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Abstract:

Recent publications have suggested the existence of germ stem cells in the mouse at

postnatal stages. The mechanism of de novo oocyte formation is proposed to involve a

contribution from the bone marrow to the germ cell pool, via the bloodstream. Critical

examination of the data underpinning these contentious claims is under way from a

reproductive biology perspective, but little has been said about the nature this elusive bone

marrow population with germ cell potential. Furthermore, whilst the prospect of marrow-

derived germ cells may appear propitious for fertility applications, its wider impact on

transplantation medicine remains to be considered. This paper examines the evidence

leading to the current debate, and considers the potential implications of such findings for the

field of bone marrow transplantation.
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Extragonadal germ stem cells in the adult ?

The hypothesis of adult germ stem cells

A debate was launched following the publication of two studies by Johnson and colleagues in

the past two years (Johnson et al. 2004), (Johnson et al. 2005). The earlier paper (Johnson et

al. 2004) reported observations questioning the long-established dogma that the number of

mammalian oocytes is fixed by the start of postnatal life. Contrary to male germ cells, the

production of female germ cells is generally considered to be limited and the initial oocyte

reserve gets gradually depleted over the phase of reproductive competence, the menopause

marking the exhaustion of this finite pool (Gosden et al. 1983), (McClellan et al. 2003).

However, the paper by Johnson and colleagues describes signs of preservation and

proliferation of germline stem cells in postnatal mouse ovaries, thus opening the possibility of

a postnatal contribution to the oocyte reserve. Another report using a similar mouse model

recently confirmed that in ovaries from 7- to 100-day old mice, the mean numbers of

primordial follicles were not significantly depleted, supporting some degree of follicle renewal

in postnatal and adult mouse ovaries (Kerr et al. 2006). Transplantation experiments

suggesting colonisation of grafted ovarian tissue by labelled oocytes from GFP-expressing

hosts led the authors to propose that immature germ cells present in the adult may be able to

generate de novo oocytes in a favourable environment. These elusive germ cell progenitors in

the ovary were reported to express the stage specific embryonic antigen-1 (SSEA1), and

germ cell markers Oct4, Mvh, Dazl and Stella, albeit at a low level (Johnson et al. 2005).

Bone marrow contribution to germ cell pool?

In a subsequent paper, Johnson et al. described their attempt to identify the postulated germ

cell progenitor (referred to as germ stem cell (GSC)) (Johnson et al. 2005). Based on the

hypothesis of an extra-ovarian source of precursors able to home to the ovaries and

contribute new oocytes, the authors analysed samples of bone marrow and peripheral blood

by RT-PCR. They detected the expression of germline markers in these tissues, and

controversially suggested that GSCs may be provided by adult bone marrow through the

circulation. Further corroboration was gained in vivo when animals depleted of their



endogenous oocytes before bone marrow transplantation showed signs of new germ cells

developing from a donor origin. However, interpretation of these results necessitates some

caution in the light of past transplantation experiments, which have showed that donor bone

marrow stem cells can undergo spontaneous fusion with differentiated host cells (Weimann et

al. 2003), (Alvarez-Dolado et al. 2003).

A recent report (Eggan et al. 2006) somewhat contradicts the claim that precursors in

peripheral blood may generate new functional germ cells. Using a model of parabiosis

allowing blood circulation between a GFP-labelled and a non-labelled mouse, this study

showed no obvious cross-contribution from the mouse partner’s blood flow to the pool of

available oocytes, with the exception of infiltrated cd45-positive cells which did not exhibit

germline features. As called for by many commentators (Byskov et al. 2005), (Bukovsky

2005), (Telfer et al. 2005), (Gosden 2004), more data is needed to resolve this question, in

particular the proof of bona fide differentiation from these germ stem cells through the

generation of functional oocytes with reproductive potential.

Bone marrow: a germ stem cell reservoir?

Although the debate is intense around the experimental caveats and extrapolations presented

in these initial studies, little has been said about the cells proposed as the extra-gonadal

source of germ stem cells. The nature of the bone marrow subpopulation identified by

Johnson et al. is quite intriguing as, contrary to what may have been expected, it does not

correspond to classical stem cell populations.

