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Abstract: Human mesenchymal stem cells (MSCs) show promise for musculoskeletal repair
applications. Animal-derived serum is extensively used for MSC culture as a source of nutrients,
extracellular matrix proteins and growth factors. However, the routine use of fetal calf serum (FCS)
is not innocuous due to its animal antigens and ill-defined composition, driving the development
of alternatives protocols. The present study sought to reduce exposure to FCS via the transient
use of human serum. Transient exposure to animal serum had previously proved successful for
the osteogenic differentiation of MSCs but had not yet been tested with alternative serum sources.
Here, human serum was used to support the proliferation of MSCs, which retained surface marker
expression and presented higher alkaline phosphatase activity than those in FCS-based medium.
Addition of osteogenic supplements supported strong mineralisation over a 3-week treatment.
When limiting serum exposure to the first five days of treatment, MSCs achieved higher differentiation
with human serum than with FCS. Finally, human serum analysis revealed significantly higher levels
of osteogenic components such as alkaline phosphatase and 25-Hydroxyvitamin D, consistent with
the enhanced osteogenic effect. These results indicate that human serum used at the start of the
culture offers an efficient replacement for continuous FCS treatment and could enable short-term
exposure to patient-derived serum in the future.

Keywords: Mesenchymal stem cells; human serum; fetal calf serum; in vitro differentiation; osteogenic
culture

1. Introduction

Mesenchymal stromal stem cells (MSCs) are able to generate osteoblasts, chondrocytes, and
adipocytes [1–3]. These progenitors represent prime candidates for therapeutic applications including
bone and cartilage regeneration, prevention of graft-versus-host disease, improved engraftment of
bone marrow transplants, and the treatment of metabolic diseases [4]. MSCs have primarily been
investigated for skeletal repair applications [5] and are one of the few adult stem cell types clinically
shown to benefit regenerative approaches. MSC culture in vitro is typically performed in the presence
of serum, which is also included for osteogenic differentiation protocols using β-glycerophosphate,
ascorbic acid, and dexamethasone supplementation [6].

Serum typically provides nutrients, extracellular matrix proteins, and growth factors to support
cells in vitro [7,8]. There is also evidence that serum may act as an antioxidant for cells [9]. Despite its
zoogenic content, animal serum has been used since the first isolation of MSCs and remains a prime
component for their culture and differentiation. Methods of reducing animal antigens in fetal calf serum
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(FCS) have been proposed but do not alleviate all risks [10], leading to increasing demands for the
development of alternative culture conditions, and a move towards the possible use of human-derived
serum [11].

Importantly in the past, transient exposure to FCS has been successful in the osteochondral
differentiation of MSCs but has never been expanded to alternative sources of serum [12]. The present
study describes an improved alternative approach for the culture and osteogenic differentiation of
human MSCs using reduced exposure to serum. Standard FCS-containing medium was compared to
osteogenic conditions based on human serum (HS). Different sources of HS were evaluated, and a
transient serum regime based on a 5-day human serum exposure before serum-free treatment was then
applied to support MSC osteogenic differentiation, over 21 days.

2. Results

2.1. MSC Culture in HS- or FCS -Based Medium

In order to evaluate the use of human serum-based medium for MSC cultures, a comparison
between the characteristics of cells maintained in fetal calf serum (FCS) or human serum (HS, Lonza)
was conducted. MSCs were cultured in either FCS or HS for two passages before their morphology
was observed using microscopy (Figure 1). MSCs cultured in both serum types exhibited the typical
fibroblastic morphology, however the HS-cultured cells seemed to be more cuboidal in shape than the
cells in FCS (Figure 1a). Flow cytometry analysis (Figure 1b) showed no significant difference in cell
size between MSCs cultured the two conditions, and the side-scatter data indicated cells cultured in
HS to be more granular than cells in FCS, a result supported by bright field microscopy observation
that MSCs in HS appeared darker than cells in FCS (data not shown). Cultures in HS-based medium
appeared to proliferate at a higher rate than the parallel cultures in FCS-based medium, and DNA
content measured at day 14 and day 21 (Figure 1c) was found to be significantly higher in HS culture
than FCS culture. The percentage of apoptotic and necrotic cells after 14 days of standard culture
medium supplemented with FCS or HS (SC+FCS or SC+HS) determined using Annexin-V staining
indicated a higher proportion of apoptotic cells in FCS-culture than cells cultured with HS (Figure 1d).
There was also a higher percentage of live MSCs in medium supplemented with HS (91.1%) than
medium with FCS (75.3%). Levels of necrosis were negligible for the two conditions. Comparative
assessment of CD29, CD90 and CD105 MSC surface marker expression (Figure 1e) indicated analogous
levels in cells cultured in HS and cells grown in the presence of FCS.

