
UNIVERSITÀ DEGLI STUDI DI PAVIA
FACOLTÀ DI INGEGNERIA

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

DOTTORATO DI RICERCA IN BIOINGEGNERIA E BIOINFORMATICA

XXX CICLO – 2019

PRODUCT LINE ARCHITECTURE FOR
HADRONTHERAPY CONTROL SYSTEM:
APPLICATIONS DEVELOPMENT AND
CERTIFICATION

PhD Thesis by

Carlos Eduardo Fernandez Afonso

Advisor:
Prof. Cristiana Larizza

Industry Supervisor:
Eng. Luigi Casalegno

PhD Program Chair:
Prof. Paolo Magni

Acknowledgments

 II

Acknowledgments

Firstly, I would also like to express my gratitude to Dr. Carlsten Welsh
for organizing the Optimization of Medical Accelerators project, and the
European Union’s Horizon 2020 research and innovation program for
funding this research project1.

I would like to express my gratitude to my PhD supervisor, Prof. Dr.
Cristina Larizza, for all support and academic advice throughout these years.
I would also like to thank my industrial supervisor, Eng. Luigi Casalegno,
who has provided abundant guidance during this project, and performed an
active role in the design and development on the project that is the basis of
this thesis.

In addition to my supervisors, I would like to thank Dr. Monica Necchi,
for all encouraging words and actions during the project, as well as the
management of the project.

I would like to thank my colleagues at CNAO for the all the time spent
together, and the discussions we had on the various subjects related to our
work. In addition, I would like to thank the other OMA project fellows for
all discussions we had in our shared meetings and trainings.

Finally, I would like to express my sincere gratitude towards my family
and friends, for supporting me and being there for me during this project,
and that, without them, this would not have been possible.

1 This project has received funding from the European Union’s Horizon 2020 research and innovation

program under the Marie Sklodowska-Curie grant agreement 675265

Acknowledgments

 III

Abstract

 IV

Abstract

Hadrontherapy is the treatment of cancer with charged ion beams. As the
charged ion beams used in hadrontherapy are required to be accelerated to
very large energies, the particle accelerators used in this treatment are
complex and composed of several sub-systems. As a result, control systems
are employed for the supervision and control of these accelerators.

Currently, The Italian National Hadrontherapy Facility (CNAO) has the
objective of modernizing one of the software environments of its control
system. Such a project would allow for the integration of new types of
devices into the control system, such as mobile devices, as well as
introducing newer technologies into the environment.

In order to achieve this, this work began with the requirement analysis
and definition of a product line architecture for applications of the upgraded
control system environment. The product line architecture focuses on
reliability, maintainability, and ease of compliance with medical software
certification directives. This was followed by the design and development of
several software services aimed at allowing the communication of the
environment’s applications and other components of the control system, such
as remote file access, relational data access, and OPC-UA. In addition,
several libraries and tools have been developed to support the development
of future control system applications, following the defined product line
architecture.

Lastly, a pilot application was created using the tools developed during
this work, and preliminary results of a cross-environment integration project
are presented. The approach followed in this work is later evaluated by
comparing the developed tools to their legacy counterparts, as well as
estimating the impact of future applications following the defined product
line architecture.

Contents

 V

Contents

1 Introduction ... IX
 Optimization of Medical Accelerators Project .. IX
 Motivation .. X
 Objectives ... X
 Organization of thesis .. XI

2 Background ... 13
 Hadrontherapy ... 14
2.1.1 Particle beams ... 14
2.1.2 Accelerator designs and facilities .. 15
 Control systems ... 19
2.2.1 DCS and SCADA .. 19
2.2.2 The control system “standard model” ... 20
 Control system hardware ... 22
2.3.1 Upper tier .. 22
2.3.2 Networking .. 23
2.3.3 Lower tiers .. 23
 Control system software frameworks .. 24
2.4.1 Experimental Physics and Industrial Control System (EPICS) 24
2.4.2 TANGO Framework ... 25
2.4.3 Commercial software toolkits ... 26
 Centro Nazionale di Adroterapia Oncologica .. 27
2.5.1 Brief introduction to CNAO .. 28
2.5.2 CNAO control system terminology ... 29
2.5.3 Anatomy of a cycle ... 30
2.5.4 Control system conceptual model ... 31
2.5.5 Subsystems .. 33
2.5.6 Control system architecture ... 37
 Product line architecture .. 41

3 Upgrade of the Configuration and Support Environment 43
3.1.1 Objectives and constraints analysis ... 44
3.1.2 Product line requirements .. 46
 Product line architecture scope .. 47
 Configuration and support environment product line architecture 47
3.3.1 Technology choices ... 47
3.3.2 Application architecture .. 51
3.3.3 Product line architecture services .. 53

4 Standardization of services in the Configuration and support environment
 55

 RDAS - Relational data access service .. 56
4.1.1 Relational Data Access requirements .. 57
4.1.2 Implemented solution overview .. 57
4.1.3 RDAS library .. 58
4.1.4 RDAS Server ... 62
4.1.5 Automatic DataObject Generation .. 63
4.1.6 Integration and Unit testing ... 64
 Remote file access ... 65
4.2.1 Terminology .. 65
4.2.2 Exposing files remotely ... 66

Contents

 VI

4.2.3 FDAS server configuration ... 68
 OPC-UA communication .. 69
 Authentication and authorization ... 70
4.4.1 Security objectives .. 70
4.4.2 Authentication and authorization .. 71
4.4.3 Access control solution implementation ... 73
4.4.4 Protected resources .. 76
4.4.5 Framework2020Oidc library ... 78
4.4.6 OPC UA integration .. 80
 Local and remote logging .. 83
4.5.1 Logging libraries design .. 83
4.5.2 Implementation of CnaoLog libraries ... 86
 Configuration file management ... 89
4.6.1 Definition of configuration models ... 91
4.6.2 Configuration loading ... 92
 Integration with LabVIEW environment ... 93
4.7.1 Relational data access service integration ... 93

5 Implementing the basis of the product line architecture 96
 Introduction ... 96
 From architecture to implementation... 97
 Framework2020 design and development ... 98
 Application wizards ... 101
5.4.1 Generating skeleton applications with a wizard 101
5.4.2 Adding pages into a skeleton application .. 105

6 Towards certification of control system applications.................................. 108
 Designing towards reusable certification ... 110
 Discussion .. 111

7 Results and evaluation ... 114
 Introduction ... 114
 Pilot applications ... 114
7.2.1 Security configuration application .. 114
7.2.2 Integration with LabVIEW: EasyLoader pilot application 118
 Evaluation .. 121
7.3.1 Component evaluation... 122
7.3.2 Environment evaluation .. 124

8 Conclusion and future work .. 126
 Conclusion ... 126
 Future work ... 127

References .. 129

Abreviations

 VII

Abreviations

ANL - Argonne National Laboratory
API - Application Program Interface
CA - Certification Authority
CE - Conformité Européenne
CERN - Conseil Européen pour la Recherche Nucléaire
CLI - Command-Line Interface
CNAO - Centro Nazionale di Adroterapia Oncologica
CORBA - Common Object Request Broker Architecture
BLOB – Binary Large Object
CRUD – Create Read Update Delete
DAO – Data Access Object
DCS - Distributed Control System
DLL - Dynamic-Link Library
ELI - Extreme Light Infrastructure
EPICS - Experimental Physics and Industrial Control System
ESRF - European Synchrotron Radiation Facility
FDAS - File Data Access Service
FEC - Front End Computer
FPGA - Field-programmable gate array
FTP – File Transfer Protocol
GUI – Graphical User Interface
GSI – GSI Helmholtz Centre for Heavy Ion Research
GTA - Ground Test Accelerator
GTACS - Ground Test Accelerator Control System
IBA – Ion Beam Applications
ICALEPCS - International Conference on Accelerator and Large

Experimental Physics Control Systems
IDE - Integrated Development Environment
INFN - Istituto Nazionale di Fisica Nucleare
JSON - JavaScript Object Notation
JWT - JSON Web Token
LAN - Local Area Network
LANL - Los Alamos National Laboratory
LDAP - Lightweight Directory Access Protocol
LHC - Large Hadron Collider
MVVM - Model-View View Model
ORM - Object Relational Mapping
OPC - Open Platform Communications
OPC-UA - Open Platform Communications Unified Architecture
PCI - Peripheral Component Interconnect

Abreviations

 VIII

POCO - Plain Old C# Object / Plain Old Common language runtime
Object.

PXI - PCI eXtensions for Instrumentation
RBE - Relative Biological Effectiveness
RDAS - Relational Data Access Service
REST - Representational state transfer.
RF - Radio Frequency
SCADA - Supervisory Control and Data Acquisition
SKA - Square Kilometre Array
SSC - Superconductive Super Collider
SQL- Structured Query Language
SOLEIL - Source optimisée de lumière d’énergie intermédiaire du LURE
TCP - Transmission Control Protocol
UML - Unified markup language
XML - Extensible Markup Language

Chapter 1 - Introduction

 IX

Chapter 1

1 Introduction

 Optimization of Medical Accelerators Project

Particle therapy is a cancer treatment method that is becoming
increasingly more prominent. In contrast to radiotherapy, in which radiation
is used to damage cancer cells, in particle therapy ions are accelerated to
deposit energy in the cells. The main advantage of hadrontherapy over
radiotherapy is the former’s dose deposition profile, which allows for lower
dose deposition in healthy tissue surrounding the targeted tumor. However,
hadrontherapy requires the use of a particle accelerator of large dimensions
and complexity. The large quantity of equipment involved in generating the
particle beam and applying it in patient treatment requires the facility to have
an elaborate control system.

The Optimization of Medical Accelerators (OMA) project is a European
Training Network funded by the European Union’s Horizon 2020 research
and innovation programme. This project, started in 2016, joins several
institutions, such as universities, research centers, and hadrontherapy
facilities, to perform projects under a common set of goals. The network
created by the project, which contains more than 30 entities, is composed of
beneficiaries, partner organizations, and adjunct partners.

The goals of the network are separated into a total of three work packages.
This work is part of the last work package, which is entitled “Optimization
of facilities”.

When writing the proposal, each beneficiary organization proposed a
project, with the scope aligned with one of the work packages, and later
received funds to hire a research fellow to work on the project for a duration
of three years.

The Centro Nazionale di Adroterapia Oncologica (CNAO) was in the
position of hosting two of the OMA network’s projects. The OMA project
entitled ‘Light ion therapy software for data exchange’ is the one underlying
the work performed in the context thesis.

Chapter 1 - Introduction

 10

The goals of the project, as initially written, were “creating a common
software bus that shall enable any present and future package to easily
interconnect in a complex and widely distributed hadron therapy facility
environment” as well as “the design and development of libraries to support
these protocols and enable to automatically connect and operate devices”. In
summary, the original vision for the project was based around designing the
intercommunication of software applications in the upgraded configuration
and support environment, as well as several libraries to support the new
software applications in this environment.

 Motivation

As the software components of the control system were first designed in
2003 and have been in operation for several years, applications of the
configuration and support environment were incompatible with several
newer software features. By performing a top-down technological upgrade
of the environment, the CNAO facility aims at incorporating several newly
developed libraries and frameworks to the control system, including multi-
platform software targeting. Incorporating mobile devices into the control
system allows for the addition of several new control system features not
possible previously. For example, control room operators will be allowed to
briefly step out of the control room, while being able to continue to
monitoring of the accelerator system.

While planning the environment’s technology upgrade, the opportunity
has been seized to develop solutions in order to improve control system in
areas such as application maintainability, multi-platform execution, security,
and medical certification.

Finally, extensive study has been performed regarding the software
architectures for accelerator control systems, and in the development of
reusable solutions for technical requirements of these systems. In this work,
we combine the development of reusable software elements and the selection
of architectural patterns in software applications of the control system in
order to facilitate the integration of these software elements. As a result, we
expect that this work provides a step forward on the application of software
engineering techniques in the medical accelerator control system domain.

 Objectives

The main objective of this work is planning and performing the upgrade
of a control system software environment of a hadrontherapy facility. The
software in this environment performs a support role in the medical facility,
and is used for tasks such as configuration of the accelerator systems, and
supporting the clinical workflow. As part of the upgrade, new technologies
were chosen for the environment, and a product line architecture was
designed to define the general architecture of future applications. In addition,
services to be used by future applications were designed and developed.

Chapter 1 - Introduction

 XI

The objectives of the work were as follows:

 Requirement analysis of the upgraded configuration and support
environment. Definition of objectives for the new environment.

 Definition of a product line architecture to guide the design of the
applications in the upgraded environment.

 Design and development of libraries and services to perform the
operations to be standardized in the configuration and support
environment.

 Development of several graphical wizard generators to create
configurable skeleton applications, which follow the product line
architecture.

 Investigation on how to make use of the product line approach to
aid the medical software certification of the upgraded applications.

 Development of a pilot application, documentation and discussion
of reusability of the developed components, and impact of the project
in the control system.

 Organization of thesis

The thesis is organized into eight chapters. The remaining chapters are
described as it follows:

 Chapter 2, Background: Chapter 2 initially provides a brief
description of the physics concepts used in particle therapy, and the
history of the field. Later, the field of accelerator control systems is
introduced and previous accelerator control systems designs are
presented. After discussing the field in general, we describe the control
system at the CNAO facility.

 Chapter 3, Upgrade of the Configuration and Support
Environment: This chapter begins with the requirement analysis
performed to design the upgraded configuration and support
environment. Later, the product line approach for the work is described
in detail, as well as the designed architecture for the applications of the
environment.

 Chapter 4, Standardization of services in the Configuration
and support environment: The product line architecture envisages
the presence of standard services that are to be used by the applications.
This chapter describes the design and development of the standard
services in the upgraded environment.

 Chapter 5, Implementing the basis of the product line
architecture: A family of frameworks and wizard code generation
tools was designed for supporting the product line approach upgrade of
the environment. In Chapter 5, the development and usage of the
frameworks and wizard generators is presented.

 Chapter 6, Towards certification of control system
applications: The design of the product line architecture was heavily

Chapter 1 - Introduction

 12

influenced by the mandatory medical software certification processes
that applications in the upgraded environment must undergo. Chapter
6, begins with a description of the certification process. Additionally,
it is explained how the design tactics adopted in the product line
architecture to aid the certification process is detailed. Finally, a
discussion of the expected results of these tactics is presented.

 Chapter 7, Results and evaluation: The Chapter 7 describes the
results of the work performed in the thesis. A pilot application of the
upgraded environment is presented, as well as the early results of the
integration project. Later, we evaluate the work performed, focusing
both on the impact of individual components, as well as on the
contribution of the upgraded environment to the control system as a
whole.

 Chapter 8, Conclusion and future work: Chapter 8 concludes
the thesis, summarizing the work performed and the achieved results.
Afterwards, there is a brief description of the expected continuation
of this work, as well as areas where it can be expanded upon.

Chapter 2 - Background

 13

Chapter 2

2 Background

Large particle accelerators, whether medical or research oriented, are
complex systems that can only be developed by combining the efforts of
personnel from several heterogeneous fields. When designing a complex
accelerator, the earliest obtainable architecturally significant requirements
are originated by the users of the system, such as researchers performing
scientific experiments, or healthcare providers in the treatment of patients.
These initial system requirements have to be analysed by personnel
knowledgeable in particle physics and the domain of accelerator design.

As the accelerator is composed of several systems, such as accelerator
cavities, communication networks between components, multiple types of
sensors, as well as computation software and hardware that perform data
processing, and equipment control. In order to flesh out the initial accelerator
design into a concrete design, professionals from several fields of
engineering participate in this process. Additionally, other important
stakeholders also need to be consulted, such as accelerator operators, and
maintenance staff.

As a control system developer, it is essential to maintain communication
channels to the various stakeholders. Additionally, in order to analyse
various requirements, and obtain iterative feedback during the development
process, basic domain knowledge of hadrontherapy and accelerator design is
required for control system developers.

In this chapter, we present a short description of several research and
industrial topics adjacent to the field of medical accelerator control systems.
This chapter begins with a short introduction on particle accelerator and
hadrontherapy, including the basics of hadrontherapy cancer treatment, and
the history of the medical procedure. Common accelerator designs, as well
as a comparison of the effects of different particles are subsequently
described in this chapter. Later, we present the most widely adopted control
system architectures, as well as their historical background. Finally, we

Chapter 2 - Background

 14

finalize with a description of commonly used software frameworks for
developing accelerator control systems.

 Hadrontherapy

Hadrontherapy is the general term given to the usage of particle beams for
patient treatment. This term encompasses the usage of a large variety of
particles, such as neutrons, protons, and charged ions (e.g. helium, boron,
oxygen, and carbon ions) [1]. During treatment, the particles are accelerated
using a particle accelerator, and delivered into the patient’s tissue, where
they deposit energy. In this section, a review of hadrontherapy is presented,
including a brief overview of the history of hadrontherapy. Afterwards, a
brief description of the supporting equipment necessary for the operation of
hadrontherapy will be presented.

Research into Hadrontherapy began in 1930s, by the brothers Earnest and
John Lawrence, shortly after the invention of the cyclotron by the former[1].
Research was performed in 1936 on the effects of particle beams compared
to x-rays in normal and tumor tissue. This research demonstrated that neutron
particle beams had a greater effectiveness at destroying cells than x-rays [2].
Based on the earlier research, the first neutron particle therapy treatments
occurred in 1938 for the treatment of cancer [3]. The earlier applications of
neutron particle beam resulted in undesirable side effects in the form of
dosage to heathy tissue, and the treatment was discontinued in 1948 [4]. In
1954, the first patient was treated with a proton beam. Treatments with other
charged ions soon followed, with the usage of helium in 1957, neon ions in
1975, and carbon ions in 1994 [3].

2.1.1 Particle beams

In radiology, beams have different characteristics that depend on their
physical properties. Two important beam characteristics are the dose
distribution profile, and the biological effect of the particle beam. Dose
distribution profile, sometimes referred to as dose depth curve, is a measure
of the energy deposited along the distance travelled in a material. The
biological effect of a particle beam is usually denoted by the beam’s relative
biological effectiveness (RBE). The RBE compares the beams’ biological
response to the biological response caused by exposure to a reference beam,
in a scenario where the energy deposited by both beams is the same.
Considering an arbitrary deposited dose, a particle beam with higher RBE
has more biological effect than a lower RBE beam.

Charged ions lose part of their kinetic energy as they pass through objects
such as tissue and water, as a result of nuclear and atomic interactions [5].
The prevalence of collisions and interactions increases as charged particles
lose kinetic energy, resulting in a concentration of the amount of interactions
in the end of the beam penetration range. Consequently, the largest quantity

Chapter 2 - Background

 15

of dose is deposited at the end of the end of the particle range [5]. This range,
where most a large amount of dose is deposited, is named Bragg Peak. Figure
2.1 displays the dose depth curve comparison of several beams [6]. As
displayed in the figure, photon, neutron and election beams deposit most of
their energy early in their range. Meanwhile, carbon and proton beams
deposit most of their energy in the end of their range. The rapid increase in
deposited dose, as well as the sharp fall after reaching the peak is the main
reason for using charged ion beams in radiotherapy [5].

Figure 2.1: Dose depth curve of different beams. Extracted from [6].

While many charged ion beams dose depth curve present Bragg peaks, the
shape and relative intensity of the peak varies between charged ions. Carbon
beam Bragg peaks are more pronounced than their proton counterparts.
Additionally, the ratio of dose deposition at peak/entrance is also higher in
carbon beams. However, carbon ions and other heavy ion beams deposit a
trailing dose after the Bragg peak. This trailing dose occurs due to fragments
produced by nuclear interactions, and is proportionately small enough not to
impose severe restrictions to hadrontherapy [5].

2.1.2 Accelerator designs and facilities

Various accelerator designs have been used in hadrontherapy. The most
common designs are linear accelerators, cyclotrons, and synchrotrons.
Linear electron accelerators are widely used in x-ray radiotherapy,
numbering more than 10,000 units worldwide [7]. While proton linear
accelerator design has first been proposed in 1989 by Lennox et al. [8],
currently there are no hadrontherapy facilities using linear accelerators [9].

Chapter 2 - Background

 16

There are currently several proposed designs for particle therapy linear
accelerators, such as the ADAM company proton linear accelerator design
[10], and the TERA foundation carbon cyclotron-to-linear-accelerator design
[11]. The arguments for using a linear accelerator in particle therapy are as
follows: these accelerators allow for beams with high repetition rates, with
over 100 pulses per second, enabling fast energy modulation, as the energy
can be adjusted every pulse [3]. Drawbacks of these designs include the
accelerator length, and costs.

The most common accelerator design currently used in hadrontherapy
facilities is the cyclotron [9], with several companies offering commercial
solutions, such as IBA [12], and Varian [13]. In cyclotrons, charged particles
are subjected to a constant magnetic field, and accelerated in an acceleration
gap controlled via an RF frequency. As the bunched particles are accelerated,
the radius of their trajectory increases. Once the radius of the trajectory of
the bunch matches the cyclotron extraction window, the bunch passes
through the window and is extracted. The resulting extracted bunches from
cyclotrons has a periodicity fast enough to be considered a constant beam for
the purposes of cancer treatment. Because of their design, cyclotrons produce
beams with constant kinetic energy, thus requiring a separate mechanism for
energy modulation [3]. The energy modulation is usually performed with an
external energy selection system, which places absorbers in the beams
trajectory, thus reducing the energy of the beam. This extra energy
modulation step affects the beam quality in multiple ways: firstly, the beam
shape is modified, and debris is created as result of the collision with the
absorber material. Secondly, the energy modulation system process takes a
slight amount of time to physically move the absorber wedges, leading to a
short delay [3]. Amaldi et al. note that, in cases of high beam energy,
attenuation of protons, or of carbon ion beams, the nuclear interactions may
cause the energy selection system area to become radioactive [3].

Cyclotrons designs have two widely available variants, the isochronous
variant and the synchrocyclotron variant. These variants behave similarly,
but unlike the isochronous version where the RF frequency is constant, in
synchrocyclotrons the RF frequency decreases during the acceleration.

Another common accelerator design for particle therapy is the
synchrotron. In the synchrotron design, the particle beam repeatedly travels
a circular path as it is being accelerated. Along the circular path, several
magnets perform the bending of the beam and beam compression. Once the
particle bunch reaches the desired energy, an extraction mechanism is
activated and the beam is delivered. Currently, all carbon ion particle therapy
facilities use synchrotron accelerator designs [9]. Table 2.1 presents a list of
all currently in operation carbon therapy facilities, as well as their respective
location, maximum energy per nucleon, and start of operation date [9].

Loma Linda, the first hospital-based hadrontherapy center started treating
patients in 1990, and has treated 13,500 patients with protons from until the
end of 2008 using a synchrotron accelerator [3]. Synchrotron designs usually
provide low beam periodicity rate, with conventional designs taking between
more than a second to reduce the magnetic field, prepare a new beam, and

Chapter 2 - Background

 17

accelerate it to the desired energy. As noted by Amaldi et al. the periodicity
of synchrotrons may present issues in the treatment of moving tumors, as it
may roughly coincide with patients breathing patterns[3]. Recently, novel
designs are being proposed, offering much faster repetition rates for proton
synchrotrons [14].

Chapter 2 - Background

 18

Table 2.1: Table of carbon ion facilities currently in operation. All facilities
mentioned use synchrotron accelerator designs. Information from PTCOG
website [9].

COUNTRY WHO,
WHERE

MAXIMUM
ENERGY PER

NUCLEON
(MeV)

START OF
TREATMENT

Austria MedAustron,
Wiener
Neustadt

 403/u 2019

China IMP-CAS,
Lanzhou

400/u 2006

China SPHIC,
Shanghai

430/u 2014

China Heavy Ion
Cancer
Treatment
Center, Wuwei,
Gansu

400/u 2019

Germany HIT, Heidelberg 430/u 2009, 2012

Germany MIT, Marburg 430/u 2015

Italy CNAO, Pavia 480/u 2012

Japan HIMAC, Chiba 800/u 1994, 2017

Japan HIBMC, Hyogo 320/u 2002

Japan GHMC, Gunma 400/u 2010

Japan SAGA-HIMAT,
Tosu

400/u 2013

Japan i-Rock
Kanagawa
Cancer Center,
Yokohama

430/u 2015

Japan Osaka Heavy
Ion Therapy
Center, Osaka

430/u 2018

Overall, cyclotron and synchrotron designs are the current norm in field

of particle therapy. Cyclotron designs offer benefits such as lower
acquisition cost, simpler and less costly operation [5], smaller size, and
provide a continuous beam. However, there are currently no fully
functioning cyclotrons designs capable of accelerating carbon ions at the

Chapter 2 - Background

 19

energy necessary for hadrontherapy [9]. On the other hand, synchrotron
designs are more versatile, allowing for the accelerated energy to be
determined every acceleration cycle, and thus not requiring absorbers to
modulate energy.

Currently, there are several accelerator designs aimed at addressing issues
and improving hadrontherapy, in various development stages. Super cooling
technologies have already been proposed and successfully implemented in
order to reduce the size and weight of cyclotrons and synchrotrons. IBA is
currently designing a super conductive synchrocyclotron aimed at
accelerating protons and carbon ions. Finally, several linear accelerator
designs have been proposed to provide faster energy modulation without
using absorbers, such as by the ADAM company [15], and the TERA
foundation [16].

 Control systems

In the field of particle accelerator design, the term control system is used
more broadly than in some other industrial engineering domains. According
to Müller [17], the role of an accelerator control system is to supervise all
devices and subsystems of the accelerator, taking into account the states and
transitions of the system. At a software level, an accelerator control system
should be able to perform error detection, and follow up by providing proper
recovery methods. Additionally, a mapping must be made from all operation
requirements of the accelerator into control system operation modes,
allowing operators to fulfill the requirements by selecting the appropriate
operation modes [17]. Because of these requirements, and the complexity of
medical and experimental accelerators, these control systems are composed
of hardware, networking components, off-the-shelf, and tailor made software
[17].

The ICALEPCS [18] biennial conference, which gathers control system
specialists from around the world, interprets the scope of the term “control
systems” to include the following:

 “all components or functions, such as processors, interfaces, field-
busses, networks, human interfaces, system and application software,
algorithms, architectures, databases, etc.”

 “all aspects of these components, including engineering, execution
methodologies, project management, costs, etc.”[18]

2.2.1 DCS and SCADA

A commonly presented question is the difference between a Distributed
Control System (DCS) and a Supervisory Control and Data Acquisition
system (SCADA). These terms are used to categorize control systems, or
parts of control systems. The difficulty of differentiating these terms is often

Chapter 2 - Background

 20

higher in the domain of accelerator control because of the frequent usage of
custom software and hardware in control systems in order to achieve the
domain’s particular requirements.

In the literature, SCADA systems often do not refer to full control
systems, but a layer exclusively made of software packages, and that rest
above lower layer of a control system. Under this interpretation, a SCADA
system main purpose is to acquire data from the lower layer components and
provide supervision capabilities [19]. According to Galloway et al. [20],
DCSs are similar to SCADA as both communicate with lower layers, and
provide a centralized interface for operators. However, the author notes that
at a technological level, DCSs are more closely connected to the associated
hardware, and use process driven communication rather than event driven
[20]. Table 2.2 contains a short summary of distinctions between the two
systems.

