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Isogeometric regular discretization for the Stokes problem
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The infsup stability and optimal convergence of an isogeometric C1 discretization for the Stokes problem
are shown. In this discretization the velocities are the push forward through the geometrical map of cubic
C1 NURBS functions, and the pressures are the push forward of quadratic C1 NURBS. This paper follows
the work in Bazilevs et al. (2006) where the authors showed the numerical result of this discretization
and proved the infsup-stability for C0 NURBS functions. The use of more regular functions is useful to
decrease the degrees of freedom and thus the computational cost. The analysis is performed by means of
the Verfürth trick, the macro-element technique, some approximation properties and the infsup condition
for tensor products of B-spline spaces.
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1. Introduction

The Stokes problem is a simplified model of the equations used to describe incompressible fluid flows
and elastic deformations in solids. Its mathematical formulation is: find a velocity field v :Rn !R

n and
a pressure p : Rn ! R such that

�ν4v+Op = f in Ω ; (1.1a)
O�v = 0 in Ω ; (1.1b)

v = 0 on ∂Ω ; (1.1c)

where:

Ω � Rn, n = 2;3 is a bounded domain with Lipschitz boundary,

f : Ω ! R
n, is a given force vector,

ν > 0, is a constant viscosity.

The corresponding variational form is: find v 2 H1
0 (Ω)n; p 2 L2

0(Ω) such that

νhOv; Owi�hp; O�wi= hf; wi 8w 2 H1
0 (Ω)n

; (1.2a)

hO�v; qi= 0 8q 2 L2(Ω): (1.2b)

For each f2H�1(Ω)n the system has unique solutions v2H1
0 (Ω)n and p2 L2

0(Ω), which continuously
depend upon the datum force vector f (see Girault & Raviart (1986)).
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As usual, L2(Ω) is the Hilbert space of the square integrable functions defined on Ω , H1(Ω) is the
subspace of L2(Ω) of the functions whose first order partial derivatives are in L2(Ω), H1

0 (Ω) is the
subspace of H1(Ω) of the functions with zero trace on the boundary ∂Ω , L2

0(Ω) is the subspace of
L2(Ω) of the functions with zero mean value and H�1(Ω) is the dual space of H1

0 (Ω). The symbol
L∞(Ω) denotes the space of bounded functions on Ω , the L∞ norm of a vector field is the sup in Ω of
its euclidean norm, and that of a tensor field is the the sup in Ω of its matrix norm.

The isogeometric analysis was born to help integration between design and numerical simulation in
engineering. A deep analysis of the motivations is found in Hughes et al. (2005). The main motivation
for the development of the isogeometric method is that CAD and simulation tools use different descrip-
tions of the geometry (polynomial vs. NURBS). This arose from the different development paths of the
two disciplines and causes the need for complex software that creates and refines meshes from CAD
data. In the isogeometric method, the CAD geometry is used directly to eliminate that complexity.

The main features of this method are

� exact description of the geometry, thus there is no error due to geometry approximation,

� mesh refinement is simplified,

� NURBS spaces with a given global regularity are easily built.

The possibility to easily control the regularity is interesting since it permits the construction of methods
that are both efficient and accurate Evans et al. (2009). In fact the behavior of the approximation error
with respect to the mesh size depends on the degree of the NURBS functions but not on the number
of degrees of freedom Bazilevs et al. (2006). Thus, all the NURBS spaces of the same degree give the
same convergence, but the most regular ones requires the smallest computational cost. In particular, a
new refinement strategy has been developed, called k-refinement, that consists in both order elevation
and mesh refinement. This technique gave good results in numerical simulations Hughes et al. (2005,
2008).

The isogeometric method is being applied in many fields. Good examples are elastic deformations
Cottrell et al. (2006, 2007) and fluid mechanics Bazilevs & Hughes (2008). In particular there is great
interest in fluid-structure interaction for applications in medicine Bazilevs et al. (2008), Calo et al.
(2008), Bazilevs et al. (2009).

The aim of this article is to show the stability and optimal convergence of methods based on regular
NURBS spaces subject only to mesh regularity and size. This analysis is done for the C1 for which
numerical results are known Bazilevs et al. (2006) (pages 1080, 1081), but the difference for the general
case are minimal. The first section summarizes the isogeometric framework: the description of the ge-
ometry, the discrete spaces and their approximation properties. The second section contains the discrete
formulation of the problem and the proof of its stability and error estimates.

2. Isogeometric framework

The following subsections provide a basic background on spline, NURBS, geometry description, meshes
and discrete spaces.

2.1 B-Splines

A spline space over a real interval I = [b0; bs] is a piecewise polynomial function space. Let b1 <

� � � < bs�1 be the desired junction points belonging to ]bo; bs[, then a spline space is described by the
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b0 b1 b2 b3 b4

1
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5;3 BS

6;3

Figure 1. Canonical base of SΞ ;3, where Ξ = (b0;b0;b1;b1;b2;b2;b3;b3;b4;b4).

(maximum) degree of the polynomials d and an ordered knot vector Ξ = (ξ0 = b0; : : : ; ξn = bs) of
junction points that codify trough repetition the regularity of the functions. If bi is repeated ki times in
Ξ then the functions have at least ri = d� ki continuous derivatives in bi: if ri = �1 then jumps are
admitted; ri is called regularity in the knot bi. At the boundary points, continuity is intended with the
null function outside of I so the regularity is the number of derivatives that are null on the boundary. The
space described by the knot vector Ξ and the degree d is denoted SΞ ;d . The space SΞ ;d has a canonical
base fBS

i;dg defined recursively over the degree by

BS
i;0(x) =

(
1 x 2 [ξi�1;ξi[;

0 otherwise;

BS
i;d(x) =

x�ξi

ξi+d �ξi
BS

i;d�1(x)�
x�ξi+d+1

ξi+d+1�ξi+1
BS

i+1;d�1(x):

On a Cartesian product of intervals Θ = I1 � �� � � In, spline spaces are described by n degrees
d1; : : : ; dn and n knot vectors Ξ1; : : : ; Ξn (one for each dimension), and are the tensor products of the
corresponding one dimensional spaces

