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Abstract

The 2D Euler equations with random initial condition distributed as a certain
Gaussian measure are considered. The theory developed by S. Albeverio and A.-B.
Cruzeiro in [1] is revisited, following the approach of weak vorticity formulation. A
solution is constructed as a limit of random point vortices. This allows to prove that
it is also limit of L∞-vorticity solutions. The result is generalized to initial measures
that have a continuous bounded density with respect to the original Gaussian measure.

1 Introduction

We consider the 2D Euler equations on the torus T2 = R2/Z2, formulated in terms of the
vorticity ω

∂tω + u · ∇ω = 0 (1)

where u is the velocity, divergence free vector field such that ω = ∂2u1−∂1u2. The classical
theory (see for instance [13], [27], [28], [30]) includes the following results:

1. existence and uniqueness of weak solutions of class L∞ ([0, T ]× T2
)
∩C

(
[0, T ] ;Lp

(
T2
))

for every p ∈ [1,∞), satisfying

〈ωt, φ〉 = 〈ω0, φ〉+
∫ t

0
〈ωs, us · ∇φ〉 ds (2)

for every φ ∈ C∞ (T2
)
, when the initial condition ω0 is of class L∞ (T2

)
([43], [44],

[30]);

2. existence of weak solutions of class C
(
[0, T ] ;Lp

(
T2
))
, satisfying (2), when the initial

condition ω0 is of class Lp
(
T2
)
, for some p ∈ [1,∞);

1

http://arxiv.org/abs/1707.08068v1


3. existence of measure-valued solutions ωt (dx), of class L
∞ (0, T ;M

(
T2
)
∩H−1

(
T2
))
,

satisfying for every φ ∈ C∞ (T2
)
the so called weak vorticity formulation

〈ωt, φ〉 = 〈ω0, φ〉+
∫ t

0

∫

T2

∫

T2

Hφ (x, y)ωs (dx)ωs (dy) ds (3)

where

Hφ (x, y) :=
1

2
K (x− y) (∇φ (x)−∇φ (y))

and K (x) is Biot-Savart kernel on T2, when the initial condition is a measure of class
H−1

(
T2
)
with a certain condition of preference for a single sign, see [19], [37], [17];

here we have denoted by M
(
T2
)
the space of finite signed measures and by Hα

(
T2
)

the classical Sobolev spaces of order α ∈ R defined in Section 1.1;

4. existence and uniqueness of a measure-valued solution of the form ωt (dx) =
∑N

i=1 ξiδXi
t
,

fulfilling (3), when the initial condition has the form ω0 (dx) =
∑N

i=1 ξiδXi
0
, with real

valued intensities ξ1, ..., ξN , and
(
X1

0 , ...,X
N
0

)
belonging to a set of full Lebesgue

measure in
(
T2
)N

, see [30].

Obviously there are many other results, reported in the references above and other
works, including counterexamples to uniqueness like [35]. The previous choice has been
made to illustrate the attempt to include weaker and weaker concepts of solutions. Very
important for result n. 3 has been the symmetrization step from (2) to (3): the kernel
Hφ (x, y) is bounded, smooth outside the diagonal, discontinuous along the diagonal; hence
a fine analysis of the concentration of ωt (dx) around the diagonal is important but at least
the singularity of order 1

|x| of Biot-Savart kernel K (x) has been removed.
In the present paper we discuss a probabilistic result for Euler equations, interpreted

in the form (3). We like to state it first in purely deterministic terms, here in the in-
troduction, for the sake of comparison with the ”scale” of results above. Then, in the
rest of the paper, the probabilistic side will be stressed more. Denote by H−1− (T2

)

the space
⋂

ǫ>0

H−1−ǫ
(
T2
)
, with the topology described in Section 1.1 and notice that

M
(
T2
)
⊂ H−1− (T2

)
, because by Sobolev embedding H1+ǫ

(
T2
)
⊂ C

(
T2
)
. Moreover,

denote by Kǫ the smooth approximations of K given by (7) below and, given a sequence
ǫn → 0, set Hn

φ (x, y) := 1
2Kǫn (x− y) (∇φ (x)−∇φ (y)); by classical distribution theory,

s 7→
〈
ωs ⊗ ωs,H

n
φ

〉
is well defined and continuous when ω ∈ C

(
[0, T ] ;H−1− (T2

))
.