Table 2.2: Comparison of properties of DCS and SCADA systems [20].

DCS SCADA

Process driven, continuous stream of
measured data

Event driven, often reporting only
changes to system

Suited to closely integrated systems Suited towards less integrated, more
independent systems

Does not need to be concerned with
data quality due to integration

Often deals with unreliable data,
requiring features to deal with
unreliability

In the context of this document, we will refer to control systems

components and frameworks by the designation given to them by their
developers.

2.2.2 The control system “standard model”

When designing new systems, usually the first step is to analyze the
implementation of currently available systems, attempting to find solutions
for shared requirements. In the accelerator control systems community, as
soon as the first custom solutions were finished and documented, similarities
were identified leading to categories and models being proposed [17].

In this section, we present general models for designing control systems
present in the literature, as well as the requirements and constraints
addressed by such models.

The control system “standard model” was proposed by Kuiper in 1991
[21]. This model proposes a separation of concerns into control system tiers.
For each tier, hardware components are specified, as well as communication
between components, and allocation of software applications. Figure 2.2

Chapter 2 - Background

 21

contains an illustration of the “standard model” and components present in
each one of its tiers.

The “standard model” separates accelerator control systems in three tiers.
The first tier consists of workstation machines that provide the user interface
to operators. The workstations display the current status of the control
system, current and historical data measurements, alarms, as well as any
other domain specific information operators require. The second tier,
referred to as “communication tier”, transports data between the first and
third tier of the control system. The third, and last, tier is responsible for
implementing the domain logic of the control system. Devices in this tier2
are responsible for the acquisition and processing of distributed data,
supervision of the control system, as well as sequential and closed-loop
control. This tier is the only one that communicates directly with the
accelerator hardware [22].

The standard model also recognizes the importance of ensuring the
correlation of data, as accelerators are distributed systems with strong real
time constraints. Three approaches for correlating sensor data from the
accelerator are defined by the model:

 Packaging data along with a correlation identifier generated at the
source of the data, such as a time stamp.

 Synchronize the data collection system, in such a way that all data
collection is triggered simultaneously.

 Determine a single component that collects all data [22].

Figure 2.2: The three-tier standard model as proposed by Kuiper[21].

2 In Kuiper’s article, originally published in 1991, the third layer devices are referred as

Front End (Micro)Computers, or FECs. Meanwhile, computational devices have changed
considerably and the term “front-end” is more commonly used to refer to devices that
interface with the end user. In order to avoid confusion, we use the broader term devices
when describing the standard model’s third layer computers.

Chapter 2 - Background

 22

Several variations of the standard model have been proposed to address
challenges encountered in accelerator control systems. These solutions
usually address specific requirements, and extend the standard model.

For example, Thuot et al. [22] propose an extension to the standard model
to address three important requirements that were analyzed when designing
the Superconductive Super Collider (SSC). These requirements were as it
follows: firstly, dealing with the large spatial footprint of the accelerator and
large number of devices interconnected, as the synchrotron was designed to
have a diameter of 87 km. Secondly, the need for fast accessibility to global
data. Finally, distributing the control system data to multiple users, without
interfering with the control network [22].

To address these requirements, Thuot et al. [22] propose an extension to
the standard model, adding multiple network tiers, using different
infrastructure to address challenges in each tier. For subsystems with
stronger real time constraints, a reflected memory scheme is added to several
controllers to allow these controllers to have necessary data for operation in
a short time window [22].

 Control system hardware

While this document focuses on control system software, it is imperative
for software engineers to understand the physical components the control
system operates on. IT components designed to support control systems often
have additional requirements, especially in particular domains as the
accelerator, or the healthcare domain. In this section we go into detail about
common hardware requirements of control systems, and the way they impact
control system software.

Important requirements for an accelerator control system are
dependability, fault tolerance, predictability, extensibility, and usability
[17]. In the hadrontherapy domain, additional importance should be given to
fault tolerance, dependability, and safety, as system failures pose
unacceptable risk to patients and medical personnel. On facilities developed
by commercial hadrontherapy system providers, that provide a catalogue of
turn-key hadrontherapy solutions, the importance of extensibility is often
lowered. In the medical domain, the usability requirements should be
reinforced as poorly designed interfaces may lead to incorrect usage by
trained operators, leading to errors which may cause permanent and
irreparable harm [23].

2.3.1 Upper tier

In the accelerator control system domain, upper tier of control system
presents the least amount of non-standard hardware requirements. Muller
[17] states that control equipment at this tier only differs from regular IT
equipment by requiring assurances regarding availability. Modern control

Chapter 2 - Background

 23

system software at this tier often is able to run on all major operating
systems.

2.3.2 Networking

In the network tier, control system equipment often differs from
conventional network equipment. These differences have been highlighted
by Galloway et al. [20] in a comparison between conventional and industrial
control networks. The most visible difference is often the network hierarchy,
with control networks often having much an architecture involving
additional layers. Moreover, these different networks layers with different
protocols allow communication between instruments and controllers, and
then to operator interface equipment [20]. One example of layered network
presented by Thuot et al. for the SSC control system [22], was previously
discussed in section 2.2.2.

The network traffic patterns in control systems are also inevitably
dissimilar from conventional networks. Control system network traffic must
account for periodic data in the form of sensor measurement data, alarms,
and state messages. Besides, real-time constraints in the order of
microseconds must be accounted for when designing the network.
Meanwhile, in conventional networks, network traffic usually consists of
larger, aperiodic messages, and a “best-effort” policy is often used [20].

In order to fulfil real time requirements, custom network and I/O solutions
are often used. One such example is presented by Štefanič et al. [24] for the
Timing System of the MedAustron hadrontherapy center. This subsystem is
responsible for broadcasting coordination messages to several accelerator
controllers. Requirements for this subsystem included the creation of a
deterministic real-time network to support a 1 microsecond control loop
resolution [24].

2.3.3 Lower tiers

The lower tiers of the control system are often the most varied. In systems
following the standard model, the lower tier should contain ‘Front-End
Computers’ or microprocessors. This tier is the closest to the accelerator, and
so usually possesses the strictest real time constraints. Devices in this tier are
also responsible for obtaining sensor data, and if possible perform processing
over them before sending the data to the upper tiers. Additionally, in many
accelerator facilities the data correlation process occurs in this tier, by
appending sensor measurements with a time stamp or cycle number for
synchronization.

Chapter 2 - Background

 24

 Control system software frameworks

As previously mentioned, particle accelerator control systems often
follow patterns that can be leveraged to reuse concepts and architecture
designs. Unsurprisingly, the same also occurs for control system software.
These similarities were first pointed out during the first few international
conferences [17]. Soon afterwards, several accelerator teams proposed
control system software designs, while seeking collaboration partners for the
development of reusable toolkits for the construction of accelerator control
systems [17]. From these joint efforts, several successful open source
frameworks for developing control systems were developed, such as EPICS
[25] and Tango [26]. Additionally, several commercial options have been
made available for usage in accelerator facilities. In this section, we describe
some of the most widely adopted software frameworks for control systems
in the particle accelerator domain.

We will use the term software framework as defined by Buschman et al.
[27], who states that: “a software framework is a partially complete software
system that is intended to be instantiated. It defines the architecture for a
family of systems and provides the basic building blocks to create them. It
also defines the places where adaptations for specific functionality should be
made” [27]. In our opinion, the software toolkits presented in this section
can be classified as software frameworks, as they provide the building blocks
for the creation of the control system, as well as its subsystems.

2.4.1 Experimental Physics and Industrial Control System
(EPICS)

The EPICS architecture is the oldest control system framework designed
for the particle accelerator domain. Dalesio et al. [25] note that at the time it
was designed, no industrial solutions had offered the control system
capabilities required by the experimental accelerator community [25].

EPICS is a distributed control system framework that runs on top of an
infrastructure composed of workstations for operators, I/O controller
computers, and file servers, connected via a LAN connection [28]. Later
additions to the framework include a distributed database, as well as several
subsystems necessary for accelerator control, such as alarm management,
archiving, sequencing, and operator display [25].

The EPICS software framework was designed based on the following
requirements:

 Providing standard functionality required in an accelerator control
system.

 Reducing time required for control system development and
alterations.

 Allowing for extensibility of the framework, following the
requirements of experimental accelerator physicists.[22]

Chapter 2 - Background

 25

The EPICS project started in 1989 with the collaboration between the Los
Alamos National Laboratory (LANL) and the Argonne National Laboratory
(ANL). Los Alamos had just developed a control system, named GTACS,
for their proton linear accelerator. Meanwhile, the ANL team had been
tasked to build a control system for a new accelerator, the Advanced Photon
Source [29]. The teams were aware that diverging requirements between the
two very different accelerators designs might create issues throughout the
collaboration, and force the development teams to diverge, but decided to go
ahead with the co-development project [29].

During the early stages of the collaboration, the ANL and LANL teams
worked together to improve the GTACS, improving utility, portability, and
enabling additional device support. Finally, the co-designed control system
was renamed EPICS [29]. The results of this collaboration was first
presented in the ICALEPCS 1991 conference by Mcdowell et al. [30], and
the description of the EPICS architecture by Dalesio et al. [25].

 From that point onwards, the popularity of the project increased
dramatically, and the resulting portable toolkit was then used by several
other accelerator projects [29]. Notably, the Superconducting Super Collider
Laboratory (SSCL), which was commissioning the largest experimental
accelerator in the world, chose to use the EPICS framework [17].

2.4.2 TANGO Framework

TANGO is an open source framework for development of control systems
with the DSA or SCADA architectures. TANGO is an object-oriented
framework, and was developed on top of the CORBA [31] communication
standard, using it to provide the network layer [32]. The CORBA standard
defines a notation, used by software applications to communicate over a local
or remote network. As a result, in control systems implemented using
TANGO, control actions are performed by invoking CORBA methods or
accessing CORBA attributes [26].

The TANGO framework is multi-platform and supports the Java, C++,
and Python programming languages [33]. A few years after the start of the
project, the TANGO framework had already implemented several services
for developing control systems, such as, but not limited to [34]:

 A system wide relational database for persistent storage.

 Naming system for device addressing and discovery.

 Several standardized communication methods, with
implementations for events, logging, data archiving, polling, executing
device commands, and obtaining device attributes [34].

As part of the framework’s original design philosophy, the TANGO
framework is designed to omit the underlying CORBA implementation
details from control system developers by wrapping communication under
an API [26]. This philosophy has proven to be beneficial since, as of 2015,

Chapter 2 - Background

 26

the TANGO roadmap includes the complete removal of CORBA middleware
communication in favor of the ZeroMQ protocol [33]. By hiding the
communication details under an object-oriented API, it is easier to exchange
the underlying implementation.

The TANGO framework has been successfully used in the development
of control systems in several domains. Currently, several accelerator systems
use TANGO, such as ESRF, SOLEIL, ALBA [32]. Additionally, projects in
other domains also use the TANGO framework, such as experimental lasers
(ELI beamlines), and telescope control systems (SKA radio telescope) [33].

2.4.3 Commercial software toolkits

Several industries also depend on the usage of control systems, such as
the automatic manufacturing industry, oil and gas distribution, and power
generation. Therefore, several institutions in these industries rely on
commercial providers of supervision and control systems. The accelerator
domain is not different, and there are several providers of proprietary tools
for building control systems [17]. Some large providers of control system
solutions in the accelerator domain are National Instruments, developers of
the LabVIEW language [35] and PXI instruments [36], Siemens, which
commercializes the SIMATIC WinCC framework [37], and Vista Controls
[38], which sells the Vsystem control system solution. As described in detail
later, CNAO particle therapy facility uses several commercial components
as parts of its control system, namely from Siemens and National
Instruments.

Facilities using the Vsystem solution include the ISIS Neutron and Muon
Source research center. This research center decided that its previous control
system had to be replaced. In order to do so, the ISIS development team
chose the Vista Controls as a software provider, and eventually migrated to
Vsystem [39]. As of the current date, the commercial product is still the basis
of their accelerator control system [40].

The SCADA system sold by SIEMENS, WinCC, which was previously
named PVSS, is extensively used in the industry. The most notable
accelerator control systems using WinCC are several of the CERN projects,
which use it in four of its large experiment detectors. The decision to adopt
the commercial control system framework was made following a survey
project in 1997. The project aimed at investigating available commercial
solutions, and evaluating their capability to fulfill the LHC requirements of
their users. The project concluded that the adoption of a commercial SCADA
system for the control of the LHC detectors would be technically suitable
and beneficial [41]. Although initially adopted only for development of the
LHC experiment control systems, the usage of the framework soon became
more prominent, being adopted in several other projects [42]. As noted by
Muller [17], WinCC has since then became the standard for SCADA related
tasks at CERN [17].

Chapter 2 - Background

 27

Finally, an important commercial provider of hardware and software is
National Instruments. In the hardware field, the company provides a large
catalogue of components for PXIs (acronym for PCI eXtensions for
Instrumentation), such as crates, modules, and controllers. In a crate, a
controller runs a standard or real time operating system, manages and
communicates with the crate modules. Multiple modules may also be
installed, thereby being able to fulfil a wide variety of specialized tasks.
Specifically, FPGA modules allow the execution of control software with
real-time capabilities and execution speed not available in off-the-shelf
computers. In modern accelerator control systems, FPGA modules and
integrated boards often fulfil roles previously assigned to FECs in the
standard model, discussed in section 2.2.2.

Additionally, National Instruments is also the developer of the LabVIEW
programing language. The LabVIEW programming language supports a
wide variety of drivers for diagnostic equipment, which is attractive for
engineers in the accelerator domain [17]. Additional advantages of the
LabVIEW language in this domain are its support for compilation for
conventional platforms (Windows, Linux), as well as real-time platforms
(FPGAs, LabVIEW real time). This allows the language to be used in several
layers of a control system. Lastly, National Instruments have
commercialized their DCS module for development of SCADA systems [43].

Several particle therapy facilities utilize National Instrument products in
parts of their control system [17], including MedAustron [44], and CNAO.
More recently, the Flerov Laboratory of Nuclear Reactions are developing
the control system for their new isochronous cyclotron based on the DSC
module [45].

 Centro Nazionale di Adroterapia Oncologica

The role of a control system software engineer in a hadrontherapy facility
is the development and/or maintenance of software applications for the
correct operation of the facility. Therefore, good understanding of the
underlying requirements of such a facility is essential. In the previous
section, concepts relevant to hadrontherapy were introduced. While the last
section focused on the general concepts, and presented solutions used in
several different research and treatment facilities, this section focuses on the
facility where this industrial research work has been performed, the Centro
Nazionale di Adroterapia Oncologica.

This section is structured as follows. A brief timeline of the CNAO facility
design and construction is presented in section 2.5.1. Then, relevant
terminology to the control system is defined in section 2.5.2. Section 2.5.3
describes the anatomy of accelerator cycles. The organization of CNAO’s
control system, as well as description of each subsystems controlled by it can
be found in section 2.5.4 and 2.5.5 respectively. Finally, the architecture of
the present control system is described in section 2.5.6.

Chapter 2 - Background

 28

2.5.1 Brief introduction to CNAO

In order to concisely explain the history of the CNAO, it is easier to
separate it into four time periods:

 Precursor proposals phase, 1991-2001, consisting of publication of
the initial ideas for a multi-particle hadrontherapy center. Initial
funding proposals [46].

 Design and construction phase, 2001-2010, composed of creation
of Foundation CNAO, final design of the facility, and construction of
the facility.

 Clinical trials phase, 2010-2013, consisting of patient clinical
trials, and the certification of the facility.

 Operation and continuous improvement phase, after the clinical
treatment of patients has started, includes the continuous
improvements of the accelerator and sub-systems. Research and
Development of accelerator design, research in bioengineering,
medical physics and clinical areas.

Amaldi states that the EULIMA project, launched in 1987 and financed
by the European Commission, motivated several national hadrontherapy
projects, such as the one in Italy [1].

The precursor phase started with the publication of a report entitled “Per
un centro di teleterapia con adroni” [47]. The report advocated for the
particle accelerator physics expertise held by institutions such as CERN and
INFN to be applied into clinical use for cancer therapy. The report, authored
by two prominent group directors, located in CERN and the Niguarda
General Hospital, attracted the interest of the INFN president at the time.
Consequently, in 1991, funds were allocated by the INFN for studying
accelerator designs for clinical activity using ion and proton beams [46].

The TERA foundation was founded in 1992, and was the main contributor
to what would become the CNAO Foundation project. Headquartered in
Novara, Italy, the TERA foundation would come to staff over 170 personnel
in the hadrontherapy domain, such as physicists, engineers, and technicians
[46]. In the next 10 years, the TERA foundation authored three
hadrontherapy facility design proposals. The first two proposed facilities
aimed for the city of Novara, Italy [48], while the later aimed at Milan, Italy
[49]. While the initial proposals were eventually unsuccessful in securing
funding for building the proposed hadrontherapy facility, a study by CERN
(with collaboration of TERA, MedAustron, Oncology 2000, and GSI [1]),
was performed in the year 2000 [50][51], which provided the TERA the
groundwork for the proposal which would later become the CNAO
foundation [46].

Regarding technological decisions, the EULIMA project recommended
the use of a synchrotron [52]. At that point, oxygen was proposed as the
heavy ion of choice, but later scientific consensus indicated that carbon ions
would instead be a better choice [1].

Chapter 2 - Background

 29

The design and construction phase, started in 2001, saw the concrete
designs for the facility finalized [53]. The CNAO foundation received, as a
result of a signed agreement between the two organizations, extensive
documentation from the TERA foundation as well as intellectual property.
Other facilities that contributed to the CNAO specification were CERN, GSI,
and INFN [1]. The plot of land where the CNAO facility was built, next to
the San Matteo general hospital of Pavia, was granted free of charge by the
Province of Pavia [1].

During this phase, in 2003, the design of the control system began. In
order to do this, the accelerator specification was analyzed, resulting in a set
of requirements for the control system. From these requirements, along with
documentation detailing a set of best practices and standards, the control
system, and its sub-systems were designed and developed.

Finally, in 2013, the CE certification label was obtained for the facility.
In addition, the government health authority approved the treatment of
particle therapy within the Italian national healthcare system [53]. From the
end of the clinical trials in 2013, up to 2015, 256 patients were treated with
proton and carbon ions [53].

2.5.2 CNAO control system terminology

CNAO is a medical facility with the purpose of treatment of cancer using
particle beams. The control system of CNAO has the goal of supervising and
controlling the facility’s medical particle accelerator. In this section, we
define hadrontherapy and control system terminology that is used throughout
this document. The definitions presented here are in accordance conceptual
model presented in internal documentation of the CNAO facility [54]:

Treatment - A treatment is defined as the process by which an amount of
energy, or dose, is delivered to a patient via particle beams. During a
treatment, energy is transferred to a tumor in slices. A treatment is composed
by several cycles.

Slice – A slice is a partition of a tumor. Depending on a tumor size, it may
have one or several slices. A single slice can be treated with one or more
beams cycles.

Beam – A particle beam is defined by its characteristics, such as type of
particle, and kinetic energy.

Beam Cycle – A Cycle corresponds to the amount of time it takes for the
accelerator to produce a beam. The term cycle is also used to refer to the
process by the accelerator to produce a beam. After every cycle, the
accelerator returns to the initial state.

Cycle code - In the CNAO facility, beam cycles are defined by a number
given to them. Two beams with the same cycle code are accelerated in the
manner and should possess the same characteristics. The cycle code contains
information such as the cycle energy, the particle, and the accelerator line,
which defines the treatment delivery room.

Chapter 2 - Background

 30

Cycle number - In the CNAO facility, the cycle number is a sequential
number that uniquely identifies every accelerator cycle performed.

Running condition – An accelerator running condition is the set of all
accelerator equipment settings for producing a beam. For each possible
beam, defined by its cycle code, there exists a running condition that will
produce this beam. There is, therefore, a mapping between every cycle code,
and a set of equipment settings for producing this beam. An accelerator
running condition has the lifetime of a cycle.

Cycle event – An accelerator cycle is composed of cycle events. These
events represent a specific stage of the acceleration process. The anatomy of
an accelerator cycle is discussed further in section 2.5.3.

Operator – An operator is a personnel of CNAO tasked with supervising
the accelerator and its behavior. Operators have the responsibility of
accepting treatment requests at specific treatment rooms. Additional
responsibilities of operators include monitoring the status of the accelerator,
which is presented in control system consoles, and acknowledging all control
system alarms by taking the appropriate actions.

2.5.3 Anatomy of a cycle

An acceleration cycle is the process of, from a known starting point,
injecting particles into the synchrotron accelerator, accelerating the particle
beam until extraction, and finally retuning back to the starting point. This
process, which occurs for every particle beam delivered, is the central focus
of the control system for various reasons. Firstly, the accelerator’s
subsystems were designed in a way that the vast majority of devices must be
provided with their respective configuration settings every cycle before the
cycle begins. Likewise, the majority of sensor data is obtained from the
accelerator’s lower layers only once in the span of a cycle [54]. Tasks that
have to be performed in timespan of a fraction of a cycle are relegated to the
lowest layers of the control system. Additionally, the synchronization of
these tasks is often guaranteed by cycle events generated by the timing
system [55].

An acceleration cycle starts with a specific timing system event. Timing
system events contain, among other information, the cycle number and the
cycle code. The cycle code, as discussed previously, defines, among other
characteristics, the beam particle and energy. Each particle beam containing
the same cycle code is by convention referred to as of the same type. Every
energy level that can be produced by the accelerator is mapped to a cycle
code [54]. However, not all cycle codes define a particle beam type. This is
because of the existence of empty cycles, which are executed to maintain the
accelerator in a stand-by mode. The mapping process is an offline
configuration process, and not all energies levels that the synchrotron
accelerator is able to produce are mapped at all times. On the other hand, a
cycle number uniquely identifies every single cycle accelerated since the

Chapter 2 - Background

 31

beginning of the accelerator’s operation. Cycle numbers can therefore be
used as a timestamping measurement.

Once the injection process is finished, the start acceleration event
synchronizes the acceleration process, accelerating the particle beam to the
desired extraction energy. Afterwards, when the energy is met and the
extraction event is processed, the particle beam is slowly extracted, leaving
the synchrotron. After the extraction, the hysteresis process begins, where
the magnetic field in the synchrotron’s magnets are set to the maximum
value, and brought back to the minimum afterwards. This process has to be
performed at the end of every cycle.

At the CNAO facility, acceleration cycles may have varying lengths
depending on several factors. The extraction duration, which is variable, has
the largest influence on the cycle length variation. At the present moment,
cycles range from just over a second, to at most 3 and a half seconds. Figure
2.3 depicts the lifetime of a sample cycle, displaying in the vertical axis the
magnetic field over the cycle duration. This chart also displays several
timing system events that are fired during a cycle.

Figure 2.3: Standard cycle chart displaying timing system events. Extracted
from [55].

2.5.4 Control system conceptual model

The CNAO accelerator is a very complex system that contains several
sub-systems, and communicates with a wide variety of parallel systems.

In order to represent the boundaries of the control system, Figure 2.4
presents an allocation view of the control system [54]. An allocation view

Chapter 2 - Background

 32

presents a mapping between software elements and physical resources [56].
The objective of this view is to separate various conceptual roles and
responsibilities in the control system. By displaying the conceptual layers
and their allocation to hardware components, we are able to illustrate the
complexity of the system, and various different engineering domains
required between the various control systems developers.

Figure 2.4: Allocation view of CNAO control system. Adapted from
conceptual model of the CNAO control system [54].

Each layer displayed in Figure 2.4 is characterized by its set of
responsibilities in the CNAO control system. The outermost layer is the
supervisory layer. This is the only layer that interfaces with operators. The
supervisory layer also provides interface for other non-operator users during
offline operations. The physical resources that support this layer are the
workstation computers present in the facility’s control room.

The control layer performs control of device properties and acquisition of
data. This layer deals with the accelerator subsystems as abstractions,
regardless of their physical aspects, this layer runs on top of standard, off-
the-shelf hardware.

The real time layers perform the majority of control operations and run in
a cycle timescale, obtaining data from the accelerator components and
setting any values required. Because the regular real time layer was designed
to perform operations in the timespan of a cycle, which lasts several seconds,

Chapter 2 - Background

 33

a small part of the real-time does not require specialized real-time hardware.
Nevertheless, data acquisition and control operations that require fast real-
time capabilities are provided with physical resources according to their
timing requirements. Consequently, real-time computers, such as National
Instruments real time crates, FPGAs, and even custom circuit boards support
this layer’s subsystems.

During the original design, the HW Firmware cards layer was mostly
composed of specific electronic equipment. These electronic boards would
be tasked with processing signals coming from accelerator physical systems
into digital values that could be interpreted by the control system layers.
However, over the years, with the availability of increasingly more powerful
embedded systems, complex operations can be performed at the hardware
layer. Therefore, the hardware layer is no longer designed exclusively by
sensor and actuator engineers, opening room for local control processes to
be performed by specialized circuit boards and FPGAs.

2.5.5 Subsystems

In the CNAO control system’s WinCC software, “equipment
components” are software entities that represent a recognizable entity type,
which can be logical or physical. Examples of equipment components are
magnets, power suppliers, or entire crates. Through the WinCC control
system, equipment components can be interacted via their properties and
operations. Properties are used for reading or writing variables defined by
the equipment components. Meanwhile, operations perform an activity in a
specific equipment component. Operations and properties may refer to an
equipment component instance, or alternatively, an equipment component
type, similarly to how static methods behave in object-oriented
programming. Furthermore equipment components may be seen in the
supervisory layer as a virtual instruments representation.

Figure 2.5 displays the visual instrument representation of a vacuum
pump equipment component instance. In the component, properties (such as
“Status” in the figure) are used to obtain status information from the instance,
additionally, several operations can be executed by operators of the control
room, such as ‘start pump’ and ‘stop pump’.

Chapter 2 - Background

 34

Figure 2.5 – Simple equipment component visual interface representing a
vacuum pump instance. Extracted from [57].

The control system supervises several subsystems. These subsystems are
not necessarily part of the control system, but are supervised, and sometimes
controlled by it. Most subsystems are standalone components, designed by
specialized personnel of other engineering departments. These components
interface with the control system for supervisory purposes, such as delivering
sensor data. In the control system architecture, subsystems are also
represented as WinCC equipment components.

CNAO’s particle accelerator contains a linear accelerator for the purpose
of injecting of particles into the synchrotron. The linear accelerator possesses
its own third party control software, developed by its manufacturer.
Therefore, an equipment component was developed to act as the interface
between the linear accelerator controls and the CNAO control system. From
the point of view of the control system, the linear accelerator is a subsystem.
Figure 2.6 contains a screen capture displaying the virtual instrument
representing the linear accelerator equipment component. As shown in the
figure, the linear accelerator equipment component exposes a several
properties, which are monitored and archived by the control system.

Chapter 2 - Background

 35

Figure 2.6 - Equipment component visual interface representing the linear
accelerator subsystem. Extracted from [57].