S(Ξ1; :::;Ξn);(d1; :::;dn) = SΞ1;d1 
�� �
SΞn;dn : (2.1)

In this case, the canonical basis is fBS
i;dgi where d = (d1; : : : ; dn) and i = (i1; : : : ; in)

BS
i;d(x1; : : : ; xn) = BS

i1;d1
(x1) : : :BS

in;dn
(xn): (2.2)

In this article only spaces where d1 = d2 = � � �= dn and the regularity is the same in all the on knots
(except for those on ∂Θ ) are used. These spaces are uniquely identified by the degree, the regularity
and the knots. Let bi;0; : : : ; bi;si 2 Ii be the junction points in the i-th dimension and

Sd;r(Ii) = fspline : ri;0; ri;s =�1 ^ ri; j = r for j = 1; : : : ; si�1g; (2.3a)

S0
d;r(Ii) = fspline : ri; j = r for j = 0; : : : ; sig: (2.3b)

In higher dimensions, set

Sd;r(Θ = I1��� �� In) = Sd;r(I1)
�� �
Sd;r(In); (2.4a)

S0
d;r(Θ = I1��� �� In) = S0

d;r(I1)
�� �
S0
d;r(In): (2.4b)
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Using spline spaces, it is possible to construct maps from a parametric domain Θ = I1��� ��In toRn,
called spline-maps. They are identified by a spline space S and dimS control points in Rn: each control
point x̄i 2 Rn is associated with an element of the canonical basis fBS

i;dg of S, and the corresponding
map is

F(x1; : : : ; xn) = ∑
i

BS
i;d(x1; : : : ; xn)x̄i: (2.5)

2.2 NURBS

Non Uniform Rational B-Splines were born to extend spline maps and allow the exact representation
of useful geometries such as circles and ovals. The main idea is to map Θ in Rn+1 with a spline map
F̄ such that gcd(F̄1; : : : ; F̄n) = 1 and to project the result on the plain fxn+1 = 1g by lines through the
origin. Let bF be the spline map from Θ to Rn given by the first n components of F̄ , and w be the last
component that is called weight function. The expression of the composition of F̄ with the projection is

F(x1; : : : ; xn) =
1

w(x1; : : : ; xn)
bF(x1; : : : ; xn); (2.6)

so it is a piecewise quotient of polynomials. From this expression, it is clear that w(x) cannot be 0 in
any point, so it is assumed w(x)> 0 8x 2Θ . Usually, but it is not a requirement, by construction of the
geometry,

w = ∑
i

wiBS
i;d wi > 1; (2.7)

so that w> 1.
NURBS spaces are identified by a spline space S(Ξ1; :::;Ξn);(d1; :::;dn) and a weight function 0 < w 2

S(Ξ1; :::;Ξn);(d1; :::;dn), and are defined by

N(Ξ1; :::;Ξn);(d1; :::;dn);w = f f
w

: f 2 S(Ξ1; :::;Ξn);(d1; :::;dn)g: (2.8)

The degree and the regularity in the junctions of a NURBS space are, by construction, those of
the corresponding spline space, moreover the regularity is yet the number of continuous derivatives.
NURBS spaces have a canonical basis whose elements are

BN
i;d =

wiBS
i;d

w
: (2.9)

As for spline spaces, only NURBS spaces with d1 = d2 = � � � = dn and the same regularity in all
internal junctions are considered:

Nd;r;w(Θ = I1��� �� In) = f f
w

: f 2 Sd;r(Θ)g; (2.10a)

N0
d;r;w(Θ = I1��� �� In) = f f

w
: f 2 S0

d;r(Θ)g: (2.10b)

NURBS-maps from Θ to Rn are built as spline-maps: choose a NURBS space N and select a control
point x̄i 2 Rn for each BN

i;d, then the map is

F(x1; : : : ; xn) = ∑
i

BN
i;d(x1; : : : ; xn)x̄i: (2.11)
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2.3 Geometry and discrete spaces

In the isogeometric method, the domain Ω is parametrized over a rectangular (or cuboid) domain Θ =
I1��� �� In by a NURBS map F . Let w be the piecewise polynomial denominator of F , then each dis-
crete space V(Ξ1; :::;Ξn);(d1; :::;dn)(Ω) is the push-forward through F of a NURBS space N(Ξ1; :::;Ξn);(d1; :::;dn);w(Θ)
whose weight function is the denominator of F , w:

V(Ξ1; :::;Ξn);(d1; :::;dn)(Ω) = f f : f �F 2 N(Ξ1; :::;Ξn);(d1; :::;dn);w(Θ)g: (2.12)

The canonical basis of the discrete spaces is the set of

BV
i;d = BN

i;d �F�1
: (2.13)

Remark that both the map F and the weight function w are determined by the geometry of Ω so are
common to all discrete spaces defined on Ω .

The knot vectors of a discrete space naturally define a mesh for the parametric domain Θ . Let bi; j
be the jth junction point in the ith dimension. The induced mesh for Θ is the set of the elements KΘ ;j

KΘ ;j = [b1;j1�1; b1;j1 ]��� �� [bn;jn�1; bn;jn ]: (2.14)

A corresponding mesh for Ω is the set of the elements

Kj = F(KΘ ;j): (2.15)

Vice versa, giving the degree, the regularity and the junction points in each dimension of Θ , a unique
discrete space is identified. Thus the correspondence between meshes and discrete spaces with given
degree and regularity is one to one. To simplify the notation, and avoid carrying around the junction
points, Th is used to denote a generic mesh for Ω whose maximum diameter of the elements is less than
h; the corresponding discrete spaces of degree d, and regularity r are:

Vd;r;h(Ω) = f f : f �F�1 2 Nd;r;w(Θ)g; (2.16a)

V 0
d;r;h(Ω) = f f : f �F�1 2 N0

d;r;w(Θ)g: (2.16b)

2.3.1 Regularity. There are two regularity requirements:

� the regularity of the domain, which is expressed by the regularity of F ; in particular F must be
invertible and

F 2C1(Θ̄); (2.17)

F�1 2C1(Ω̄); (2.18)

� the regularity of the meshes

9ζ : 8h; Th; K 2Th
hK

ρK
6 ζ ; (2.19)

where hK is the diameter of the element K and ρK is the maximum diameter of a contained circle.
This condition implies both shape regularity of the elements and local quasi uniformity of the
mesh. Note that this condition (assuming domain regularity) is equivalent to

9ζΘ : 8h; Th; K 2Th
hKΘ

ρKΘ

6 ζΘ : (2.20)
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Figure 2. Scheme of the geometrical setup.

