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Childhood asthma is actually defined as a heterogeneous disease, including different

clinical variants and partially sharing similar immune mechanisms. Asthma management

is mainly focused on maintaining the control of the disease and reducing the risk of

adverse outcomes. Most children achieve good control with standard therapies, such

as low doses of inhaled corticosteroids (ICS) and/or one or more controller. These

medications are targeted to suppress bronchial inflammation and to restore airway

responsiveness. However, they are not disease-modifying and do not specifically target

inflammatory pathways of asthma; in addition, they are not significantly effective in

patients with severe uncontrolled asthma. The aim of this review is to update knowledge

on current and novel therapeutic options targeted to immunomodulate inflammatory

pathways underlying pediatric asthma, with particular reference on biologic therapies.

Keywords: asthma, children, endotypes, biologics, treatment, omalizumab, mepolizumab

INTRODUCTION

Asthma represents a major health problem in the pediatric population worldwide. Childhood
asthma is actually defined as a heterogeneous disease, including different clinical variants
(phenotypes) and partially sharing similar immune mechanisms (1). Asthma management is
mainly focused on maintaining the control of the disease and reducing the risk of asthma-related
exacerbations and deaths (2). Most children achieve good control with standard therapies, such as
low doses of inhaled corticosteroids (ICS) and/or one or more controller (2). These medications are
targeted to suppress bronchial inflammation and to restore airway responsiveness. However, they
are not disease-modifying and the inflammation return on their discontinuation; in addition, they
are not significantly effective in patients with severe uncontrolled asthma (3, 4).

A number of individualized therapies, such as biologics, are available as add-on treatment in
adult asthmatic patients with severe uncontrolled symptoms (5). When considering children, only
few biologics have been approved and there is limited experience in this population (6) (Table 1).

CELLULAR AND MOLECULAR MECHANISMS IN ASTHMA

Asthma phenotypes are closely related to airway inflammatory pathways (endotypes), which are
determined by numerous cell types, mediators, and immune pathways (7, 8). Two major distinct
inflammatory endotypes have been recognized so far: T (Type) 2 and non-T2 endotype.

Eosinophilic inflammation is predominant in T2 endotype and is driven by allergy in more
than a half of patients (9). When exposed to allergens and/or to microbes and pollutants,

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2019.00289
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2019.00289&domain=pdf&date_stamp=2019-07-12
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a.licari@smatteo.pv.it
https://doi.org/10.3389/fped.2019.00289
https://www.frontiersin.org/articles/10.3389/fped.2019.00289/full
http://loop.frontiersin.org/people/418283/overview
http://loop.frontiersin.org/people/730804/overview
http://loop.frontiersin.org/people/633773/overview
http://loop.frontiersin.org/people/735486/overview
http://loop.frontiersin.org/people/398986/overview


Licari et al. Immunomodulation in Pediatric Asthma

TABLE 1 | Biologicals approved for treatment of severe asthma.

Medication Target Indication for asthma Dosing and

administration

Efficacy Adverse effects Biomarkers for primary

selection of patients

Omalizumab IgE Moderate-severe

allergic, age ≥ 6 y

75–600mg SC q2–4

wk based on IgE and

wt

↓ Asthma exacerbations, ↓

symptoms, ↑ FEV1, ↑ QoL,

↓ ICS dose, ↓ seasonal

exacerbations

Anaphylaxis < 0,2%

Headache

Pharyngitis

Injection site reactions

IgE level 30–1,500 IU/ml

sIgE against perennial

allergens

FeNO> 30 ppb

Mepolizumab IL-5 Severe eosinophilic,

age > 12 y (US), ≥ 6 y

(EU)

100mg SC q4 wk ↓ Asthma exacerbations, ↓

symptoms, ↑ FEV1,↑ QoL,

↓ ICS dose

Headache

Pharyngitis

Hypersensitivity reactions

Blood eosinophils ≥

150–300 cells/µl

Reslizumab IL-5 Severe eosinophilic

≥ 18 y (US)

3 mg/kg IV q4 wk ↓ Asthma exacerbations, ↓

symptoms, ↑ FEV1,↑ QoL,

↓ ICS dose

↑ CPK (20%)

Myalgia (1%)

Pharyngitis

Anaphylaxis < 1%

Blood eosinophils ≥ 400

cells/µl

Benralizumab IL-5R Severe eosinophilic,

age ≥ 12 y (US)