The control system at CNAO supervises the following subsystems,
according to the control system organization documentation [54]:

 Radio Frequency Cavities – Subsystem responsible for
controlling RF cavities, which accelerate the beams.

 Beam Instrumentation – Subsystem responsible for all beam
monitoring functions. Assures beam quality and provides
measurements such as beam stability, beam loss, and beam quality.

 Conventional Magnets – Subsystem responsible for control and
supervision of the accelerator’s conventional magnets.

 Custom Magnets - Subsystem responsible for control and
supervision of the accelerator’s special magnets.

 Vacuum System - Responsible for maintaining the correct
vacuum level inside the vacuum chambers, where the beam travels.

 Particle sources – Subsystem responsible for control and
supervision of the sources that generate the particles to be injected.

 Linear Accelerator – After generation and before injection into
synchrotron ring, the beam passes through a linear accelerator in the
center of the synchrotron. This linear accelerator was purchased as a
standalone component, and it mostly manages itself. Therefore, it
interfaces with the control system as a subsystem.

 Beam Delivery System – Complex subsystem that controls the
steering magnets, positioning the beam for scanning each slice. It is

Chapter 2 - Background

 36

also responsible for calculating the dose delivered to each part of the
tumor.

 Conventional Plant Manager – Manages the treatment plant
infrastructure, such as water, electricity, temperature, and personnel
access control.

 Patient Positioning System – The patient positioning system
calculates the patient’s position in the treatment room, ensuring that
the patient is properly positioned in the treatment equipment. This
system is necessary for the accuracy of the treatment [54].

Due to technical and integration issues, not all subsystems follow the
conceptual model presented earlier. Some subsystems, located in the lower
layers, are not integrated with the control system. This means that they are
not defined as equipment components, cannot be interacted with directly
through operations, or even indirectly with processes and procedures.
Examples of non-integrated subsystems are the radio frequency cavities, the
sources manager, and the beam delivery system.

Because these non-integrated subsystems still require supervision, they
communicate via TCP socket directly to the supervisory layer, and expose
their internal state and operations in a non-standard way. Due to not being
integrated, they require custom made supervisory applications, custom data
pooling, and archiving procedures. This is a current control system
integration inadequacy, and adds limitations to accelerator control
procedures. Figure 2.7 presents the virtual instrument of a non-integrated
subsystem, as displayed to operators in the control room. This virtual
instrument supervises and controls the sources manager subsystem.

Chapter 2 - Background

 37

Figure 2.7: Virtual instrument representing the Particle Source subsystem.
Extracted from [57].

2.5.6 Control system architecture

The current physical architecture of the control system is presented in
Figure 2.8 [54]. This figure shows the physical levels of the control system,
specifying the hardware equipment and technology used in each level.
Additionally, the diagram presents the data transfer periodicity of the
communications between components.

The architecture was described internally in two internal reports by
Casalegno et al. [54][58]. Since then, more than 15 years later, the iterative
improvement of the control system has resulted in some architectural drift.
Architectural drift, is described by Bass et al. [56] as the mismatch between
the latest documented architecture and the physical system, designed from
such architecture. In this thesis, we bridge the architectural drift presenting
the current architecture.

This architecture focuses on the upper levels of the control system because
the scope of this project is the technological update of the Configuration and
Support environment, which is located in the first and second level. This
thesis describes the upper levels in detail to allow readers to understand the
Configuration and Support environment and its interactions with the rest of
the control system. Consequently, extensively detailing the lower levels
would be outside of the project’s scope.

Chapter 2 - Background

 38

Figure 2.8: Control system architecture, adapted from [54] and altered to take
architecture drift into account.

2.5.6.1 Level 1 - Presentation and operation

The first level is entitled ‘Presentation and Operation Layer’, and
contains several types of human machine interface enabled applications. The
largest component present in the level is the collection of SCADA system
client applications. These applications display all information relevant to
operators gathered in the WinCC SCADA system, and allow operators to call
operations and procedures. The information presented in the client
applications is retrieved from the second level WinCC SCADA system, and
updated at every cycle during accelerator operation. Outside of accelerator
operation, these applications allow the execution of accelerator maintenance
and quality assurance procedures.

Virtual Instruments, written in LabVIEW, provide human machine
interface to operators for systems that are currently not fully integrated into
the control system supervision system architecture presented here. These
virtual instruments generally communicate directly with the fourth level via
TCP sockets or proprietary protocols. No operations are required to be
performed to these instruments during operation of the accelerator.

Chapter 2 - Background

 39

Repository management and support front-end applications are also part
of this level, represented in the diagram as offline applications. This set of
applications, written in C#, possesses two main purposes. To begin with,
they are responsible for configuring and managing information located in the
repository, which is part of the second level. The second purpose is to serve
as support applications, without real time constraints. These are generally
applications that are not well suited for the WinCC SCADA development
environment due to their complexity and lack of real time constraints.
Support applications in this level include the patient scheduler, which keeps
track of patient schedule and treatment progress [59], monitor the treatment
delivery workflow [60], or view historical data and print necessary daily
reports [61].

2.5.6.2 Level 2 - Concentrator and data management

The second level is entitled ‘Concentrator and Data Management Level’.
The control system conceptual model presented in section 2.5.4 is
implemented as WinCC SCADA components. Additionally, the SCADA
system in this level is responsible for obtaining data and alarms from the
third level and delivering them to the upper level SCADA terminals.
Operational data from the accelerator is also archived at this level.

This level also contains the repository and the repository services. The
repository is a database cluster that contains all information necessary for
setting up and running the accelerator. This information includes information
on the physical characteristics of the accelerator, configuration settings for
software applications, accelerator settings for all planned treatments, and
information to link patients to their planned treatments.

Information in the repository is only transferred to the lower levels by the
repository services when explicitly directed to do so by maintenance
operators, and never in the middle of the operation of the accelerator. Only
applications that do not directly interact with the accelerator are able to
interface with the repository on a regular basis.

The repository service applications are responsible for writing all set up
information to the third level when required. Additionally, repository
applications in this level provide services to their counterparts in the first
level. The repository services, along with the repository and support front-
end applications, form the Configuration and Supervision Environment.

2.5.6.3 Level 3 – Integration Layer

The integration level is the smallest level in the control system. This level
is responsible for the real time data transfer from the fourth level, making it
available to the upper levels. This process is synchronized with the ‘Data
Hold Up/Down’ event displayed in Figure 2.3. This allows the third level to
perform synchronization of data gathered each cycle.

Between the third and fourth level, communication can be performed via
a multitude of protocols. While the standard communication protocol in the
third level is OPC-UA [62] (updated from the older OPC-DA protocol which
was used previously), not all fourth level equipment is able to communicate

Chapter 2 - Background

 40

using OPC-UA. Therefore, the third level was designed with wrapping
services that communicate in the other proprietary protocols used in the
fourth level. All communication performed from the second to the third level
is performed using the OPC-UA protocol over Ethernet. Consequently, the
equipment server level conceptually behaves as an aggregation and
translation device, allowing data originated from several subsystems to be
accessible in a standard manner.

OPC-UA is platform-independent standard that defines operations which
must be supported by equipment to allow communication and interfacing.
By following the standard, devices are able to communicate, expose data,
internal state, and methods to other devices, securely and efficiently [62].
The standard is extensive and defines many possible configurations in order
to better suit the operational environment, such as data encoding, security
and transport protocol. Additionally, while the standard defines a wide
amount of potential operations between OPC-UA enabled devices, these
devices only have to implement a subset of them, as defined by their profiles.
OPC-UA profiles define an array of testable functionalities, for example, if
an application supports all functionalities defined in the profile, then the
application is defined to support the profile [62]. In CNAO, applications in
the third level support data access, and historical access. Other profiles such
as method invocation are not supported.

2.5.6.4 Level 4 - Equipment electronics

The equipment electronics level is the most diverse, as components in this
level are mostly developed by the various groups designing the accelerator
systems. This level is the closest to the accelerator equipment, and possesses
the strictest real-time requirements. Components in this level are composed
of electronic cards with microprocessors or crates with real time processors
and electronic cards.

Data required for operation in this level should already be contained in
the electronic cards before treatment begins. This happens because, during
treatment operation, the fourth level receives information from the timing
system, in the form of cycle code, and events. Outside of treatment operation,
information may be loaded to the fourth level from the equipment server
level.

2.5.6.5 Timing and Signal Distribution Services

Following the defined architecture of the control system, the timing
system is not part of any level. The timing signal distribution services is
responsible for generating and distributing the signals necessary for
coordinating the activity of the accelerator facility. The main timing system
generates and distributes the timing events that define the accelerator cycles,
as explained in section 2.5.3.

Subsystems that subscribe to timing system events, and require hard real-
time behavior, are equipped with custom-made electronic circuit boards
capable of receiving and decoding timing events in real-time. Fiber optic

Chapter 2 - Background

 41

field busses connect the main timing system and the receiving subsystems.
A conceptual model of the main timing generator is shown in Figure 2.9.

Additionally, some of the equipment in the accelerator requires specific
information such as the magnetic field present in the machine, and the radio
frequency, which represents the revolution speed of the particles inside the
accelerator. In order to provide these signals, the timing and signal
distribution service is responsible for the generation and delivery of these
signals to the required subsystem components [55].

Figure 2.9: Diagram representing the main timing system conceptual model.
Extracted from [55].

 Product line architecture

As defined by the Software Engineering Institute, a product line is “a set
of software-intensive systems sharing a common, managed set of features
that satisfy specific needs of a particular market or mission, and that are
developed from a common set of core assets” [63]. In this definition, core
assets refer not only to software components, but also documentation,
designs, and other development artifacts. In a product line approach, the
architecture and core assets are designed with reusability in mind, by
specifying a series of variation points, allowing the assets to be reused more
easily in each product line family member.

A highlight of the product line software development strategy is that it
also presents strategies for the organization and roles of the personnel
involved in the software development [64]. According to McGregor [64],
product line development teams can be separated into the roles of core asset

Chapter 2 - Background

 42

developers and product developers. Under these roles, core asset developers
develop resources to be used in final products, whereas product developers
are responsible for developing a final software application, and use core asset
resources when necessary, guided by the scope of the application [64]. It is
also highlighted that core assets are not only software components, but also
support material such as architectures, and test plans [64].

The product line approach, if successful, allows minimizing the effort
spent in development for individual products [56]. This approach has been
regularly used in fields other than software, such as the manufacturing field.
In the software development field, companies such as Hewlett-Packard,
Cummins Inc., Deutsche Bank, and Phillips have used this approach with
very good results [56].

Before defining a product line architecture, the architect must identify a
set of possible products to be developed, or alternatively, possible
functionalities present in such products. This set becomes the scope of the
product line, and defines what products should, and should not, be developed
using the product line architecture. The architecture should provide enough
non-varying aspects to be useful, but sufficient variation points and assets to
incorporate all features or products defined in the scope [64].

A product line architecture differs from a regular software architecture by
the description of varying aspects in addition to non-varying aspects. The
varying aspects are described using variation points, and for each variation
point, variation strategies, as well as possible implementations have to be
described by the architecture [56].

A similar concept also present in the literature is the notion of a reference
architecture. One of many definitions of reference architectures in the
literature, provided by Angelov et al. [65], defines a reference architecture
as “a generic architecture for a class of information systems that is used as a
foundation for the design of concrete architectures from this class” [65].

Nakagawa1 et al. [66] compare the two concepts, concluding that product
line architectures possess narrower scopes, as they focus on an application
family, and also encompasses the description of the variabilities present in
each software of the family. Meanwhile, a reference architecture attempts to
stay at a higher abstraction level, and provide solutions and design
knowledge to be used for the design of an often broader set of applications
[66].

Chapter 3 - Upgrade of the Configuration and Support Environment

 43

Chapter 3

3 Upgrade of the Configuration and
Support Environment

The configuration and support environment is a set of applications present
in the first and second layer of the control system that share requirements, as
well as a development environment. This environment is composed of the
repository management applications and support applications, present in the
first layer, as well as the repository services, present in the second layer.
Applications in this environment interact with the repository, the third
layer’s OPC-UA services, and the patient management system. These
applications are used by CNAO personnel for the operation of the facility.
Finally, configuration and support applications generally do not possess real-
time requirements, and share the following responsibilities:

 Managing the control system repository, as described in section
2.5.6, allowing qualified operators to set the facility’s configuration
settings.

 Obtaining patient information from the facility’s commercial
patient management system during the start of operation, and relaying
this data to the accelerator subsystems.

 Transferring all configuration data from the repository to the third
layer when reconfiguration is requested by qualified operators.

 Dealing with facility management operations that require a
complex behavior, such as:

o Scheduling of patients and monitoring the treatment
progress [59].

o Management of historical data, and generation of
documents necessary for compliance with government
regulation [61].

o Management of accelerator cycles in the repository,
allowing the upload of accelerator cycles into the required
subsystem [67].

o Monitoring the treatment delivery workflow, displaying
the current state to operators present at the control room
[68].

Chapter 3 - Upgrade of the Configuration and Support Environment

 44

At the start of this work, we estimated that there were around 50 deployed
software applications belonging to this environment at the CNAO facility.

3.1.1 Objectives and constraints analysis

The objective for the configuration and support environment
technological upgrade is the design and development of tools necessary for
the development of a new generation of software applications.

In this section we present the objectives and constraints gathered for the
upgrade of the configuration and support environment. We differentiate the
two concepts, objectives and constraints, in the following way. Constraints
are environment properties that are already present in previous version the
configuration and support environment. These constraints are considered
essential for the correct operation of the environment, and the control system.
If constraints for the new environment are not followed, a substantial amount
of potential applications of the control system will no longer be able to be
supported under the new architecture. Therefore, if any constraint is not
followed, the upgrade is considered a failure. Alternatively, objectives define
goals, that once achieved provide extensions to the legacy configuration and
support environment. By fulfilling objectives, new application designs
become viable, improving the facility’s control system. If a solution does not
fulfil all analyzed objectives, the presented design may be considered limited
in scope, but nevertheless a viable solution.

The main objective in regard to technological upgrade was permitting the
integration of mobile applications into the control system. In 2003, when the
control system was designed, and technologies were chosen, mobile phones
were capable of executing the operations for monitoring the accelerator.
However, at the start of the project, in 2016, mobile devices already offered
a suitable platform for accelerator operator to use for monitoring purposes.
By achieving this objective, control system operators are allowed more
mobility. Because architectures that facilitate multiplatform development
have become more prominent, namely service-oriented architecture [69], and
multiplatform development frameworks have become more robust, the
integration of mobile devices has been estimated to be an achievable
objective.

Another objective was assuring that new environment applications depend
on services implemented on a standard and open interface. These services
should allow other environments of the control systems to interface with
them if desired. This objective was originated from the analysis of the three
applications types that populate the presentation layer of the control system:
SCADA, LabVIEW, and C# applications. While the SCADA system and C#
applications were able to access the third layer, only C# applications are able
to access the repository. This objective dictates that the environment
architecture should be designed considering service interoperability as a
desired quality attribute.

Chapter 3 - Upgrade of the Configuration and Support Environment

 45

Additionally, a proposed objective was improving the validation process,
tackling issues identified in the legacy environment. This objective aims at
reducing application flaws, and reducing the effort for medical software
certification. Unlike the previous objectives, which contained a clear
evaluation criterion, this objective does not contain an expected solution and
evaluation method. As part of this objective, achieving a greater separation
of concerns in software applications, namely between user interface elements
and business logic elements, was proposed as a starting point.

Finally, the last objective was to phase out deprecated or stale
development tools and technologies in order to extend commercial and
community support for components used, as the previous environment’s
lifecycle has so far exceeded 10 years of operation. Support for many of these
technologies is not assured for long. The technologies to be chosen for the
new environment should be expected to have an acceptable level of support
during the next decade.

Regarding the constraints, the main constraint was the necessary re-
implementation of several standard operations performed in the legacy
environment. This is because that, due to the large number of applications
expected to be designed and maintained, not having a standardized
implementation for these operations would result in longer development
times. The operations considered to be standard operations are, among
others: repository access, logging, configuration file management, and
initialization.

Applications of the legacy environment had access to a vast selection of
libraries implementing standard operations, shortening their development
times. Without them, the developers would have to re-implement these
operations for every application. In order to maintain this functionality, new
libraries implementing equivalent operations have to be developed for the
new environment. Alternatively, if applicable, old libraries can instead be
ported from the legacy environment to the upgraded one.

Newly implemented applications of the configuration and support
environment are expected to run side by side with legacy applications, and
cannot impact their counterparts negatively. Therefore, another constraint is
the compliance with the previously defined application’s conventions, since
legacy applications take their compliance for granted. Compliance with
formally defined best practices [70], as well as undocumented internal
conventions have to be followed. These internal conventions, such as
database table naming conventions, cannot be changed without an acceptable
justification, and a documented interoperability solution.

Additionally, a new access control system has to be implemented. The
previous authentication and access control system used Microsoft’s Active
Directory [71], and thus it cannot be accessed by mobile devices. Any
solution must contain an authentication and authorization procedures
available to applications in all platforms.

Finally, the last constraint was the compatibility of the solution to
automatic code generation techniques. In the legacy environment,
application development based on automatic code generation has been

Chapter 3 - Upgrade of the Configuration and Support Environment

 46

performed, and concerns were raised if these could not be implemented in
the upgraded environment. Consequently, at minimum, a proof-of-concept
implementation of automatic code generation is required.

3.1.2 Product line requirements

In order to design the first iteration of the product line architecture, the
objectives and constraints presented in section 3.1.1 were analyzed to extract
architectural significant requirements. The results are presented in the
following:

 R1: Application projects developed following the product line
must be able to be executed in the Windows 10 platform and in the
Android platform. Extending the application to a second platform
should not consume more than 40% of the total development time.

o Non-functional requirement: portability.
o Validation: presentation of prototypes executing in

multiple applications, demonstrating duplicated logic is
limited.

 R2: Product line applications should depend on services with
platform agnostic interfaces.

o Non-functional requirement: portability.
o Validation: documentation of services in product line

architecture.

 R3: Applications domain layer should not depend on presentation
layer classes.

o Non-functional requirement: reusability, Testability.
o Validation: separation documented in product line

architecture.

 R4: No deprecated libraries should be used in the product line at
the time of the upgrade.

o Non-functional requirement: maintainability.
o Validation: product line architecture documentation.

 R5: At the time of choosing third party libraries to be used in the
environment, the latest stable version should be chosen. Exceptions to
this requirement may apply if newer versions do not conform to other
requirements.

o Non-functional requirement: maintainability.
o Validation: product line architecture documentation.

 R6: The following operations should have one and only one
correct implementation, developed by the core asset team, and used as
an application component: Configuration setting management, local
logging, and page navigation.

o Non-functional requirement: reusability.
o Validation: product line architecture documentation.

Chapter 3 - Upgrade of the Configuration and Support Environment

 47

 R7: Applications should be able to communicate with the
following services:

o Repository service, which provides access to the control
system repository.

o Remote file system service, which provides access to a
common file system for configuration and support
applications.

o Devices in the control system third level, using OPC-UA.
o Remote logging service.

 R8: Product line architecture applications should be able to
provide credentials to authenticate the operator using the application.
Once credentials are provided by the operator, credentials should be
used for all secured services interfaced by these applications.

o Functional requirement
o Validation: Prototype following product line architecture

and displaying communication capabilities.

 Product line architecture scope

A central goal of the project is the design of a software architecture for
the configuration and support environment applications. As this architecture
has to be used in the development of multiple software applications that share
similar requirements, a product line architecture was chosen.

In this project, the scope of the product line architecture has been defined
as a subset of configuration and support environment software applications
of the CNAO control system. This subset encompasses all applications with
user interfaces, written in the C# language, developed using the Xamarin
development framework [72]. Applications that fall outside of the product
line scope are, among others, service applications, as they contain no
interactive user interface.

 Configuration and support environment
product line architecture

3.3.1 Technology choices

After analyzing the objectives and constraints presented in section 3.1.1,
and refining them into architecturally significant requirements presented in
section 3.1.2, a product line architecture was designed. In this section, we
present the methodology used in the design of the architecture, followed by
the technological choices of the environment. Lastly, we present a class
diagram of the product line architecture.

Chapter 3 - Upgrade of the Configuration and Support Environment

 48

Regarding the choice of technologies, the product line architecture should
specify the programming language and common runtime infrastructure to be
used by applications. Several legacy libraries, using the C# programming
language, define standard operations, which need to be supported. Therefore,
using the same programming language facilitates the task of porting the
programming logic to the new architecture. The common language
infrastructure used in the legacy environment is the .Net Framework 4.5.
However, the CLI is not expected to be the most supported in the future by
Microsoft and the open source community. Therefore, we have decided to
move to the .Net Core CLI. Porting libraries from .Net Framework 4.5 to
.Net Core is not automatic, but much of the original code are able to be
repurposed.

The .Net platform also contains the Xamarin development environment,
which allows the compilation of C# code into native Android. Using
Xamarin, the same C# codebase can be used in both platforms. However,
some native features present in only one platform, such as GPS, and
accelerometer support, still require development targeted to each platform.
Still, developing configuration and support front-end applications using C#
using the Xamarin development environment fulfils multi-platform
execution requirements (R1).

Regarding separation of multi-platform, and platform specific code,
Xamarin applications may be organized in three different ways. In the Shared
Asset Project approach, a single software project is compiled to all platforms,
while special notations indicate platform specific code [73]. This approach
creates maintainability challenges, as single and multi-platform code can be
found in alongside each other in the same files. The portable class libraries
approach, and the .Net Standard base library approach, define shared library
projects that can only contain multi-platform logic. These libraries are then
used by multiple single-platform projects [73]. The code sharing model of
these two approaches comply with R6, which dictates that standard
operations should be designed as reusable libraries. During the start of the
project, only the PCL approach was supported by Microsoft, but since then,
the PCL approach has been deprecated [73]. Therefore, the .Net Standard
base library approach is defined as the code sharing mechanism of choice in
the product-line architecture.

Unlike .Net Framework or .Net Core, .Net Standard is not a CLI, but a set
of standards that defines the compatibility with existing platforms. Software
applications can only target a single platform, but libraries can target .Net
Standard, and then be used by all platforms that are compatible with that
standard. When designing a library, developers can choose a .Net Standard
version to target. Based on the version they choose, the developers will have
access to a varying amount of platform operations. Developers that target a
low .Net Standard version, such as version 1.0, are able to use their library
in applications targeting most CLIs, but have access to fewer operations [74].
Because the technological upgrade of the configuration and support
environment aims at introducing new tools developed since the design of the
legacy environment, a high version (2.0) of .Net Standard has been chosen

Chapter 3 - Upgrade of the Configuration and Support Environment

 49

as reference for the upgraded environment. This version is supported by all
major C# CLIs, as noted in Table 3.1 [74]. This table contains all major C#
platforms, as well as their minimum version compatible .Net Standard 2.0.

Table 3.1 - .Net Standard compatibility table, representing the minimum
platform version for importing .Net Standard 2 libraries. Obtained from [74].

NET
Standard

.NET
Core

.NET
Framework

Mono Xamarin
Android

UWP

2 2 4.6.1 5.4 8 10.0.16299

The aforementioned platform choices are represented in Figure 3.1. In this

figure, executable projects are represented by larger box outlines. For each
environment application, one executable project should exist per platform
targeted. In these projects, only platform specific code should be provided,
such as the main method, and implementations of platform specific
operations. Following the chosen code sharing model, all platform
independent code should be contained in the base application library, which
is used by the executable projects. As discussed previously, the core assets
should be implemented as .Net Standard 2.0 library projects and should be
designed with focus on reusability. Finally, because the configuration and
support environment of CNAO relies on several external commercial and
open-source libraries, base application libraries, and standard operations
libraries may use these external libraries.

Chapter 3 - Upgrade of the Configuration and Support Environment

 50

Figure 3.1: Allocation diagram representing the projects which compose an
application.

Variability points specified in the diagram illustrated by in Figure 3.1 are
as follows:

 Not all applications will target both platforms, therefore only one
executable project may exist.

 The definition of platform specific interfaces is not mandatory, but
when necessary these should follow the Dependency Service software
pattern [75].

Chapter 3 - Upgrade of the Configuration and Support Environment

 51

3.3.2 Application architecture

After the definition of technologies and CLIs to be used, a class diagram
view of the product line architecture is presented. Figure 3.2 presents a class
diagram which illustrates the class design of the product line applications,
and the relationship between each application layer. It also describes some
of the software patterns to be used, as well as the varying and non-varying
application components. By understanding the product line architecture,
configuration and support environment developers are aware of a list of
software patterns and libraries that should be used in the application, and are
shown which software elements should be created, and which ones should
be generated by code generation tools.

Figure 3.2: Class diagram view of the product line architecture of the
configuration and support environment application.

The diagram presented in Figure 3.2 uses an adapted UML notation. In
the diagram, ‘classes’ do not represent concrete classes, but types of classes,
defined by their role in the application. Following the proposed product line

Chapter 3 - Upgrade of the Configuration and Support Environment

 52

architecture, applications’ presentation layer should follow the MVVM
software pattern [76]. The MVVM software pattern separates the application
user interface into three types of classes, namely views, models and view-
models. View classes declare the application’s user interface elements, such
as buttons, and forms. Following the MVVM pattern, View classes do not
interact directly with view models, and have no dependency to the Model
classes.

View-model classes are declared to serve as intermediaries between the
Views and the application’s domain model. Views subscribe to data, and, at
run-time, view-model handlers are hooked into the view’s subscriptions.
This indirect interaction allows view-models and views to be executed and
tested individually, without the presence of their counterpart. This software
pattern promotes loose-coupling and allows greater isolation when
performing unit testing. Compliance with this software pattern is enforced to
aid the compliance of the R3. Model classes encapsulate state and
information that should be presented. Under the MVVM pattern, view-model
classes can update and call methods from models. In the opposite direction,
models should be capable of raising events describing data changes, which
are then provided to the view. Model classes are sometimes part of the
application’s domain layer, but preferentially these should only encapsulate
data and provide validation techniques, such as Data-Transfer-Objects[77].
Figure 3.3 illustrates the relationship between components in the MVVM
software pattern.

Figure 3.3: Diagram illustrating the MVVM pattern components, as well as
their run-time interactions. Adapted from [77].

The Implementation of the MVVM software pattern usually relies on an
MVVM framework. The framework is tasked with the wiring from the views
to their respective view-models, and provides tools for performing data
binding, invoking commands, and sometimes even supports page navigation.
For this task, the Prism [76] framework was chosen. Additionally, base view,
view-model, and model classes are provided by a framework developed
during this work, AppBase2020. Developers should then inherit their views,
view-models, and models, from the base classes defined in the AppBase2020
framework.

The framework application class manages the lifecycle of configuration
and support environment applications. It has the responsibility of
instantiation and initialization of core assets used by the application.

Chapter 3 - Upgrade of the Configuration and Support Environment

 53

Finally, the product line architecture also includes the service classes,
which are available to product line applications. These services, entitled
standard services classes, are domain and data layer classes implemented by
the standard service libraries.