Hematopoietic stem cells

Existing studies have drawn attention to a possible plasticity between the hematopoietic stem

cell (HSC) and the germ cell lineage. Hematopoietic progenitors and primordial germ cells

develop in close proximity during embryogenesis, and in vitro experiments have

demonstrated that primordial germ cells can exhibit hematopoietic potential and form

erythroid derivatives (Rich 1995). It is unclear whether the HSC is the cell type involved in the



phenomenon observed by Johnson et al., as the elusive germ stem cells appear in the lin-

/Sca1-/c-kit+ fraction. The lin- (or lineage marker-negative) fraction represents bone marrow

depleted of cells expressing markers of mature hematopoietic lineages (Okada et al. 1992),

and is therefore enriched for uncommitted progenitors (Spangrude et al. 1988). Furthermore,

it has been established that primitive HSCs express c-kit (cd117) (Okada et al. 1991), a

feature shared with germ cells (Manova et al. 1990), (Hutt et al. 2006). However, unlike the

population reported to contain GSCs (Johnson et al. 2005), primitive HSCs also express Sca1

and are therefore lin-/Sca1+/c-kit+ (fig.1), whereas Sca1 is absent in more committed

progenitor populations (Okada et al. 1992), (Zhang et al. 1995), (Morita et al. 2006),

(McKinstry et al. 1997). For instance, a sorting strategy based on lin-/Sca1-/c-kit+ (similar to

that described by Johnson et al.) has been used to enrich for myeloid precursors of the

macrophage/osteoclast lineage (Muguruma and Lee 1998).

Hematopoietic stem cells have also been isolated within the side population (‘SP’) of cells in

the marrow. SP cells are defined by their ability to efflux dyes, which is considered a property

common to stem cells across many tissues. SP cells can be isolated from the bone marrow

and the testis, where they allow significant enrichment for HSCs and germ cell progenitors,

respectively (Goodell et al. 1996), (Lassalle et al. 2004), (Falciatori et al. 2004). However, the

marrow SP population typically appears within the lin-/Sca1+/c-kit+ fraction (Pearce et al.

2004) (fig.1).

Non hematopoietic stem cells

An alternative marrow stem cell type which could be envisaged as a source of GSCs is the

mesenchymal stem cell (‘MSC’). In fact, the method referenced by Johnson et al. to prepare

bone marrow cultures had initially been developed to isolate MSCs (Meirelles Lda and Nardi

2003), and it generated an adherent culture passaged as a monolayer (Johnson et al. 2005).

MSCs are multipotent progenitors with established adipogenic, osteogenic and chondrogenic

differentiation ability (Pittenger et al. 1999), and are believed to exhibit some differentiation

markers for lineages beyond mesenchymal cell types (Hermann et al. 2004), (Deng et al.

2006). A recent study using adherent stromal cells from mouse bone marrow suggests that

expression of markers specific for male germ cells can be induced in these cells (Nayernia et



al. 2006). The bone marrow isolated in this study was collected from a transgenic mouse

model in which GFP expression is under the control of the Stra8 promoter, a retinoic acid-

responsive gene expressed in the male germ cell lineage (Oulad-Abdelghani et al. 1996). In

vitro treatment with retinoic acid led to the appearance of a small fraction of GFP-positive

cells indicating activation of Stra8 expression in these cells, and the detection of germline

markers such as Oct4, Stella, Dazl and Fragilis (Saitou et al. 2002). These marrow-derived

cells were also reported to be able to colonise the gonad after transplantation. Although the

analysis by RT-PCR doesn’t allow unequivocal quantification of these changes in the gene

expression profile, this work provides a first basis to further investigate the germ cell potential

in these cells. The study is centred on MSCs, although in the absence of any specific cell

sorting the precise nature of the stromal cells able to express Stra8 remains unclear. It seems

unlikely, however, that the cells described by Johnson et al. correspond to this stromal

fraction, as mouse MSCs are reported to be found within the lin-/Sca1+/c-kit- fraction (Baddoo

et al. 2003), (Deng et al. 2006), (Anjos-Afonso et al. 2004) (fig.1). Also, the reported germ

cell-enriched fraction does not appear to fit the description of multipotent adult progenitor cells

(MAPCs) identified in the bone marrow. Although MAPCs have been reported to express

SSEA-1 and low levels of Oct4, which are both also expressed in primordial germ cells

(McLaren and Durcova-Hills 2001), (Saitou et al. 2002), they are weakly positive for Sca1 and

negative for c-kit (Jiang et al. 2002) (fig.1).