30mg SC q4 wk for the

first 3 doses followed

by 30mg q8 wk

↓ Asthma exacerbations, ↓

symptoms, ↑ FEV1,↑ QoL,

↓ ICS dose

Hypersensitivity reactions

Headache

Pharyngitis

Injection site reactions

Blood eosinophils ≥ 300

cells/µl

Dupilumab IL-4R Moderate-severe

eosinophilic, age ≥ 12

y (US)

Initial dose

400–600mg, then

200–300mg SC, q2 wk

↓ Asthma exacerbations, ↑

FEV1

Anaphylaxis

Hypersensitivity reactions

Pharyngitis

not yet defined

CPK, creatinine phosphokinase; EU, European Union; FEV1, forced expiratory volume in 1 s; ICS, inhaled corticosteroids; IV, intravenously; q, every; QoL, quality of life; SC,

subcutaneously; sIgE, specific IgE; US, United States; vs, versus; wk, week; wt, weight; y, years old; ↓, reduction; ↑, increase.

airway epithelial cells release cytokine mediators such as

interleukin (IL)-33, IL-25, and thymic stromal lymphopoietin
(TSLP)—the so called “alarmins”—that initiatemultiple signaling
pathways (10). While interleukin (IL)-33 and IL-25 mainly

activate type 2 innate lymphoid cells (ILC2s), TSLP also

primes dendritic cells (DCs) to promote T2 immunity by
activating CD4+ Th2 cells and B cells. CD4+ Th2 cells are
the principal driver of eosinophilic airway inflammation by
generating abundant quantities of IL-4, IL-5, and IL-13 (Th2

cytokines) (7). IL-4 activates B cells to differentiate into plasma
cells that generate immunoglobulin E (IgE) required for mast cell
responses to allergens; IL-5 promotes eosinophil differentiation
and survival; IL-13, IL-4, and other inflammatory mediators
promote goblet cell overexpression, increased mucus secretion,
as well as airway hyperresponsiveness, then contributing to the
hallmarks of asthma pathophysiology (7, 11–13). In allergic
asthma, allergen-specific IgE contributes to the amplification
of this inflammatory pathway by inducing a delayed phase
reaction characterized by the massive influx of eosinophils and
other inflammatory cells (7). Moreover, IgE seems to be directly
involved in the pathogenesis of airway remodeling, since the
expression of its receptors has been recently demonstrated on
airway smooth muscle cells (14, 15).

Non-T2 asthma is marked by a neutrophilic cellular infiltrate
or few cells (pauci-granulocytic). The neutrophilic inflammation
is mainly the results of a mixed Th1 and Th17 cytokine
milieu (IL-8, IL-17A, IL-22) triggered by infections and/or
inhaled pollutants, while the pauci-granulocytic inflammatory
profile is still largely unknown (13). A role of systemic and
metabolic inflammation has also been supposed to contribute
to non-T2 endotype, since it is prevalent in obese and older
patients (16).

This dual endotype categorization has proven to be clinically
relevant and, in particular, eosinophilia directly correlates with
corticosteroid response, onset of disease and symptoms (17).
The identification of the inflammatory endotype and the
prediction of a specific treatment response rely on validated
non-invasive biomarkers, such as eosinophils (in blood and
sputum), IgE, fractional exhaled nitric oxide (FeNO), and
serum periostin, which are available in clinical practice and
are related to T2 asthma endotype (7, 17–19). Even though
both pathways may coexist in some few patients, the T2
endotype is found in the majority of asthma patients, in
particular in children (7). Thus, the development of novel
biologic treatments has been focused on this component of the
inflammatory pathways.

IMMUNOMODULATING APPROACHES IN
PEDIATRIC ASTHMA

One of the primary aims of asthma treatment is the reversal of
existing airway inflammation, hence, the therapeutic strategies
have focused on either reducing inflammatory cells and
mediators or blocking their effects.

The local immune effects of ICS in asthmatic airways
include anti-inflammatory gene activation and switching off
inflammatory gene expression which affect the synthesis of
inflammatory and anti-inflammatory cytokines/chemokines,
receptors, enzymes, and adhesion molecules, and result in
decreased inflammatory cell survival and recruitment (20).
Moreover, ICS increase the β2-receptor expression, function,
and signaling, thus, prevent the development of tolerance
to β2-agonists in asthmatic patients treated with β-agonist
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bronchodilators (21). ICS also act by decreasing vascular
permeability and the release of secretagogue from macrophages,
reducing local edema and mucus secretion. Finally, the
prevention of the cytotoxic effect of the major basic protein
(MBP) released from eosinophils is the most common ICS-
mediated eosinopenic effects (20).