3.3.3 Product line architecture services

In the previous section, the presented product line architecture class
diagram view contains several references to standard service classes. In this
section, we describe these services, and their role in the environment. A
product line architecture defines several reusable core assets, which are
implemented as reusable libraries to be imported by the application projects.
By implementing the core assets as libraries, the core asset development
team is able to maintain a greater control over their lifecycle. For example,
if changes need to be performed to a core asset, then a new version of the
respective library may be developed and deployed. From that moment, in
order to update a group of product line applications, the library version can
be updated, followed by the recompilation of the applications, and later
deployment. Applications which cannot be updated regularly, or those not
affected by the changes, can then simply not perform the update process.
While the update process does require direct action from the control system
team, this task is much less error-prone than altering existing applications by
editing their source code.

Operations that were expected to be performed by multiple product line
applications were selected as candidates for being packaged into reusable
libraries. Additional criteria considered when defining the scope of the
standard service libraries was whether these operations could be
encapsulated into a well-defined abstraction. Two types of standard service
libraries were defined. The first library type allows applications to interface
with other components of the control system, such as the repository, or the
OPC-UA equipment in the third level. These interface libraries were
designed to fulfil the R7 (chapter 3). The second type of standard service
libraries implements a set of commonly performed operations in the
environment, such as configuration loading and validation, or event logging.

The following standard service libraries have been implemented in this
work:

 RDAS client - Standard service library performing object
relational mapping and interfaces with the control system
repository service.

 FDAS client - Standard service library designed to
interface with CNAO’s remote file servers.

 CnaoLog - Standard service library designed to perform
local and remote logging.

Chapter 3 - Upgrade of the Configuration and Support Environment

 54

 Framework2020IdentityManager - Standard service
library designed to interface with the new authentication and
authorization service.

 OPCUASiprod - Standard service library designed to
perform communication with OPC-UA servers.

 CnaoApplicationServices - Standard service library that
provides implementation of commonly used domain layer
operations, such as reading and validating configuration files.

In the next chapter, the development of the client and server side of the
services described above is presented.

Chapter 4 - Standardization of services in the Configuration and
support environment

 55

Chapter 4

4 Standardization of services in the
Configuration and support
environment

In the early phases of the work, we defined a standardized way to perform
several common operations in this software environment. These operations
are, for example, repository access, definition and loading of configuration
settings, and user authorization to resources.

The legacy implementation of most of these operations was defined
alongside the design of the control system, in 2003. However, since then, the
implementation of several of these operations in the legacy environment was
found to be less than ideal. Therefore, the design of the upgraded
configuration and support environment presented an opportunity to redefine
the implementation of several of these operations. In addition, some
operations, which did not possess a standardized implementation, such as
remote logging, now possess a standardized implementation.

The most important activity of this work is creation of several libraries
and services to support the applications of the upgraded configuration and
support environment. These services and libraries have been developed to
provide the implementation for the standardized operations.

Section 4.1 presents the service defined to provide applications with
object-oriented access to repository data, named RDAS. Section 4.2 presents
the design and development of FDAS, which allows applications to access
remote files. Later, the authentication and authorization process developed
for the environment is described in detail in section 4.4. Afterwards, the
remote and logging services are described in section 4.5, followed by the
configuration file management library, in section 4.6.

The last section of this chapter presents a sub-project that has been started
in the later stages of this work. After the development of the initial versions
of the environment services, it was decided that some LabVIEW
applications, which belong to another environment of the control system,
could consume services developed for this work. Therefore, a project was
approved to facilitate the integration LabVIEW applications with some of

Chapter 4 - Standardization of services in the Configuration and
support environment

 56

these services. This section presents the tasks performed for the integration
project, as well as its preliminary results.

 RDAS - Relational data access service

The repository is the most important control system element that
configuration and support environment applications interface with. As
mentioned previously, the repository contains configuration data necessary
to set up a large amount of the accelerator’s equipment. It is the main
responsibility of applications of the configuration and support environments
to manage this data, as well as, when requested, deliver it to the third layer.
Because of this, permitting the communication of configuration and support
environment applications with the repository is of the utmost importance. By
designing and implementing a standard repository communication interface,
we provide applications with an implementation of the rules to be followed
when interfacing with the repository. Additionally, by enforcing the usage
of the interface, we hope to increase the likelihood of safe operation, at the
cost of limiting application versatility.

Because using the RDAS interfaces is mandatory, it is very important to
design the interface broadly enough so that all necessary operations can be
easily performed. If the designed interface is too complex or broad, it might
be challenging for developers to use it correctly. Alternatively, if the
interface is too restrictive, then developers might struggle to adopt it, or, in
the worst-case scenario, forgo its usage. Additionally, the interface has to be
supported throughout the lifecycle of the environment, independently of any
changes in technologies used and architecture.

The product line architecture developed for this project dictates that
communication with endpoints should be performed, when possible,
following a service-oriented approach. Following this strategy, the
repository should be wrapped around a service that manages communication,
authorization, and logging. The applications then communicate with this
service to interact with the repository. Afterwards, a C# library was designed
to standardize the client-side operations for interfacing with the developed
service. This library provides ORM capabilities in order to allow developers
to develop their applications with an object-oriented approach. Finally, in
order to reduce total development time, a generator tool was developed in
order to generate a C# classes repository tables, which can then be used
alongside the client-side library.

In this section, we present the design decisions made during the
development of the RDAS library, the RDAS REST server, and the RDAS
generator tool. However, cross-cutting concerns such as logging and
authentication of all services will be aggregated into the dedicated logging
and authentication sections.

Chapter 4 - Standardization of services in the Configuration and
support environment

 57

4.1.1 Relational Data Access requirements

The main objective of the RDAS service is the standardization of the
communication between control system applications and facility’s
repository. CNAO’s relational data repository is an Oracle database cluster.
While most application operations involve querying a single relational
database table, several operations require complex operations. Both of these
usage scenarios are supported by the RDAS library.

In summary, the RDAS service and libraries are designed to implement
the following features:

 Local and remote (REST API) data access following a single,
common interface.

 Allowing the execution of arbitrary SQL queries.

 Automatic generation of CRUD queries for classes that represent
relational tables.

 Mapping relational query results into object instances.

 Development of dedicated methods for manipulation of large
binary data present in the repository.

 Support for CNAO’s repository legacy conventions and standards.

 Local resources should be secured by database credentials, while
REST resources should be secured using OpenID Connect [78]
authentication and authorization.

 Custom tool for automatically generating classes from SQL
queries or Oracle tables.

4.1.2 Implemented solution overview

The developed solution was named Relational Data Access Service, or
RDAS for short. The solution is composed of three distinct components:

 RDAS client library. The RDAS library is a .Net Standard 2.0 C#
library that mediates the interaction between applications and the
RDAS server. Additionally, it provides ORM capabilities.

 RDAS server. The RDAS server is a REST API that exposes the
repository to applications in the configuration and support
environment.

 Class generator tool. The class generator tool is a .Net Core
application designed to browse the repository’s schemas and generate
C# classes, corresponding views and tables. The resulting C# classes,
named DataObjects, can be used by the RDAS library to perform
CRUD operations, and follow the model role of the MVVM pattern.

Chapter 4 - Standardization of services in the Configuration and
support environment

 58

4.1.3 RDAS library

The RDAS library has two main objectives. The first objective is to allow
applications to interface with RDAS server instances, requesting the
execution of SQL operations in the repository. The second objective is to
provide relational-object mapping capabilities, thus allowing applications to
avoid using hardcoded SQL.

In order to allow the reader to understand the architecture of the RDAS
library, we present a domain model of the library’s architecture. The domain
diagram below illustrates the most important domain entities and their
relations.

Figure 4.1: RDAS library domain model.

A brief description of each component illustrated is as follows:

 DataBase – A relational database containing data to be accessed.
The data are distributed across one or many tables. Database
credentials are required to establish direct connection.

 DataAccess – Entity that acts as the main interface and entry point
to the library. Applications perform all repository data access through
this entity.

 LocalAccess – Local implementation of the DataAccess. Designed
for legacy applications located in the same local network as the
repository.

 RestAccess – Remote implementation of the DataAccess using
HTTP communication. Designed for regular applications of the
configuration and support environment. Communicates with RDAS
server.

 Developer – CNAO employee that develops control system
applications using the RDAS library.

Chapter 4 - Standardization of services in the Configuration and
support environment

 59

 DataObject – Family of classes used in the RDAS library.
DataObjects should represent data contained in the database or
expected result of database queries.

 EntityObject – DataObject that represents data contained inside a
database table, or view. EntityObjects instances contain the data of one
database row. However, it is up to the developer to decide which and
how many columns are included.

 QueryObject – DataObject that represents the result of the
execution of a SQL query. Each QueryObject instance contains one
row of the result set.

 Mapper – Library class that has the responsibility of converting the
service’s relational result into DataObject instances. Mappers
dedicated to EntityObject classes have the additional responsibility to
generate SQL queries that perform CRUD operations.

 Query – A SQL query.

 MappingManager – Keeps track of relationships between
DataObjects and Mappers. A MappingManager instance decides which
mapper to use for each DataObject. Custom mappers should be
registered with the MappingManager.

Definition of model types

The relational-object mapping capabilities present in the RDAS library
allows developers to design classes for querying the database. Afterwards,
the results of these queries are written into instances of the defined class. In
the RDAS library, classes defined for storing query data from the database
are referred to as DataObjects. These classes are not required to inherit or
implement any interface, as all information necessary for defining database
operations is present in property attributes and naming conventions.
DataObject classes have to be annotated with C# attributes to inform RDAS
mappers how to perform the translation from a relational to object-oriented
representation. For this purpose, a series of attributes has been declared.
These attributes allow developers to provide the context required by
mappers.

In CNAO repository, changes to the database schemas are infrequent, and
require an approval procedure. Because of this, unlike in many ORM
libraries, the object-oriented representation is always modelled after the
current database schema, and never the other way around. The RDAS service
does not allow applications to change the repository’s schemas. Following
RDAS library guidelines, DataObject classes may be designed for two
purposes: Representing a repository table or view, or representing a query to
be sent to the repository. DataObjects representing tables or views are
referred to as Entities, while those representing queries are referred to as
Queries.

If the class is to represent a table or view contained in the schema, the
class itself should be annotated with TableAttribute. Additionally, each of

Chapter 4 - Standardization of services in the Configuration and
support environment

 60

its properties that will receive a value present in one of its columns should
be annotated with the ColumnAttribute. The latter allows the declaration of
additional information about the column, such as column name, and whether
these are primary or foreign keys. In addition, the attributes define
information necessary for the RDAS library to follow the control system
repository’s conventions, such as the special handling of binary large data,
and to treat the first column of a view as an indexing element.

Alternatively, Query DataObject classes, which should be annotated with
the QueryAttribute, can be used to retrieve arbitrary SQL query results.
Result sets of Query classes operations are translated to an object-oriented
representation and then inserted into the Query instance’s properties by the
mapper. Figure 4.2 contains the definition of a sample Entity and a Query
class. Several of the configuration settings required for performing the
translation between object and relational representations can be instead
defined from naming conventions, therefore many annotations’ parameters
are optional.

[QueryAttribute("SELECT NAME, AGE FROM OMA_TEST_SIMPLE
INNER JOIN OMA_TEST_BLOB
ON OMA_TEST_SIMPLE.NAME = OMA_TEST_BLOB.NAME")]
class OmaJoinQuery
{
 public string NAME { get; set; }
 public int AGE { get; set; }
 public OmaJoinQuery(){ }
}

[TableAttribute("OMA_TEST_BLOB")]
class DdasSimpleEntity
{
 [ColumnAttribute()]
 public string NAME { get; set; }
 ColumnAttribute(isBlob: true)]
 public byte[] DESCRIPTION { get; set; }
 [ColumnAttribute(isBlob: true)]
 public Image PROFILE_IMAGE { get; set; }
 [ColumnAttribute(isPrimaryKey:true)]
 public string OMA_TEST_BLOB_PK { get; set; }
 public DdasBlobEntity(){}
}

Figure 4.2: Sample entity and query data object classes.

Remote and local interface

While developers are expected to use the remote interface in regular
scenarios, the library also defines a local implementation with the same
interface. In the legacy environment, there was only the local connection to
the repository. In the upgraded environment, a local implementation of the
RDAS interface was developed to be used in special circumstances. The local

Chapter 4 - Standardization of services in the Configuration and
support environment

 61

interface is implemented on top of a commercial ADO.NET[79] component
supplied by Devart [80]. Additionally, because of the configuration of the
repository cluster, an Oracle Client program [81] has to be installed in
workstations where applications using the local interface are executed.
Therefore, only the remote interface can be used on mobile or multi-platform
applications.

The IDataAccess interface declares a wide range of methods to perform
CRUD operations using DataObjects, as well as other operations, such as
logging events remotely, and obtaining information on the state of the
repository. Transaction support is present, but with severe limitations due to
REST stateless properties. Transactions have to be performed as one atomic
operation, where all queries requested are provided to the remote repository
interface in a single request, with only the final result returned. Further
versions of the RDAS library may extend the DataAccess interface to
implement transactions over multiple requests, but as of this moment, no
applications in the configuration and support environment require this
functionality.

Figure 4.3 presents a sample code to store an EntityObject instance,
named DdasBlobEntity. In this case, only the ‘Name’ property was assigned
a value, therefore all other columns of that table will be filled with the default
values.

IDatabaseAccess dataAccess = ...;
//Create an entity object instance
DdasBlobEntity newRow = new DdasBlobEntity()

{ NAME = "Sample Name"};
//Insert the instance
string primKey = await dataAccess

.InsertAsync(new List<DdasBlobEntity>() { newRow });

Figure 4.3: IDatabaseAccess interface sample usage.

Implementation and Operations

Figure 4.4 contains a class diagram in the UML notation illustrating the
relationships between the various classes in the library. As part of operations
involving DataObjects, the IDataAccess class relies on mapping classes to
perform translation necessary for dealing with relational data in an object-
oriented representation. These operations include the generation of SQL
queries, obtaining information about tables or views, and transforming JSON
formatted results into DataObject instances. However, the various
implementations of the IDataAccess interface rely on the general mapper
interface and are not able to select the appropriate mapper for each operation
involving DataObjects. Therefore, this task is relegated to the
MappingManager class. The MappingManager class follows the singleton
pattern and was designed to maintain the appropriate mappers for each

Chapter 4 - Standardization of services in the Configuration and
support environment

 62

designed DataObject class. Additionally, the MappingManager
implementation allows developers to define new custom mappers and
register them. Additionally, MappingManager’s registrations methods allow
developers to define which DataObjects are to be mapped by custom
mappers, allowing further versatility to final applications.

Figure 4.4: UML class diagram detailing several RdasClient classes, and their
relationship.

As can be seen in the class diagram, generic methods and generic classes
are heavily present in the RDAS library. This is because the library is
designed to allow developers to define their own DataObject classes. When
an operation is called, such as the InsertAsync operation presented in Figure
4.3, both IDataAccess implementations request an IEntityMapper instance
from the MappingManager, in order to generate the correspondent insert
SQL query for each EntityObject instance received. Once the mapper is
received and SQL query generated, the query is sent to the database (locally
or remotely depending on the configuration) and results are returned. If the
database operation returns relational data (such as the GetAsync method),
the mapper would be used to generate one DataObject instance for each row.
From the point of view of the application, whether the repository is being
connected to locally or remotely makes no difference, and thus the
IDataAccess interface can be used.

4.1.4 RDAS Server

Previously, applications of the Configuration and Support environment
would access the repository directly. In the upgraded environment, in regular
situations, only RDAS Server instances communicate directly with the
repository. The responsibility of the RDAS server is to provide desktop and
mobile applications access to the control system repository.

Chapter 4 - Standardization of services in the Configuration and
support environment

 63

The design of the RDAS Server was closely linked with the RDAS library,
namely the local repository access implementation. Both of these libraries
rely on a legacy library named DataComponent for accessing the repository.

The DataComponent library class is designed to encapsulate all standards
and operations necessary for interfacing with the repository directly. This
library has been developed by porting and adapting a previous library of the
configuration and support environment, named CTSIprod.DataComponent,
which had been developed in the .Net Framework version 4 CLI. The
CTSIprod.DataComponent library had two main issues that prevented it from
being reused in the upgraded environment. The first issue was the change in
development framework from .Net Framework to .Net Standard. The change
in CLI meant that several operations were no longer available and had to be
replaced with logically identical code. The second and most important reason
was that CTSIProd.DataComponent was a domain layer library that freely
performed presentation layer operations, such as opening dialog forms to
request information from operators, and present error codes. By having
dependencies to presentation layer WPF classes, the libraries components
can only be tested using in a full application. Alternatively, the adapted
DataComponent library only performs domain layer operations, and thus can
be unit and integration tested by independently of any user interface.

All the mapping operations are performed by the client, so the RDAS
server provides API that accepts SQL queries and query parameters.
Similarly to other services developed, these APIs may require authentication
and authorization, provided by the Identity Provider. At the server, several
security measures are performed, including verification of user claims and
permissions of the client application, sanitation of parameters.

4.1.5 Automatic DataObject Generation

In order to simplify and aid the integration of the RDAS library into future
configuration and support applications, a DataObject generation application
has been developed. The RdasGenerator application is a command line utility
that generates DataObject source code files based on provided configuration
files.

The RdasGenerator tool allows developers to define which kinds of
DataObject classes they require, and then use the generated C# files in their
applications. Currently, the RdasGenerator tool allows for the generation of
DataObjects in the following ways:

 Generate entities from repository schema. Using this option, a
DataObject class will be generated for each view and table present in
the desired schema. Alternatively, a list of tables or views can be
provided. If the developer does so, then DataObjects are only generated
for those tables or views.

 Generate query DataObject classes from a list of SQL queries. If
this option is selected, all queries contained in the configuration file

Chapter 4 - Standardization of services in the Configuration and
support environment

 64

are processed and for each query a DataObject class file is written
allowing RDAS to execute the query and save all resulting values into
properties.

DataObject classes generated follow all control system conventions
regarding repository access such as correctly marked BLOB properties, view
indexing, and foreign key lookup. As the RdasGenerator tool consults the
repository to obtain information on the schema, constraints, and query
results, the tool can only be successfully executed from a computer where
local repository access is enabled. The resulting C# files are created in a
customizable output folder, with one C# file written per generated class.
During execution, any issues arising from invalid queries, or tables/views
not following the expected convention, are presented to developers. Figure
4.5 contains a screen capture of the execution result of RdasGenerator,
configured to generate models for each table and view in one of developer’s
repository schemas. As can be seen, a few tables and views have been found
to not follow the convention due to using columns types not supported, and
336 DataObject files have been generated from the remaining tables and
views.

Figure 4.5: Results of the execution of RdasGenerator in the
development repository.

4.1.6 Integration and Unit testing

In order to ensure the correct operation of the RDAS service and the
correctness of the RDAS library, a series of unit and integration tests were
also defined during the development.

The unit tests were created alongside the development of the RDAS
library, guiding the development and ensuring that the requirements of
classes were correctly fulfilled.

More importantly, a large set of integration tests were also created to
ascertain if all control system components intercommunicate correctly
during operation. The integration tests evaluate the result of operations
performed between full applications, querying several tables in the

Chapter 4 - Standardization of services in the Configuration and
support environment

 65

development repository. The integration tests can be configured to also
include the Identity Provider in the requests, thus testing if the security
permissions are configured and evaluated correctly.

Figure 4.6: RDAS solution’s unit and integration tests, categorized by
test configuration.

 Remote file access

Configuration and support environment applications are occasionally
required to access files in other control system devices. In the legacy
environment, applications were installed on machines with access to remote
network drives, or FTP access. As defined by the product line architecture
R1, which aims at the addition of mobile applications to be part of the
upgraded environment, files stored in local network drives cannot be
accessed by these applications.

The main objective of the design of the remote file data access service
(FDAS) was to allow applications in all platforms to access remote files.
Additionally, file access should follow the permission system defined by the
new authentication and authorization system.

In order to achieve these objectives, the FDAS service was designed and
implemented as part of this work. In this section, we discuss the terminology
used in the FDAS service, as well as its behavior. Afterwards, we describe
the model for defining shared folders and permissions. Lastly, the
implementation of FDAS library and server is presented.

4.2.1 Terminology

Figure 4.7 illustrates the domain model of the FDAS library and describes
how the FDAS service exposes files to clients. A brief description of the
elements shown in the figure is as it follows:

Chapter 4 - Standardization of services in the Configuration and
support environment

 66

 FDAS server: FDAS server instance.

 File system: A file management system organizes files inside a
devices’ storage, such as the device’s hard drive partitions.

 Virtual file system: Abstraction created by the FDAS server, it
exposes folders and files stored in the device’s file system to clients.

 FDAS client: CNAO application that connects to a FDAS server
instance using the FDAS client library.

 CF2020 OpenID Connect Server: Configuration and support
environment identity provider that follows the OpenID Connect
standard. Section 4.4 goes in detail into the environment’s permission
system.

 Identity Manager Library: Library used by client applications to
interface with the identity provider.

Figure 4.7: FDAS domain diagram, in UML notation.

4.2.2 Exposing files remotely

As mentioned in the previous section, the FDAS service has the purpose
of exposing files contained in the server’s folders to environment’s
applications via a RESTful API. In order to allow developers to define which
folders are to be exposed, a virtual file system abstraction was defined. The
abstraction defines how to inform the FDAS server application which folders
are to be exposed, and how to present them to clients.

When configuring an FDAS server instance, developers are required to
specify all server folders to be exposed, and provide prefixes to be assigned
to each one of them. Figure 4.8 illustrates the mapping abstraction used when
defining prefixes.

FDAS servers expose folders recursively, so all sub-folders and files
inside a selected folder are also exposed. All exposed folders are given a

Chapter 4 - Standardization of services in the Configuration and
support environment

 67

prefix, and appear to clients as part of the same root folder, with the prefix
added. FDAS clients are not informed of the real path of the files they
remotely access. Instead they use the abstraction’s path, which is then
translated into real file locations by the server.

Figure 4.8: Diagram illustrating the mapping abstraction implemented by the
FDAS library.

Figure 4.9 illustrates an FDAS server configuration file, declaring two
folders to be exposed. Each JSON object contains a Prefix and
RealPrefixPath field. The RealPrefixPath field represents the folder’s
location in the server’s file system, such as C:\\TestRepo. By defining this
field, the developer is defining which folders are to be exposed to FDAS
clients. As mapped folders are exposed recursively, all files and folders
inside the mapped folder are also exposed, and so on. The Prefix field
denotes the name FDAS clients shall use to access the mapped folder.

Chapter 4 - Standardization of services in the Configuration and
support environment

 68

[
 {
 "Prefix": "TestRepo",
 "RealPrefixPath": "C:\\\\TestRepo"
 },
 {
 "Prefix": "Shared",
 "RealPrefixPath": "\\\\svpvclfs40\\CNAO\\FrameWork2020"
 }
]

Figure 4.9: FDAS server configuration sample file, listing two folders to be
shared with clients.

Following the sample configuration presented in Figure 4.9, from the
point of view of an FDAS client, the FDAS service would create and expose
a “root” folder, or ‘\’. Clients would then use the discovery API and find two
folders, named “TestRepo” and “Shared”, in the root folder of the virtual file
system. If a client uploaded a file named “image.jpg” in the “Shared” folder,
and used the discovery API once again, they would see the file under the
address “\Shared\image.jpg”. In the server’s side, due to the presented
configuration, the image would have the location of
“\svpvclfs40\CNAO\FrameWork2020\image.jpg”.

4.2.3 FDAS server configuration

The other configuration file required for instantiating an FDAS server is
the app.config file, displayed in Figure 4.10. This configuration file defines
the following configurations settings.

 The “AuthenticationAuthorityLocation” setting defines the address
of the identity provider, as the permission control is delegated to the
identity provider server.

 The AuthMaskPolicy settings define the permission values necessary
for users to download and upload files. These permissions are
represented by binary masks. Only users whose mask possess each
required permission position with the binary value of “1” are allowed to
download or upload files. The permission mask system has been part of
the control system since it was designed, and each CNAO employee has
their own permission mask. By adopting the authorization mask notation,
FDAS uses an already established resource access notation.

Another relevant configuration setting present in this file is whether the
FDAS service can behave as a repository for remote log files. Any FDAS
service instance can be configured to work as a remote file access server, a
logging endpoint, or both. The logging service is explained in detail in
Section 4.5.

Chapter 4 - Standardization of services in the Configuration and
support environment

 69

<appSettings>
<!--Permission mask an user is required to obtain read access-->
<AuthMaskPolicyRead value="000000100000"/>
<!--Permission mask an user is required to obtain write access-->
<AuthMaskPolicyWrite value="000011100000"/>
<!--Location of the CF OpenID Authentication Server-->
<AuthenticationAuthorityLocation value="https://localhost:44353"/>
<!—Whether this machine is enabled to receive logs-->
<LoggingEnabled value="True"/>
<!-- If logs are enabled, Log folder-->
<LogFolder value="C://Logs"/>
<Port value="51413"/>

</appSettings>

Figure 4.10: FDAS server app.config configuration file. Also included are
xml comments, describing each configuration parameter.

 OPC-UA communication

Software applications of the configuration and support environment often
communicate with OPC-UA servers located in the control system’s third
level. It is through the third level’s OPC-UA servers that applications of this
environment interfaces with the fourth level of the control system.
Consequently, porting the previous environment’s OPC-UA client library
was a necessary for this work.

OPC-UA communication is performed using a request-response approach.
In the configuration and support environment, applications can only perform
the client role when communicating with applications present in the third
layer. Therefore, only OPC-UA client capabilities had to be developed for
the upgraded environment.

In the early stages of this work, the viability of the legacy OPC-UA
communication library was evaluated. The results of this evaluation were
positive, consequently, no major architectural changes were required in the
upgraded environment. However, as the upgraded environment’s libraries
should target .Net Standard rather than .Net Framework, the legacy OPC-UA
client library had to be ported.

When porting C# legacy software, unsupported operations contained in
the legacy library which was unsupported by the chosen CLI had to be
replaced with equivalent ones. As a result, the entire library had to be
reviewed. Capitalizing on this opportunity, we have also decided to perform
the following changes to the architecture legacy OPC-UA library:

 All dependencies on user interface libraries were removed. These
modifications allowed the upgraded library to be used by applications
using other GUI libraries, or no GUI at all.

 The scope of the library was limited to the domain layer.
Previously, some methods of the OPC-UA client library could
optionally perform presentation layer operations. Following the

Chapter 4 - Standardization of services in the Configuration and
support environment

 70

product line architecture for the upgraded environment, standard
service libraries have to be restricted to a single layer.

 The newest version of the commercial OPC-UA communication
library was used. The legacy version relied on a commercial library for
the low level implementation of the OPC-UA protocol. Since its
development, the company that provides this library, DataFEED, had
been releasing several new versions of the underlying library, adding
new features.

 The legacy library’s interface was preserved. Due to the familiarity
of developers with the legacy library’s interface, the legacy library’s
API was maintained whenever possible. In cases where the legacy
library’s API depended on classes no longer used or available, facade
classes were developed to mimic the operations performed by the
missing classes.