Theorem 1 There exist ǫn → 0 and a large set

IC0 ⊂ H−1− (T2
)
\
(
H−1

(
T2
)
∪M

(
T2
))

of initial conditions such that for all ω0 ∈ IC0 the following properties hold.
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i) there exists ω ∈ C
(
[0, T ] ;H−1− (T2

))
such that, for every φ ∈ C∞ (T2

)
, the sequence

of functions s 7→
〈
ωs ⊗ ωs,H

n
φ

〉
is a Cauchy sequence in L2 (0, T ) and, denoted by s 7→

〈ωs ⊗ ωs,Hφ〉 its limit, one has the analog of (3), namely

〈ωt, φ〉 = 〈ω0, φ〉 +
∫ t

0
〈ωs ⊗ ωs,Hφ〉 ds (4)

ii) there is a sequence
{
ω(n)

}
of solutions of Euler equations of class L∞ ([0, T ]× T2

)
∩

C
(
[0, T ] ;Lp

(
T2
))

for every p ∈ [1,∞) (those of point 1 above) such that
〈
ω
(n)
t , φ

〉
→

〈ωt, φ〉 uniformly in t ∈ [0, T ], for every φ ∈ C∞ (T2
)
.

Remark 2 How large is the set of initial conditions, it is clarified below in Section 6. It
is a full measure set with respect to the Gaussian measure µ introduced in Section 2.1

Remark 3 In fact the set of initial conditions given by this theorem is included in a more
regular space H−1−,∞ (T2

)
, where also the solutions live, defined in Section 2.1 below. We

have not used H−1−,∞ (T2
)
in place of H−1− (T2

)
because M

(
T2
)
* H−1−,∞ (T2

)
and

thus the statement would be less clear. Moreover H−1
(
T2
)
and M

(
T2
)
are not included

one in the other, which again explains the statement.

Part (i) of Theorem 1 is a deterministic reformulation of Theorem 24 below, which states
that Euler equations, interpreted in the form (4), has a stochastic solution, a stationary
stochastic process with time marginal given by the so called white noise on T2, defined
in Section 2.1 below. This probabilistic result is due to Sergio Albeverio and Ana Bela
Cruzeiro [1]. Here we provide, with respect to that seminal work, the so called weak
vorticity formulation (4) (opposite to a Fourier formulation), which fits more nicely in the
scheme of results 1-4 above; and we prove the existence of a solution as a limit of random
point vortices, a suitable random version of point 4 above. Opposite to other schemes that
can be used to prove existence, based on approximated equations (like the Galerkin scheme
of [1], or a Leray type scheme), point vortices are true solutions of Euler equations (see
Section 22) and thus establish a bridge between L∞-vorticity solutions, those of point 1
above, and Albeverio-Cruzeiro solution, via the result of approximation of point vortices by
vortex patches of Marchioro and Pulvirenti [29]. Nicolai Tzvetkov suggested to investigate
question (ii) of Theorem 1, which is similar to a question solved (in a stronger sense) for
nonlinear wave equations, see [42].

The point vortex approximation provides an interesting interpretation of the white noise
solution of Albeverio and Cruzeiro, as a limit of randomly distributed vortices with positive
and negative random vorticities. Under the viewpoint of the weak vorticity formulation,
having in mind the deep discussions of the deterministic literature on concentration of
solutions of Euler equations (see for instance the works of Delort [19], Schochet [36], [37],
Poupaud [32], Di Perna and Majda [17]), a natural question is why the solution found
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here with white noise distribution does not ”concentrate on the diagonal”, in the double
integration of the weak vorticity formulation, where the function Hφ (x, y) is discontinuous.
For the white noise solution the absence of concentration is encoded in the results of Section
2.4, which show the power of Gaussian analysis but may still look obscure. However, the
approximation by point vortices provides a clear intuition about the lack of concentration:
at every time, vortices are distributed at random uniformly in space, independently one of
the other.

Among the reasons to reconsider Albeverio-Cruzeiro theory today, there is the clear
success of randomization of initial conditions in solving dispersive equations, see for instance
[10], [11], [12], [33], [34] [31] (the last two, for instance, describe another PDE that leaves a
Gaussian measure invariant) and in particular the review of N. Tzvetkov [42] on nonlinear
wave equation where Theorems 2.6, 2.7 are devoted to prove that solutions with poor
regularity (constructed for a.e. initial condition with respect to a Gaussian measure) are
the limit of more regular solutions belonging to the classical theory. As a technical remark,
the approximation result above in Theorem 1 is definitely weaker than Theorem 2.6 of
[42], where any reasonable smooth approximation of initial conditions leads to convergent
solutions; it is more in the spirit of Theorem 2.7, where particular approximations are
considered. As a general remark, it is not reasonable to expect for Euler equations the
richness of results obtained in dispersive equations, but nevertheless it may be of interest to
make little improvements. Another source of inspiration for the present work have been the
striking recent theories for certain stochastic nonlinear equations having Gaussian measures
invariant, see for instance [25], [23], [24]; however, the difficulties for such equations are
much greater than those solved here, although Gaussian analysis is a common core.