However, the ICS fail to inhibit leukotriene-induced
airway inflammation, thus, the use of leukotrienes (LT)
modifiers can be crucial in asthma management, offering
additional clinical benefit. Two different types of LT modifiers
have been identified: LT synthesis inhibitors and cysteinyl
leukotriene receptor (CysLT) antagonists. By interrupting the
5-lipoxygenase pathway, the LT synthesis inhibitors hinder the
synthesis of all leukotrienes. The CysLT antagonists influence
the bronchoconstrictor and pro-inflammatory activity of
cysteinyl leukotrienes (LTC4, LTD4 LTE4) within the asthmatic
airway (22).

Novel interventional approaches to modulate the pathogenic
immune response have demonstrated significant benefits in
preventing the development of asthma and in treating established
asthmatic disease (23).

Allergen Immunotherapy
Currently, allergen immunotherapy (AIT) is the only disease-
modifying treatment strategy for allergic patients (24). It is
proven to be the only therapy that alters the natural history of
allergic disease, prevents its progression and the development
of new sensitizations and may even delay the development of
asthma in patients with allergic rhinitis (25). AIT demonstrated
to induce a persistent immunological and clinical tolerance
toward the causal allergen, through molecular mechanisms
involving both innate and adaptive immunity (26–28). In
particular, AIT upregulates allergen-specific T-regulatory (Treg)
cells and B-regulatory (Breg) cells, inhibiting the activation of
CD4+ Th2 lymphocytes, suppressing allergic inflammation and
shifting toward a Type 1-mediated immune response, releasing
cytokines, interleukin (IL)-10 and transforming growth factor-
β (TGF-β) (27, 29–31). Several studies showed a significant
reduction in asthma symptoms, reduction in use of medications
and improvement in bronchial hyperreactivity following AIT
(32). In children, randomized clinical trials (RCTs) and meta-
analyses confirmed the clinical effectiveness of AIT in asthma,
possibly even in long-term (33, 34); AIT may also contribute to
delay or prevent the onset of asthma in children (35–37). More
recently, after the positive clinical results of a Phase III clinical
trial evaluating the treatment of asthma with standardized
quality (SQ) house dust mite (HDM) sublingual (SLIT)-tablet,
GINA (Global Initiative for Asthma) endorsed this specific SLIT
product in adolescents and adults with mild-to-moderate and
controlled HDM-asthma (2). According to this recommendation,
severe asthma represents a clinical contraindication for AIT
(2, 38). Although biologics in severe asthma and AIT in allergic
diseases target two different populations, biologic therapies
have been coupled to AIT to treat asthmatic patients at high
risk of adverse reactions in a novel experimental therapeutic
approach (39).

Biologic Therapies
The development of the biological drugs has revolutionized
the therapeutic approach to asthma, particularly in
patients with severe disease and resistant to standard
treatment. These drugs are characterized by an innovative
and highly selective mechanism of action, based on
the targeted inhibition of specific molecular or cellular
targets directly involved in the pathogenesis of airway
inflammation (5).

BIOLOGICS FOR T2 ASTHMA IN
CHILDREN

Anti-IgE
The pharmacological blockade of IgE represents a milestone
in the field of biologic treatments for severe asthma (40).
Omalizumab is the first available humanized monoclonal anti-
IgE with the pediatric indication (age ≥ 6 years) for severe
asthma (41). It is indicated as add-on treatment for children with
severe allergic asthma with elevated serum IgE (>30 and <1,500
IU/ml) and serum IgE positivity for at least one aeroallergen
(42). Omalizumab is recommended to be administered as a
subcutaneous (SC) injection every 2–4 weeks based on body
weight and serum IgE level (43). After binding circulating IgE,
omalizumab decreases IgE levels, inhibits IgE binding with its
receptors, and downregulates the expression of IgE receptors
on mast cells, basophils and dendritic cells (41). Overall, this
results in decreased release of inflammatory mediators related
to the allergic response. Several RCTs consolidated the efficacy
and safety of omalizumab in the pediatric population (44–
47), leading to its final registration more than 10 years ago.
Omalizumab demonstrated to be effective in reducing the
number of asthma exacerbations requiring oral corticosteroids
(OCS), and the need of hospitalizations in severe asthmatic
children; these effects resulted in improvement of asthma control
and quality of life of these children and their families (48). A
significant decrease in the number of seasonal exacerbations
triggered by respiratory viruses has been also recently reported
in treated subjects, probably due to the restoration of antiviral
defenses (in particular type I interferon production) (47, 49,
50). Observational studies conducted in children with poorly
controlled asthma demonstrated a significant improvement in
asthma control as well as a huge decrease in exacerbation and
hospitalization rates over 2 years of therapy (51–54); the impact
of this biologic was also observed on the discontinuation of daily
OCS, the decrease of ICS dose and a slight improvement of
lung function (51–54). Safety data derived from clinical trials,
observational studies and post-marketing analyses showed that
omalizumab is characterized by a very good profile of safety and
tolerability in children and adolescents (55–59). In particular,
injection site reactions, usually of mild-to-moderate severity and
short in duration, were the most reported side effects (55, 56);
anaphylactic events have not been observed in pediatric studies,
unlike those in adults and adolescents (51–53, 59). Finally, there
is no evidence to support an increased risk of malignancy in
patients treated with omalizumab (57, 58); however, a long-term
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monitoring of treated patients is still required to confirm the
good safety profile.