2.4 Projections and approximation properties

In this subsection, some of the results presented in Bazilevs et al. (2006) are summarized.
The projection operator πVh from L2(Ω) to Vd;r;h(Ω) is defined in terms of an auxiliary operator πSh

from L2(Θ) to Sd;r;h(Θ):
πSh f = ∑

i
hBS

i
�
; f iBS

i ; (2.21)

where fBS
i g is the canonical basis of Sd;r;h(Θ) and fBS

i
�g is a dual basis defined in L2(Θ): i.e. BS

i
� 2

L2(Θ) and

hBS
i
�
; BS

j i= δi;j:

The definition of the projector is

πVh f =
πSh(w f �F)

w
�F�1

: (2.22)

It is possible to define an analogous operator π0
Vh

from H1
0 (Ω) to Vd;r;h(Ω)\H1

0 (Ω) by restricting the
definition (2.21) to a the basis fBig of Sd;r(Θ)\H1

0 (Θ):

π
0
Sh

f = ∑
i
hBi

�
; f iBi;

π
0
Vh

f =
π0

Sh
(w f �F)

w
�F�1

:

Define eK, the support extension of K, aseK =
[

i: SuppBV
i;d�K

SuppBV
i;d; (2.23)

where Supp f is the support of f . Then the following approximation property holds: 8 f 2 H l(eK),
806 k 6 l 6 d +1, �� f �πVh f

��
Hk(K) 6 hl�k

K Cshape

l

∑
i=0
kOFki�l

L∞(F�1(eK))
j f jH i(eK) ; (2.24)
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where Cshape is dependent on the shape of K but not on its diameter hK . The estimate (2.24) holds also
for π0

Vh
, provided that f 2 H l(eK)\H1

0 (Ω). In particular, for f in H1
0 (Ω),

h�1
K

 f �π
0
Vh

f


L2(K)
6Cshape maxf1; kOFkL∞(Θ)gk fkH1(eK) : (2.25)

Summing over all elements, gives the important approximation property�
∑

K2Th

h�2
K

 f �π
0
Vh

f
2

L2(K)

� 1
2
6Capprox k fkH1(Ω) ; (2.26)

where Capprox = CshapeC
1
2
space maxf1; kOFkL∞(Θ)g and Cspace is the maximum number of the eKi’s that

contains a given element K. For Vd;r;h, Cspace =
� d+1

d�r

�n
. In the same way, the continuity of π0

Vh
is

obtained: π
0
Vh

f


H1(Ω)
6Ccont k fkH1(Ω) : (2.27)

3. Discretization and theoretical analysis

3.1 Discrete problem

Let Θ be the parametric domain, Ω be the domain, F 2 C1(Θ̄) be the parametrization map, Th be a
mesh such that the regularity condition (2.19) holds, and

Vh = V3;1;h(Ω)n\H1
0 (Ω)n

; (3.1)

Ph = V2;1;h(Ω)\L2
0(Ω): (3.2)

The discrete problem corresponding to Th is: find vh 2Vh and ph 2 Ph such that

νhOvh; Owi�hph; O�wi= hfh; wi 8w 2Vh; (3.3a)
hO�vh; qi= 0 8q 2 Ph: (3.3b)

Sufficient conditions for well-posedness, stability and continuous dependence of vh and ph upon fh are
(see Brezzi & Fortin (1991)):

� coercivity: 9Ccoerc : 8h;Th;w 2Vh

hOw; Owi>Ccoerc kwk2
H1(Ω) ; (3.4)

� infsup condition: 9Cinfsup > 0 : 8h; Th

inf
q2Ph

sup
w2Vh

hO�w; qi
kwkH1(Ω)n

>Cinfsup kqkL2(Ω) : (3.5)

From these conditions, the following error estimate can be derived (see Brezzi & Fortin (1991)):

kv�vhkH1(Ω)n +kp� phkL2(Ω) 6

Csolution

�
inf

w2Vh
kv�wkH1(Ω)n + inf

q2Ph
kp�qkL2(Ω)

�
:

(3.6)

The first condition is satisfied on all H1
0 (Ω), as a consequence of the Poincaré inequality. The infsup

condition is proved in the next subsections.
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3.2 Verfürth trick

It is known (see Girault & Raviart (1986)) that 9C̊infsup > 0 :

inf
q2L2

0(Ω)
sup

w2H1
0 (Ω)n

hO�w; qi
kwkH1(Ω)n

> C̊infsup kqkL2(Ω) : (3.7)

Thus, for each q 2 Ph, there exists w̄ 2 H1
0 (Ω)n such that

hO�w̄; qi> C̊infsup kqk2
L2(Ω) ; (3.8)

kw̄kH1(Ω)n = kpkL2(Ω) : (3.9)

The projection π0
Vh

w̄ of w̄ in Vh can be decomposed as π0
Vh

w̄ = w̄� (w̄+π0
Vh

w̄). Using this decomposi-
tion, equation (3.8) and integration by parts gives

hO�π0
Vh

w̄; qi= hO�w̄; qi+ hO�(π0
Vh

w̄� w̄); qi
> C̊infsup kqk2

L2(Ω)+ hπ0
Vh

w̄� w̄; Oqi: (3.10)

Moreover, the second term on the right side of (3.10) can be written as a sum over all elements and
bounded by ���hπ0