To further investigate whether these effects observed upon exposure to human serum were
dependent on reagent source, human sera from three different manufacturers were tested for their
effect on metabolic activity and alkaline phosphatase (ALP) activity in culture (Figure 2). Sera from
Lonza, Cellect and Seralab were tested in parallel, with serum from Lonza producing the highest
cell metabolic activity when compared the Cellect and Seralab products, although this effect was not
statistically significant (Figure 2a). Metabolic activity was highest when FCS was used, however
levels of ALP activity were significantly higher with HS-based media when compared to FCS-based
medium (Figure 2b). Lonza and Seralab sera supported higher ALP activity compared to Cellect,
for which results were closer to FCS. Filtration of sera reduced the ALP activity measured for all
samples (Figure 2b) while metabolic activity was not significantly affected (Figure A1). To evaluate
the contribution of the serum itself to the level of ALP activity measured in the wells, each serum
sample was tested for ALP activity in the absence of any cells. HS samples exhibited significantly
higher endogenous ALP activity compared to FCS (Figure 2c), which was reduced upon filtration,
with the highest reduction observed for Lonza HS (32.8% reduction). Combined analysis of the MSC
metabolic assay and ALP activity assay results with the endogenous ALP activity levels measured in
each sample showed a clear difference between HS and FCS samples (Figure 2d).
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Figure 1. Characterisation of mesenchymal stem cells cultured in fetal calf serum (FCS) and human 
serum (HS) based medium (SC) over 21 days. (a) Fluorescence images of phalloidin-stained MSCs 
(green) cultured in SC+FCS or SC+HS with DAPI nuclear counterstain (blue). Scale bar = 50 µm. (b) 
Representative flow cytometry histograms showing the size (Forward scatter, top) and granularity 
(Side Scatter, bottom) profiles for cultures after two passages in SC+FCS (black) and SC+HS (red). (c) 
DNA quantitation after culture in SC+FCS and SC+HS for 14 (white) and 21 days (black) (n = 6). (d) 
Annexin-V analysis of live, apoptotic and necrotic MSC fractions after 14 days in Standard Culture 
(SC) medium containing FCS or HS (n = 3). * p < 0.05 and **** p < 0.00005. (e) Flow cytometry analysis 
of MSC surface marker CD29, CD90 and CD105 expression in cells cultured for two passages in 
SC+FCS or SC+HS. Data presented as mean ± SEM. 
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Figure 1. Characterisation of mesenchymal stem cells cultured in fetal calf serum (FCS) and human
serum (HS) based medium (SC) over 21 days. (a) Fluorescence images of phalloidin-stained MSCs
(green) cultured in SC+FCS or SC+HS with DAPI nuclear counterstain (blue). Scale bar = 50 µm.
(b) Representative flow cytometry histograms showing the size (Forward scatter, top) and granularity
(Side Scatter, bottom) profiles for cultures after two passages in SC+FCS (black) and SC+HS (red).
(c) DNA quantitation after culture in SC+FCS and SC+HS for 14 (white) and 21 days (black) (n = 6).
(d) Annexin-V analysis of live, apoptotic and necrotic MSC fractions after 14 days in Standard Culture
(SC) medium containing FCS or HS (n = 3). * p < 0.05 and **** p < 0.00005. (e) Flow cytometry analysis
of MSC surface marker CD29, CD90 and CD105 expression in cells cultured for two passages in SC+FCS
or SC+HS. Data presented as mean ± SEM.