Despite the widespread clinical use of omalizumab in the
pediatric population, a number of questions remain unanswered
based on available scientific data. The profile of the best
responding patient phenotype has not been identified yet: having
severe asthma with multiple allergic comorbidities associated
with raised blood eosinophil count, high levels of total IgE and
fractional exhaled nitric oxide (FeNO) seem to be predictive of a
positive clinical response in the pediatric population (60, 61). Age
< 6 years, IgE > 1,500 IU/ml, and non-allergic severe asthma
together represent the current limit for omalizumab use in
children, as well as in adolescents and adults. Preliminary studies
have been conducted in non-allergic children (62) and children
with excessively high IgE levels (63) with positive encouraging
results; a single study on uncontrolled asthmatic children <6
years is actually ongoing (Preventing Asthma in High Risk Kids
study, NCT02570984) with the aim to evaluate the disease-
modifying effect of anti-IgE therapy. The optimal duration
of omalizumab therapy has not been determined, but it is
considered an effective treatment approach to continue treatment
in responders for at least 2 years, based on observational
data in children (64, 65). Finally, its long-lasting effect after
suspension has been not yet clearly defined. The definition of
targeted courses of therapy may represent the starting point for
optimizing the cost-effectiveness of this biologic treatment in the
pediatric population.

IL-5
Mepolizumab, a murine humanized IgG1 monoclonal antibody,
was the first anti eosinophil-targeted molecular therapy to be
validated in patients with severe asthma. Mepolizumab acts
against circulating IL-5, preventing the IL-5/IL-5Rα interaction
on the surface of eosinophils, and, thereby, affecting the release
and growth of eosinophils (66).

In 2015, mepolizumab has been approved as add-on
maintenance therapeutic option for the treatment of severe
eosinophilic asthma in patients who are 12 years and older, and
then in pediatric population 6 years old and above (67). The
recommended dose of mepolizumab is 100mg for adults and
children older than 12 years of age, and 40mg for children aged 6
to 11 years old, both administered subcutaneously (66, 67).

Mepolizumab has demonstrated favorable efficacy profile in
decreasing the number of asthma exacerbations, improving lung
function, asthma control and quality-of-life (QoL) scores, as well
as significantly reducing OCS use (68–70). Interestingly, all these
outcomes were maintained over time, although, lung function,
expressed in terms of forced expiratory volume in 1 s (FEV1),
was gradually decreasing to approximately baseline, reflecting a
stabilization of lung function over the course of the treatment
period (71–73).

Treatment response criteria and duration of therapy have
been the subject of considerable debate. Exacerbation rate, OCS
treatment, blood eosinophil count, and lung function have
been proposed as treatment response criteria (74). Besides, the
decision to continue mepolizumab treatment should be annually

evaluated and based on assessment of at least 50% reduction in
exacerbation frequency (75).

Regarding safety, mepolizumab appeared well-tolerated, with
the most commonly described adverse events being injection-site
reactions, airway infections, exacerbations of asthma, headaches,
and fatigue (69, 70, 72, 76).

There is limited data on the safety of mepolizumab in
children. One case of histiocytic necrotizing lymphadenitis and
varicella have been reported by Food and Drug Administration
(FDA) in postmarket surveillance of adverse events. However,
the association between mepolizumab and these two events still
remains uncertain (77).