 Authentication and authorization

4.4.1 Security objectives

As a part of the effort to standardize the access to other components of the
control system, several security requirements were established. Previously,
all applications of this environment targeted the Windows operating system,
and were connected to the local area network. However, the environment
upgrade envisages the additions of applications running on top of mobile
devices, which should still access the same resources. Due to this
requirement, the previous authentication solution was no longer a viable
option, and a new authentication and authorization protocol was required.

The previous security solution consisted of client side authentication, via
the LDAP protocol [82]. Afterwards, the client application decided whether
the authenticated user had authorization resources by accessing the
repository, and checking the user’s permissions. This process had been
implemented as a C# library, and was incorporated into all secured
applications of the legacy environment.

During the design of the upgraded environment, the previous solution was
no longer acceptable for several reasons. The LDAP protocol is not available
for the mobile devices. Additionally, only client side security opens the
environment to vulnerabilities involving tampered or malicious clients. In
the past, and as expected in the near future, all control system applications
were developed by CNAO employees, and run on devices belonging to the
facility. Nevertheless, authentication and authorization using an identity
provider should allow the environment to, in the future, be used securely
even by applications outside the local network.

The authentication and authorization solution chosen for this environment
is based on the OpenID Connect [83] standard. By delegating the tasks of

Chapter 4 - Standardization of services in the Configuration and
support environment

 71

authentication, authorization, and user information access to an identity
provider, clients are able to access resources securely and in an authorized
manner.

In this section, a brief description of the concepts of authentication and
authorization is presented. Afterwards, a brief description of the OpenID
Connect standard and its terminology. Later, the security solution developed
for this environment will be explained in detail. Finally, the
Framework2020IdentityManager library is presented, which aims at
allowing applications to interface with the environment’s identity provider,
and manage the client’s authorizations and tokens.

4.4.2 Authentication and authorization

Often, the concepts of authentication and authorization are used
interchangeably. However, the difference between them is important when
securing software resources. In this section we present several important
terms and their definition in software security. These definitions have been
taken from the of the OAuth 2.0 [84] and OpenID Connect [78]
documentation:

 “Resource owner: An entity capable of granting access to a
protected resource. When the resource owner is a person, it is referred
to as an end-user.

 Client: An application making protected resource requests on
behalf of the resource owner and with its authorization. The term
"client" does not imply any particular implementation characteristics
(e.g., whether the application executes on a server, a desktop, or other
devices).

 Authorization server: The server issuing access tokens to the
client after successfully authenticating the resource owner and
obtaining authorization.

 Authorization code: Authorization codes operate as plaintext
bearer credentials, used to verify that the resource owner who granted
authorization at the authorization server is the same resource owner
returning to the client to complete the process.

 Access token: Access tokens are credentials used to access
protected resources.” [84]

 “Authentication: Process used to achieve sufficient confidence in
the binding between the Entity and the presented Identity.

 Claim: Piece of information asserted about an Entity.

 Entity: Something that has a separate and distinct existence and
that can be identified in a context. An End-User is one example of an
Entity.

Chapter 4 - Standardization of services in the Configuration and
support environment

 72

 ID Token: JSON Web Token (JWT) [JWT] that contains Claims
about the Authentication event. It MAY contain other Claims.

 OpenID Provider (OP): OAuth 2.0 Authorization Server that is
capable of Authenticating the End-User and providing Claims to a
Relying Party about the Authentication event and the End-User.

 Relying Party (RP): OAuth 2.0 Client application requiring End-
User Authentication and Claims from an OpenID Provider.

 End-User: Human participant. ”[78]

From the previously presented definitions, a few distinctions can be
pointed out. The first is the difference between authentication and
authorization. While the OAuth protocol specification document [84] never
explicitly defines the term authorization, it can be inferred that it refers to
obtaining permission to access or use a resource. This definition does not
necessarily presuppose authentication, in the way defined by the OpenID
Connect specification document, which also is presented above. The
authentication process is performed to verify that a specific entity possesses
a virtual identity. Authenticating a client, which in this scenario refers to a
software application, is a simpler task than authenticating an end-user. When
attempting to authenticate an end-user, one has to take into account whether
the end-user is actually present, and informed about the authentication
process. Meanwhile, these considerations do not apply to software
applications.

In the perspective of the OAuth standard, operations performed by a
software client are done so on behalf of an end user, the software client
requires explicit user authorization to access user data contained resources,
and to perform actions in the resource on behalf of the user.

In software engineering, the terms client and user are often used
interchangeably. When discussing matters of security in this work, we will
use the term client defined above. A client is a software application that seeks
access to protected resources, on behalf of a user. The user, by contrast, is a
physical entity, who may or may not be present at the time, using the device
where the client is executing. As described by Justin Richer [85], some
software systems assume the access of a protected resource as equivalent a
to proof of authentication. The underlying logic for this is that if the client
obtained permission from the end user to access the protected resource, it
must have obtained the permission to perform actions using its identity.
However, systems that use authorization protocols, such as OAuth 2.0,
equivocating authentication with authorization may lead to scenarios where
authorization to access protected resources does not directly imply the user’s
well-informed presence, which is required for authentication.

With the difference of these two concepts in mind, while authorization is
not sufficient for determining end user authentication, these two procedures
are compatible, and can be performed alongside each other. Due to their

Chapter 4 - Standardization of services in the Configuration and
support environment

 73

compatibility, the OpenID Connect standard was built on top of OAuth 2.0,
adding steps in order to ensure that authentication would also be performed.

Other important security terminology differences are those between
authorization servers and identity providers. The first term comes from
OAuth 2.0 to designate a server that issues access codes. Meanwhile, an
identity provider is an extended authentication server, which can also
provide proof of authentication via ID Tokens. Other terms not to be
confused are ID tokens, authorization codes, and access tokens. ID Tokens
are JWTs (JSON Web Tokens) signed by an identity provider and act as
proof of authentication, additionally, they may contain claims about the
authenticated user [78]. Meanwhile, authorization codes are strings that are
given to clients as a result of the authorization grant, and that can be
exchanged for an access token [86]. Finally, access tokens are encoded JWTs
that allow clients to access resources, such as requesting a secure API, on
behalf of end users [84]. In the OpenID Connect standard, all three are used.

For the upgraded configuration and support environment, authentication
of users and authorization to access resources have been identified as
security requirements, and thus we have decided to adopt the OpenID
connect standard.

4.4.3 Access control solution implementation

OpenID Connect is a standard which defines operations, roles,
authentication flows, and responses. In order to implement an OpenID
Connect identity provider, developers are recommended to use frameworks
which provide certified implementations of the standard. At the time we
started the development, the most complete and widely supported software
framework for developing an identity provider in the C# language was
Identity Server 4.

The Identity Server 4 framework is an open source framework
implementation of the OpenID Connect and OAuth 2.0 standards. It provides
implementations for 4 out of 5 conformance profiles, and has been certified
by the OpenID foundation [83]. Most importantly, while the framework
implements the operations necessary for conformance with the standard, it
also provides clear extension points for developers to insert their
implementation of operations that are not standardized by OpenID Connect
[87]. Examples of unstandardized operations are storage of user data in the
identity provider, the algorithm of user authentication to the identity
provider, and the definition and storage of claims.

While default implementations to several extension points are available,
developers can also easily integrate their own implementation of operations
into the framework. On this work, several extension operations have been
implemented in order to adhere to requirements regarding compatibility with
the legacy environment, and to provide further services for applications of
the upgraded environment. In this section, we describe the development
process of the CNAO’s OpenID Connect identity provider.

Chapter 4 - Standardization of services in the Configuration and
support environment

 74

Identity provider development

The development of the configuration and support environment identity
provider consisted of two steps. The first step was selecting the most suitable
base sample provided by the Identity Server online repository, and assuring
that the OpenID Connect standard base features were working as required.
At this point, requirements for the identity provider’s extensions were
obtained, so that extension points could be designed and developed. Finally,
the developed extension points were integrated into the framework, resulting
in an identity provider that complies with all requirements of the upgraded
configuration and support environment.

The main requirement for the identity provider was the integration with
the previous authentication and access control system. Another requirement
was that all information necessary to configure and run the identity provider
had to be stored in the repository. Therefore, the identity provider had to be
able to obtain all configuration data directly from the repository. Finally, a
key objective was to investigate whether OpenID Connect authentication
could be used by applications to obtain security credentials for OPC-UA
communication. Currently, OPC-UA communication in the configuration
and support environment is performed via secure channel using application
certificates [62]. Therefore, a secure way of transmitting application
certificates was needed.

The base identity provider used was obtained from the Identify Server’s
GitHub samples [88] under the Apache 2.0 license. The startup sequence of
the sample was changed to include the extensions, and the user interface was
slightly adapted, with plans to further changes in latter stages. Figure 4.11
presents a screen capture of the resulting identity provider server executing
in development mode.

Figure 4.11: Configuration and support environment’s identity provider
executing in development mode.

Chapter 4 - Standardization of services in the Configuration and
support environment

 75

Extensions

After the base identity provider was running with sample data, extension
points had to be developed and integrated, in this section we document the
extension points developed.

 Configuration data for running the identity provider changed from
being hard-coded, into being present in the repository database. This
data includes API and identity resources, client data, and persisted
grants. In total, 18 new tables were added to the repository’s database
schema.

 Setting up of data access objects (DAO) using the Dapper ORM
library to allow insertion and retrieval of previously created data from
the repository.

 Development of a resource store to allow the identity provider to
access API and identity resource information, overriding the default
one.

 Development of a resource store to allow the identity provider to
access client information, overriding the default store.

 Development of a custom user repository.

 Development of a custom profile service. The profile service is
designed to obtain and provide claims about the user [89]. Claims are
user data which are then sent in the JWTs, and take the form of key-
value pairs. It is the responsibility of the profile service to provide all
claims necessary. Usually, information such as the user’s first name or
user email is requested by relying parties. In this project, it has been
decided that all ID tokens and access tokens shall contain the user’s
permission mask. The permission mask, as explained to earlier,
describes several permissions each CNAO employee has.

Regarding the user repository, the Identity Server 4 framework does not
define how user data should be structured. Therefore, when using a custom
user repository, developers also have to implement and override all services
that use user data. For the configuration and support environment, we have
leveraged the existing employee data present in the repository to become
user data. Employee data in the repository contains basic employee
information, as well as employee’s permissions.

The OpenID Connect standard defines that users must be authenticated,
but does not explicitly define how authentication should be. For example
authentication could be performed through user credentials, or verification
of biometric properties using specialized equipment. Therefore, when using
custom user classes in the Identity Server 4 framework, developers must also
define a user authentication algorithm. For the configuration and support
environment, user authentication is performed through their credentials.
However, as user passwords are not stored in the repository, but by the IT

Chapter 4 - Standardization of services in the Configuration and
support environment

 76

department, this module will delegate password authentication to the IT
department LDAP’s system once in production mode.

All extensions listed above are then integrated into the Identity Server 4
framework at the startup of the identity provider. This process, which is
shown in Figure 4.12, is performed by several extension methods which
configure each extension point used by our identity provider.

// configure identity server for configuration and support environment
services.AddIdentityServer()

…
.AddClientDapperPersistence()
.AddResourceDapperPersistence()
.AddGrantDapperPersistence()
.AddCnaoUserPersistence();

Figure 4.12: Code snippet of identity provider startup, including the
extension methods that configure the extension points.

4.4.4 Protected resources

As defined in the OpenID Connect standard, clients interact with an
identity provider in order to authenticate the end-user and obtain access
tokens, which can then be used to access protected resources [83]. In this
section, we describe how protected resources in the configuration and
support environment participate in the security workflow. In the upgraded
configuration and support environment, services must be configured to
delegate authorization control to the identity provider. This can be done
during the service startup with only a few lines of code using the
IdentityServer4.AccessTokenValidation library and is presented in Figure
4.13.

 services.AddAuthentication("Bearer")
.AddJwtBearer("Bearer", options =>
{

options.Authority = "https://localhost:44353";
options.RequireHttpsMetadata = true;
options.Audience = "rdas";

});

Figure 4.13: Code snippet displaying the process for protected resource to
delegate access control to the identity provider.

Afterwards, each protected API should be configured with the
permissions required for their usage. When a client attempts to access a
secured API that uses bearer token authorization, the client should include
in the request the access token received from the identity provider. The
protected resource then validates the access token following the OpenID
Connect standard [83].

Chapter 4 - Standardization of services in the Configuration and
support environment

 77

As defined in the OAuth 2.0 specification, scopes “allow the client to
specify the scope of the access request using the ‘scope’ request
parameter”[90]. During authentication, the user is informed of the scopes
requested by the client. In order for clients to access resources, which can be
either API or identity resources, the clients need to request the scope
designated to the resource. For example, in the RDAS service, protected
APIs are either categorized as requiring the “rdas.read_only” scope or the
“rdas.full_access” scope. The RDAS service performs this validation by
defining custom authorization policies. Then, each API is annotated with the
authorization policies that must be validated before the API can be executed.

An additional validation step developed in this work was the validation of
the user’s authorization mask by protected resources. Each CNAO employee
is assigned a permission mask in the repository that defines which protected
operations they have access to. This permission mask is a list of binary
numbers, which contains a ‘zero’ for each operation they do not have access
and a ‘one’ for each operation they have access to. As mentioned previously,
the profile service developed for this project injects a claim containing the
user’s permission mask in all tokens generated.

This validation step is not performed for all protected resources, as not all
protected services require one of the permissions represented in the
permission mask. Additionally, by definition only employees are assigned
permission masks, and yet, clients may also request access tokens. Some
protected resources in the configuration and support environment do not
require user authentication to be accessed, such as the logging service. In
this case, these resources still require a valid access token, but these tokens
can also be acquired by client applications, using the client credentials grant.

As an example of permission configuration, consider hypothetical
configuration and support environment application which is used by
administrators to manage repository data. In this example, this application
should be registered with the identity provider, containing its own client
credentials, and access to the scopes “openid”, “rdas_log”,
“rdas.full_access”. This application can use the client credentials grant to
obtain an access token which contains the scopes mentioned previously.
Meanwhile, the RDAS service requires user authentication with an adequate
permission mask for managing repository data, but only the presence of the
“rdas_log” scope in order to access the logging API. This repository
management application can thus log data remotely as soon as it is initialized
using an access token obtained with its own credentials. However, in order
to display and manage repository data, the application requires a user to
authenticate.

In the previous example, under no conditions this application can access
the remote file service, FDAS, as the APIs present in the service require the
“fdas” scope. Even if the application’s user has permission to access the
FDAS service, as application is not configured to be able to request the
“fdas” scope, the application will not be able to access an FDAS server’s
API.

Chapter 4 - Standardization of services in the Configuration and
support environment

 78

Because each secured resource provider can be configured with which
scopes and permission masks are required to access each one of its APIs, this
system allows a great deal of versatility in securing resources.

4.4.5 Framework2020Oidc library

The OpenID Connect standard supports several different workflows for
validating authentication and authorization. The OpenID Connect
specification document defines three code flows for authentication of users.
These are the authorization, implicit, or hybrids flows. Each of these flows
authenticates users by communicating with them directly, usually through a
web browser. In the current implementation of the CNAO identity provider,
the workstations available in the control room are not fitted with a web
browser. This means that the three previously mentioned authentication
flows cannot be used in the near future.

Therefore, it was decided to use the Resource Owner Password
Credentials grant defined OAuth 2.0. In the Resource Owner Password
Credentials grant, the user provides the client their credentials, and the client
in turn uses these to obtain tokens from the event provider. This grant is
supported by the Identity Server 4 framework [91], but does have a
drawback: since the authentication is on behalf of the user by the client, the
user should have a high degree of trust in the client application [90].
However, since all client applications are developed by CNAO control
system developers, users can be assured that the credentials provided by the
application are only used on their behalf.

Nevertheless, it is possible that future projects investigate the use of
dedicated or embedded browsers in the configuration and support
environment. As a result of these investigations, proposals can be made for
changing the identity provider’s authentication algorithm in order to adopt
one of the OpenID Connect browser authentication flows.

With the objective of standardizing the interaction of configuration
support environment applications with the newly developed identity
provider, the Framework2020OIDClient library was designed. This library
was designed to perform two operations for control system applications.
First, it performs all communication with the identity provider, and exposes
only an object-oriented interface. These involves authentication, obtaining
and refreshing tokens and claims. The second role of this library is to manage
identities used by clients. This is performed by keeping track of the tokens
received, making the claims requested available, and ensuring that bearer
API tokens are included when the applications requests the use of protected
resources. Consequently, an application may have more than one “identity”
at the same time, such as the client and user identity, with separate
permissions and scopes for each of them.

The Framework2020OIDClient library uses the IdentityModel library
[92], which is a relying party library certified by the OpenID Foundation
[93], and is distributed under the Apache 2.0 license.

Chapter 4 - Standardization of services in the Configuration and
support environment

 79

Figure 4.14 contains an UML class diagram of the
Framework2020OIDClient library, focusing on the interface that it provides
to configuration and support environment applications. This interface is the
point of entry of the library, and is expected to be used by not only domain
layer classes of final applications, but also by other configuration and
support environment libraries that communicate with protected resources,
such as the RDAS and FDAS libraries.

Classes implementing the IResourceOwnerIdentityManager interface
must be initialized, and during the initialization, the connection with the
identity provider is verified. Afterwards, authentication methods can be
called, such as the AuthenticateAsync and AuthenticateAsyncClient. These
methods are used to authenticate a client or a user by providing their
credentials, and requesting the desired authentication scopes. As mentioned
previously, the scopes define which operations the user intends to seek
permission to access, or which identity information the user seeks to share
to the client.

Once authentication has been performed, resources can be accessed via a
RESTful API, by requesting a C# HttpClient instance. The resulting
HttpClient instance contains a bearer token of the desired identity. Several
other operations are also available after authentication, such as requesting
claims, or requesting the identity’s repository identifier. While not present
in the class diagram due to size constraints, several methods may be called
using a parameter of type ChosenIdentity. This optional parameter allows the
application to specify which identity to be used in each operation. Valid
options are the user or client identity, or optionally, the identity with the
highest permission.

In general, methods defined by this interface also return the current library
status, which contains the state of the manager, and whether errors have
occurred in previous operations. In addition, the library also controls a
lifetime of the authentication, and refreshes the acquired tokens if possible
and necessary.

Chapter 4 - Standardization of services in the Configuration and
support environment

 80

Figure 4.14: Framework2020OIDClient library class diagram.

Finally, client applications in the configuration and support environment
are expected to show or hide certain user interface options from users,
depending on their permissions. For example, a non-administrator user
should not be able to see advanced operations that they have no reason to
perform. This can be done by checking the permission mask claim present in
ID tokens.

4.4.6 OPC UA integration

In the context of this work, a possible integration between the OPC-UA
security workflow with the OpenID access control was also investigated.
Currently, applications in the configuration and support environment may
act as OPC-UA clients in order to communicate with other control system
components. The OPC-UA security model used currently in the legacy
environment’s applications does not authenticate users. However, in order to
do so in the future, using the same OPC-UA workflow, the identity provider
service was extended with security certificate management capabilities.

The OPC-UA protocol allows application instances and users to
authenticate themselves using X.509 security certificates, which have to be
trusted by the other party, or signed by a trusted certification authority [62].
In order to allow applications and users to obtain trusted certificates for
communication, the CNAO identity provider has been extended with

Chapter 4 - Standardization of services in the Configuration and
support environment

 81

certificate signing capabilities, thus providing it with certificate authority
capabilities.

In order to do so, the identity provider has been given a root certificate,
which needs to be installed in the trusted certificate list of the OPC–UA
servers. Once configuration and support environment applications perform
one of the authentication grants, while requesting an OPC–UA certificate
scope, they can then use the access token previously requested to obtain an
X.509 certificate. The obtained certificate will have been signed using the
identity provider’s root certificate, thus being trusted by the OPC–UA
servers. The certificate will be generated alongside the public and private
key, and will be stored in the repository for further sessions, if an extended
expiration certificate is selected.

The OpenID Connect UserInfo endpoint does not allow requests
containing arbitrary parameters, so the private keys are generated by the
identity provider. As part of this feature, the user and client tables present in
the repository were modified to be able to store certificate and information
regarding it, so that if a valid certificate is found, there is no need of
generating a new one. Figure 4.15 contains an UML sequence diagram
depicting the communication between the various entities to allow client
applications to obtain security certificates for OPC–UA communication.

A possible variation of the presented solution would be allowing the client
applications to generate the key pair, as well as a certificate request. The
certificate request would then be sent to and accepted by the certification
authority. This has the advantage that only the client application would ever
have access to the private key. However, this would not allow the same
certificate to be stored and reused later in another device. A dedicated
certificate authority application could also be used. This certificate authority
would be independent from the identity provider and act as a protected
resource. This would allow additional versatility to the types of requests that
could be performed, while at the same time guaranteeing authentication and
authorization, as the certification authority would delegate access control to
the identity provider.

Chapter 4 - Standardization of services in the Configuration and
support environment

 82

Figure 4.15: UML sequence diagram depicting the workflow necessary for a
client application to obtain a user certificate from the identity provider, and
later use the certificate to validate the user identity.

As previously mentioned, applications of the configuration and support
environment do not authenticate themselves when communicating with
OPC-UA servers currently. At the present moment, OPC-UA servers possess
a security certificate in order to perform encrypted communication, but do
not require applications or users to perform any sort of authentication
whatsoever. In order to enable or enforce application instance or user
authentication, the servers would have to be reconfigured or redesigned.
These servers are also not part of the configuration and support environment.
Therefore, making changes to them would require a broader project scope,
adding several stakeholders, as well as involving several other development
groups.

The aim of this implemented identity provider extension was to provide a
proof of concept that could be expanded upon in the future. The main issue
encountered was that the generated certificates would be transferred to the
client during each application execution. For this scenario, very short term
certificates, tailored to each expected session length could be generated at
every execution.

Security certificates are usually not meant for short time periods such as
an individual user’s session, but instead something that would be transferred
to the user once, secured by them, and used for multiple sessions. An option

Chapter 4 - Standardization of services in the Configuration and
support environment

 83

to reuse these certificates would be to store them securely in the repository
database, and transfer them to clients whenever requested until their
expiration. The solution relies on the user trusting the client application to
remove the certificate once the execution is over, as well as relying on the
long-term usage of certificates. Long term certificate usage should also
warrant the existence of certificate revocation lists, kept by the identity
provider and consulted by servers. However, as mentioned previously, the
OPC-UA servers are not part of the configuration and support environment,
and thus the project’s scope would have to be increased further.

The OPC Unified Architecture book, by Mahnke et al. [62], discusses
several ways of organizing certificate management and delegation to OPC-
UA enabled devices. The proposal briefly investigated in this work,
consisting of providing CA capabilities to an identity provider will require
further study regarding its viability and necessity in CNAO’s control system
in the future.

 Local and remote logging

An important part of application development and maintenance is
ensuring their correct operation. During initial development stages,
developers have access to debugging tools and source code analysis.
However, as the project lifecycle progresses and the final applications are
deployed, such methods of analyzing the behavior of applications become
unfeasible. Therefore, methods of analyzing runtime behavior become
increasingly important, and one such method is event logging.

The upgraded environment logging libraries are designed to provide a
standardized way of configuring and deploying logging capabilities to
applications. In addition to standardizing the logging format and
configuration, the developed CnaoLog libraries aim to provide
implementations for logging events into all required control system
endpoints, such as the repository, and remote file systems.

In this section, we discuss the main architecturally significant decisions
made during the development of CnaoLog libraries, and describe its
implementation.

4.5.1 Logging libraries design

The main objective of the CnaoLogging libraries was to provide a
standard way for applications of the configuration and support environment
to perform event logging, as well events logging into a centralized location.
Because software applications of the CNAO control system are deployed in
several different types of devices, which may be in different local networks,
currently there exists no central repository for all environment applications.
For some applications, logging is performed locally only, thus requiring
access to the application’s device in to access the logs. A centralized logging

Chapter 4 - Standardization of services in the Configuration and
support environment

 84

approach would hopefully allow an easier processing of logs, leading to
better troubleshooting and hopefully thus shorter application downtimes.

The upgraded configuration and support environment is expected to
contain several types of applications, with several different usage patterns
and devices targeted. Currently, many of these applications are launched
only occasionally, and used for very short sessions. Meanwhile, other
applications, such as the equipment monitoring applications, are expected to
run continuously for very long amounts of time. The long term objective of
the logging system is to create remote locations where logs from all
applications are expected to be kept.

As the applications of the new environment are expected to run in more
than one type of device, and may not have access to every service, the
CnaoLog libraries were designed as a series of libraries. The main logging
library, CnaoLog, is mandatory and should be a dependency of all
applications of the new environment. This library contains the logging
abstractions, and a default local logging implementation. The optional
libraries, which contain names that derive from CnaoLog, such as
CnaoLog.Rdas and CnaoLog.Fdas, are libraries that depend on the main
CnaoLog, and implement the abstractions defined by the main library in
different ways. By using an optional library, and initializing the components
of that library, application logs will be stored in one additional location.
These libraries are optional because the extension libraries depend on other
libraries and services that the application may not use. For example, not all
applications are expected to have repository access, therefore, there is no
reason to use the CnaoLog.Rdas library, which implements local logging to
the repository.

The main CnaoLog library is quite simple, as it does not actually define
how logging is performed. This library defines an interface for configuring
a logging system, and several methods to log messages and exceptions, but
does not actually implement the logging, instead acting as a facade. The
logging itself is implemented by a mature logging framework which is
widely used in the C# development community, named Serilog [94].

The Serilog library implements logging with a single API, that can then
be stored in various formats, and sent to several different endpoints [95]. The
Serilog library was chosen due to a combination of widespread adoption in
the .Net development community, and possessing a modern and simple API.
The Serilog library is licensed under the Apache 2.0 license.

The main reason for using an underlying implementation of logging was
that currently developed logging libraries implement all necessary
requirements for the applications of the new environment. Any future
updates of the library may also be integrated into future versions of the
CnaoLog libraries. However, a decision was made to implement a façade
over the Serilog API, restricting the possible configurations and logging
options. This design choice was performed for two reasons. First, the Control
System group coding standards define that the interface of libraries should
be developed by members of the Control System group. This allows the

Chapter 4 - Standardization of services in the Configuration and
support environment

 85

developers to take ownership of the interface, and thus control its evolution.
Second, by implementing a façade, many optional API features that are not
recommended to be used in the environment are hidden from application
developers, thus making the library easier to learn and use.

Serilog defines the concept of Sinks to allow application classes to
perform event logging without knowledge of where and how these events are
going to be logged. The sinks are configured during the application
initialization. Later, whenever an event is sent for logging, each sink receives
the event and processes it as it sees fit. Because not all applications may want
to log events to every endpoint, not all applications will configure and
initialize every sink available to them.

Figure 4.16: Framework2020 Logging domain diagram.

Figure 4.16 presents a domain model diagram illustrating the usage of
CnaoLog libraries in applications of the upgraded environment. A
description of each element referenced in the diagram is presented as
follows:

Chapter 4 - Standardization of services in the Configuration and
support environment

 86

 Framework2020 Application: Slow environment control system
application made for the upgraded environment.