To further investigate the difference between serum conditions used for MSC culture, human sera
from Lonza, Cellect and Seralab were biochemically analysed in order to evaluate key component
differences compared to fetal calf serum content (Figure 3). Serum analysis showed that levels of
glucose, albumin, cortisol, alkaline phosphatase and 1,25-dihydroxyvitamin D were higher in all
human serum samples than in fetal calf serum (Figure 3a), while insulin, calcium and phosphate
concentrations were conversely higher in FCS (Figure 3b). Although some intra-HS differences were
noted as Lonza HS and Seralab HS displayed higher levels of cortisol, alkaline phosphatase, and
25-Hydroxyvitamin D, principal component analysis showed a clear difference between the clustered
HS samples and FCS (Figure 3c,d).
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Figure 2. MSC culture using different serum products. (a) Metabolic activity in MSCs cultured for five 
days in SC culture media containing FCS or HS from Lonza, Cellect Seralab, or no serum (serum-free) 
as controls. (b) Alkaline Phosphatase activity for MSCs cultured for five days in SC medium 
supplemented with FCS or HS sera. (c) Alkaline Phosphatase activity measured in the different 
culture media in the absence of cells. * p < 0.05, ** p < 0.005, *** p < 0.0005, and **** p < 0.00005 (n = 6). 
(d) 3D plot of cell metabolic assay (M), cell ALP assay (ALP) and endogenous ALP assay (eALP) 
results for different sera showing clustering of Lonza HS (L), Seralab HS (S) and Cellect HS (C) away 
from FCS (F). 
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Figure 2. MSC culture using different serum products. (a) Metabolic activity in MSCs cultured for five
days in SC culture media containing FCS or HS from Lonza, Cellect Seralab, or no serum (serum-free) as
controls. (b) Alkaline Phosphatase activity for MSCs cultured for five days in SC medium supplemented
with FCS or HS sera. (c) Alkaline Phosphatase activity measured in the different culture media in the
absence of cells. * p < 0.05, ** p < 0.005, *** p < 0.0005, and **** p < 0.00005 (n = 6). (d) 3D plot of cell
metabolic assay (M), cell ALP assay (ALP) and endogenous ALP assay (eALP) results for different sera
showing clustering of Lonza HS (L), Seralab HS (S) and Cellect HS (C) away from FCS (F).

2.2. Transient Serum Exposure Regimes

The differentiation potential of MSCs exposed to different serum conditions was analysed using
both constant and transient serum exposure to evaluate the dependency of MSC response to FCS or
HS. Cultures treated with osteogenic (OS) medium containing human serum from Lonza (OS+HS) or
FCS (OS+FCS) throughout the treatment period were compared to cells exposed to transient serum
conditions (OS+FCS5d or OS+HS5d), where serum was included for the first five days only before
switching to serum-free osteogenic conditions for the rest of the treatment (Figure 4). After 14-day
treatments, metabolic activity showed no detectable difference between constant or transient serum
exposures for cultures exposed to standard medium (SC) using either serum type (Figure 4a). Under
OS conditions however, MSC metabolic activity was differentially affected by transient serum exposure.
Reduced FCS exposure led to a decrease in metabolic activity compared to constant FCS medium,
while transient HS exposure increased the metabolic response compared to constant HS presence.
Measurement of ALP activity in MSCs treated for 14 days demonstrated differences between FCS and
HS-containing media. Both constant and transient HS standard media (SC) showed elevated ALP
activity when compared to matching FCS conditions. Upon OS treatment, MSC cultures responded to
osteogenic conditions by an increase in ALP activity (Figure 4b). For FCS-containing media, transient
and constant serum exposure produced similar results, while transient HS presence in the OS treatment
led to an increase in ALP activity compared to constant HS (Figure 4b).
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Figure 3. Biochemical analysis of serum components in FCS and HS samples. (a) Normalisation to 
FCS values (dashed line) showed higher HS concentrations for total alkaline phosphatase (ALP), 25-
Hydroxyvitamin D (vitD), cortisol (Cort), albumin (Alb), and glucose (Gluc). (b) Lower concentrations 
of insulin (Ins), phosphate (Phos), Calcium (Calc) found in HS samples normalised to FCS (dashed 
line). * p < 0.05, and **** p < 0.00005 (n = 3). (c) Principal component analysis of the different serum 
samples analysed. (d) Heat map of the serum component analysed showing clustering of human 
samples. 
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Figure 3. Biochemical analysis of serum components in FCS and HS samples. (a) Normalisation
to FCS values (dashed line) showed higher HS concentrations for total alkaline phosphatase
(ALP), 25-Hydroxyvitamin D (vitD), cortisol (Cort), albumin (Alb), and glucose (Gluc). (b) Lower
concentrations of insulin (Ins), phosphate (Phos), Calcium (Calc) found in HS samples normalised
to FCS (dashed line). * p < 0.05, and **** p < 0.00005 (n = 3). (c) Principal component analysis of the
different serum samples analysed. (d) Heat map of the serum component analysed showing clustering
of human samples.
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transient HS treatment group achieved the highest mineral deposition level across all conditions. The 
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media. Transient HS medium showed comparable signal to constant FCS medium, while transient 
FCS was lower. Upregulation of osteocalcin expression under OS conditions was confirmed by 
immunocytochemistry (Figure 5d). 