IL-4/13
IL-4 and IL-13 are crucial Th2 cytokines directly involved
in the inflammatory remodeling occurring in the airways of
asthmatic patients (78). Ig switching from classM to E antibodies,
airway recruitment of eosinophils, basophils, lymphocytes, and
monocytes are the principle effects mediated by IL-4 and IL-
13. Also, while IL-4 mediates polarization and maintenance
of T2-type immune response, IL-13 induces airway goblet
cell hyperplasia.

Hence, the possibility of blocking or modulating IL-4 and/or
IL-13 aroused great interest among researchers aiming to gain
therapeutic benefit in asthma.

Currently, dupilumab is the only available biologic drug
targeting both IL-4 and IL-13, approved to treat patients
with moderate-to-severe asthma and airway or peripheral
eosinophilia (78).

Dupilumab appeared to improve both FEV1 and asthma
control as well as to decrease T2-inflammation and asthma
exacerbation rate (79, 80). In QUEST trial, patients aged
over 12 years with uncontrolled, moderate-to-severe asthma
were randomized to receive dupilumab or placebo. Over the
52 week treatment period, dupilumab significantly reduced
the severe asthma exacerbations rate, especially in patients
showing higher baseline eosinophilia (>300 cells/mm3) and
FeNO values major than 25 ppb (81). The Liberty Asthma
VENTURE (82) demonstrated the effectiveness of dupilumab
in reducing OCS use in 210 patients with CS-dependent severe
asthma (dupilumab groups:placebo group = −70.1%:−41.9%,
respectively). Moreover, 48% of patients in dupilumab group
completely discontinuing OCS use.

In April 2017, a randomized, double-blind, placebo-
controlled, parallel group study to evaluate the efficacy and safety
of dupilumab in children 6 to <12 years of age with uncontrolled
persistent asthma has been started and not yet concluded (83).

Recently, a systematic review by Zayed et al. evaluated the
results of four placebo controlled RCTs, assessing dupilumab
safety (84); injection site reactions were commonly described
in experimental group. A transient blood eosinophilia was also
recorded but it was not associated to any consequence or
adverse effect.

Biologics directed exclusively against IL-4 or IL-13 have been
also investigated, however both pitrakinra (anti-IL-4R) (85)
and tralokinumab (86) and lebrikizumab (anti-IL13) (87) failed
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to show consistent benefits for the treatment of severe and
uncontrolled asthma.

BIOLOGICS FOR NON-T2 ASTHMA
IN CHILDREN

Anti IL-25
The evidence of IL-25-mediated Th2 cell differentiation, increase
in production of IL-4, IL-5, and IL-13, elevated IgE and IgG
levels, eosinophil infiltration, goblet cell hyperplasia and mucus
hypersecretion, provided the proof for the role of IL-25 into
asthma pathogenesis (88–90). IL-25 is a Th2 cell-derived cytokine
belonging to IL-17 family. Following its release from mast cells,
eosinophils, basophils, and alveolar macrophages, IL-25 binds
IL-17 receptor and induces Th2 cell-mediated inflammatory
response in the airways. In a vivo model, IL-25 was able to cause
airway inflammation and remodeling as well as hypersensitivity
(89, 91). By blocking IL-25, a significant prevention of airway
hyperresponsiveness and a minor eosinophil infiltration into the
lung tissue as well as goblet cell hyperplasia were also noted (89).

However, neutralizing IL-25 activity showed partial efficacy
into modulate the airways smooth muscle (91).

To date, no clinical trials are investigating the potential role of
anti-IL-25 in asthmatic patients.

Anti IL-33
Bronchial epithelial cells are also considered the primary source
of IL-33, an IL-1-like epithelial-derived cytokine. In response to
infectious or inflammatory stimulus, IL-33 binds its receptor ST2
on mast cells; and it stimulates both the Th2-associated cytokines
release as well as the Th2/IL-31 and Th17 axis (92). Moreover,
acting synergistically with other cytokines such as TSLP and
IL-17, IL-33 can induce a pulmonary inflammation, which was
found to be glucocorticoid-resistant (93). The critical role of IL-
33 was confirmed by GWAS studies showing that IL-33 and
ST2 genes were significantly associated with asthma (94). Also,
sputum IL-33 values reflected disease severity; higher IL-33 levels
were detected in patients with more severe disease (95).

Currently, one phase 1 trial [AMG 282 (RG 6149)] and one
phase 2 trial (ANB020) are ongoing in patients affected by
asthma (96).