 CNAO Logging façade library: Library defining the
environment’s logging abstraction. Defines logging interface and
configuration.

 Serilog logging framework: Open source, extensible .Net logging
library.

 Sink: Serilog extension designed to process application logs,
sending them into their configured destination.

 Enricher: Serilog library extension designed to add additional
information to events logged. Enriched properties can be added to the
logging framework during the application’s start-up, or dynamically.

4.5.2 Implementation of CnaoLog libraries

This section describes the implementation of the CnaoLog libraries,
highlighting how the architectural decisions shaped the implementation.
Later, an example code sample showcasing event logging will be presented
and explained in detail.

Base CnaoLog library

The base CnaoLog library has two main objectives, the first being the
declaration of the interface for initializing the logging system, and
performing logging. The second goal of this library is to define a static class
that can be used to provide access to the log object to every other class in the
application.

The interface that the CnaoLog library defines for initializing and
performing logging operations was based on the Serilog API, and limits the
configuration options available. By doing so, the interface works as a façade.
Additionally, the CnaoLog library provides a base implementation for the
interface, which relies on the Serilog library. Applications depending on the
CnaoLog library are restricted to interacting only with the CnaoLog
interface. This allows future implementations of the CnaoLog library to
abandon the Serilog implementation in favor of another logging solution,
without affecting the code of any application developed.

Optional Sinks

The optional sink libraries were designed with the objective of extending
the base logging to standard services, which require the usage of their
respective client libraries, without introducing references to unused libraries
in any application. Otherwise, if the remote service sinks were defined as
part of the base library, the base library would depend on the client libraries
for these services. If that were to happen, all applications using the CnaoLog
base library would depend on all standard service client libraries, regardless

Chapter 4 - Standardization of services in the Configuration and
support environment

 87

of whether the applications uses these services. The requirements analysis
performed for upgrade of the configuration and support environment noted
that not all configuration and support environment applications use every
standard service. Therefore, several applications would contain unneeded
dependencies, increasing loading time and file size.

It was decided that configuration and support applications should not be
expected to depend on client libraries standard services that they do not use.
Therefore, it was decided to split the logging into several libraries, composed
of a mandatory base library, and several optional sink libraries. All
applications should depend and use the base CnaoLog library, which allows
local file system logging. Additionally, if developers require to perform
remote logging into the standard services, they need to include a dependency
to the respective optional sink libraries. Consequently, by segregating the
sinks into optional libraries, applications are able to depend only on the client
libraries of services they plan to use.

Figure 4.17 contains a diagram that illustrates the behavior of the RDAS
standard service sink, which provides access to the repository database. In
the diagram, it can be seen that even for logging operations, the RDAS server
still requires permission from the identity provider in order to allow access
to the logging APIs. Since, according to the product line architecture
developed for this project, logging is a required functionality for all
applications, including those with no user authentication, logging APIs in
standard services only require client authentication. Consequently, all
applications of the configuration and support environment are defined to
possess logging permission. Consequently, all applications in the upgraded
configuration and support environment will be able to log events if required,
but unauthorized applications in the same network will still not have access
to these protected resources.

During the standardization of logging capabilities, dedicated logging
operations were developed in two standard services, the remote file access
(FDAS), and the repository access service (RDAS). These logging
operations allow clients to save one or several event logs in the server, and
require only client authentication, requesting logging permissions.

Chapter 4 - Standardization of services in the Configuration and
support environment

 88

Figure 4.17: Communication between Sink and log destination in case of
database persistence.

Sample execution

In this section, we present a code sample that performs initialization and
logging using the CnaoLog libraries. Figure 4.18 contains the code for a
small sample application, which configures logging through the interface
defined in the CnaoLog library, up until the end of its execution.

This sample application configures several clients for accessing standard
services, such as the RDAS server, FDAS server, and identity provider. The
initialization methods clients related to these services use information
contained in the application’s configuration file. This configuration method
is further detailed in section 4.6. The standard service clients have to be
configured first, because they are required as parameters in the initialization
of the logging service. In this sample, logging is being configured for three
distinct endpoints: local and remote files, as well as the repository database.

The configuration of the logging service uses the builder software pattern.
By doing so, every method of the builder class specifies another
configuration setting, and optional libraries are allowed to define extension
methods to the builder class. In this way, the same builder class is used to
initialize the logging service independently of whether optional libraries are
being used.

The build method finalizes the building process and returns the log
instance. This object can be used to log events with methods such as
“Information” or “Error”. These methods log the events into all the
configured sinks. Finally, because sometimes it is not convenient to inject or
supply the log object to all classes which need to log events, the CLog static
class was designed to hold a reference to the logging object. All logging is
performed via the CLog static class. Before the end of the application
execution, the log is disposed using the DisposeLog method. Disposing the
log object before finalizing is recommended in order to ensure that all logs
are persisted before the applications terminates.

Chapter 4 - Standardization of services in the Configuration and
support environment

 89

class Program
{
 static void Main(string[] args)
 {
 IConfigLoader configLoader = new
ConfigLoaderBuilder().UseCnaoSettings().Build();
 IResourceOwnerIdentityManager authManager = new
CnaoIdentityManager();
 authManager.InitializeFromConfigAsync(configLoader).Wait();
 authManager.AuthenticateClientFromConfigAsync(configLoader).Wait();

 RdasClient rdasClient = RdasClient.GetConnectionAsync(configLoader,
authManager).Result;
 FdasClient fdasRestClient =
FdasClient.GetInstanceFromConfig(configLoader, authManager);

 //Necessary for all
 CLog.Logger = new CnaoSeriogBuilder()
 //Set minimum log level
 .SetMinimumLevelFromConfig(configLoader)
 //Add RDAS sink, optinal
 .EnableSerilogRdasLog(rdasClient, CLogLevel.Information)
 //Add FDAS sink, optional
 .EnableSerilogFdasLog(fdasRestClient, CLogLevel.Information)
 .EnableFileLog("./", 10000000)
 .Build();

 //Todo applifetime
 //...

 CLog.Information("Goodbye, world!");
 CLog.DisposeLog();
 }
}

Figure 4.18: CnaoLog client initialization and usage.

 Configuration file management

We have estimated that there are currently around 60 applications on the
legacy configuration and support environment. Due to the high number of
applications, and the fact that some are only used sporadically, it is difficult
to keep track of each application’s configurations. Originally, the legacy
environment was designed so that that all applications would have a standard
XML configuration file with all application settings. This decision led to
easier application maintenance and configuration in the past. As a result, it
was decided that applications of the new environment would also follow this
requirement.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <Logging>
 <Enabled value="false"/>
 <Fdas>
 <Enabled value="true"/>
 <BatchMaximumSize value="99"/>
 <BatchPeriodSeconds value="14"/>
 <MinimumLogLevel value="Warning"/>
 </Fdas>
 </Logging>
</configuration>

Figure 4.19: Sample app.config configuration file format. Defining the
application logging to the FDAS service.

Chapter 4 - Standardization of services in the Configuration and
support environment

 90

As mentioned previously, each application of the upgraded environment
should contain a single XML configuration file for storing applications
settings. This file should be named “app.config”, or
“ApplicationName.config”. Configuration settings in this file are defined by
an XML node, and its value attribute. A sample configuration file format can
be seen in Figure 4.19.

In the legacy environment, it was the responsibility of the developer to
define the application code to perform the following operations:

1. For each expected configuration setting, look for its name. If
present obtain its value.

2. If the value is expected to be any format other than a string,
convert it to its desired format. If the conversion fails, handle the
exception properly.

3. Implement code for acquiring certain configuration settings only
if other configuration settings are present. For example, if a
setting enabling logging is true, then there is need to find the
value of the setting containing the desired log file location.

During the development of the project, we have noticed that the
application logic necessary to load configuration files of all libraries and
applications developed up to that point did not diverge from the algorithm
presented previously. Moreover, we found that developing the configuration
algorithm was time consuming and error prone. Additionally, it was noted
that the implementation of the step number 3 tended to result in a dependency
graph, where some configuration settings were only required in specific
scenarios. In order to aid the maintenance of these applications, these
dependencies should be well documented, highlighting which settings with
suitable default values could be left empty. It was found that more often than
not, these details were not entirely documented, and thus part of the nuance
in the configuration would be lost.

Therefore, a configuration library was designed with three objectives in
mind:

 Standardizing the loading of configuration settings following the
requirements defined in the product line architecture.

 Providing a faster way for developers to load and read settings
from the configuration file.

 Providing a solution that allows a single point where all logic
behind the configuration setting validation logic could be contained.

The developed solution for these requirements was integrated into the
CnaoApplicationServices library. This library was the designated location
for generic methods used in several configuration and support environment
applications, and previously included a simple configuration setting reading
method.

Chapter 4 - Standardization of services in the Configuration and
support environment

 91

4.6.1 Definition of configuration models

In order to allow developers to specify a set of typed configuration
settings to be read, the concept of configuration model classes was defined.
Configuration models are defined as classes with the following set of
properties:

 Configuration model classes implement the empty IConfigModel,
or IReusableModel interface.

 Each annotated class property defines a configuration setting value
to be read from the configuration file.

 The type of the property defines the desired type of the setting to
be read.

 Path annotations define the XML path which should contain each
configuration setting.

 A loaded configuration model instance is valid only if all required
properties are successfully loaded and parsed.

 Annotations defined by the library can be used to define when each
configuration setting is required.

 Configuration model composition is allowed. A model which is
composed of several sub-models is invalid if any of its sub-models is
invalid.

Figure 4.20 contains a sample configuration model class. As shown in the
figure, every configuration setting has to define the XML address to locate
the configuration setting. As mentioned previously, the configuration
settings are declared as properties. Attributes should be defined in these
properties to specify the location of each setting, and rules to validate the
loaded settings.

Additionally, composition of configuration models can be performed by
object composition, as shown in Figure 4.20. In this example,
GeneralLogConfigurationModel contains another configuration model. As
part of its own validation, if the FdasConf is required, the
FdasLogConfiguration will be loaded and validated as well.

Chapter 4 - Standardization of services in the Configuration and
support environment

 92

internal class GeneralLogConfiguration : IConfigModel
{
 public GeneralLogConfiguration()
 {
 }

 [Required]
 [Location("Logging:Enabled")]
 public bool? Enabled { get; set; }

 [RequiredIf(nameof(Enabled), true)]
 [ValidateObject]
 public FdasLogConfiguration FdasConf { get; set; }
}

internal class FdasLogConfiguration : IConfigModel
{
 …
}

Figure 4.20: Sample configuration model illustrating the composition of
models.

In classes implementing the IConfigModel interface, the path annotations
have to specify an absolute address to find each XML configuration setting.
Alternatively, classes implementing the IReusableModel can define relative
addresses, which will be appended to the absolute address defined by any
configuration model classes that uses them.

4.6.2 Configuration loading

After designing a configuration model, developers can then load the
configuration model during application execution. In order to perform this
task, the ConfigLoader class has been developed. This class is able to load
configuration models by accessing the configuration file, and then validate
the resulting configuration model instances.

The ConfigLoader class should be instantiated using the builder software
design pattern. The builder class, named ConfigLoaderBuilder, is
responsible for providing methods to allow developers to configure and
instantiate the ConfigLoader. While several configuration options have been
defined, future developers of the configuration and support environment are
encouraged to use the UseCnaoSettings method, which provides a default
configuration that follows the recommendations defined in the product line
architecture.

Figure 4.21 contains a short snippet that illustrates the process of
instantiating the ConfigLoader, and then using it to load configuration
settings into a configuration model instance. In this sample, the
ConfigLoader is configured with the instantiated and CNAO settings.
Afterwards the LoadConfiguration method of ConfigLoader instance is
called, with the desired configuration model class to load as an argument.
This configuration model is the one presented in Figure 4.20. The result of
this method is an instance of the ConfigLoadingResult class. This class

Chapter 4 - Standardization of services in the Configuration and
support environment

 93

contains the obtained configuration model as well as the results of its
validation. After the configuration model is loaded, developers should
consult the result object in order to check if the validation was successful,
and if necessary relay any error messages to the user. If the model was loaded
and validated successfully it can then be provided to other classes that
require the configuration settings.

//Instantiate the configuration loader, using builder pattern
ConfigLoader configLoader = new ConfigLoaderBuilder()

.UseCnaoSettings().Build();

//Obtain configuration model
ConfigLoadingResult<GeneralLogConfiguration> configResult =
 configLoader.LoadConfiguration<GeneralLogConfiguration>();

//verify if the validation was successful
if (!configResult.IsValid)
{
 //if not, then log occurrence, or present issues to user
}

//Configuration model is contained inside the result
GeneralLogConfiguration logConfiguration = configResult.Config;

Figure 4.21: Sample snippet for instantiating a ConfigLoader instance, using
the default configurations, and then obtaining all necessary settings from the
configuration file into an instance of the GeneralLogConfiguration class.

 Integration with LabVIEW environment

In the last year of the project, preliminary applications using the
environment’s services started being developed. During this period,
willingness to utilize some services developed for the configuration and s
support environment arose with developers responsible for other
environments. Not long after, initial suggestions were made to the
technological project managers. As a result, a project was approved by the
facility’s management to allow LabVIEW applications of the first level of
the control system to consume the web services of the configuration and
support environment. This project foresees the integration of several
LabVIEW applications with the repository access service.

In this section, we describe the collaboration project for integrating
applications from other environments to the relational data access service.

4.7.1 Relational data access service integration

The CNAO control system is composed of several software applications.
In the past, some LabVIEW applications in the first level required access to
the repository data for a small number of tasks. In order to do so, a server
with repository access was developed. This server would communicate via a
TCP and allow these applications to access some repository operations.

Chapter 4 - Standardization of services in the Configuration and
support environment

 94

Due to the precarious nature of the previously mentioned server, as part
of this project, it was decided to allow certain LabVIEW applications to
communicate with the relational data access service to obtain repository data.
Because the repository access service communicates via RESTful API, a
RESTful API client LabVIEW component was designed by the LabVIEW
development team to communicate this service, named by Query.lvlib.

Because the LabVIEW development team does not handle relational data
often, their members are generally unfamiliar with the SQL language. In the
past, LabVIEW developers would request a repository developer to define
the SQL query, and then the query would be coded into the LabVIEW
application, and sent to the custom-made TCP repository server. In order to
streamline the process, while still not requiring LabVIEW developers to be
proficient with SQL, a database for storing predefined queries to be used by
these LabVIEW applications was inserted into the repository. The inserted
table and its columns are presented in Figure 4.22.

It was decided that in order for LabVIEW developers to allow their
applications to request a new relational query, they would need to contact
the configuration and support environment developers and request the
development and addition of a new SQL query to the DATABASE_QUERY
table. They will have to inform a developer of the configuration and support
environment team which repository information their application requires.
Afterwards, they will have to provide a document with a future name for the
query, a description of its uses, and which parts of the query should be
defined by parameters. The configuration and support developer will then
design the required query, and insert it in the repository.

Figure 4.22: Repository table containing database queries for LabVIEW
developers.

At run time, the LabVIEW application first requests the appropriate query
from the RDAS server by its name. The application should then replace all
escape sequences with the parameter values, and then use the library to
request the execution of the query, passing along the appropriate access
token. Figure 4.23 shows part of the Query.lvlib library, used to
communicate with the RDAS server, using the HTTP protocol.

Chapter 4 - Standardization of services in the Configuration and
support environment

 95

Figure 4.23: Illustration of LabVIEW code of the Query.lvlib [96].

As of the time of writing, the updated LabVIEW applications are in
development phase. They do not yet communicate with the configuration and
support environment’s identity provider, and thus cannot obtain access
tokens. Because of this, the RDAS server applications are communicating
with uses development configurations, accessing the development
repository, and not requiring access tokens for every operation [96]. Once
the LabVIEW development team updates the Query.lvliv library to perform
the role of an OpenID Connect client, these LabVIEW applications will be
able to perform request for client access tokens.

Client credentials for the LabVIEW applications have already been added
to the development repository tables that store the environment’s identity
provider configurations. Once the LabVIEW applications are finalized, they
will be able to request access tokens with their client credentials, allowing
them to access the repository data necessary to operate.

Chapter 5 - Implementing the basis of the product line architecture

 96

Chapter 5

5 Implementing the basis of the
product line architecture

 Introduction

Chapter 3 first introduced the requirement analysis for the upgraded
configuration and support environment. Later, the designed product line
architecture was presented, which aims at guiding the development of the
next generation of control system applications in this environment.

In order to develop the applications for the upgraded configuration and
support environment, software developers will have to follow the decisions
and tactics outlined in the product-line architecture. As a result of this work,
these applications do not have to be developed from the ground up, since the
reusable software components presented in the Chapter 4 can be used. These
components implement common application tasks, but are in general
agnostic to the architecture of any application using them. In order to aid the
implementation of the architectural design outlined in the product-line
architecture a series of framework libraries were developed.

These frameworks contain code that provides a base implementation of
the architectural patterns chosen for this environment. In addition, wizard
generators were developed to produce customized skeleton applications that
implement the product architecture. Each wizard is responsible for building
one family of applications and uses one of the frameworks developed.

In section 5.2, we detail the decision process that led to the design of the
frameworks and wizards. Later, in section 5.3, we present the design of the
frameworks, and the classes shared between them. Afterwards, in section
5.4, we present the development and usage of the wizard generators.

This section had a different distribution of work than the rest of the thesis
project. The design of the product-line architecture, standard services, and
certification analysis was spearheaded by the PhD candidate. For these parts
of the project, the PhD candidate would seek advice from his supervisor over
technical matters, architectural concerns, and legacy compatibility.
Periodically, the PhD candidate would submit the progress made, and
incorporate feedback from his supervisor at CNAO, Eng. Luigi Casalegno.

Chapter 5 - Implementing the basis of the product line architecture

 97

For the implementation of the wizard and framework, the fellow was
tasked in the beginning of the project with developing sample applications
using several technologies and libraries. These applications were developed
with the objective of evaluating the development environments and
commercial libraries.

Afterwards, the fellow’s supervisor, Eng. Luigi Casalegno, developed the
initial versions of the framework libraries and wizard, including preliminary
documentation, using the deliverables of the previous phase. It was during
this phase that the great majority of ‘out-of-the-box’ configurable visual
components were developed.

The PhD candidate was then tasked with finalizing certain parts of the
wizard and framework. This phase consisted of integrating the developed
standard services into the framework elements, developing the initialization
process of these services.

Finally, both the PhD candidate and his supervisor worked in the last
phase of the development of the frameworks and wizard, which consisted of
iterating over the design, developing additional features deemed necessary.

 From architecture to implementation

The product line architecture described several reusable core components
designed to perform operations required by applications in this environment.
The design and development of these components was presented in detail in
chapter 4. Some of these components take form of services, following a
client-server communication approach, while others were designed as
libraries.

Several of the design choices specified in the product line architecture
cannot be translated into reusable components. For example, the design tactic
of seeking a clear separation of application layers is a convention that has to
be maintained by developers. Reusable components packaged libraries can
follow this design by only requesting services from other layers through their
interface. However, this design will only persist if final developer also
maintains this separation in his code. Accordingly, design choices are
translated from the architecture to the application by promoting or enforcing
the use of a set of software patterns.

Another way of translating the architecture’s decisions into the
environment applications is through the usage of software frameworks.
Software frameworks are similar to libraries in the sense that both are
software code, intended to be re-used in the applications. However, software
frameworks are difficult to define. A common definition of a software
framework, as cited by Johnson [97], is that a framework is a “reusable
design of all or part of a system that is represented by a set of abstract classes,
and the way their instances interact” [97]. An interesting aspect of software
frameworks is that they allow the preservation of a set of defined interfaces
over several applications by providing extension points to applications,
where these will implement their variations [98]. A framework often

Chapter 5 - Implementing the basis of the product line architecture

 98

implements several design decisions and demands that applications adapt to
them [97].

In this regard, frameworks constrain the architecture of final applications,
as they are often only providing extensions to a previously developed design.
In return they serve several purposes, such as providing customizable
implementations to software patterns, and allowing for software reuse. In our
project, we looked into the constraints that frameworks put in the
application’s architecture as a benefit rather than a limitation. This is because
the configuration and support environment has a set of operations and usage
scenarios defined as its scope, and in this project there is no interest in
developing applications outside of this scope. By designing frameworks
which implement a base version of several architectural patterns required by
the product line architecture, such as dependency injection and MVVM,
developers are constrained to use these patterns in the applications.

The scope of a product line architecture is defined by Bass et al. [56] as a
statement of which systems should be built using a given product line. When
defining the scope of the configuration and support environment, two distinct
application families are obtained. The first family is composed of the
configuration and support applications that manage the data in the control
system repository. These applications are tasked with creating or editing
configuration data and validating the information already present. The
second family was composed of specialized control applications to monitor
and interact with the control system.

In order to implement design choices in the product line architecture, and
further reusable code, a framework was developed for each application
family. These frameworks implement several design decisions that form the
core of the applications, such as initialization of service clients, usage of
dependency injection, organization into software tiers, and user interface
navigation.

 Framework2020 design and development

Figure 5.1, initially presented in Chapter 3, displays the software elements

surrounded by the red line, which are defined by the application’s
framework. The framework’s role in the application is the implementation
of several base software elements to be extended by the application, as well
as performing the initialization of the standard services.

Chapter 5 - Implementing the basis of the product line architecture

 99

Figure 5.1: Class diagram of a front-end configuration and support
application, following the proposed product line architecture.

Currently, there are two framework libraries, with the AppBase2020
framework being the framework supporting data management applications.
This framework depends on two libraries, the Dialogs2020 library, and the
Framework2020Core library. As noted previously, each of the application
families is supported by one framework. However, these frameworks have
much more similarities than differences. Currently, the control applications
framework, named AppBase2020Control, extends the data management
framework.

Figure 5.2 illustrates the framework and supporting libraries dependency
graph.

Chapter 5 - Implementing the basis of the product line architecture

 100

Figure 5.2: Frameworks and their dependencies. As can be seen, the
AppBase2020Control framework is an extension of the AppBase2020.

The two frameworks share most of their code, and both also follow the
product-line architecture, however they diverge in the initialization process,
and provide different sets of configurable visual components. The data
management application framework contains a large amount of configurable
grid data visualization and editing forms. Meanwhile, the control application
framework extends the data management with graph monitoring panels and
OPC-UA interaction forms.

The base library of the framework is the Framework2020Core, which all
others depend on, directly or indirectly. This library performs services for
the framework library, such as initializing services, and defining constant
values as well as reusable support functions. Additionally, the
Framework2020Core defines several interfaces that have to be implemented
by the frameworks.

The Dialogs2020 library defines several presentation layer components
that are used in pre-defined framework pages. These pop-up pagers are often
used in several framework pages and perform tasks such as provide a
message to the user, or allow users to pick specify a date, a file to upload, or
where to save a new file. These dialog pages do not have complex underlying
logic, instead they were designed to direct the user to provide several types
of input values.

The AppBase2020 framework is designed to implement several of the
software elements necessary for implementing the product line architecture,

Chapter 5 - Implementing the basis of the product line architecture

 101

such as the base classes for several MVVM classes, as well as the predefined
configurable pages. Additionally, AppBase2020 is responsible for
implementing the FrameworkApplication class, which is the entry point of
the framework, and initializes the services and framework classes. Finally,
AppBase2020 also defines the usage of dependency injection, and provides
extension points for the developer to add their dependencies and resolutions.

While the AppBase2020 framework is to be used by repository
management applications, the AppBase2020Control framework is used by
control applications. The control applications wizard uses the extensions
defined in this framework library when generating skeleton control
applications. Control applications have access to several configurable
control pages, which are used to monitor equipment values present in the
third level of the control system and display them graphically.

 Application wizards

The Framework2020 wizards are Visual Studio extensions that allow the
creation of customized skeleton applications that follow the architecture
defined for applications of the configuration and support environment.

The wizards generate applications using the AppBase2020 libraries.
Additionally, the wizards allow developers to customize skeleton
applications in the following manners:

 Define the navigation method of the application.

 Enable or disable standard functionality forms. Forms such as
those for user authentication, and application configuration can be
enabled or disabled using the wizard.

 Configure the presence and usage of standard services.

 Insert and arrange pre-defined configurable pages.

5.4.1 Generating skeleton applications with a wizard

In this section, we present the development process of a configuration and
support environment application using the Framework2020 wizards. In this
section, a brief overview of the installation requirements for the wizards is
mentioned. Then, a more detailed walkthrough of the definition and
configuration of a data management application is presented. Later, we show
the AddTopic component of the wizard, which allows developers to add
additional pages to an application previously created with the wizard.
Finally, since we only show the development process of a data management
application, we will discuss the similarities and differences to the usage of
the configuration application wizard.

In order to develop a new environment application using the wizards,
developers need to previously have installed the Visual Studio extension that
contains the wizard application templates. Figure 5.3 illustrates the project
creation screen of the Visual Studio 2017 IDE, showing the Data

Chapter 5 - Implementing the basis of the product line architecture

 102

Management template. When the user selects the creation of a C# application
project with using one of the wizard templates, the corresponding wizard
forms are shown.

Figure 5.3: The project creation screen of Visual Studio 2017, displaying
the Data Management application template. Once this template is used, the

Data Management wizard is invoked.

After selecting the project template, the developer must also select a
project name and destination folder. Once this is done, the first wizard form
opens, allowing the developer to choose the navigation method of the final
applications. The currently defined options for navigation are the following:

 Simple project. A one-page project without navigation
capabilities.

 Tabbed project. A project with multiple pages, which are laid in a
flat hierarchy. Each page can navigate from any other. The name of
each tabbed page is displayed at the top side of the screen. Clicking on
one of the tabs opens the page.

 Epics project. The Epics project contains the most complex
navigation system. The navigation of Epics project contains several
page groups on the left side of the screen. Each page group can contain
several pages. Once users click the page at the left side bar, the page
opens as a tabbed page. Multiple tabbed can be open at once on the top
of the screen, but only one will be displayed at each time.

Figure 5.4 presents the wizards navigation selection form. This is the first
of many wizard forms, and it allows developers to select the navigation of
the project. While the MasterDetail project type is currently presented as an
option in the figure, it has been decided that the MasterDetail navigation type
will be removed in the later version of the wizard generator.

Chapter 5 - Implementing the basis of the product line architecture

 103

Figure 5.4: Navigation selection form of the data management application
wizard, presenting the possible navigation options for applications. Currently
the third option, Master-Detail, is scheduled to be removed in the next
version.

Afterwards, developers will be presented with the general configuration
form. The general configuration form presents to the developer several
optional features that may be included in the application, such as settings and
log-in pages, as well as choosing the targeted platforms. This configuration
form also provides access to the wizard’s advanced configuration form.
Figure 5.5 contains a screen capture displaying the wizard’s general
configuration form. If the developer does not wish to change any advanced
configuration, pressing the Ok button ends the generation and finalizes the
skeleton application.

Figure 5.5: Data management wizard’s general configuration form.

The advanced configuration form is opened if the developer choses the
Advanced button in the general configuration form. This form is designed

Chapter 5 - Implementing the basis of the product line architecture

 104

allow the developers to configure the usage of standard services and other
support libraries. Figure 5.6 contains a screen capture of the advanced
configuration form. This form allows developers to select which standard
services or support libraries will be used, as well as provide their
configurations. In the screen capture, a configuration tab is present for each
of the client libraries presented in Chapter 4.