Figure 4. Transient serum exposure for human mesenchymal stem cell cultures with FCS or HS.
(a) Metabolic activity in MSCs cultured for 14 days in constant (SC, OS) or transient (SC 5d, OS 5d)
media using either FCS or HS. (b) Alkaline phosphatase activity in MSCs treated for 14 days in standard
culture medium (SC) or osteogenic medium (OS) using either constant or transient (5-day) serum
exposure with either FCS or HS. * p < 0.05, ** p < 0.005, and **** p < 0.00005 (n = 6).

Mineral deposition in MSC cultures increased in response to all tested OS conditions at day
21 (Figure 5a). While transient serum exposure did not have a significant effect when using FCS,
it performed better than continuous serum exposure for the HS group (Figure 5b). By day 21, the
transient HS treatment group achieved the highest mineral deposition level across all conditions.
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The osteogenic response of MSCs was further analysed using RT-PCR for the bone-specific genes
Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) (Figure 5c).
The data showed upregulation of these genes in all OS conditions tested, both in FCS and HS-based
media. Transient HS medium showed comparable signal to constant FCS medium, while transient
FCS was lower. Upregulation of osteocalcin expression under OS conditions was confirmed by
immunocytochemistry (Figure 5d).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 15 
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Representative images of Alizarin red staining in MSCs cultures after 21 days in constant and 
transient HS media compared to constant FCS. (b) Quantitation of Alizarin Red staining intensity at 
day 21. **** p < 0.00005 (n = 6). (c) RT-PCR expression analysis of the osteogenic markers RUNX2, 
Osteopontin (OPN), and Osteocalcin (OCN) assessed at day one, seven and 12 after the onset of 
osteogenic treatment. (d) Representative images of Osteocalcin immunodetection (pink) in MSCs 
cultured for 21 days in SC or OS media with FCS or HS, with dapi nuclear counterstain (blue). Scale 
bar = 200 µm. 

2.3. Transient Serum Exposure Regimes in Primary MSC Cultures 

In order to validate the wider efficiency of HS and transient treatments regimes developed with 
the immortalised cell line, osteogenic differentiation was assessed using primary human MSCs 
(Figure 6). Similar to data with immortalised MSCs, HS produced higher ALP activity in SC medium 
compared to FCS. Although primary MSCs demonstrated less osteogenic differentiation than 
immortalised MSCs, primary cultures responded to differentiation media supplemented with either 
FCS or HS. Transient serum regimes were also able to trigger this OS response, as measured using an 
ALP activity assay at day 14 (Figure 6a). At day 21, primary cells cultured in OS conditions with HS 
appeared to mineralise more than cells in FCS (Figure 6b). However, once mineral deposition was 
quantified and normalised to DNA content in each well, cells cultured in FCS showed higher levels 
than HS cells (Figure 6c). Osteogenic cultures treated with transient FCS demonstrated higher ALP 
activity and more mineral deposition than cells in FCS throughout the differentiation culture period. 

Figure 5. Osteogenic response of human mesenchymal stem cells in the presence of FCS or HS.
(a) Representative images of Alizarin red staining in MSCs cultures after 21 days in constant and
transient HS media compared to constant FCS. (b) Quantitation of Alizarin Red staining intensity at
day 21. **** p < 0.00005 (n = 6). (c) RT-PCR expression analysis of the osteogenic markers RUNX2,
Osteopontin (OPN), and Osteocalcin (OCN) assessed at day one, seven and 12 after the onset of
osteogenic treatment. (d) Representative images of Osteocalcin immunodetection (pink) in MSCs
cultured for 21 days in SC or OS media with FCS or HS, with dapi nuclear counterstain (blue). Scale
bar = 200 µm.