We prove existence of a stochastic solution also when the initial condition is a random
distribution with law that have a continuous bounded density with respect to the original
Gaussian measure. The solution has a density also at time t, that satisfies a continuity
equation; the results proved here in this direction are quite elementary corollaries of the
main results on white noise solutions but we think it is of interest to state them for fu-
ture investigations in connection with deeper theories on continuity equations in infinite
dimensions, see for instance [7], [8], [9], [15], [16], [18], [20]. The case with a density with
respect to white noise arises an open question, described in Section 7.2, concerning the
approximation of smooth solutions by white noise ones, a sort of dual problem to the one
discussed above.

Let us finally mention several other works related to Gaussian invariant measures for
2D Euler equations: see [5], [2], [3], [4], [14], [41]. Several elements of these works may
deserve further analysis.

1.1 Notations

We denote by {en} the complete orthonormal system in L2
(
T2;C

)
given by en (x) = e2πin·x,

n ∈ Z2. Given a distribution ω ∈ C∞ (T2
)′

and a test function φ ∈ C∞ (T2
)
, we denoted
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by 〈ω, φ〉 the duality between ω and φ (namely ω (φ)), and we use the same symbol for the
inner product of L2

(
T2
)
. We set ω̂ (n) = 〈ω, en〉, n ∈ Z2 and we define, for each s ∈ R,

the space Hs
(
T2
)
as the space of all distributions ω ∈ C∞ (T2

)′
such that

‖ω‖2Hs :=
∑

n∈Z2

(
1 + |n|2

)s
|ω̂ (n)|2 <∞.

We use similar definitions and notations for the space Hs
(
T2,C

)
of complex valued func-

tions. In the space H−1− (T2
)
=
⋂

ǫ>0

H−1−ǫ
(
T2
)
we consider the metric

dH−1−

(
ω, ω′) =

∞∑

n=1

2−n
(∥∥ω − ω′∥∥

H−1− 1
n
∧ 1
)
.

Convergence in this metric is equivalent to convergence in H−1−ǫ
(
T2
)
for every ǫ > 0.

The space H−1− (T2
)
with this metric is complete and separable. We denote by X :=

C
(
[0, T ] ;H−1− (T2

))
the space of continuous functions with values in this metric space; a

function is in X if and only if it is in C
(
[0, T ] ;H−1−ǫ

(
T2
))

for every ǫ > 0. The distance
in C

(
[0, T ] ;H−1− (T2

))
is given by dX (ω·, ω′

·) = supt∈[0,T ] dH−1− (ωt, ω
′
t), which makes X

a Polish space.
For s > 0, the spaces Hs

(
T2
)
and H−s

(
T2
)
are dual each other. By Hs+

(
T2
)
we shall

therefore mean the space
⋃

ǫ>0

Hs+ǫ
(
T2
)
. We shall use this notation in the case of the space

H2+
(
T2 × T2

)
, which is similarly defined.

2 White noise vorticity distribution and the nonlinear term

in the weak vorticity formulation

2.1 White noise

We start recalling the well known notion of white noise, reviewing some of its main prop-
erties used in the sequel.

White noise on T2 is by definition a Gaussian distributional-valued stochastic process
ω : Ξ → C∞ (T2

)′
, defined on some probability space (Ξ,F ,P), such that

E [〈ω, φ〉 〈ω,ψ〉] = 〈φ,ψ〉 (5)

for all φ,ψ ∈ C∞ (T2
)
(Gaussian means that the real valued r.v. 〈ω, φ〉 is Gaussian, for

every φ ∈ C∞ (T2
)
). We have denoted by 〈ω (θ) , φ〉 the duality between the distribution

ω (θ) (for some θ ∈ Ξ) and the test function φ ∈ C∞ (T2
)
. These properties uniquely
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characterize the law of ω. In more heuristic terms, as it is often written in the Physics
literature,

E [ω (x)ω (y)] = δ (x− y)

since double integration of this identity against φ (x)ψ (y) gives (5). White noise exists: it
is sufficient to take the complete orthonormal system {en}n∈Z2 of L2

(
T2,C

)
introduced in

Section 1.1, a probability space (Ξ,F ,P) supporting a sequence of independent standard
Gaussian variables {Gn}n∈Z2 , and consider the series

ω =
√
2Re

∑

n∈Z2

Gnen.