Vh
w̄� w̄; Oqi

���6 ∑
K2Th

Z
K

���(π0
Vh

w̄� w̄) �Oq
��� dx

6 ∑
K2Th

h�1
K

π
0
Vh

w̄� w̄


L2(K)n
hK kOqkL2(K)n

6
�

∑
K2Th

h�2
K

π
0
Vh

w̄� w̄
2

L2(K)n

� 1
2
�

∑
K2Th

h2
K kOqk2

L2(Ω)n
� 1

2 :

From the approximation properties of π0
Vh

(2.26) and (3.9), the estimate���hπ0
Vh

w̄� w̄; Oqi
���6Capprox kw̄kH1(Ω)

�
∑

K2Th

h2
K kOqk2

L2(Ω)n
� 1

2

6Capprox kqkL2(Ω)

�
∑

K2Th

h2
K kOqk2

L2(Ω)n
� 1

2

follows. Since Ph � L2
0(Ω), the expression

�
∑K2Th

h2
K kOqk2

L2(K)n
� 1

2 defines a norm for Ph, hereafter
called k�kPh

:

kqkPh
=
�

∑
K2Th

h2
K kOqk2

L2(K)n
� 1

2 : (3.11)

Inserting these results within (3.10) gives

hO�π0
Vh

w̄; qi> C̊infsup kqk2
L2(Ω)�Capprox kqkL2(Ω) kqkPh

; (3.12)

from which, using (2.27) and (3.9), it follows

sup
w2Vh

hO�w; qi
kwkH1(Ω)

>
C̊infsup

Ccont
kqkL2(Ω)�

Capprox

Ccont
kqkPh

: (3.13)
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The Verfürth trick Verfürth (1984) consists in reducing the infsup condition (3.5) to the validity of
(3.13) and of the following property: 9CVerf : 8h; Th; q 2 Ph

sup
w2Vh

hO�w; qi
kwkH1(Ω)

>CVerf kqkPh
: (3.14)

Indeed, suppose that (3.14) holds and call t =
kqkPh

kqkL2(Ω)
then combining (3.13) and (3.14) gives

sup
w2Vh

hO�w; qi
kwkH1(Ω)

>min
t>0

�
maxfCVerf t;

C̊infsup

Ccont
� Capprox

Ccont
tg�kqkL2(Ω) ; (3.15)

thus

inf
q2Ph

sup
w2Vh

hO�w; qi
kwkH1(Ω)

>Cinfsup kqkL2(Ω) ;

where Cinfsup =
CVerfC̊infsup

CVerfCcont+Capprox
.

Summarizing, the existence of CVerf such that (3.14) holds is sufficient to get the infsup condition
(3.5), and thus to get stability and convergence of the method.

To simplify the next subsections, it is possible to reduce (3.14) to: 9C�
Verf : 8h; Th; q 2 Ph

sup
w2Vh

hO�w; qi
jwjH1(Ω)

>C�
Verf kqkPh

; (3.16)

Indeed by the Poincaré inequality: kwkH1(Ω)n 6 (1+CP(Ω)) jwjH1(Ω)n , equation (3.16) implies

sup
w2Vh

hO�w; qi
kwkH1(Ω)

>C�
Verf(1+CP(Ω))�1 kqkPh

: (3.17)

3.3 Macro-element technique

The proof of (3.16) is based on the macro-element technique (see Stenberg (1984) and Stenberg (1990))
that consists in reducing it to the validity of the same infsup condition on suitable macro-elements.

A macro-element M is a subset of Th such that each contained element is connected to the union of
the others elements by at least a face. Each macro-element M naturally defines a domain M =

S
K2M K

and a corresponding macro-element on the parametric domain MΘ = fKΘ : K 2M g. On each macro-
element M consider the local discrete spaces:

VM = ffjM : f 2Vh; Supp f � Mg; (3.18)

PM = fpjM : p 2 Ph;

Z
M

pdx = 0g: (3.19)

The functions on VM are identified with their zero extension to the domain Ω , and their norm is
k�kH1(M)n = k�kH1(Ω)n . On PM define the norm

kqkPM
=
�

∑
K2M

h2
K kOqk2

L2(K)n
� 1

2 : (3.20)
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There is a natural projection πPM from Ph to PM given by

πPM f = f jM �jMj�1
Z

M
f dx; (3.21)

where jMj is the measure of M.
For each mesh Th, let Mh be the set of all macro-elements M whose MΘ contains 4n elements laid

out in a “hypercube” of side 4. Then, for sufficiently fine meshes, this choice guarantees the conditions:

� 8Th; 8K 2Th, there exists a macro-element in Mh containing K,

� 8Th; 8K 2Th, there are at most Coverlap macro-elements in Mh containing K, with Coverlap = 4n,

� 8Th; 8M 2Mh, M contains (at most) Celem elements, with Celem = 4n.

Suppose that 9Cmacro : 8Th; 8M 2Mh

inf
q2PM

sup
w2VM

hw; Oqi
jwjH1(Ω)n

>Cmacro kqkPM
; (3.22)

then (3.16) holds. In fact, let q be a function of Ph and, for each macro-element M of Mh, let wM 2VM
be such that

hwM; OπPM qi>Cmacro kπPM qk2
PM

;

jwMjH1(Ω)n = kπPM qkPM
;

then

sup
w2Vh

hw; Oqi> h ∑
M2Mh

wM; Oqi= ∑
M2Mh

hwM; Oqi

> ∑
M2Mh

Cmacro kπPM qk2
PM

=Cmacro ∑
M2Mh

∑
K2M

h2
K kOqk2

L2(K)n

>Cmacro ∑
K2Th

h2
K kOqk2

L2(K)n =Cmacro kqk2
Ph
;
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and ����� ∑
M2Mh

wM

�����
2

H1(Ω)

= ∑
K2Th

����� ∑
M2Mh

wM

�����
2

H1(K)

6 ∑
K2Th

�
∑

M2Mh
K2M

jwMjH1(K)
�2

6Coverlap ∑
K2Th

∑
M2Mh
K2M

jwMj2H1(K)

=Coverlap ∑
K2Th

∑
M2Mh
K2M

kπPM qk2
PM

6CoverlapCelem ∑
M2Mh

∑
K2M

h2
K kOqk2

L2(K)n

6C2
overlapCelem kqk2

Ph
:

Combining the above estimates gives (3.16) with

C�
Verf =CmacroC�1

overlapC
� 1

2
elem: (3.23)

The proof of the existence of Cmacro such that (3.22) holds is composed of three logical steps:

1. proof for the case when F is the identity map and thus the discrete spaces are spline spaces,

2. proof of the existence of h̄ : 8h < h̄; 8Th there exists Cmacro in the case of NURBS spaces on the
parametric domain,

3. proof of the existence of ¯̄h : 8h < h̄; 8Th there exists Cmacro in the case of isogeometric spaces on
the physical domain.