2.3. Transient Serum Exposure Regimes in Primary MSC Cultures

In order to validate the wider efficiency of HS and transient treatments regimes developed with the
immortalised cell line, osteogenic differentiation was assessed using primary human MSCs (Figure 6).
Similar to data with immortalised MSCs, HS produced higher ALP activity in SC medium compared to
FCS. Although primary MSCs demonstrated less osteogenic differentiation than immortalised MSCs,
primary cultures responded to differentiation media supplemented with either FCS or HS. Transient
serum regimes were also able to trigger this OS response, as measured using an ALP activity assay at
day 14 (Figure 6a). At day 21, primary cells cultured in OS conditions with HS appeared to mineralise
more than cells in FCS (Figure 6b). However, once mineral deposition was quantified and normalised
to DNA content in each well, cells cultured in FCS showed higher levels than HS cells (Figure 6c).
Osteogenic cultures treated with transient FCS demonstrated higher ALP activity and more mineral
deposition than cells in FCS throughout the differentiation culture period.
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quantification for MSCs cultured for 21 days. * p < 0.05, **** p < 0.00005 (n = 6). 
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commonly used for the majority of cell systems including MSCs, its use may not be suitable for 
regenerative therapies because of issues related to animal contaminants even after filtration [1,13]. To 
evaluate possible HS-based protocols which could lead to autologous serum use [14,15], different HS 
samples were analysed in the present study, as well as the possibility of limiting the use of HS to the 
initial treatment phase, a strategy known to successfully support MSC differentiation when applied 
to FCS medium [12]. 

When comparing MSCs cultured in SC+FCS or SC+HS media, the typical marker expression and 
fibroblastic cell morphology were retained, although HS-based cultures appeared more granular and 
proliferative. This observation is in line with other reports where MSCs were cultured in autologous 
human serum that was obtained using a completely closed bag system [16]. Others have successfully 
expanded and differentiated human synovial MSCs using human serum [17]. 

Cultures in SC+HS exhibited less cell death than in SC+FCS after 14 days, similarly to previous 
studies using heterologous HS [18], although prolonged heterologous HS use has also been reported 
to increase growth arrest and death within 6 weeks [1]. Experiments described here were carried out 
for up to 3 weeks, and therefore further experiments will be required to establish any long-term 
changes. Our results also support previous observations of higher cell numbers in HS culture 
compared to FCS [1,16]. 

A novel strategy to limit the exposure to serum was also tested here, based on a previous study 
showing that transient FCS treatments can efficiently support MSC growth and differentiation [12] 
but importantly, this had not thus far been tested with human serum-based approaches. Previous 
reports have suggested that transient serum exposure may affect MSC growth pattern and 
morphology [19], while complete serum-free media may not support MSC proliferation [20]. 

Figure 6. Osteogenic response of primary MSCs in the presence of FCS or HS. (a) Alkaline phosphatase
activity in MSCs cultured for 21 days in SC, OS, SC 5-Day serum and OS 5-Day serum culture media
with FCS or HS. (b) Alizarin red staining of MSC cultures after 21 days in SC or OS medium with
transient serum exposure using FCS or HS. Scale bar = 200 µm. (c) Alizarin red quantification for MSCs
cultured for 21 days. * p < 0.05, **** p < 0.00005 (n = 6).

3. Discussion

3.1. Effect of Serum Regimes on Cell Growth

Serum is a critical element of cell culture medium, providing cells with nutrients, ECM proteins and
growth factors required for proliferation and differentiation [7]. Although FCS is the most commonly
used for the majority of cell systems including MSCs, its use may not be suitable for regenerative
therapies because of issues related to animal contaminants even after filtration [1,13]. To evaluate
possible HS-based protocols which could lead to autologous serum use [14,15], different HS samples
were analysed in the present study, as well as the possibility of limiting the use of HS to the initial
treatment phase, a strategy known to successfully support MSC differentiation when applied to FCS
medium [12].

When comparing MSCs cultured in SC+FCS or SC+HS media, the typical marker expression and
fibroblastic cell morphology were retained, although HS-based cultures appeared more granular and
proliferative. This observation is in line with other reports where MSCs were cultured in autologous
human serum that was obtained using a completely closed bag system [16]. Others have successfully
expanded and differentiated human synovial MSCs using human serum [17].

Cultures in SC+HS exhibited less cell death than in SC+FCS after 14 days, similarly to previous
studies using heterologous HS [18], although prolonged heterologous HS use has also been reported to
increase growth arrest and death within 6 weeks [1]. Experiments described here were carried out for
up to 3 weeks, and therefore further experiments will be required to establish any long-term changes.
Our results also support previous observations of higher cell numbers in HS culture compared to
FCS [1,16].