The partial sums ωC
N (θ, x) =

∑
|n|≤N Gn (θ) en (x) are well defined complex valued random

fields with square integrable paths, ωN : Ξ → L2
(
T2,C

)
. For every ǫ > 0,

{
ωC
N

}
N∈N is a

Cauchy sequence in L2
(
Ξ;H−1−ǫ

(
T2,C

))
, because

E

[∥∥∥ωC
N (θ, x)− ωC

M (θ, x)
∥∥∥
2

H−1−ǫ

]
= E




∑

M<|n|≤N

(
1 + |n|2

)−1−ǫ
|Gn|2


 =

∑

M<|n|≤N

(
1 + |n|2

)−1−ǫ
.

The limit ωC in L2
(
Ξ;H−1−ǫ

(
T2,C

))
thus exists, and ω =

√
2ReωC is a white noise

because (doing rigorously the computation on the partial sums and then taking the limit)
it is centered and for φ,ψ ∈ C∞ (T2

)
,

E [〈ω, φ〉 〈ω,ψ〉] = ReE [〈ωC , φ〉 〈ωC , ψ〉] = Re
∑

n,m∈Z2

〈en, φ〉 〈em, ψ〉E [GnGm]

= Re
∑

n∈Z2

〈en, φ〉 〈en, ψ〉 = 〈φ,ψ〉 .

[One obtains the same result by taking ω =
∑

n∈Z2 Gnen where Z2\ {0} is partitioned as
Z2 = Λ ∪ (−Λ), Gn are i.i.d. N (0, 1) on Λ ∪ {0} and G−n = Gn for n ∈ Λ.] The law
µ of the measurable map ω : Ξ → H−1−ǫ

(
T2
)
is a Gaussian measure (it is sufficient to

check that 〈ω, φ〉 is Gaussian for every φ ∈ C∞ (T2
)
, and this is true since 〈ω, φ〉 is the

L2 (Ξ)-limit of the Gaussian variables
∑

|n|≤N Gn 〈en, φ〉). The measure µ is supported by

H−1− (T2
)
but not by H−1

(
T2
)
, namely we have

µ
(
H−1

(
T2
))

= 0.

It follows from

E

[∥∥∥ωC
∥∥∥
2

H−1

]
=
∑

n∈Z2

(
1 + |n|2

)−1
= +∞.
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The measure µ is sometimes denoted heuristically as

µ (dω) =
1

Z
exp

(
−1

2

∫

T2

ω2dx

)
dω

and called the enstrophy measure. The notation ”dω” has no meaning (unless interpreted
as a limit of measures on finite dimensional Euclidean spaces), just reminds the structure of
centered nonsingular Gaussian measures in Rn, that is µn (dωn) =

1
Zn

exp
(
−1

2

〈
Q−1

n ωn, ωn

〉
Rn

)
dωn

where dωn is Lebesgue measure in Rn and Qn is the covariance matrix. The notation∫
T2 ω

2dx alludes to the fact that µ, heuristically considered as a Gaussian measure on
L2
(
T2
)
(this is not possible, µ

(
L2
(
T2
))

= 0), has covariance equal to the identity: if
Q = Id, then

〈
Q−1ω, ω

〉
L2 =

∫
T2 ω

2dx. The fact that in L2
(
T2
)
the covariance operator

Q, heuristically defined as

〈Qω,ω〉L2 = E [〈ω, φ〉L2 〈ω,ψ〉L2 ]

is the identity in the case of the law µ of white noise, is a simple ”consequence” (the
argument is not rigorous ab initio) of the definition (5) of white noise.

White noise realizations are in fact more regular than H−1− (T2
)
. The general idea,

used several times in investigations of this kind, is that when a Gaussian field is L2 it is
also more regular, because higher order moments are simply related to second moments
and Kolmogorov regularity theorem applies. Let us see this fact in the case of white noise
ω. Given ǫ > 0, we know that ω ∈ H−1−ǫ

(
T2
)
with probability one. Consider the random

field
ψ (θ, x) :=

(
(1 + ∆)−

1+ǫ
2 ω (θ)

)
(x) =

〈
ω (θ) , (1 + ∆)−

1+ǫ
2 δx

〉
.