While in theory, a configuration and support environment application may
connect to several FDAS services, generally these applications only connect
to a single one. Therefore, the remote file configuration tab only allows
developers to specify the location of one service. Currently, the OPC-UA
configuration tab is still not finalized, and thus, OPC-UA connections to
third level services must be defined by developers after the skeleton
application is generated. It is expected that the next version of the generator
will support configuring a single OPC-UA connection.

Several configuration settings of the advanced configuration form are
interlinked. For example, the remote file log option presented in Figure 5.6
would be grayed out and become unable to be selected if FDAS access was
disabled in the Remote Files tab.

Figure 5.6: Data management wizard’s advanced configuration form.

Once the developer finishes configuring the skeleton application, he or se
should finish the generation process by pressing the Ok button in the general
configuration form. Once the generator has finalized, the developer will be
presented the generated skeleton application. At this point, the generated
skeleton application will contain a functional login page, if such page was
selected. Skeleton applications without a login form will directly present an
empty main page instead. Figure 5.7 contains a screen capture of the solution

Chapter 5 - Implementing the basis of the product line architecture

 105

files generated by the wizard. As shown in this figure, two projects were
created, a multi-platform library, named TestAppThesis, which is imported
by the TestAppThesis.UWP windows application. Skeleton applications with
navigation supporting multiple pages will display no additional pages at this
time.

Figure 5.7: Finalized skeleton application that was generated with the data
management application wizard.

Regarding the creation of the skeleton application, the data management
application wizard and control application wizard are almost identical. The
main difference until this point is that data management applications will use
the AppBase2020 framework, while control applications will use the
AppBaseControl2020 framework.

5.4.2 Adding pages into a skeleton application

After a skeleton application is created, it contains only the main page
(besides the login and configuration optimal pages). Following the
guidelines defined in the product line architecture, the developer must only
create new pages through the AddTopic template.

When adding new files into projects, the IDE allows developers to select
many file templates, such as code files (classes, interfaces, enumeration
files), or other files (XML, JSON, etc). The wizard extention adds a new file
template type named “AddTopic”. The “AddTopic” template allows
developers to select a page type from a set of pre-defined pages, configure
it, and add it to the project.

Chapter 5 - Implementing the basis of the product line architecture

 106

All pre-defined pages except for the blank page are configurable. The
blank page creates an empty page, without any logic associated to it, so that
developers can define the visual elements, as well as domain layer code for
the page. For all other pre-defined pages, developers are not expected to
change their code once they are generated by the “AddTopic” wizard
component. The configurable pre-defined pages are generated with the
supporting code necessary for their operation. For example, configurable
pages that manage repository data will use the RDAS library classes, which
are initialized by the AppBase2020 framework. Because the configurable
page’s classes are defined in the framework, if the configurable page is
required to obtain data, filter it, and manage insertions and deletions, all code
will be added to the project, without any other developer action.

For example, Figure 5.8 presents the configuration of the client
application management form. In the figure, the table containing client
information is being configured to appear in the top part of the form, while
several detail grids are being set to allow for the management of the scopes,
secrets, and claims accessible to clients.

Figure 5.8: Generation of the skeleton application page using the AddTopic
Template.

Figure 5.8 contains a screen capture of the “AddTopic” template when
applied to an application using the Epic template navigation. The developer
must define the page sets, and then add one page to a page set. This process
defines how this page will be navigated to. Afterwards, developers choose
the template of the page. Each page template has its own configuration
parameters. Once all configuration parameters are set, the developer selects
the “Add Template” option, and the new page, and all necessary support
classes will be added to the project.

Chapter 5 - Implementing the basis of the product line architecture

 107

Figure 5.9 contains the project after the addition of a data grid page which
contains three detail grids. The main page and each one of its detail sub-
pages display data from a single table or view of the repository. As can be
seen, files containing MVVM pattern classes for the multi-detail data grid
page have been created (all files except PropertySettings.xaml and App.xaml
have been added).

Figure 5.9: Project after the addition of a configurable multi-detail data grid.

The most noticeable difference between the data management application
wizard and the control application wizard is the selection of pre-defined
configurable pages available to each wizard. While the data management
wizard only contains pre-defined pages related to accessing and managing
the CNAO repository, the control wizard contains pre-defined pages for
accessing remote files, and to graph data received from an OPC-UA server.
Therefore, by selecting the appropriate wizard, adding and configuring all
predefined pages necessary, and adding and modifying several blank pages,
developers of the configuration and support environment are able to develop
applications for the environment.

Chapter 6 - Towards certification of control system applications

 108

Chapter 6

6 Towards certification of control
system applications

The CNAO facility performs hadrontherapy, hence it is governed by
medical regulation. As the facility maintains a particle accelerator for the
treatment of cancer, several safety standards have to be complied at various
levels of the accelerator. In this work, however, we will approach only the
safety standards related to medical software.

The control system software is classified as medical software, therefore,
it has to comply with medical software standards. All software that has been
developed with the intent of incorporation into a medical device is classified
as medical device software [99][100]. As a consequence, the accelerator
control system follows the regulatory standards for medical software. Under
the regulatory environment for medical software in member states of
European Union, certification is accredited on the basis of complying with
the development process defined in several accepted standards. These
standards are the IEC 62304+Amendment1[99], [100], ISO 14971[101], and
ISO 13485[102].

The IEC 62304 standard, and its 2016 amendment, define a framework
composed of processes to be performed during the lifecycle of the medical
software, from development to product maintenance [99]. This standard has
been adopted by the member states of the European Union, as well as by the
American FDA agency. In these standards processes are composed of tasks
that span from the software’s development planning into the software
release, and continuing through the maintenance stage. Figure 6.1 illustrates
the activities required for medical software certification. This project
focused on strategies for compliance with the lifecycle processes defined in
the IEC 62304.

Chapter 6 - Towards certification of control system applications

 109

Figure 6.1: Applicable activities for complying with the IEC
62304/Amd2016 and IEC 14971 standards up until the software release.
Information from [99].

Medical software is graded in a system as safety class A, B, or C,
depending on whether it can cause harm to patients or operators. Under this
system, class A software represents no risk of harm to patients or operators
[99]. The software’s classification determines the certification activities that
have to be performed, with a large impact on the amount of verification and
risk management activities necessary to be carried out during the
certification process [103]. During the requirements analysis for the
configuration and support environment, it was noted that currently existing
applications of the configuration and support environment were certified
under the safety class A. This was because applications in this environment
do not directly interface with the accelerator, and that several software and
hardware safety mechanisms exist to assure the safe treatment outside the
environment.

Since certification is based around complying with the processes defined
in the certification standards, applications that share software components
are still required to perform the certification tasks independently. Rushby
[104] examines the notion of modular certification in the aviation software

Chapter 6 - Towards certification of control system applications

 110

domain, where software elements certified in isolation and then their
integration would be certified using only the modules properties in isolation.
Rushby notes that such modular certification is unfeasible currently, among
other reasons, because of the way failures may propagate [104].

In the literature, several authors relate the experiences and lessons from
the compliance with the software lifecycle processes. However, many of
these works focus on the processes themselves, as well as the quality
assurance procedures, such as [105][106]. Meanwhile, other works propose
architecture strategies for improving the validation and certification efforts
of critical software that reuses components [107], [108]. Among these, a
noteworthy work by Land et al. [109] compiled and listed several currently
used industry practices for enabling component reuse.

When developing the product-line architecture for configuration and
support applications, we attempted to apply principles and strategies
recommended by the certification standards, as well as previous academic
works. Because all software applications of the legacy configuration and
support environment has been classified as Class A, which is the lowest risk
class, this work focuses on efficient compliance with the development
lifecycle processes (specified by IEC 62304).

Section 6.1 presents several architectural choices present in the product-
line architecture that were interned to facilitate the certification process.
Afterwards, section 6.2 discusses each choice, highlighting their
justifications, as well as the expected results.

 Designing towards reusable certification

The aim of this phase of the project was to evaluate and steer the
development of the new configuration and support environment tools
towards aiding the future certification process. During the design of the
upgraded environment, two tactics were implemented with the objective of
helping the certification. Firstly, reusable software elements that are to be
integrated into the future environment applications were defined as reusable
components. Secondly, we have defined a product-line architecture
containing several patterns aimed at emphasizing quality attributes such as
testability.

Component based software engineering is a field of study that attempts to
promote software reuse through applications which are developed with
components. In component-based software engineering, a component is
defined by Councill et al. [110] as a software element that can be deployed
and used in applications without requiring modification, while also fulfilling
certain standards of interaction and composition. During this project, we
developed the reusable software elements, which are presented in chapter 4,
while trying to emphasize several concepts of component-based
development. Namely, by focusing on a defined interface, designed by the
project, that each software element adheres to, and additional user

Chapter 6 - Towards certification of control system applications

 111

documentation provided for each library, to inform application developers
of any characteristic not present in the interface.

As part of this project, the following software operations were designed
as reusable components.

• Communication with other control system devices, such as the
repository database, filesystem access, and communication with third level
control system equipment, via the OPC-UA protocol. The libraries
performing these tasks have been described in section 4.1 to 4.3.

• User and client authentication and authorization using the OpenID
Connect standard [78], as explained in section 4.4.

• Other operations such as system logging and configuration, presented
in section 4.5 and 4.6.

The design decisions in the application architecture heavily impacts the
quality attributes of the final application [56]. A quality attribute, as
described by Bass et al. [56] as “a measurable or testable property of a system
that is used to indicate how well the system satisfies the needs of its
stakeholders”, such as testability, and scalability.

In this project, we decided to focus on the testability quality attribute in
the architecture. In order to achieve this, the product line architecture defines
several patterns and design decisions to enforce the separation of application
layers, and to encourage loose coupling of software elements. For example,
the product line architecture describes each software layer and several
software libraries that should be used in each layer.

The Presentation Layer follows the MVVM [111] software pattern. The
MVVM pattern decouples presentation layer code from domain classes, and
allows model and view model classes to be fully unit tested [111], thus aiding
the verification process.

We have developed the AppBase2020 set of frameworks, which are
described in detail in Section 5.3, to support the product line architecture.
The frameworks provide base classes for the MVVM elements and perform
initialization of the standard services. This is done to assist developer in
complying with the reference architecture, as well as segregate the
application domain classes from the services used by them.

In order to make the applications development easier and more reliable,
developers are provided with an out-of-the-box base application, by a
configurable wizard generator, which is explained in detail in Section 5.4.

 Discussion

After presenting the decisions taken in order to assist the medical software
certification of the future configuration and support environment
applications, we discuss the expected impact of these decisions. Whenever

Chapter 6 - Towards certification of control system applications

 112

possible, we attempt to trace arguments given to recommendations present
in the literature, or in the standards themselves3.

In this section, we first discuss the impact of the component based design
choices in the certification process. Later, we categorize and argue the
expected benefits of designing final applications according to a product line
architecture.

The IEC 62304/Amd1 certification standard emphasizes that, when
defining the software architecture, strategies for component segregation
should be used to avoid unsafe interactions between them. Additionally,
when credible arguments can be given to justify that the architecture
separates components into separate software items in a correct manner, these
software items may receive a different software safety class from the system
[99]. The certification process has different levels of granularity depending
on safety class, and some certification activities may even not be required
for low safety levels [103]. By implementing commonly used software
operations into reusable components, these can be implemented using
principles of component based engineering as software units, and are often
of the lowest safety class (class A). Thus, several certification tasks are not
mandatory for these units, such as the task 5.4.2, entitled “Develop detailed
design for each software unit” [99]. Additionally, we argue that certification
artefacts produced from developing and certifying reusable components can
be used as the basis for their counterparts in the final application, such as
unit-test verification (activity 5.5), and establishment of a software
maintenance plan (activity 6.1).

From our review of the certification standards, the separation of
applications into several testable components has no effect on which system
of system wide tasks are required. Because the scope of most certification
tasks is the software system as a whole, the benefits of the loose coupling,
component based approach are limited to a minority of certification tasks.

Regarding the usage of a product line architecture, we argue that its
adoption and enforcement reduces effort required for certification. The
importance of deep knowledge of the system’s architecture in the
certification process is highlighted several times, such as in the annex B of
the IEC 62304 standard, where it is stated that, concerning software safety
classification, risks associated with each software item can only be
determined once the software architecture “defines the role of the software
item in terms of its purpose and its interfaces with other software and
hardware items” [99]. Furthermore, in the context of the activity 7.1, which
is the analysis of software contributing to hazard situations process activity,
the standard guidelines point out that hazardous situations can only be fully
identified once the software architecture has been designed, and, only then,
proposed risk control measures can be completely evaluated [99].

3 This chapter is based on the conference proceedings published entitled “Certification of
Component-Based Particle Therapy Software” [112], written by the authors as part of
this work.

Chapter 6 - Towards certification of control system applications

 113

By defining the product line architecture and enforcing it during the
design of applications, developers have access to a ‘used-and-tested’
architecture, accompanied by several internal documents explaining its
usage, interaction between components and validation procedures. As
developers design configuration and support environment applications using
the enforced general architecture, the arguments provided to justify the safe
interaction between developer modules and reusable components should be
written using artefacts from the product line documentation and previous
applications as basis [112].

Chapter 7 - Results and evaluation

 114

Chapter 7

7 Results and evaluation

 Introduction

The development of final applications to be used in CNAO’s control
system is not the focus of this work, however, the development of pilot
applications has several benefits. Firstly, pilot applications can showcase the
capabilities of the environment, and thus guide and motivate developers.
Secondly, by developing pilot applications, we are able to test the tools and
libraries developed, allowing us to improve them based on the knowledge
obtained.

Section 7.2.1 presents the main pilot application developed during this
work. This application, generated with the data management application
wizard, allows repository administrators to manage repository data which is
used to configure the environment’s identity provider. Additionally, the early
results of the LabVIEW integration project are described in section 7.2.2,
alongside its pilot application, named EasyLoader.

Later, in section 7.3, we evaluate the capabilities of the upgraded
configuration and support environment in relation to the legacy environment.
In this evaluation, we analyze the added features, and their impact in
facility’s control system. Afterwards, we evaluate each component
individually, analyzing the effects of the design decisions.

 Pilot applications

7.2.1 Security configuration application

A pilot configuration and support environment application was developed
as part of this work. During this work, a large amount of applications was
developed, such as prototype applications for testing architecture strategies
presented in Section 3.3, and executable tools for aiding the development
process, such as the RDAS class generator presented in Section 4.1.5. The
pilot application differs from the previously mentioned application for two

Chapter 7 - Results and evaluation

 115

reasons: Firstly, the pilot application has a different audience, as it is to be
used by control system operators. Secondly, the pilot application fully
follows the product line architecture requirements, and therefore consumes
the services developed, and is originally generated by the wizard generator.

In addition to serving its primary purpose in the hands of control system
operators, the pilot application is intended to serve as an example application
for future developers of the configuration and support environment. The pilot
application, named “CNAO OIDConfig”, is a configuration application that
allows control system administrators to define protected resources and set
user authorization to the protected resources in the repository. This
information is later loaded by the CNAO identity provider (see Section
4.4.3).

Figure 7.1: Generation of the skeleton application for CNAO OIDConfig
displaying selection of the fields to be displayed in the selection form.

The CNAO OIDConfig application was generated with the Data
Management application wizard (presented in Section 5.4). The Data
Management wizard allows for the insertion of several configurable data
management forms, which were extensively used. Figure 7.1 illustrates the
design of the client management form of the application, where the client
fields to be displayed to users were chosen. The usage of configurable multi-
grid edit forms allows developers to manage data of several related database
tables in the same form.

After the skeleton application was generated, several features were added
to the generated code in order to finalize the application. Namely, single
instance edit forms were added to the application in the previously blank
sections, one of each primary entity. Additionally, since a test version of the

Chapter 7 - Results and evaluation

 116

generator was used, a few alterations to the generated application are still
required for bug-fixing.

Figure 7.2: CNAO OIDConfig login page.

In the final application, the initial page presented to users is the Login
page, illustrated in Figure 7.2. Because the application requires access to the
repository, only users with permission to manage repository data are able to
proceed. In addition, the Login page displays the authorization scopes that
the application accesses on behalf of the user, as well as the status of the
services it depends on.

Chapter 7 - Results and evaluation

 117

Figure 7.3: CNAO OIDConfig’s navigation form.

 Figure 7.3 displays the application with an open navigation tab, allowing
users to navigate to data management forms for users, clients, and protected
resources. In the figure, the protected resource selection form is present,
although greyed out. The selection form presents a read only grid containing
the currently configured protected resources, allowing the operator to select
which one to edit. Figure 7.4 illustrates the edition form of a protected
resource, which is accessed from the navigation form. In the protected
resource management form, the operator can edit the protected resource’s
data. This form also allows users to navigate between the managed resources
by selecting the navigation arrows. In the lower half of this form, the grid
displays and allows the maintenance of all the scopes of the currently
selected resource. It is also possible for operators to, by selecting the
appropriate tab, set the grid to display instead the resource secrets.

Finally, the CNAO OIDConfig application logs several events to the
repository, as well as to a remote device, using the RDAS and FDAS service
respectively.

Chapter 7 - Results and evaluation

 118

Figure 7.4: CNAO OIDConfig protected resource management form.

7.2.2 Integration with LabVIEW: EasyLoader pilot application

In this section, we present the preliminary results of the integration with
the LabVIEW environment project. This project was spearheaded by control
system developers of the LabVIEW environment, aided by the PhD
candidate and the PhD candidate’s supervisor. The goal of this project was
to integrate the standard services developed in this work, allowing them to
be consumed by LabVIEW applications of the upper levels of the control
system.

The current scope of the project so far is the integration of the repository
access service, which is the RDAS server. The details of this project have
been described in Section 4.7. As part of the integration project, the
Query.lvlib LabVIEW library was developed, which interacts with the
RDAS server via HTTP protocol, and allows applications to request a pre-
defined set of parametrized queries to be executed.

After the development and testing of the Query.lvlib library, the
LabVIEW environment developers can use the library in newly developed
applications for the facility’s control system. In this section, we present the
first of such applications to be developed, named EasyLoader. First, we
describe the context and objectives of the EasyLoader application, which are
to be used in the accelerator’s daily quality assurance procedure. Later we
present the user interface of the application.

Chapter 7 - Results and evaluation

 119

EasyLoader – Context and usage

The EasyLoader application is used as part of the accelerator’s beam
quality assurance procedures, when the geometric characteristics of the
accelerator beam are no longer adequate. A procedure called beam steering
is performed daily during the quality assurance tests of the accelerator. This
procedure calculates the geometric characteristics of the beam produced by
the accelerator and evaluates whether the beam meets the requirements for
treatment of patients. In CNAO, the geometry of the produced beam varies
over time, mostly due to environmental conditions effects on the accelerator
components [96].

If the beam characteristics are less than desirable, the geometry calculated
by the steering procedure is used by correction calculation software
developed by CNAO’s optical physicists. This software calculates the
necessary corrections to be applied to the accelerator’s magnets in order to
return the beam geometry to the desired parameters. The correction
calculation software’s output is a XLS file containing the corrections to be
applied to the equipment, which are named setpoints [96].

In the initial operation of the control system, the files containing the new
setpoints were manually transferred by operators into the destination
equipment using the file transfer protocol (FTP). Later, additional features
were desired, such as keeping a record of all previous setpoints used, the
ability to detect and recover transfer errors, and rollback features. In order to
achieve this, the initial version of the Easy Loader application was designed.

The EasyLoader application was then developed to provide an interactive,
graphical application for operators to obtain the XLS files, and transfer them
to power supply controllers, while keeping track of changes in the control
system’s repository. The application obtains the needed XLS files through a
shared folder in a remote network drive, which is accessible to several
workstations. EasyLoader then accesses the power supply controllers that
require new setpoint values through a custom protocol on top of a TPC-IP
connection. Finally, Easy Loader accesses the repository through the
Query.lvlib library, which communicates with the RDAS server. An
allocation view that maps each software component into its respective
control system equipment is presented in Figure 7.5 [96].

Chapter 7 - Results and evaluation

 120

Figure 7.5: Diagram illustrating Easy Loader application as well as the
control system components it communicates with. Extracted from [96].

The EasyLoader application can be launched by control system operators
from the control room’s workstations. The user interface of the application
is displayed in Figure 7.6. The user interface has been designed to minimize
the available number of actions that must be performed by control system
operators. By doing so, the LabVIEW development group aimed at reducing
the time to perform the correction upload, as well as reducing the probability
of operator error [96].

Chapter 7 - Results and evaluation

 121

Figure 7.6: EasyLoader user interface.

Because all the operations performed are saved in the repository and in a
log file, the operator can later review the procedures performed and rollback
the steering procedure if the procedure does not produce a desirable result.

The EasyLoader application requests two queries types to the repository
via the RDAS server, which have been developed by the configuration and
support environment developers, in the process explained Section 4.4.6.

 Evaluation

In this section, we evaluate the configuration and support environment in
comparison to the legacy environment. First, we evaluate the individual
components developed during this work, which are the services, libraries,
and tools. In cases where these components have replaced previous ones
from the legacy environment, we evaluate them in comparison to their legacy
counterparts. Later, the evaluation scope broadens to the environment itself.
This evaluation compares the newly available features developed for
applications of the environment, and how these features impact the control
system. Additionally, we present our estimation of the impact on several
quality attributes, based on the design tactics defined in the product line
architecture.

Chapter 7 - Results and evaluation

 122

7.3.1 Component evaluation

The majority of the time allocated for this project was spent designing and
developing several software components to be used by several applications
of the upgraded environment. These reusable components include several
web services, libraries, and development tools.

In cases where the scope of the newly developed components was
identical or constitute an extension of those of their legacy counterpart,
comparisons are made taking account any additional features, as well as
changes in the quality attributes of the developed components. For those
components which were not designed based on a legacy counterpart, and thus
added new features to applications of the environment, we instead evaluate
them based on the impact of these features.

RDAS

The repository data access service, which is composed of the RDAS
server and client, performs a similar role as the previous repository access
application library. The main difference is that the previous solution was
implemented as an application library, and so, all environment applications
were accessing the repository by itself. Previously, these applications would
have to be given the access credentials to the repository. Additionally, only
applications developed in the software programing environment targeted by
the library (C# desktop applications, running on top of the .Net Framework
CLI) could access the repository.

The new RDAS server allows all HTTP enabled CNAO applications to
access the repository, provided they have the authorization to do so. While
applications in the upgraded environment should use RDAS client library to
access the RDAS service, any application can access the service via the
HTTP protocol. This has been shown in the LabVIEW integration project,
where LabVIEW applications are being allowed to access the repository via
the RDAS service.

Using the RDAS client library, applications can now access the repository
using object-oriented models due to the developed ORM features.
Previously, the repository access library returned generic matrix objects
results, which then had to be cast into the correct types.

Previously, as mentioned in section 4.1, the SIprod.DataComponent
library performed presentation layer operations. By not depending on the
presentation layer, developers can more easily unit test domain layer
application classes. Therefore, the usage of the RDAS library over the legacy
repository access library should improve the testability and maintainability
of the environment’s application.

FDAS

The FDAS service was developed due to the incompatibility with the
legacy solution for file sharing with mobile devices, which relied on remote

Chapter 7 - Results and evaluation

 123

drives and the FTP protocol. The main advantage of the FDAS service over
the legacy solution is the greater degree of control allowed to developers
over the files exposed and permissions required. The FDAS service relegates
client authorization to the Identity Provider, which can check for application
as well as user permissions.

Additionally, because the API to access and expose remote files is now
owned and maintained by CNAO, the control system, it can be maintained
according to the needs of the facility.

Identity Provider

There were several changes in authentication and authorization in the
environment upgrade. Previously, authentication was performed by the
application itself, which evaluated the user’s credentials through CNAO’s
LDAP service. In the upgraded environment, the process is no longer
performed by the applications, as resource providers require access tokens
signed by the identity provider to be delivered by clients. If the resource
providers did not verify the user’s authentication, then other applications
inside the local network could maliciously access these resources without
permission.

In the upgraded environment, client and user permissions are set in the
repository. Therefore, developers are no longer required to decide the
permissions of their applications during development, as these are set in the
repository by a control system administrator. This allows administrators to
change client permissions without needing to perform updates to the
applications.

By employing an identity provider to perform authentication and
authorization, the control system becomes more complex. If the identity
provider fails, the environment’s applications will no longer be able to access
resources until the identity provider is restored. However, by centralizing
this operation, the identity provider can be made to log every resource
authorization request. In order to improve the reliability issues caused by
introducing a centralized component that performs access control, several
tactics can be implemented in the future, such as redundancy. Currently,
several control system components use redundancy techniques to improve
their reliability, such as the timing system.

While not currently foreseen, the identity provider could allow the
services (such as RDAS server, and FDAS server) to be exposed outside of
CNAO’s local network, allowing several applications to function outside of
the facility’s premises. This is due to the fact that the resource providers
delegate the access control to the OpenID Connect identity provider, and
OpenID Connect is a widely adopted authentication protocol.

Overall, we believe that the implemented changes in access control offer
the control system a greater degree of security and maintainability, through
the usage of a widely used, standardized protocol. However, because the
solution requires a dedicated component (the identity provider), the solution

Chapter 7 - Results and evaluation

 124

may impact the system’s reliability. In production scenarios, addressing
possible reliability issues can be performed by using redundancy techniques.

OPC-UA Communication

The CTSIprodOPCUA.v2 library was almost entirely a port of its legacy
counterpart. The main architectural change was the removal of presentation
layer operations, which promotes interoperability and improves testability.

Logging Operations

The logging solution developed contains several new features that can
make logging easier and more flexible. By permitting that applications of the
configuration and support environment to use their standardized
configuration file to define where events will be logged, we aim to achieve
standardized remote logging in the environment.

In two of the logging endpoints developed in this work (repository and
remote file logging), the application only delivers the logs to a server, which
then decides how to store them. By doing so, these applications do not have
to be changed or recompiled if, in the future, these servers are required to
process the logs differently.

Configuration loading

The configuration loading features developed consist of an extension over
the legacy solution, providing an equivalent interface, and adding object-
oriented configuration loading. By standardizing the process of
configuration setting, casting and validation, we expect that applications of
the environment achieve better reliability.

Additionally, by providing an implementation to this commonly used
operation, we hope to slightly shorten the future applications’ development
time.

7.3.2 Environment evaluation

The expected date for the integration of the first upgraded environment
applications into the control system is the beginning of 2020. As a result,
evaluating the upgraded environment, in comparison to the former, has been
performed based on the newly developed environment features, and the
expected quality attributes of applications.

The main improvement to the control system has been the addition of the
mobile devices as client platforms of the control system. As defined in the
product line architecture, in Section 3, applications and libraries target a
common runtime environment that allows them to be executed in Windows
workstations and Android mobile devices. Other control system components,
which had dependencies only present in the workstations, such as direct
access to the repository, and local network drives, now can access these as

Chapter 7 - Results and evaluation

 125

web services, allowing applications in mobile devices to consume them as
well.