Each step corresponds to a subsection, one more section is put between the first and the second step
which contains the study of the relations between the used norms.

3.4 Spline spaces on Θ

Let F be the family of all the “abstract macro-elements” Ma containing the 4n elements defined by

Kα =
nO

i=1

Ki
αi
; α = (α1; : : : ;αn); 16 αi 6 4; i = 1; : : : ;n; (3.24)

where ��Ki
j
��= li; j > 0; i = 1; : : : ;n;

(Ki
1; Ki

2; Ki
3; Ki

4) form a partition of [0;
4

∑
j=1

li; j]; i = 1; : : : ;n;

8Ma 2F ; 8K 2Ma
hK

ρK
6 ζΘ ; see (2.20):
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l1;1 l1;2 l1;3 l1;4

l2;1

l2;2

l2;3

l2;4

Figure 3. An “abstract macro-element” in F and its coordinates, n = 2.

The li; j’s are a set of coordinates for F and induce the topology of R4n on F . For each “abstract
macro-element” Ma 2F , define the discrete spaces:

VMa = S0
3;1(Ma)

n
; (3.25)

PMa = S2;1(Ma)\L2
0(Ma); (3.26)

with norms

j�jH1(Ma)n
; (3.27)

kqk2
PMa

= ∑
K2Ma

h2
K kOqk2

L2(K)n ; (3.28)

respectively.
On F , it is possible to study the positive function

CS(Ma) = inf
q2PMa

q6=0

sup
w2VMa

w 6=0

hw; Oqi
jwjH1(Ma)n

kqkPMa

: (3.29)

Note that CS is scaling invariant: if M1 = λM2 i.e. li; j(M1) = λ li; j(M2), then CS(M1) = CS(M2).
Indeed setting f̂ (x) = f (λx) gives

hw; Oqi>CS(M1) jwjH1(M1)
kqkPM1

) λ
n�1hŵ; Oq̂i>CS(M1)λ

n�2
2 jŵjH1(M2)

λ
n
2 kq̂kPM2

) hŵ; Oq̂i>CS(M1) jŵjH1(M2)
kq̂kPM2

)CS(M1)6CS(M2);

(3.30)

then by symmetry CS(M1)>CS(M2) thus they are equal to each other.
Let S be the subset of F of the “abstract macro-elements” having unitary diameter: diamMa = 1,

then S is closed and bounded, thus compact. Moreover, CS is continuous in the chosen topology, thus it
admits a minimum on S, let it be C�

S . This minimum is absolute due to the scaling invariance of CS.
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The positivity of C�
S is equivalent to the following property: 8Ma 2 S if q 2 PMa is such that

8w 2 VMa hw; Oqi = 0, then Oq = 0 and thus q = 0. This property can be checked by introducing GP
such that GP � fOq : q 2 PMag and showing that if 0 6= g 2 GP then there exists w 2 VM such that
hw; gi 6= 0. Recalling that PMa = S2;1(Ma)\L2

0(Ma), define GP as

GP =
∂

∂x1
S2;1(Ma)��� �� ∂

∂xn
S2;1(Ma)

= S1;0([0;
4

∑
i=1

l1;i])
S2;1([0;
4

∑
i=1

l2;i])
�� �
S2;1([0;
4

∑
i=1

ln;i])�

: : :

�S2;1([0;
4

∑
i=1

l1;i])
S2;1([0;
4

∑
i=1

l2;i])
�� �
S1;0([0;
4

∑
i=1

ln;i]);

(3.31)

that has independent components. If 0 6= g2GP then at least one of its components is non zero. Without
loss of generality, suppose g1 6= 0. We show that there exists w 2VMa with w = (w1; 0; : : : ; 0) such that
hw; gi> 0. Indeed, g1 admits a decomposition of the form

g1(x) = ∑
i

βiBGP
i (x) = ∑

i
βi

n

∏
j=1

BGP
i j

(x j): (3.32)

If there were functions BV
i (x j) 2 S3;1([0; ∑

4
z=1 l j;i]) such that hBGP

i (x j); BV
i (x j)i= δi; j, then choosing

w1 = ∑
i

βi

n

∏
j=1

BV
i j
(x j); (3.33)

and applying the Fubini-Tonelli decomposition theorem, it would follow

hw; gi= ∑
i

β
2
i > 0: (3.34)

The existence of the BV
i (x j)’s is implied by the fact that, for all space dimensions, and for every interval

I = [0;∑4
i=1 li], the ranks of the matrices associated with the L2-scalar product between S2;1(I) and

S0
3;1(I), and between S1;0(I) and S0

3;1(I) equal the dimension of S2;1(I). This is proved by calculating the
determinant of the upper-leftmost minor of order dimS2;1(I) of these matrices expressed in the canonical
basis. The expressions of the determinants in terms of the lengths of the subsegments l1; : : : ; l4 are

S0
3;1(I) against S2;1(I)

l1l4
43200000(l1 + l2)(l2 + l3)(l3 + l4)
[2l2(l2 + l3)+ l1(2l2 + l3)] � [2l3(l3 + l4)+ l2(2l3 + l4)]

[l1(l3(l3 + l4)+ l2(2l3 + l4))+ l2(2l3(l3 + l4)+ l2(2l3 + l4))];

(3.35)

S0
3;1(I) against S1;0(I)

l1l3l2
4

640000(l4 + l3)
[(9l2 +5l1)l3 +(9l2

2 +9l1l2))]: (3.36)
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Since all the coefficients are positive, also the determinants are (assuming positive lengths), thus C�
S > 0.