We have ψ ∈ L2
(
T2
)
with probability one. But ψ is a Gaussian field. We have in particular

E [|ψ (x)− ψ (y)|p] ≤ CpE
[
|ψ (x)− ψ (y)|2

]p/2

and, denoting (1 + ∆)−
1+ǫ
2 δx and (1 + ∆)−

1+ǫ
2 δy respectively by fx, fy,

E
[
|ψ (x)− ψ (y)|2

]

= E [ψ (x)ψ (x)]− 2E [ψ (x)ψ (y)] + E
[
ψ (y)2

]

= E [〈ω, fx〉 〈ω, fx〉]− 2E [〈ω, fx〉 〈ω, fy〉] + E [〈ω, fy〉 〈ω, fy〉]

and now we use definition (5)

= 〈fx, fx〉 − 2 〈fx, fy〉+ 〈fy, fy〉

= ‖fx − fy‖2L2 =
∥∥∥(1 +∆)−

1+ǫ
2 δx − (1 + ∆)−

1+ǫ
2 δy

∥∥∥
2

L2

≤ Cǫ |x− y|α(ǫ)

7



for a suitable number α (ǫ) > 0 and a constant Cǫ > 0; the last inequality can be proved as

sup
‖φ‖L2≤1

∣∣∣
〈
(1 + ∆)−

1+ǫ
2 (δx − δy) , φ

〉∣∣∣ = sup
‖φ‖L2≤1

∣∣∣
(
(1 + ∆)−

1+ǫ
2 φ

)
(x)−

(
(1 + ∆)−

1+ǫ
2 φ

)
(y)
∣∣∣

≤ sup
‖φ‖L2≤1

∥∥∥(1 + ∆)−
1+ǫ
2 φ

∥∥∥
Cα(ǫ)

|x− y|α(ǫ)

≤ Cǫ sup
‖φ‖L2≤1

‖φ‖L2 |x− y|α(ǫ)

due to the fact that H1+ǫ
(
T2
)
is embedded in a space of Hölder continuous functions.

Therefore
E [|ψ (x)− ψ (y)|p] ≤ CpC

p/2
ǫ |x− y|

pα(ǫ)
2 .

Taking p so large that pα(ǫ)
2 > 2, we may apply Kolmogorov regularity theorem and deduce

that the random field ψ (x) has a version with continuous paths. It means that, up to a

modification, (1 + ∆)−
1+ǫ
2 ω ∈ C

(
T2
)
with probability one, not only (1 + ∆)−

1+ǫ
2 ω belongs

to L2
(
T2
)
. Let us summarize this fact by the notation

P
(
ω ∈ H−1−,∞ (T2

))
= 1.

In spite of this additional regularity, we are not in the realm of signed measures, that
received so much attention in the case of the vorticity of 2D fluids. One has Among the
properties, one has

µ
(
M
(
T2
))

= 0.

(see [22], Proposition A2 for a concise proof). To understand this property, think to the
analogy with the more classical 1-dimensional case, on [0,∞) instead of the torus. In such
case, white noise is the distributional derivative of Brownian motion. It is well known
that, with probability one, trajectories of a continuous version of Brownian motion are
not of bounded variation (because they have finite non zero quadratic variation, and are
continuous). Therefore their derivatives are not signed measures. The gap in regularity
between white noise and signed measures is thus comparable to the gap between total
variation and quadratic variation.

2.2 Colored noise

For technical reasons, sometimes it is convenient to consider a smooth approximation
of white noise. A simple one is ωN (θ, x) = Re

∑
|n|≤N Gn (θ) en (x) but, although the

difference is really minor, for the PDE approach followed here the use of mollifiers looks a
bit more natural. We set, for ǫ > 0,

ωǫ (x) = 〈ω, θǫ (x− ·)〉

8



formally written also as (θǫ ∗ ω) (x) =
∫
T2 θǫ (x− y)ω (y) dy, where θǫ (x) = ǫ−2θ

(
ǫ−1x

)
,

and θ is a smooth probability density on T2 with a small support around x = 0. Assume
θ symmetric. We have

E [〈ωǫ, φ〉 〈ωǫ, ψ〉] = E [〈ω, θǫ ∗ φ〉 〈ω, θǫ ∗ ψ〉] = 〈θǫ ∗ φ, θǫ ∗ ψ〉

E [ωǫ (x)ωǫ (y)] = E [〈ω, θǫ (x− ·)〉 〈ω, θǫ (y − ·)〉] = 〈θǫ (x− ·) , θǫ (y − ·)〉

=

∫

T2

θǫ (x− y − z) θǫ (z) dz = (θǫ ∗ θǫ) (x− y) =: δǫx−y

where we have used the notation δǫa to denote (θǫ ∗ θǫ) (a) because it is an approximation
of the Dirac delta distribution.

