�1, Zaffiro, 2019). As expected, when the



Fig. 6. Zircon in pyrope showing the (a) differential strain and (b) differential stress in the inclusion after exhumation from the Ptrap; Ttrap of entrapment to room conditions.

Fig. 7. Difference between the volume strain in the inclusion after exhumation from the Ptrap ; Ttrap of entrapment to room conditions calculated with the isotropic and the
anisotropic models. (a) zircon in pyrope, (b) zircon in grossular.
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differential strain is low (i.e. for entrapment at Ptrap; Ttrap close to
room conditions) the differential stress is also low (Fig. 6a and b).
The stress, that is usually deviatoric, becomes hydrostatic only for
entrapment at specific conditions which do not correspond to those
that generate isotropic strain. The residual strain in a zircon in-
clusion can be measured by Raman spectroscopy or X-ray diffrac-
tion, that provide an uncertainty on the determination of the
volume strain in the order of magnitude of 10�4. Fig. 7 shows that
for all the entrapment conditions, and for both pyrope and gros-
sular hosts, the discrepancy between the volume strain predicted
by the isotropic and the anisotropic models is of the same order of
magnitude of the uncertainties in the measurement of the volume
strain.

The effect of the orientation of the zircon inclusion within the
garnet host was tested for two extreme orientations (see supple-
mentary data for further details). Fig. S2.7 - S2.10 (in supplementary
data) show that for both pyrope and grossular hosts the relative
orientation between the zircon inclusion and the host does not
significantly affect the strain in the inclusion, since the change in
strain could not be resolved with measurements that provide a
precision on the strains ofz10�4. The variation of the strain due to
the orientation is less for a pyrope host since it is elastically more
isotropic than grossular.

5. Complex geometries

A detailed explanation for other geometries and host-inclusion
pairs is beyond the scope of this paper. In general, the overall ge-
ometry of the system modifies the strain and stress developed in
the inclusion during the exhumation. Therefore, the residual stress
and strain fields in an inclusion with faceted morphology, or close
to other inclusions or to the external surface of the host, may be
different from the results shown in this work for an ideal geometry.
As a consequence, for samples with non-ideal geometry the
discrepancy in the calculation of the entrapment conditions be-
tween the anisotropic and the simple isotropic model might in-
crease, if the geometrical features are not taken into account.
However, the approach that we have outlined for simple spherical
inclusions may be extended to more complex geometries. In this
case precise constraints on the geometry of the system and on the
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crystallographic orientations of the minerals can be obtained from
X-ray micro-tomography and X-ray diffraction, respectively (e.g.
Anzolini et al., 2019). Combining these pieces of information, a
finite element model can be built to calculate the relaxation tensor
that includes the effects of the shape of the inclusion, its proximity
to external surfaces and to other inclusions, and its crystallographic
orientation. An example of application for this procedure to a
natural sample is reported in Alvaro et al., 2020. It should be
remembered that the strain and stress fields, and, as consequence,
the relaxation tensor are not constant in inclusions with non-
elliptical shapes (Eshelby, 1957). Therefore, if the strain is
measured in a specific point of the inclusion by Raman spectros-
copy, the relaxation tensor should be calculated for that specific
point from the finite element model on the real geometry. On the
other hand, X-ray diffraction measurements give the average strain
over the entire volume of the inclusion (e.g. Murri et al., 2018) and,
in this case, an average relaxation tensor must be computed.

6. Conclusions

We have extended elastic geobarometry to include elastic
anisotropy, by splitting the calculation of the final residual strain
developed in the inclusion after exhumation into two steps: ther-
modynamic calculation and relaxation. With this approach the
strain and the stress fields developed in the inclusion after the
exhumation from any entrapment at external hydrostatic condi-
tions can be computed.

Calculations confirm the expected result that when both the
host and the inclusion have cubic crystallographic symmetry the
residual strain and stress in the inclusion are always isotropic. If at
least one of the host or the inclusion has a crystallographic sym-
metry lower than cubic, the relaxed strain and stress in the inclu-
sion are generally anisotropic (and homogeneous if the inclusion is
ellipsoidal), with differential stresses limited to few kilobars.

For garnet hosts and assuming a simple geometry of the system,
the new anisotropic model and the isotropic model predict similar
residual volume strains are developed in the inclusion after exhu-
mation. The differences between the predictions of the isotropic
and anisotropic calculations are usually within, or of the same order
of magnitude of the typical uncertainties on the measurements of
the strain in natural inclusions with X-ray diffraction or Raman
spectroscopy. As we have shown, this implies that, for inclusions
entrapped in cubic hosts at HP metamorphic conditions, the use of
an elastically isotropic model for geobarometry leads to estima-
tions of the entrapment pressure which are within 1 kbar of the
results of the new anisotropic model. This is particularly relevant
when the measurement on the inclusion is performed with Raman
spectroscopy, that for cubic minerals only allows the volume strain
to be determined (Angel et al., 2018) and therefore only allows the
application of isotropic geobarometry. The difference between the
isotropic and the anisotropic models increases when the symmetry
of the inclusion is lower than cubic (e.g. quartz). The discrepancy in
general becomes smaller for stiffer hosts, since they can better
constrain the inclusion and limit the amount of elastic relaxation.
However, there are fundamental assumptions behind our current
analysis: the geometry of the system is simple, with a spherical
inclusion embedded in an infinite host; the entrapment took place
under external hydrostatic conditions; the system did not experi-
ence viscous flow. Deviation from any of these assumptions will
modify the residual strain/stress field in the inclusion and, if not
taken into account appropriately, they would cause larger errors in
the back-calculation of the entrapment conditions.

In general, the stress and the strain developed in the inclusion
during the exhumation change with different mutual crystallo-
graphic orientations between the host and the inclusion. However,
we showed that the orientation of a spherical inclusion in a garnet
host does not affect the strain in the inclusion as demonstrated for
inclusions with a wide range of stiffness and anisotropy (diamond,
quartz and zircon). Therefore, for samples with a simple geometry
where the inclusion is almost spherical and isolated within the
garnet, and far away from external surfaces, the determination of
their relative orientation is not necessary to constrain the entrap-
ment conditions.

We demonstrated the application of this model to systems with
simple geometry. It can be also applied to more complex geome-
tries if the three-dimensional model of the sample is available (for
example through X-ray micro-tomography). However, the effect of
complex geometries on the strain/stress fields should be evaluated
on a case-by-case basis and is beyond the scope of this paper.
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