As mentioned previously, we argue that, overall, resource access control
has been improved by the upgrade. The adoption of an authentication and
authorization standard that is widely adopted in the industry improves
application security over implementing a custom authentication workflow.

The product line architecture developed for this work heavily emphasizes
the testability quality attribute. In order to facilitate application testing, the
architecture dictates the usage of several software patterns. These patterns
include MVVM, which separates presentation code from domain code,
dependency injection to separate the instantiation of software elements from
their usage, as well as implementing commonly used operations into standard
service libraries. Applications in the legacy environment were also designed
to promote testability, through the implementation of several standardized
operations as reusable libraries. In conclusion, with the usage of the software
patterns required, we argue that the upgraded environment improves the
testability of final applications.

During this project, we also analyzed the medical software certification
process, and tailored the product line architecture to aid the certification
process. As a result, we expect that the upgraded environment’s applications
that follow the guidelines provided in the product line architecture, to be
more easily certifiable than their legacy counterparts. However, due to time
constraints, this will have to be empirically evaluated after the end of this
work.

The new wizard generator is a more ambitious automatic code generation
solution than the previously existing solution. Currently, we have two wizard
generators in the final stages of development, as well as a large amount of
pre-defined configurable pages, which can be added into applications. While
further development is still required for the generators, the initial results are
encouraging.

Finally, the technological upgrade of the environment was necessary to
phase out technologies which were expected to have limited support in the
next years. By using more recent development platforms and technologies,
developers of the control system will have access to a greater amount of
commercial and open source libraries to choose from in the future.

Chapter 8 - Conclusion and future work

 126

CHAPTER 8

8 Conclusion and future work

 Conclusion

Hadrontherapy is a very important treatment option for patients with
cancer. Certain varieties of cancer, such as radio-resistant cancers, or those
that surround critical organs are usually better treated with hadrontherapy
rather than radiotherapy. Control system software is essential for the
operation of the large particle accelerators required for hadrontherapy.

The goal of this work was the development of tools, libraries, and services
necessary for the future applications of the upgraded configuration and
support environment of CNAO. The major features added to the upgraded
environment are the integration of mobile devices, and the update of the
technologies of the development environment. In order to do so, the legacy
environment was reviewed, and requirements were analyzed. Based on these
requirements, a product line architecture was designed by defining the scope
of future applications, defining the services and libraries available to them,
and providing an overview of their architecture.

Afterwards, several services were designed and developed to support the
future environment’s applications. These services allow applications to
access other control system components and expose their operations through
a RESTful API. Several libraries were also designed and developed for these
applications, and can be classified in two categories: libraries that perform
communication with services, and libraries that implement commonly
required operations.

The preliminary usage of the services and their respective client libraries
has yielded favourable results. Prototype applications in all devices targeted
have been able to consume the services defined in this work. By remaining
separate from applications of the environment, the services can undergo
maintenance independently for adding new features or fixing issues.

Since the beginning of this work, the internal demonstrations of the
services have led to the approval of a separate project, performed by the
control system’s LabVIEW development group. This project, which has been
performed in cooperation with this work, aims at allowing LabVIEW
applications on the control system’s first levels to be integrated with several
of the configuration and support environment’s services.

Chapter 8 - Conclusion and future work

 127

In order to assist the developers to implement the architectural
components required by the product line architecture, a set of frameworks
were developed. These frameworks, and their supporting libraries, perform
the initialization of applications, initialize their service library components,
and provide several base implementations of software patterns that
applications must use.

In order to simplify the usage of each framework, a wizard generator
Visual Studio extension has been developed to generate configurable
skeleton applications. These skeleton applications are fully functional
configured base applications for the developer to build upon. Additionally,
using the data management wizard generator, we have developed a pilot
application, showcasing the features of future applications in the new
environment.

Later, analysis of the medical software certification process, as well as the
expected benefits from adopting the product line approach, was presented.
Since control systems use a large amount of custom software, the effort of
producing the documentation and testing for certification requires a large
portion of development time. Consequently, research focused on designing
control system software focusing on testability and reusability allows the
developers to more easily perform the required testing.

In conclusion, this work has demonstrated the viability of a product line
architecture focused approach when performing technological upgrade of a
medical accelerator control system. Additionally, the service-oriented
architecture principles used in the definition of the environment’s
infrastructure have been successful and are already spreading to other
development groups in the facility.

 Future work

The totality of the configuration and support environment upgrade project
has a bigger scope than this work. While the work presented in this thesis
had the goal of developing tools, services, and components for the upgraded
environment, the total project encompasses the development of the
environment’s applications, as well as performing their respective medical
software certification tasks.

The authors expect the remaining members of the configuration and
support environment to continue after the end of this work. In the near future,
several applications of the legacy will have to be reviewed, and the total
amount of new required applications will have to be analyzed by the control
system stakeholders. During the development, metrics can be gathered, and
the product line approach can be further evaluated. Particularly, metrics such
as required number of hours for development and certification, as well as
number and severity of errors encountered during testing would provide
insight on the impact of the architecture.

There are also several other tasks in adjacent topics that could be carried
out as projects on their own. Further work can be performed in bringing

Chapter 8 - Conclusion and future work

 128

service-oriented architecture designs to accelerator control systems.
Research on further architectural tactics aimed at enabling services to
possess real-time behavior and assuring the dependability of control system
services would be useful. As mentioned in chapter 2, in control systems with
several levels, each level is usually characterized by their real-time
constraints. Applicable tactics for ensuring different real-time behaviors
onto the services could be compiled into a reference architecture. The
reference architecture would then be consulted by developers in order to
understand the features that would be needed in order to fit their control
system environment’s constraints.

Regarding security, extending the OPC-UA protocol in order to support
the delegation of authentication to OpenID Connect identity providers could
be carried out. By using authorization tokens, authenticated users and clients
communicate securely to other devices using the OPC-UA protocol.
Currently, there is an OPC-UA conformance profile that denotes OPA-UA
enabled devices which are able to use tickets from another access control
standard (Kerberos) as proof of user authentication [113]. Because the
OpenID Connect standard allows for the authentication of both clients and
users, identity tokens provided by identity providers could be used as proof
of client and user authentication.

Alternatives that would not require extensions to the OPC-UA protocol to
be made can also be researched. Further research into providing certificate
authority capabilities to an identity provider can be done, extending the work
presented in Section 4.4.6. This would allow further integration between web
services and OPC-UA enabled devices, as the authentication process could
be used to obtain access tokens and the required certificates. Alternatively,
the development of a certificate authority that delegates authorization to an
identity provider is also an option. Because the certificates would have to be
transferred from the certificate authority to OPC-UA clients, study on
additional measures for securing the certificates is essential to these two
approaches.

References

 129

References

[1] U. Amaldi, “History of hadrontherapy in the world and
Italian developments,” Riv. Medica, vol. 14, no. 1, 2008.

[2] J. H. Lawrence, P. C. Aebersold, and E. O. Lawrence,
“Comparative effects of x-rays and neutrons on normal and
tumor tissue,” Proc. Natl. Acad. Sci. U. S. A., vol. 22, no. 9,
p. 543, 1936.

[3] U. Amaldi et al., “Accelerators for hadrontherapy: from
Lawrence cyclotrons to linacs,” Nucl. Instruments Methods
Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc.
Equip., vol. 620, no. 2–3, pp. 563–577, 2010.

[4] R. S. Stone, “Neutron Therapy and Specific Ionization,” Am.
J. Roentgenol. Radium Ther., vol. 59, pp. 771–785, 1948.

[5] D. Schulz-Ertner, O. Jäkel, and W. Schlegel, “Radiation
therapy with charged particles,” in Seminars in radiation
oncology, 2006, vol. 16, no. 4, pp. 249–259.

[6] U. Amaldi and G. Kraft, “Radiotherapy with beams of carbon
ions,” Reports Prog. Phys., vol. 68, no. 8, pp. 1861–1882,
Jul. 2005.

[7] W. Maciszewski and W. Scharf, “Particle accelerators for
radiotherapy: Present status and future,” in Astroparticle,
Particle And Space Physics, Detectors And Medical Physics
Applications, World Scientific, 2004, pp. 402–410.

[8] A. J. Lennox, F. R. Hendrickson, D. A. Swenson, R. A.
Winje, and D. E. Young, “Proton linac for hospital-based fast
neutron therapy and radioisotope production,” 1989.

[9] Particle Therapy Co-operative Group, “Particle therapy
facilities in clinical operation (last update: April 2019).”
[Online]. Available:
https://www.ptcog.ch/index.php/facilities-in-operation.
[Accessed: 16-May-2019].

[10] D. Ungaro, A. Degiovanni, and P. Stabile, “LIGHT: A Linear

References

 130

Accelerator for Proton Therapy,” in North American Particle
Accelerator Conf.(NAPAC’16), Chicago, IL, USA, October 9-
14, 2016, 2017, pp. 1282–1286.

[11] A. Degiovanni et al., “A Cyclotron+ Linac Complex for
Carbon Ion Therapy,” in talk in workshop on" Physics for
Health in Europe", 2010.

[12] IBA, “IBA Worldwide - Shaping the future of proton
therapy.” [Online]. Available: https://iba-
worldwide.com/proton-therapy. [Accessed: 25-Jul-2019].

[13] Varian, “Proton Therapy | Varian Medical Systems.”
[Online]. Available:
https://www.varian.com/oncology/solutions/proton-therapy.
[Accessed: 25-Jul-2019].

[14] S. Peggs, T. Satogata, and J. Flanz, “A survey of hadron
therapy accelerator technologies,” in 2007 IEEE Particle
Accelerator Conference (PAC), 2007, pp. 115–119.

[15] Advanced Oncotherapy, “AVO | Proton Therapy Specialist.”
[Online]. Available: https://www.avoplc.com/. [Accessed:
03-Jul-2019].

[16] TERA, “TERA - Fondazione per Adroterapia Oncologica.”
[Online]. Available: http://www.tera.it/. [Accessed: 03-Jul-
2019].

[17] R. Mueller, “Control Systems for Accelerators: Operational
Tools,” 2016, pp. 629–670.

[18] “ICALEPCS - About.” [Online]. Available:
https://www.icalepcs.org/icalepcs.html. [Accessed: 22-May-
2019].

[19] A. Daneels and W. Salter, “What is SCADA?,” in
Proceedings of International conference on accelerator and
large experimental physics control systems, 1999.

[20] B. Galloway and G. P. Hancke, “Introduction to industrial
control networks,” IEEE Commun. Surv. tutorials, vol. 15,
no. 2, pp. 860–880, 2012.

[21] B. Kuiper, “Issues in accelerator controls,” in Proceedings of
International Conference on Particle Accelerators, 1991, pp.
602–211.

[22] M. E. Thuot and L. R. Dalesio, “Control system architecture:

References

 131

the standard and nonstandard models,” in Proceedings of
International Conference on Particle Accelerators, 1993, pp.
1806–1810.

[23] J. Zhang, T. R. Johnson, V. L. Patel, D. L. Paige, and T.
Kubose, “Using usability heuristics to evaluate patient safety
of medical devices,” J. Biomed. Inform., vol. 36, no. 1, pp.
23–30, 2003.

[24] R. Štefanič, R. Tavčar, J. Dedič, J. Gutleber, and R. Moser,
“Timing System Solution for Medaustron; Real-Time Event
and Data Distribution Network,” in Proceedings of
International conference on accelerator and large
experimental physics control systems, 2011.

[25] L. R. Dalesio, A. J. Kozubal, and M. R. Kraimer, “EPICS
architecture,” in Proceedings of International conference on
accelerator and large experimental physics control systems,
1991.

[26] J. Chaize, W. Klotz, J. Meyer, M. Perez, and E. Taurel,
“TANGO: An Object Oriented Control System Based on
CORBA,” in Proceedings of International conference on
accelerator and large experimental physics control systems,
1999, pp. 475–479.

[27] M. Stal, F. Buschmann, and R. Meunier, Pattern-oriented
Software Architecture—A System of Patterns. Wiley, 1996.

[28] L. R. Dalesio et al., “The experimental physics and industrial
control system architecture: past, present, and future,” Nucl.
Instruments Methods Phys. Res. Sect. A Accel. Spectrometers,
Detect. Assoc. Equip., vol. 352, no. 1–2, pp. 179–184, 1994.

[29] M. Knott, D. Gurd, S. Lewis, and M. Thuot, “EPICS: A
Control System Software Co-Development Success Story,”
Nucl. Instruments Methods Phys. Res. Sect. A Accel.
Spectrometers, Detect. Assoc. Equip., vol. 352, no. 1–2, pp.
486–491, 1994.

[30] W. P. Mcdowell et al., “Standards and the design of the
Advanced Photon Source control system,” in Proceedings of
International conference on accelerator and large
experimental physics control systems, 1991.

[31] H. Michi and V. Steve, Advanced CORBA®programming
with C++. Addison-Wesley, 1999.

References

 132

[32] A. Götz et al., “The future of TANGO,” in Proceedings of
International conference on accelerator and large
experimental physics control systems, 2007.

[33] A. Götz et al., “The TANGO CONTROLS collaboration in
2015,” in Proceedings of International conference on
accelerator and large experimental physics control systems,
2015.

[34] E. Taurel et al., “TANGO a CORBA based Control System,”
in Proceedings of International conference on accelerator
and large experimental physics control systems, 2003.

[35] National Instruments, “What is LabVIEW?” [Online].
Available: http://www.ni.com/en-us/shop/labview.html.
[Accessed: 05-Jun-2019].

[36] National Instruments, “PXI Systems - National Instruments.”
[Online]. Available: http://www.ni.com/en-us/shop/pxi.html.
[Accessed: 05-Jun-2019].

[37] Siemens, “SCADA System SIMATIC WinCC V7.” [Online].
Available: https://w3.siemens.com/mcms/human-machine-
interface/en/visualization-software/scada/pages/default.aspx.
[Accessed: 05-Jun-2019].

[38] Vista Control Systems, “Vista Control Systems Homepage.”
[Online]. Available: https://www.vista-control.com.
[Accessed: 31-May-2019].

[39] B. Mannix and T. Gray, “Vista Controls Vsystem at the ISIS
pulsed neutron facility,” 2007.

[40] ISIS Neutron and Muon Source, “Accelerators and Targets:
People.” [Online]. Available:
https://www.isis.stfc.ac.uk/Pages/Accelerators-and-Targets-
People.aspx. [Accessed: 31-May-2019].

[41] A. Daneels and W. Salter, “Selection and evaluation of
commercial SCADA systems for the controls of the CERN
LHC experiments,” Proc. Int. Conf. Accel. large Exp. Phys.
Control Syst., 1999.

[42] P. C. Burkimsher, “Jcop experience with a commercial scada
product, pvss,” in Proceedings of International conference on
accelerator and large experimental physics control systems,
2003.

[43] National Instruments, “LabVIEW Datalogging and

References

 133

Supervisory Control Module.” [Online]. Available:
https://www.ni.com/en-us/shop/select/labview-datalogging-
and-supervisory-control-module. [Accessed: 05-Jun-2019].

[44] J. Gutleber, A. Brett, R. Moser, M. Marchhart, C. T. de
Matos, and J. Dedič, “The MedAustron accelerator control
system,” in Proceedings of International conference on
accelerator and large experimental physics control systems,
2011.

[45] V. Aleinikov, I. Borina, A. Krylov, S. Pachtchenko, and K.
Sychev, “Using LabVIEW to Build Distributed Control
System of a Particle Accelerator,” in Proceedings of
International conference on accelerator and large
experimental physics control systems, 2017.

[46] S. Rossi, “The status of CNAO,” Eur. Phys. J. Plus, vol. 126,
no. 8, p. 78, Aug. 2011.

[47] U. Amaldi and G. Tosi, “Per un centro di teleterapia con
adroni,” TERA 91/1 GEN, vol. 1, 1991.

[48] Tera Foundation, The Tera Project and the Centre for
Oncological Hadrontherapy. INFN-LNF Divisione Ricerca,
1995.

[49] Tera Foundation, The national centre for oncological
hadrontherapy at Mirasole. 1997.

[50] L. Badano et al., “Proton-Ion Medical Machine Study
(PIMMS), 1,” 1999.

[51] P. J. Bryant et al., “Proton-Ion Medical Machine Study
(PIMMS), 2,” 2000.

[52] P. Mandrillon et al., “Feasibility study of the EULIMA light
ion medical accelerator,” in Proceedings of the Third
European Particle Accelerator Conference, Berlin, 1992, vol.
92, pp. 179–181.

[53] S. Rossi, “The National Centre for Oncological
Hadrontherapy (CNAO): Status and perspectives,” Phys.
Medica, vol. 31, no. 4, pp. 333–351, 2015.

[54] L. Casalegno, M. Pezzetta, and S. Toncelli, “CNAO General
Control System Organization Document - Unpublished
internal document,” 2003.

[55] L. Casalegno, M. Pezzetta, and S. Toncelli, “Timing and

References

 134

Signal Distribution Services Requirements Specification
Document - Unpublished internal document,” 2004.

[56] L. Bass, P. Clements, and R. Kazman, Software architecture
in practice. Addison-Wesley Professional, 2003.

[57] S. Gioia, “Presentation, Supervision Procedures,” 2016.

[58] M. Caldaram, L. Casalegno, A. Parravicini, M. Pezzetta, M.
Pullia, and S. Toncelli, “Control System Short Overview -
Unpublished internal document,” 2004.

[59] L. Casalegno, “The CNAO RT Patient Scheduler,” 2013.

[60] L. Casalegno, “Istruzione Operativa Treatment Monitor -
Unpublished Internal Document,” 2017.

[61] L. Casalegno, “Istruzione Operativa CNAOHistory -
Unpublished Internal Document,” 2019.

[62] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified
architecture. Springer Science & Business Media, 2009.

[63] P. Clements, “Software product lines,” Pract. patterns, 2001.

[64] J. D. McGregor, “Software Product Lines,” Technology, vol.
3, no. 3, pp. 65–74, 2004.

[65] S. Angelov, P. W. P. J. Grefen, and D. Greefhorst, “A
classification of software reference architectures: Analyzing
their success and effectiveness,” 2009 Jt. Work. IEEE/IFIP
Conf. Softw. Archit. Eur. Conf. Softw. Archit., pp. 141–150,
2009.

[66] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference
architecture and product line architecture: A subtle but
critical difference,” in European Conference on Software
Architecture, 2011, pp. 207–211.

[67] L. Casalegno, “Istruzione Operativa Trlinesloaderfast -
Unpublished Internal Document,” 2017.

[68] L. Casalegno, “Istruzione Operativa MTCM - Unpublished
Internal Document.”

[69] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA:
service-oriented architecture best practices. Prentice Hall
Professional, 2005.

[70] L. Casalegno, M. Pezzetta, and S. Toncelli, “Standards,
common rules and best practices in the development of the

References

 135

CNAO control system - Unpublished internal document,”
2004.

[71] Microsoft, “Active Directory Domain Services | Microsoft
Docs.” [Online]. Available: https://docs.microsoft.com/en-
us/windows-server/identity/ad-ds/active-directory-domain-
services. [Accessed: 17-Jun-2019].

[72] “Xamarin | Open-source mobile app platform for .NET.”
[Online]. Available:
https://dotnet.microsoft.com/apps/xamarin. [Accessed: 19-
Sep-2019].

[73] Microsoft, “Introduction to Portable Class Libraries (PCL) -
Xamarin | Microsoft Docs.” [Online]. Available:
https://docs.microsoft.com/en-us/xamarin/cross-
platform/app-fundamentals/pcl?tabs=windows. [Accessed:
18-Jun-2019].

[74] Microsoft, .“NET Standard | Microsoft Docs.” [Online].
Available: https://docs.microsoft.com/en-
us/dotnet/standard/net-standard. [Accessed: 18-Jun-2019].

[75] Microsoft, “Introduction to DependencyService - Xamarin |
Microsoft Docs.” [Online]. Available:
https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/app-fundamentals/dependency-service/introduction.
[Accessed: 18-Jun-2019].

[76] C. Campbell, F. Cheung, D. A. Poza, R. Sharma, M.
Vazquez, and B. Wastell, “Prism for the Windows Runtime
for Windows 8.1,” 2013. [Online]. Available:
https://www.microsoft.com/en-
us/download/details.aspx?id=39042. [Accessed: 27-Mar-
2019].

[77] Microsoft, “The Model-View-ViewModel Pattern - Xamarin |
Microsoft Docs.” [Online]. Available:
https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/enterprise-application-patterns/mvvm. [Accessed: 19-
Jun-2019].

[78] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C.
Mortimore, “OpenID Connect Core 1.0 incorporating errata
set 1,” The OpenID Foundation, specification, 2014.
[Online]. Available: https://openid.net/specs/openid-connect-
core-1_0.html. [Accessed: 27-Mar-2019].

References

 136

[79] Microsoft, “ADO.NET Overview | Microsoft Docs.”
[Online]. Available: https://docs.microsoft.com/en-
us/dotnet/framework/data/adonet/ado-net-overview.
[Accessed: 21-Jun-2019].

[80] Devart, “ADO.NET Data Provider for Oracle with Entity
Framework Support.” [Online]. Available:
https://www.devart.com/dotconnect/oracle/. [Accessed: 21-
Jun-2019].

[81] Oracle, “Oracle Instant Client - Free tools and libraries for
connecting to Oracle Database.” [Online]. Available:
https://www.oracle.com/database/technologies/instant-
client.html. [Accessed: 21-Jun-2019].

[82] Connect2id, “LDAP user authentication explained |
Connect2id.” [Online]. Available:
https://connect2id.com/products/ldapauth/auth-explained.
[Accessed: 08-Jul-2019].

[83] OpenID, “Welcome to OpenID Connect,” 2014. [Online].
Available: http://openid.net/connect/.

[84] D. Hardt, “The OAuth 2.0 authorization framework,” 2012.

[85] Justin Richer, “End User Authentication with OAuth 2.0 —
OAuth.” [Online]. Available:
https://oauth.net/articles/authentication/. [Accessed: 08-Jul-
2019].

[86] Okta, “Authorization Code Grant - OAuth 2.0 Servers.”
[Online]. Available: https://www.oauth.com/oauth2-
servers/server-side-apps/authorization-code/. [Accessed: 08-
Jul-2019].

[87] D. Baier, B. Allen, and other Github contributors,
“IdentityServer4 Framework.” [Online]. Available:
https://github.com/IdentityServer/IdentityServer4.

[88] “IdentityServer 4 Quickstart Samples.” [Online]. Available:
https://github.com/IdentityServer/IdentityServer4/tree/master/
samples/Quickstarts. [Accessed: 21-Aug-2019].

[89] IdentityServer4 development team, “Profile Service —
IdentityServer4 1.0.0 documentation.” [Online]. Available:
https://identityserver4.readthedocs.io/en/latest/reference/profi
leservice.html. [Accessed: 09-Jul-2019].

[90] J. Richer, “User Authentication with OAuth 2.0.” [Online].

References

 137

Available: oauth.net/articles/authentication/.

[91] B. Allen and D. Baier, “Grant Types — IdentityServer4 1.0.0
documentation.” [Online]. Available:
http://docs.identityserver.io/en/latest/topics/grant_types.html.
[Accessed: 10-Jul-2019].

[92] “Identity Model Library.” [Online]. Available:
https://github.com/IdentityModel/IdentityModel.OidcClient2.
[Accessed: 21-Aug-2019].

[93] OpenID Foundation, “Certified OpenID Connect
Implementations | OpenID.” [Online]. Available:
https://openid.net/developers/certified/. [Accessed: 08-Jul-
2019].

[94] Serilog contributors, “Serilog — simple .NET logging with
fully-structured events.” [Online]. Available:
https://serilog.net/. [Accessed: 14-Jul-2019].

[95] Serilog contributors, “Serilog — simple .NET logging with
fully-structured events.” .

[96] S. Foglio, C. Viviani, and L. Casalegno, “Use of the CNAO
Query.lvlib in the EasyLoader application.”

[97] R. E. Johnson, “Frameworks=(components+ patterns),”
Commun. ACM, vol. 40, no. 10, pp. 39–42, 1997.

[98] M. Fayad and D. C. Schmidt, “Object-oriented application
frameworks,” Commun. ACM, vol. 40, no. 10, pp. 32–38,
1997.

[99] IEC, “IEC 62304:2006 - Medical device software -- Software
life cycle processes,” May 2006.

[100] IEC, “IEC 62304:2006/Amd 1:2015 - Medical device
software - Software life-cycle processes / Amd 1,” 2015.

[101] ISO, “ISO 14971:2007 - Medical devices -- Application of
risk management to medical devices,” Mar. 2007.

[102] ISO, “ISO 13485:2016 - Medical devices -- Quality
management systems -- Requirements for regulatory
purposes,” Mar. 2016.

[103] N. Hrgarek, “Certification and regulatory challenges in
medical device software development,” in Proceedings of the
4th International Workshop on Software Engineering in
Health Care, 2012, pp. 40–43.

References

 138

[104] J. Rushby, “Modular certification,” Menlo Park, CA, 2002.

[105] A. Höss, C. Lampe, R. Panse, B. Ackermann, J. Naumann,
and O. Jäkel, “First experiences with the implementation of
the European standard EN 62304 on medical device software
for the quality assurance of a radiotherapy unit,” Radiat.
Oncol., vol. 9, no. 1, p. 79, 2014.

[106] P. Rust, D. Flood, and F. McCaffery, “Creation of an IEC
62304 compliant software development plan,” J. Softw. Evol.
Process, vol. 28, no. 11, pp. 1005–1010, 2016.

[107] P. M. Nadkarni and R. A. Miller, “Service-oriented
architecture in medical software: promises and perils,” J. Am.
Med. Informatics Assoc., vol. 14, no. 2, pp. 244–246, 2007.

[108] J. Hatcliff et al., “Rationale and architecture principles for
medical application platforms,” in Proceedings of the 2012
IEEE/ACM Third International Conference on Cyber-
Physical Systems, 2012, pp. 3–12.

[109] R. Land, M. Åkerholm, and J. Carlson, “Efficient software
component reuse in safety-critical systems--an empirical
study,” in International Conference on Computer Safety,
Reliability, and Security, 2012, pp. 388–399.

[110] B. Councill and G. T. Heineman, “Component-based
Software Engineering,” G. T. Heineman and W. T. Councill,
Eds. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2001, pp. 5–19.

[111] J. Smith, “Patterns-wpf apps with the model-view-viewmodel
design pattern,” MSDN Mag., vol. 72, 2009.

[112] C. F. Afonso, L. Casalegno, and C. Larizza, “Certification of
Component-Based Particle Therapy Software,” in
Proceedings of the IADIS International Conference e-Health
2019, Part of the IADIS Multi Conference on Computer
Science and Information Systems 2019, MCCSIS 2019, 2019.

[113] “‘User Token - Kerberos Server Facet’ Profile.” [Online].
Available: http://opcfoundation-
onlineapplications.org/ProfileReporting/index.htm?ModifyPr
ofile.aspx?ProfileID=32428471-43c8-4f67-ae40-
099a6b475b51. [Accessed: 22-Aug-2019].