A recent report has identified an equally unanticipated somatic source of germ cell

precursors. Using a porcine model, Dyce et al. have shown that stem cells isolated from foetal

skin can form oocyte-like cells in vitro (Dyce et al. 2006). This study illustrates the current

search for extra-gonadal cells with germ stem cell potential, although the physiological

significance of such findings is unclear. The possible route of delivery for skin-derived stem

cells to the ovary appears enigmatic, whereas cells of marrow origin could colonise distant

organs through the circulation. Others have shown that adult human female germ cells

derived from the ovarian surface epithelium can enter the bloodstream (Bukovsky et al. 1995),

(Bukovsky et al. 2004), and speculated that such cells may contaminate the blood and bone

marrow (Bukovsky 2005), which is known to be seeded with many mobile stem cell

populations (Hirschi and Goodell 2002), (Roufosse et al. 2004), (Palermo et al. 2005).



Refining the molecular profile of the GSC fraction is now necessary in order to assess its

physiological relevance, and evaluate its relationship to established stem cell populations.

Recently, a hypothesis has been raised that the prospect of germline regeneration, while

unlikely to occur in mice, may have some basis in primates (Hutt and Albertini 2006).

Considerations for transplantation:

The hypothetical existence of adult germ stem cells, at the crossroads of developmental

biology, stem cell biology and reproductive biology, is still very much open, as the

experimental results and interpretation underpinning this debate remain highly contentious

(Telfer et al. 2005), (Eggan et al. 2006), (Bukovsky 2005). As more investigators enter this

debate, the data presented in Johnson et al.’s reports will no doubt be analysed and tested in

great detail. Beyond the technical and experimental arguments, it is interesting to take a step

back and envisage the impact such a challenging concept may have from a clinical

perspective. Experts and observers of the field have commented on the consequences of

such reports for reproductive medicine (Bukovsky 2005), (Gosden 2004), (Powell 2006),

(Couzin 2004), (Kayisli and Seli 2006). Following the paradigm of regenerative medicine

using adult stem cells to repair somatic tissues such as bone or cardiac muscle (Quarto et al.

2001), (Zhang et al. 2005), it is tempting to imagine that adult germ stem cells could in the

future represent a potential source to treat infertility issues (Kayisli and Seli 2006). This

possibility has already been formulated in the case of young cancer patients, as autologous

blood or bone marrow harvested during ovarian oogenesis (potentially containing germ cells)

prior to anti-cancer chemotherapy could be used post-chemotherapy (Bukovsky 2005). Such

hopes are undoubtedly premature at this stage, as the observations presented by Johnson et

al. and their relevance to the human are to be confirmed (Telfer et al. 2005), (Bukovsky

2005), (Byskov et al. 2005).

However, such speculations around possible therapeutic benefits to patients draw attention to

a corollary issue regarding the use of bone marrow donations. If more detailed reports come



to support the existence of a germ cell progenitor in the marrow, and if it is conceivable as

envisaged by Johnson et al. that this precursor is able to form new germ cells with

reproductive potential, this raises the possibility that bone marrow transplant could indirectly

lead to a germ cell transplant. In other words, could a bone marrow recipient have an

offspring conceived from a bone marrow donor-derived germ cell? Further transplantation

experiments in mouse models are now needed to establish whether cells originating from

transplanted bone marrow can develop into genuine germ cells of the recipient, and

demonstrate reproductive ability. The medical and societal consequences of such a biological

possibility could be significant, particularly in cases where donors and recipients are related.

Moreover, if the debate was to continue and enter the public arena, how would it affect bone

marrow donations? Issues raised by such contentious concepts are both of scientific and

ethical nature, as they could significantly affect both donors’ and a recipients’ perspective on

transplantation. As with all challenges created by advances in stem cell research, complex

ethical questions are inevitable (McLaren 2001), (Daar and Sheremeta 2003). Consequently,

the evolution of this fierce debate involving stem cell biologists and reproductive biologists will

also be of particular relevance to medical ethicists.
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