Concluding for every regular mesh Th, for all macro-element M 2Mh there is a translation Ma
of M that is in F . Leaving the translation implicit, VMa � VM and PMa = PM thus (3.22) holds with
Cmacro =C�

S .
The spaces VMa and VM differ only if ∂M\∂Θ 6= /0 since the functions of VMa have null gradient on

∂Θ , where those in VM do not. The use of smaller spaces is a stricter condition, thus it is not necessary
to threat differently the macro-elements that touch the boundary.

3.5 Norm equivalences

In the general isogeometric setting, it is possible to associate with each macro-element M 2Mh of any
mesh Th an abstract macro-element Ma 2F by taking the unique translation of MΘ that is in F . To
simplify the notation Ma and MΘ are identified.

The relation between the discrete spaces on M and MΘ require a deeper analysis than in the spline
case. For each Th, M 2Mh, w 2VM and q 2 PM , set

wN = w�F; wS = w(w�F);

qN = q�F; qS = w(q�F);

then the correspondences between wS;wN and w and between qS;qN and q are one to one.
The space VMΘ

= VMa is contained in the space of fwS : w 2 VMg. As previously noted they differ

only if M touches on the boundary of Ω . We now prove that there exist C
VMΘ

VM
; CVM

VMΘ

> 0 such that
8Th; M 2Mh; w 2VM:

C
VMΘ

VM

�1
jwSjH1(MΘ )

n 6 jwjH1(M)n 6CVM
VMΘ

jwSjH1(MΘ )
n : (3.37)
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Indeed
jwSj2H1(MΘ )

n =

Z
MΘ

kOwSk2 dx =

Z
MΘ

kO(ww�F)k2 dx

=

Z
MΘ

kOw(w�F)+wO(w�F)k2 dx

6 2
Z

MΘ

kOw(w�F)k2 +kwO(w�F)k2 dx

6 2kOwk2
L∞(Θ)

Z
MΘ

kw�Fk2 dx +

2kwk2
L∞(Θ)

Z
MΘ

k(Ow�F)OFk2 dx

= 2kOwk2
L∞(Θ)

Z
M
kwk2 ��detF�1�� dx +

2kwk2
L∞(Θ)

Z
M

Ow(OF �F�1)
2 ��detF�1�� dx

6 2
detF�1

L∞(Ω)

�
kOwk2

L∞(Θ) kwk2
L2(M)n +

kwk2
L∞(Θ) kOFk2

L∞(Θ) jwj2H1(M)n

�
6 2

detF�1
L∞(Ω)

�
kOwk2

L∞(Θ)CP(Ω)2 +

kwk2
L∞(Θ) kOFk2

L∞(Θ)

�
jwj2H1(M)n

=C
VMΘ

VM

2
jwj2H1(M)n ;

(3.38)

where M �Ω assures that the Poincaré constants satisfy CP(M)6CP(Ω). The other inequality follows
by the same steps using CP(Θ) instead of CP(Ω).

In the general case PMΘ
and fqS : q 2 PMg are distinct spaces since

R
MΘ

qS dx can be different from
0. Anyway it is possible to define a one to one correspondence between the functions qa 2 PMΘ

and
q 2 PM by

qa = qS�jMΘ j�1
Z

MΘ

qS dx; q =
qa

w
�F�1�jMj�1

Z
M

qa

w
�F�1 dx:

As for the velocities the norm of the associated functions are equivalents, but the proof requires
some technical properties of the Poincaré-Wirtinger inequality: let D be a domain then there exists
CPW (D) : 8 f 2 H1(D)\L2

0(D)
k fkL2(D) 6CPW (D) j f jH1(D) : (3.39)

It is known that CPW (D) is the square root of the inverse of the second eigenvalue of the Neumann
Laplacian, thus if D =

Nn
i=1[0; li] and D satisfy the regularity condition (2.20) then

CPW (D) =

 
n

∑
i=0

π2

l2
i

!� 1
2

= π
�1 ∏

n
i=1 liq

∑
n
i=1 ∏ j 6=i l2

j

6 π
�1 ln

maxr
n l2n�2

max
ζ

2n�2
Θ

6
ζ

n�1
Θ

lmax

π
p

n
; (3.40)

where lmax is the longest edge of D.



16 of 22 A. BRESSAN

If D is a subset of Θ , then it is possible to associate with each function f 2 H1(D)\ L2
0(D) a

function f̂ 2 H1(F(D))\L2
0(F(D)) defined by f̂ = f �F�1 � jF(D)j�1 R

F(D) f �F�1 dx. Then for all
f 2 H1(D)\L2

0(D)

 f̂
2

L2(F(D)) 6 2
 f �F�12

L2(F(D))+2 jF(D)j�1
�Z

F(D)
f �F�1 dx

�2

6 2
 f �F�12

L2(F(D))+2 jF(D)j�1 f �F�12
L2(F(D)) k1k2

L2(F(D))

6 2
 f �F�12

L2(F(D))+2
 f �F�12

L2(F(D))

6 4
 f �F�12

L2(F(D)) 6 4kdetFkL∞(Θ) k fk2
L2(D) ;

(3.41)

and
j f jH1(D) 6

detF�1 1
2
L∞(Ω)

kOFkL∞(Θ)

�� f̂ ��H1(F(D)) : (3.42)

Combining (3.41) and (3.42) gives

CPW (F(D))6 2
detF�1 1

2
L∞(Ω)

kdetFk
1
2
L∞(Θ)

kOFkL∞(Θ)CPW (D): (3.43)

We now prove that there exist CL2(MΘ )
PMΘ

and CL2(M)
PM

such that 8Th; M 2Mh; q 2 PM

kqakL2(MΘ )
6CL2(MΘ )

PMΘ

kqakPMΘ

; (3.44)

kqkL2(M) 6CL2(M)
PM

kqakPM
: (3.45)

Indeed using (3.40) 8Th; M 2Mh; qa 2 PMΘ

kqak2
L2(MΘ )

6CPW (MΘ )2 jqaj2H1(MΘ )
6

ζ
2n�2
Θ

l2
max

nπ2 ∑
KΘ2MΘ

Z
KΘ

kOqak2 dx;

then by noting that the ratio between the longest edge of an abstract macro-element and the diameter of
one of its elements is less than 4ζΘ it follows

kqak2
L2(MΘ )

6
ζ

2n�2
Θ

nπ2 ∑
KΘ2MΘ

(4ζΘ hKΘ
)2
Z

KΘ

kOqak2 dx

6
ζ

2n�2
Θ

16ζ 2
Θ

nπ2 ∑
KΘ2MΘ

h2
KΘ

Z
KΘ

kOqak2 dx

=CL2(MΘ )
PMΘ

2
kqak2

PMΘ

:

(3.46)

A similar argument, based on (3.43), gives the existence of CL2(M)
PM

.