Notice that ωǫ ∈ C∞ (T2
)
with probability one. Moreover, since 〈ωǫ, φ〉 = 〈ω, θǫ ∗ φ〉

and θǫ ∗ φ → φ in H1+γ
(
T2
)
for every φ ∈ H1+γ

(
T2
)
and given γ > 0, we have the

following statement:

Lemma 4 P-almost surely, for every φ ∈ H1+γ
(
T2
)
we have

lim
ǫ→0

〈ωǫ, φ〉 = 〈ω, φ〉 .

2.3 Weak vorticity formulation, preliminaries

Let us first recall the weak vorticity formulation in the case of measure-valued vorticities.
First, one rewrites equation (1) against test functions φ ∈ C∞ (T2

)
, using div u = 0:

〈ωt, φ〉 = 〈ω0, φ〉+
∫ t

0
〈ωs, us · ∇φ〉 ds.

Then recall that Biot-Savart law gives us

ut (x) =

∫

T2

K (x− y)ωt (dy)

where K (x, y) is the Biot-Savart kernel; in full space it is given by K (x− y) = 1
2π

(x−y)⊥

|x−y|2 ;

on the torus its form is less simple but we still have K smooth for x 6= y, K (y − x) =
−K (x− y),

|K (x− y)| ≤ C

|x− y|
for small values of |x− y|. See for instance [36] for details. Thus we write the weak
formulation in the more explicit form

〈ωt, φ〉 = 〈ω0, φ〉+
∫ t

0

∫

T2

∫

T2

K (x− y)∇φ (x)ωs (dx)ωs (dy) ds.

9



Since the double space integral, when we rename x by y and y by x, is the same (the
renaming doesn’t affect the value), and K (y − x) = −K (x− y), we get (3). Identity (3)
is the weak vorticity formulation of Euler equations. Depending on the assumptions on
the measures ωs (whether or not they have concentrated masses), one has to specify the
value of K (0), which is not given a priori, and thus the value of Hφ (x, x); in the analysis
of point vortices, for instance, it is usually set equal to zero, to avoid self-interaction.
The weak vorticity formulation of Euler equations proved to be a fundamental tool in the
investigation of limits of solutions, especially in the context of measures. Below we shall
follow a similar path in the case of white noise distributional solutions.

2.4 The nonlinear term for white noise vorticity

Our purpose now is to define
∫

T2

∫

T2

Hφ (x, y)ω (x)ω (y) dxdy

when ω : Ξ → C∞ (T2
)′

is a white noise.

Preliminarily, notice that if ω ∈ C∞ (T2
)′

is a distribution, we can define a distribution

ω ⊗ ω ∈ C∞ (T2 × T2
)′

which satisfies

〈ω ⊗ ω, φ⊗ ψ〉 = 〈ω, φ〉 〈ω,ψ〉

for all φ,ψ ∈ C∞ (T2
)
, where φ⊗ ψ denotes the function (φ⊗ ψ) (x, y) = φ (x)ψ (y). The

definition of ω ⊗ ω can be based on limits of test functions of the form
∑n

i=1 φi (x)ψi (y),
or more directly on the following argument. Given f ∈ C∞ (T2 × T2

)
, for each x ∈ T2 we

have f (x, ·) ∈ C∞ (T2
)
, hence 〈ω, f (x, ·)〉 is well defined. The function g (x) = 〈ω, f (x, ·)〉

belongs to C∞ (T2
)
, as one can verify using the continuity properties of distributions on

test functions. Then we can set

〈ω ⊗ ω, f〉 = 〈ω, g〉 , where g (x) = 〈ω, f (x, ·)〉 . (6)

If ω ∈ H−s
(
T2
)
for some s > 0, one can check that ω ⊗ ω ∈ H−2s

(
T2 × T2

)
.

Let us go back to white noise. First notice that, being ω ∈ H−1− (T2
)
with probability

one, we have at least

ω ⊗ ω ∈ H−2− (T2 × T2
)
with probability one.

Hence
∫
T2

∫
T2 f (x, y)ω (x)ω (y) dxdy, or more properly the duality

〈ω ⊗ ω, f〉

is well defined when f ∈ H2+
(
T2 × T2

)
. The question is: can we define

〈ω ⊗ ω,Hφ〉

10



for the function Hφ, which is smooth outside the diagonal, and bounded, but discontinuous
along the diagonal and thus not of class H2+? We have the following results, over which
all our analysis is based. The first result is concerned with the smooth approximations
ωǫ (x) = 〈ω, θǫ (x− ·)〉, the second one with white noise.