A novel strategy to limit the exposure to serum was also tested here, based on a previous study
showing that transient FCS treatments can efficiently support MSC growth and differentiation [12] but
importantly, this had not thus far been tested with human serum-based approaches. Previous reports
have suggested that transient serum exposure may affect MSC growth pattern and morphology [19],
while complete serum-free media may not support MSC proliferation [20]. Although, serum-free
conditions have been linked to longer telomeres and an increased proliferative capacity [21]. Here,
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exposure to transient serum in standard culture medium did not lead to reduced metabolic activity
when compared to constant serum use.

Although reports have suggested no metabolic differences between FCS and HS during MSC
proliferation and differentiation into osteogenic lineages [22], here the response of MSCs to HS and
FCS sera was altered under OS medium. FCS (OS+FCS) produced higher metabolic activity than HS
(OS+HS) when serum was present throughout, while MSC metabolism was higher with transient HS
(OS+HS 5d) than FCS (OS+FCS 5d).

3.2. Effect of Serum Regimes on Cell Differentiation

ALP activity, an early osteogenic marker essential in the onset of osteogenic differentiation and
mineral deposition [23], was used to evaluate the cellular response in different medium conditions.
Human serum produced higher basal level of ALP than FCS in both short- and long-term exposure,
even in the absence of any osteogenic supplement. This could be linked to differences in endogenous
levels of ALP activity in the bovine and human serum samples.

A report has previously suggested that MSCs expressing high ALP levels in standard conditions do
not mineralise in OS medium [24]. This was not supported in this study, as mineralisation was greater
in osteogenic cultures with HS than FCS, as was expression of osteocalcin, Runt-related transcription
factor 2 (RUNX2) and osteopontin (OPN) [25–27].

Significant differences were noted between HS and FCS content, including higher HS levels of
known pro-osteogenic factors such as 1,25-dihydroxyvitamin D and cortisol in HS, both linked to the
regulation of bone resorption [28]. Vitamin D is known to regulate mineral and skeletal homeostasis in
humans and mice [29,30]. Cortisol has been shown to decrease bone formation and bone density via
resorption [31], and to promote differentiation in human adipocyte precursor cells in vitro [32].

Higher glucose levels in HS could explain the higher proliferation observed, although there is
debate on whether glucose levels can affect growth factor production and proliferation [33]. Levels
of calcium, phosphate, two well-documented factors involved in osteogenic differentiation [34,35],
were higher in the animal-derived serum. Interestingly, alkaline phosphatase activity in serum can
be inhibited by physiological concentrations of phosphate [35], therefore, the lower levels of alkaline
phosphatase observed in FCS cultures could be related to higher levels of phosphate. Differences in
serum insulin could also be an important factor for osteogenic differentiation of MSCs [36].

The comparative analysis of human serum from three different commercial sources showed
consistently higher ALP levels and closer levels of key biochemical compounds when compared to
FCS, highlighting possible species differences. The two most pro-osteogenc HS samples (Lonza HS
and Seralab HS) shared higher levels of alkaline phosphatase, cortisol and 1,25-dihydroxyvitamin D,
all factors cited as important for the osteogenic differentiation of MSCs [29,37]. Future work including
a thorough side-by-side comparison of the three HS sources and their cellular effects could provide
additional information on the key components driving cell response.

3.3. Transient Serum Approaches for Cell Differentiation

Differentiation results with osteogenic medium containing HS for the first five days only were
marginally lower than for constant serum culture, showing that the onset of osteogenic differentiation
may not be significantly affected in transient HS conditions and contradicting some published data
where allogeneic HS resulted in MSC growth arrest and death [38].

Primary mesenchymal stem cells evaluated through Alizarin red staining and ALP quantification
showed that transient serum treatments supported differentiation across different cell sources with
both FCS and HS [39].

In conclusion, these results show that HS supported MSC growth and differentiation in vitro,
offering an alternative to FCS for clinical applications. Rates of osteogenic differentiation were higher
using HS compared to FCS culture, an observation shared with other studies considering autologous
HS use [1,16]. However, HS is less accessible, more expensive, and more prone to batch variation than
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FCS, leading to possible limitations for in vitro studies. Furthermore, obtaining sufficient quantities
of HS from an autologous donor is difficult [1]. Therefore, the ability of MSCs to grow in transient
HS conditions as shown here is of significant importance and suggests that early serum priming
is sufficient to achieve in vitro commitment. Further work is needed to compare this approach to
serum-deprived models including the use of human platelet lysate [10] or serum-free medium with
supplementation of fundamental components present in serum [1] for MSC differentiation.