Anti Thymic Stromal Lymphopoietin (TSLP)
Following inflammatory or infectious injury, and/or allergen
exposure, lung derived epithelial cells, airway smooth muscle
cells, mast cells, macrophages, granulocytes, and dendritic cells,
release TSLP, a cytokine belonging to IL-2 family. Via interaction
with its receptor, TSLP amplifies the Th2 polarization causing
airway and blood eosinophilia, cells recruitment (mast cells,
basophils, and dendritic cells), differentiation of naive T cells into
Th2 cells, and proinflammatory cytokines release (97). Several
genetic analyses have linked TSLP to Th2-polarized immunity
and asthma (98). Bronchial epithelial cells from asthmatics
patients express higher TSLP levels than healthy subjects, and,
moreover, TSLP expression in the bronchial epithelium and
submucosa was correlating with basal membrane thickness, thus,
also with disease severity (99).

In a double-blind, placebo-controlled study, 31 patients
(age range, 8 to 60 years) with mild asthma were randomized
to undergo to 3 monthly doses of AMG 157, a human anti-
TSLP monoclonal IgG2, or placebo treatment for 12 weeks.
When compared to placebo group, AMG 157 group reported a
significant decrease in allergen-induced bronchoconstriction and
in systemic and airway inflammation (100). Successively, a phase
2, randomized, double-blind, placebo-controlled trial, enrolling
adult patients affected by mild to moderate uncontrolled
asthma assessed the efficacy and safety of tezepelumab (AMG
157/MEDI9929), an human IgG2 monoclonal antibody.
Tezepelumab administration was associated with a minor
annualized asthma exacerbation rate and g a higher increase in
prebronchodilator FEV1 (101). The percentage of mild to serious
adverse events was similar among experimental and placebo
arms (101).

To date, a new clinical trial evaluating the effects of
anti-TSLP in adult patients with asthma (UPSTREAM) is
ongoing (102).

Anti IL-17 and Anti-tumor Necrosis
Factor (TNF)-α
Several studies demonstrated that IL-17 family of cytokines
actively contributes to airway inflammation in non T2 asthma
(13). In particular, airway concentration of IL-17 and its related
cytokines (IL-17A and IL-25) are upregulated in patients with
uncontrolled asthma (13); their levels have been positively
correlated to neutrophilic inflammation and asthma severity
(13, 103, 104). High levels of serum IL-17 have been also
detected in children with asthma and, together with IL-17+
T cells, have been associated with asthma severity in children
(105, 106). Likewise, levels of Tumor Necrosis Factor (TNF)-
α are increased in either the blood or sputum of patients with
neutrophilic asthma, exerting major biological effects on airway
inflammation, remodeling, and hyper responsiveness (107, 108).
These patients experience persistent symptoms and are prone
to frequent exacerbations, which better respond to antibiotics
(such as macrolides) rather than to corticosteroids (109).
Accordingly, therapeutic strategies to modulate neutrophilic
function have been proposed to improve clinical outcomes in
non T2 asthma. Cytokine-targeted strategies inhibiting IL-17 and
TNF-α receptor signaling both failed to be effective in asthma
treatment. Brodalumab (AMG 827), a human anti-IL-17 receptor
A monoclonal antibody, demonstrated marginal therapeutic
benefit in two Phase 2 studies conducted in adult patients with
moderate to severe asthma (110, 111). Golimumab (CNTO148),
a human monoclonal antibody against TNF-α, failed to achieve
significant treatment effect and demonstrated an unfavorable
risk-benefit ratio in adult patients with severe asthma (112).

No ongoing trials are available in adolescents and in children
with neutrophilic severe asthma.

CONCLUSION

Novel biologic therapies are available as add-on treatment
for severe and uncontrolled asthma in adult population.
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However, when considering special patient populations, such
as children, limited treatment options have been approved,
as omalizumab and mepolizumab. Moreover, uncertainties
regarding optimal treatment duration, ability to modify the
disease course, approach to discontinuation, and long-lasting
effects still remain unsolved. These gaps are deeper in non-
T2 asthma for which the clinical development of the biologic
drugs is still in primeval stage. Finally, the wide interpersonal
variability in response to biologic treatment confirms the
complex mechanisms underlying asthma and lets hypothesize
that probably not a single biologic but a “cocktails” of
biologics could be a more appropriate treatment approach,
providing the possibility to block or influence two or more key

pathways, thus, representing a novel and promising strategy to
immunomodulate asthma.
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