Lemma 5 i) If ω : Ξ → C∞ (T2
)′
is a white noise and f is bounded measurable on T2×T2,

then for every p ≥ 1 there is a constant Cp > 0 such that, for all ǫ > 0,

E [|〈ωǫ ⊗ ωǫ, f〉|p] ≤ Cp ‖f‖p∞ .

ii) We have E [〈ωǫ ⊗ ωǫ, f〉] =
∫
T2

∫
T2 δ

ǫ
x−yf (x, y) dxdy.

iii) If f is symmetric, then

E
[
|〈ωǫ ⊗ ωǫ, f〉 − E [〈ωǫ ⊗ ωǫ, f〉]|2

]
= 2

∫

(T2)4
δǫx1−x2

δǫy1−y2f (x1, y1) f (x2, y2) dx1dy1dx2dy2.

Proof. i) It is sufficient to prove the claim for integer values of p. We have

〈ωǫ ⊗ ωǫ, f〉 =
∫

T2

∫

T2

ωǫ (x)ωǫ (y) f (x, y) dxdy

E [|〈ωǫ ⊗ ωǫ, f〉|p] =
∫

(T2)2p
E

[
p∏

i=1

(ωǫ (xi)ωǫ (yi))

]
p∏

i=1

f (xi, yi) dx1dy1 · · · dxpdyp.

From Isserlis-Wick theorem,

E

[
p∏

i=1

(ωǫ (xi)ωǫ (yi))

]
=
∑

π

∏

(a,b)∈π
E [ωǫ (a)ωǫ (b)] =

∑

π

∏

(a,b)∈π
δǫa−b

where the sum is over all partitions π of (x1, y1, ..., xp, yp) in pairs, generically denoted by
(a, b). Therefore

E [|〈ωǫ ⊗ ωǫ, f〉|p] =
∑

π

∫

(T2)2p

∏

(a,b)∈π
δǫa−b

p∏

i=1

f (xi, yi) dx1dy1 · · · dxpdyp

≤ ‖f‖p∞
∑

π

∫

(T2)2p

∏

(a,b)∈π
δǫa−bdx1dy1 · · · dxpdyp

= ‖f‖p∞
∑

π

(∫

T2

∫

T2

δǫa−bdadb

)p

= ‖f‖p∞
∑

π

(∫

T2

∫

T2

〈θǫ (a− ·) , θǫ (b− ·)〉 dadb
)p

= ‖f‖p∞
∑

π

∣∣T2
∣∣p =: Cp ‖f‖p∞

11



(the sum has (2p)!/ (2pp!) terms).
ii) We simply have

E [〈ωǫ ⊗ ωǫ, f〉] =
∫

T2

∫

T2

E [ωǫ (x)ωǫ (y)] f (x, y) dxdy =

∫

T2

∫

T2

δǫx−yf (x, y) dxdy.

iii) We just develop more carefully

E
[
〈ωǫ ⊗ ωǫ, f〉2

]
=

∫

(T2)4
E

[
2∏

i=1

(ωǫ (xi)ωǫ (yi))

]
2∏

i=1

f (xi, yi) dx1dy1dx2dy2.

We have, again from Isserlis-Wick theorem,

E

[
2∏

i=1

(ωǫ (xi)ωǫ (yi))

]
= E [ωǫ (x1)ωǫ (x2)]E [ωǫ (y1)ωǫ (y2)]

+ E [ωǫ (x1)ωǫ (y2)]E [ωǫ (y1)ωǫ (x2)]

+ E [ωǫ (x1)ωǫ (y1)]E [ωǫ (x2)ωǫ (y2)]

= δǫx1−x2
δǫy1−y2 + δǫx1−y2δ

ǫ
y1−x2

+ δǫx1−y1δ
ǫ
x2−y2 .

Hence, using the symmetry,

E
[
〈ωǫ ⊗ ωǫ, f〉2

]

=

∫

(T2)4

(
δǫx1−x2

δǫy1−y2 + δǫx1−y2δ
ǫ
y1−x2

+ δǫx1−y1δ
ǫ
x2−y2

)
f (x1, y1) f (x2, y2) dx1dy1dx2dy2

= 2

∫

(T2)4
δǫx1−x2

δǫy1−y2f (x1, y1) f (x2, y2) dx1dy1dx2dy2 +

(∫

T2

∫

T2

δǫx−yf (x, y) dxdy

)2

.

We have found

E
[
〈ωǫ ⊗ ωǫ, f〉2

]
−E [〈ωǫ ⊗ ωǫ, f〉]2 = 2

∫

(T2)4
δǫx1−x2

δǫy1−y2f (x1, y1) f (x2, y2) dx1dy1dx2dy2.