It is now possible to prove the existence of C
PMΘ

PM
; CPM

PMΘ

> 0 such that 8Th; M 2Mh; q 2 PM:

C
PMΘ

PM

�1
kqakPMΘ

6 kqkPM
6CPM

PMΘ

kqakPMΘ

: (3.47)
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Indeed, reasoning as in (3.38) gives

kqak2
PMΘ

= ∑
KΘ2MΘ

h2
KΘ

Z
KΘ

kOqak2 dx = ∑
KΘ2MΘ

h2
KΘ

Z
KΘ

kOqSk2 dx

6 2 ∑
K2M

h2
KΘ

detF�1
L∞(Ω)

�
kOwk2

L∞(Θ)

Z
K
kqk2 dx+

kwk2
L∞(Θ) kOFk2

L∞(Θ)

Z
K
kOqk2 dx

�
6 2

detF�1
L∞(Ω)

�
diamΘ

2 kOwk2
L∞(Θ) kqk2

L2(M)+

kwk2
L∞(Θ) kOFk2

L∞(Θ) ∑
K2M

OF�12
L∞(Θ)

h2
K

Z
K
kOqk2 dx

!
:

(3.48)

Inserting (3.46) in (3.48) gives the desired inequality

kqak2
PMΘ

6 2
detF�1

L∞(Ω)

�
diamΘ

2 kOwk2
L∞(Θ)C

L2(M)
PM

2
+

kwk2
L∞(Θ) kOFk2

L∞(Θ)

OF�12
L∞(Ω)

�
kqk2

PM

=C
PMΘ

PM

2
kqk2

PM
:

(3.49)

The other inequality follows in a similar way.
Using these equivalences and some approximation properties the proof is completed in two steps:

� prove, by approximating the weight w, that 9h̄;C�
N > 0 : 8h6 h̄; Th; M 2Mh; q2 PM; 9w2VM :

hwN ; OqNi>C�
N jwjH1(M)n kqkPM

; (3.50)

� prove, by approximating the map F , that 9 ¯̄h;Cmacro > 0 : 8h6 ¯̄h; Th; M 2Mh; q2PM; 9w2VM :

hw; Oqi>Cmacro jwjH1(M)n kqkPM
: (3.51)

3.6 Proof of (3.50)

In this subsection it is shown that from 0 <C�
S it follows that 9h̄;C�

N > 0 : 8h6 h̄;Th;M 2Mh;8q 2
PM; 9w 2VM :

hwN ; OqNi>C�
N jwjH1(M)n kqkPM

: (3.52)

For all q 2 PM , it is possible to choose wS 2VMΘ
:

hwS; Oqai= hwS; OqSi>C�
S kqakPMΘ

jwSjH1(MΘ )
n

>C�
S CVM

VMΘ

�1
CPM

PMΘ

�1 kqkPM
jwjH1(M)n :

(3.53)
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Moreover, for all wS, it holds

jhwS; OqSij= jhwS; Oqaij= jhO�wS; qaij
6 jwSjH1(MΘ )

n kqakL2(MΘ )

6C
VMΘ

VM
CL2(MΘ )

PMΘ

C
PMΘ

PM
jwjH1(M)n kqkPM

=C+
S jwjH1(M)n kqkPM

;

(3.54)

and
jhkwSkRn ; qSij6 kwSkL2(MΘ )

kqSkL2(MΘ )

6CP(MΘ )C
VMΘ

VM
jwjH1(M)

detF�1 1
2
L∞(Ω)

kwkL∞(Θ) kqkL2(M)

6
4h

π
p

n

OF�1
L∞(Ω)

C
VMΘ

VM
jwjH1(M)detF�1 1

2
L∞(Ω)

kwkL∞(Θ)C
L2(M)
PM

kqkPM

6 hC+
Ow jwjH1(M)n kqkPM

;

(3.55)

where in third line the following estimate of CP(D) for a rectangular domain D with longest edge lmax
is used:

CP(D)6
lmax

π
p

n
: (3.56)

By expressing the NURBS functions in terms of spline functions, it holds
Z

MΘ

wN �OqN dx =

Z
MΘ

wS

w
�OqS

w
dx

=

Z
MΘ

wS �OqS

w2 � qS wS �Ow
w3 dx:

(3.57)

Let wm:v: be the mean value of w in MΘ ; then, 8Th; M 2Mh, the approximation error of w by wm:v: can
be bounded as

kw�wm:v:kL∞(MΘ )
6 diamMΘ kOwkL∞(Θ)

6 4h
OF�1

L∞(Ω)
kOwkL∞(Θ) :

(3.58)

Using this approximation and equation (3.57) gives
Z

MΘ

wN �OqN dx>
Z

MΘ

wS �OqS

w2
m:v:

dx

�
����ZMΘ

wS �OqS

w2 � wS �OqS

w2
m:v:

dx
����

�
����ZMΘ

qS wS �Ow
w3 dx

���� :
(3.59)

By hypothesis for all q 2 PM there is wa 2VMΘ
such that :

Z
MΘ

wS �Oqs

w2
m:v:

dx>C�
S CVM

VMΘ

�1
CPM

PMΘ

�1w�2
L∞(Θ)

kqkPM
jwjH1(M)n

=C1 kqkPM
jwjH1(M)n :