4. Materials and Methods

Reagents were purchased from Thermo Fisher Scientific (UK) unless otherwise stated.

4.1. Cell Culture

Immortalised bone marrow-derived human mesenchymal stem cells (MSCs) [40] and primary
MSCs (Lonza, Slough, UK) were grown in a humidified atmosphere at 37 ◦C and 5% CO2, in standard
culture medium (SC) consisting of low glucose Dulbecco’s Modified Eagle Medium (DMEM), 1% (v/v)
l-Glutamine, 1% (v/v) non-essential amino acids (NEAA) and 1% (v/v) antibiotics, supplemented
with 10% (v/v) serum, using either fetal calf serum (SC+FCS) or with human serum (SC+HS) as
specified. In a series of targeted experiments, serum exposure was limited to the first five days
of culture before withdrawing either FCS (SC+FCS5d) or HS (SC+HS5d) for the reminder of the
experiment. MSCs were seeded into 24-well plates at a concentration of 2 × 104 cells/ mL and allowed
to attach for 24 h in standard culture (SC+FCS) medium before differentiation was initiated. Osteogenic
differentiation of MSCs was initiated using supplementation with dexamethasone (0.1 µM), ascorbic
acid phosphate (50 µM), and β-glycerophosphate (10 mM) (Sigma-Aldrich, Gillingham, UK) in one
of the following treatments: OS+FCS: osteogenic supplements added to SC+FCS medium; OS+HS:
osteogenic supplements added to SC+HS medium; OS+FCS5d: OS+FCS for the first five days before
withdrawing the FCS component; OS+HS5d: OS+HS for the first five days before withdrawing the
HS component. Six independent replicates were analysed for each condition, and the medium was
changed every three days for up to 21 days. In experiments investigating the composition of the sera
used, filtration through a 0.2 µm syringe filter (Sartorius, Epsom, UK) was applied, as indicated.

4.2. Surface Marker Expression

Cells were harvested using 0.05% trypsin-EDTA, centrifuged at 200× g for 5 min, and incubated at
room temperature with 5 µL of anti-CD29 (Abcam), -CD90 (eBioscience, Altrincham, UK), -CD105
(AbD Serotec, Altrincham, UK) or -SSEA4 (eBioscience, Altrincham, UK) fluorescently-conjugated
antibodies for 30 min. Cells were washed and stored on ice in the dark until analysis using a Beckman
Coulter FC500 flow cytometer (Beckman Coulter, High Wycombe, UK). Each surface marker was
analysed in triplicates, and the experiment was repeated three times with 50,000 events recorded for
each measurement.

4.3. Fluorescent Cell Staining

After the culture period, cells were fixed in ice cold 4% paraformaldehyde (PFA) for 15 min and
washed in PBS + 0.1% Tween20 (PBT) for 10 min. Fluorescently-tagged phalloidin (Vector Laboratories)
was used to image actin filaments following the manufacturer’s instructions. For osteocalcin
immunostaining, triplicate samples were blocked for 1 h using 1× Animal-Free Blocker (Vector
Laboratories, Peterborough, UK) in PBT. Cells were then exposed to a primary mouse monoclonal
anti-osteocalcin antibody (ab13420) (Abcam, Cambridge, UK) dilution of 1:200 in PBT, stored at 4 ◦C
overnight, washed in PBT and incubated with a 1:500 dilution of Texas red-conjugated goat anti-mouse
secondary antibody (Vector Laboratories) for 1 h in the dark. After PBS washes, samples were mounted
using Vectashield mounting medium containing DAPI (Vector Laboratories) and imaged using a Nikon
90i fluorescence microscope (Nikon, Kingston, UK).
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4.4. Apoptosis Assay

The percentage of live, apoptotic and necrotic cells after 14 days of osteogenic differentiation with
FCS or HS was determined using a commercially available Annexin-V-FLUOS staining kit (Roche,
Basel, Switzerland). Manufacturer’s instructions were followed. In brief, cells were washed in PBS,
centrifuged at 200× g for 5 min and pellets were re-suspended in 100 µL Annexin-V-FLUOS labelling
solution. After 15 min of incubation cells were analysed using a Beckman Coulter FC500 flow cytometer.