(3.60)
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For the second term on the right-hand side of (3.59), the estimate����ZMΘ

wS �OqS

w2 � wS �OqS

w2
m:v:

dx
����= ����ZMΘ

(w2�w2
m:v:)(wS �OqS)

w2w2
m:v:

dx
����

6

 (w�wm:v:)(w+wm:v:)

w2w2
m:v:


L∞(MΘ )

C+
S jwjH1(M)n kqkPM

6 hC2 jwjH1(M)n kqkPM

(3.61)

holds, where
C2 = 8C+

S kwkL∞(Θ)

w�4
L∞(Θ)

OF�1
L∞(Ω)

kOwkL∞(Θ) :

For the third term on the right-hand side of (3.59) the estimate����ZMΘ

w�3(qSwS �Ow)dx
����6 w�3

Ow


L∞(MΘ )

����ZMΘ

kwSkRn qS dx
����

6 h
w�3

Ow


L∞(MΘ )
C+
Ow kqkPM

jwjH1(M)n

6 hC2 kqkPM
jwjH1(M)n

(3.62)

holds, where C2 =C+
Ow
w�3Ow


L∞(Θ)

. Inserting (3.60), (3.61) and (3.62) in (3.59) gives

hwN ; OqNi> (C1�hC2�hC3)kqkPM
jwjH1(M)n : (3.63)

So choosing h̄ <C1(C2 +C3)
�1 gives

C�
N :=C1� h̄C2� h̄C3 > 0: (3.64)

3.7 Proof of (3.51)

In this subsection it is shown that from 9h̄;C�
N > 0 such that (3.50) holds, it follows that 9 ¯̄h;9Cmacro > 0 :

8h6 ¯̄h;Th;M 2Mh;8q 2 PM; 9w 2VM :

hw; Oqi>CmacrojwjH1(M)n kqkPM
: (3.65)

Using (3.54), (3.55) and (3.57), it follows that 8h;Th;M 2Mh;8w 2VM;q 2 PM

hwN ; OqNi6C+
N jwjH1(M) kqkPM

; (3.66)

with
C+

N :=C+
S

w�2
L∞(Θ)

+C+
Ow diamΩ

w�3 kOwkL∞(Θ)
: (3.67)

The thesis is related to the hypothesis by the relation
Z

M
w �Oqdx =

Z
MΘ

wN �OF�t
OqN jdetOF j dx; (3.68)

where OF�t is the transpose of the inverse of OF .



20 of 22 A. BRESSAN

The main assumption is the regularity of F in particular that F 2C1(Θ̄) and F�1 2C1(Ω̄). Since
both Ω and Θ are bounded their closures are compact. This mean that both OF and OF�1 are uniformly
continuous i.e. 8ε > 0 9δ : 8x;y : kx� yk6 δ

kOF(x)�OF(y)kL (Rn;Rn) 6 ε; (3.69)OF�1(x)�OF�1(y)


L (Rn;Rn)
6 ε; (3.70)

jdetOF(x)�detOF(y)j6 ε: (3.71)

Moreover, the determinant of OF is non zero everywhere so it possible to assume detOF > 0.
For all Th, M 2Mh, choose a point x 2 M and let Fapp be a linear approximation of F such that

OFapp = OF(x). Using this approximation, equation (3.68) can be written as a sum of three terms
Z

M
w �Oqdx =

Z
MΘ

wN �OF�t
appOqN detOFapp dx

+

Z
MΘ

wN �OF�t
appOqN(detOF �detOFapp)dx

+

Z
MΘ

wN � (OF�t �OF�t
app)OqN detOF dx:

(3.72)

By hypothesis for all q 2 PM there is w̃ such that
Z

MΘ

w̃N �OqN dRn
>C�

N kqkPM
jw̃jH1(M)n : (3.73)

Let w = OFappw̃ then
jwjH1(M)n 6 kOFkL∞(Θ) jw̃jH1(M)n : (3.74)

For such w, for the first term on the right side of (3.72) it holds:
Z

MΘ

wN �OF�t
appOqN detOFapp dx =

Z
MΘ

w̃N �OqN detOFapp dx

>C�
N inf

Θ
jdetOF j jw̃jH1(M)n kqkPM

>C4 jwjH1(M)n kqkPM
:

(3.75)

where C4 =C�
N

detOF�1
�1

L∞(Ω)
kOFk�1

L∞(Θ). For the second term the following estimate holds:����ZMΘ

wN �OF�t
appOqN(detOF �detOFapp)dx

����
6C+

N

OF�t
L∞(Ω)

ε jwjH1(M)n kqkPM

6 εC5 jwjH1(M)n kqkPM
:

(3.76)

For the third term on the right hand side of (3.72) it holds:����ZMΘ

wN � (OF�t �OF�t
app)OqN detOF dx

����
6
OF�t �OF�t

app


L (Rn;Rn)
kdetOFkL∞(MΘ )

C+
N jwjH1(M)n kOqkPM

6 εC6 jwjH1(M)n kOqkPM
:

(3.77)
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Inserting (3.75), (3.76), (3.77) in (3.72) gives
Z

M
w �Oq; dx> (C4� εC5� εC6) jwjH1(M)n kqkPM

: (3.78)

Thus, for ε̄ <
C4

C5+C6
, and choosing ¯̄h = δ (ε̄) it holds

Cmacro :=C4� ε̄C5� ε̄C6 > 0:

4. Conclusion

The Stokes problem is a simplified model for both elastic deformations in solids and fluid-dynamics.
In this article the infsup stability and optimal convergence of an isogeometric C1 discretization for the
Stokes problem is proved. The problem of the infsup stability of isogeometric discrete spaces (the
push forward through the geometrical map of NURBS space on the parametric domain), is reduced
to the infsup stability of spline spaces on the parametric domain. In this case the multidimensional
problem is reduced to two unidimensional problems. The one dimensional problems associated with
cubic C1 velocities and quadratic C1 pressures are analyzed by symbolic computation. The case of
higher regularity spaces is the subject of a forthcoming paper. The use of more regular functions is useful
to decrease the degrees of freedom and thus the computational cost without affecting the convergence
to zero of the error estimates.
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