4.5. Cell Growth Measurements

Cell metabolic activity was determined using a PrestoBlue assay. Monolayers were washed with
37 ◦C PBS. 500 µL of warm working solution (10% v/v stock solution, 90% v/v low glucose DMEM) was
transferred to each well, with three empty wells filled as blanks, and the plate was incubated at 37 ◦C,
5% CO2 for 35 min. The plate was wrapped in aluminium foil, agitated on a plate shaker for 10 min,
and three 100 µL triplicates were analysed for each well using a Tecan Infinite 200 micro-plate reader
measuring fluorescence, at 560 nm excitation, 590 nm emission.

Cell proliferation was determined by measuring total DNA content per well over the 21-day
culture period. To lyse the cells, the culture medium was replaced with sterile, DNase-free dH2O,
and the plate was subjected to three freeze-thaw cycles. The stock reagent was diluted 200-fold in 1×
dilution buffer. Aliquots of 100 µL from each well were transferred to a 96-well plate, along with 100 µL
1× Quant-iT PicoGreen solution. The plate was gently agitated in the dark for 5 min and analysed
using a Tecan Infinite 200 micro-plate fluorescence reader at 480 nm excitation and 520 nm emission.
A standard curve of DNA content was produced using known concentrations of lambda DNA.

4.6. Alizarin Red Staining and Quantification

After osteogenic treatment, cells were fixed using 4% PFA, washed three times with PBS, and 1 mL
of 1% aqueous Alizarin Red solution (Sigma-Aldrich Gillingham, UK) was added per well. The plate
was incubated at room temperature for 10 min with occasional agitation, washed with distilled
water until all excess stain had been removed, and imaged using a phase contrast microscope [41].
For quantification of Alizarin Red staining, samples (n = 6) were incubated with a de-stain solution
consisting of 20% methanol, 10% acetic acid in dH2O [42] for 15 min with gentle agitation, before the
absorbance was measured at 405 nm using a Tecan Infinite 200 micro-plate reader.

4.7. Alkaline Phosphatase Assay

Alkaline phosphatase (ALP) enzyme activity was assayed using the SIGMAFAST kit
(Sigma-Aldrich, Gillingham, UK) according to the manufacturer’s instructions. Briefly, wells were
washed twice with warm PBS, 200 µL of p-Nitrophenyl phosphate substrate solution was added to
each well, and the plate was incubated in the dark for 30 min at room temperature, before 100 µL
duplicate aliquots/ well were transferred to a 96-well plate. The absorbance for the solutions was read
at 405 nm using a Tecan Infinite 200 micro-plate reader. DNA measurements were used to normalise
results between conditions.

4.8. Serum Biochemical Analysis

Biochemical analyses of serum samples (conducted by the hospital’s Clinical Pathology laboratory
at the Queen’s Medical Centre, Nottingham) measured the content of 1,25-dihydroxyvitamin D,
albumin, alkaline phosphatase, calcium, cortisol, glucose, insulin and phosphate in triplicates. Principal
component analysis was performed using ClustVis (http://biit.cs.ut.ee/clustvis, 2017 version, BIIT,
Tartu, Estonia) [43].

http://biit.cs.ut.ee/clustvis
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4.9. RT-PCR

RNA samples were processed as previously described [44] and analysed in triplicates. Samples
were PCR-amplified in a Labnet Multigene PCR machine using specific primers (Eurofins MWG) for
Osteocalcin (forward: CATGAGAGCCCTCACACTCC, reverse: CAGCAGAGCGACACCCTAGACC),
Osteopontin (forward: GACCTGACATCCAGTACCC, reverse: GTTTCAGCACTCTGGTCATC),
RUNX2 (forward: CCAGATGGGACTGTGGTTACC, reverse: ACTTGGTGCAGAGTTCAGGG), and
Clathrin was used as a housekeeping control.

4.10. Statistical Analysis

Statistical analysis was in the form of one-way ANOVA performed using GraphPad PRISM 7
(GraphPad Software, San Diego, CA, USA). Tukey’s post hoc analysis was performed to determine
the significance between subgroups of the analysed population. Significance shown as * p < 0.05,
** p < 0.005, and **** p < 0.00005.
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