Corollary 6 i) If ω : Ξ → C∞ (T2
)′

is a white noise and f ∈ H2+
(
T2 × T2

)
, then for

every p ≥ 1 there is a constant Cp > 0 such that

E [|〈ω ⊗ ω, f〉|p] ≤ Cp ‖f‖p∞ .

ii) We have E [〈ω ⊗ ω, f〉] =
∫
T2 f (x, x) dx.

iii) If f is symmetric, then

E
[
|〈ω ⊗ ω, f〉 − E [〈ω ⊗ ω, f〉]|2

]
= 2

∫

T2

∫

T2

f (x, y)2 dxdy.

12



Proof. Notice that f is continuous and thus bounded and uniformly continuous, on T2,
by Sobolev embedding theorem. Thus we may apply the previous lemma to 〈ωǫ ⊗ ωǫ, f〉;
and we have

lim
ǫ→0

∫

T2

∫

T2

δǫx−yf (x, y) dxdy =

∫

T2

f (x, x) dx

lim
ǫ→0

∫

(T2)4
δǫx1−x2

δǫy1−y2f (x1, y1) f (x2, y2) dx1dy1dx2dy2 =

∫

T2

∫

T2

f (x1, y1)
2 dx1dy1.

From the identity

〈ωǫ ⊗ ωǫ, f〉 =
∫

T2

∫

T2

ωǫ (x)ωǫ (y) f (x, y) dxdy = 〈ω ⊗ ω, (θǫ ⊗ θǫ) ∗ f〉

we see that P-almost surely, for every f ∈ H2+
(
T2 × T2

)
we have

lim
ǫ→0

〈ωǫ ⊗ ωǫ, f〉 = 〈ω ⊗ ω, f〉 .

We can pass to the limit in all expectations written in the statement of the corollary, due
to uniform integrability of |〈ωǫ ⊗ ωǫ, f〉| (Vitali theorem), coming from property (i) of the
lemma. The corollary then follows from these limit properties and the lemma.

Remark 7 In the non symmetric case we simply have

E
[
|〈ω ⊗ ω, f〉 − E [〈ω ⊗ ω, f〉]|2

]
=

∫ ∫
f2 (x, y) dxdy +

∫

T2

∫

T2

f (x, y) f (y, x) dxdy.

Based on the previous key facts we can give a definition of 〈ω ⊗ ω,Hφ〉 when ω is white
noise.

Theorem 8 Let ω : Ξ → C∞ (T2
)′

be a white noise and φ ∈ C∞ (T2
)
be given. Assume

that Hn
φ ∈ H2+

(
T2 × T2

)
are symmetric and approximate Hφ in the following sense:

lim
n→∞

∫ ∫ (
Hn

φ −Hφ

)2
(x, y) dxdy = 0

lim
n→∞

∫
Hn

φ (x, x) dx = 0.

Then the sequence of r.v.’s
〈
ω ⊗ ω,Hn

φ

〉
is a Cauchy sequence in mean square. We denote

by
〈ω ⊗ ω,Hφ〉

its limit. Moreover, the limit is the same if Hn
φ is replaced by H̃n

φ with the same properties

and such that limn→∞
∫ ∫ (

Hn
φ − H̃n

φ

)2
(x, y) dxdy = 0.

13



Proof. Since limn→∞
∫
Hn

φ (x, x) dx = 0, it is equivalent to show that
〈
ω ⊗ ω,Hn

φ

〉
−∫

Hn
φ (x, x) dx is a Cauchy sequence in mean square. We have

E

[∣∣∣∣
〈
ω ⊗ ω,Hn

φ

〉
−
∫
Hn

φ (x, x) dx−
〈
ω ⊗ ω,Hm

φ

〉
+

∫
Hm

φ (x, x) dx

∣∣∣∣
2
]

= E

[∣∣∣∣
〈
ω ⊗ ω,

(
Hn

φ −Hm
φ

)〉
−
∫ (

Hn
φ −Hm

φ

)
(x, x) dx

∣∣∣∣
2
]

and now we use properties (ii-iii) of the Corollary

= 2

∫

T2

∫

T2

(
Hn

φ −Hm
φ

)2
(x, y) dxdy.

Due to our assumption, this implies the Cauchy property. Hence 〈ω ⊗ ω,Hφ〉 is well defined.
The invariance property is prove in a similar way.

Remark 9 It is easy to construct a sequence Hn
φ (x, y) with the properties above. Recall

that Hφ (x, y) := 1
2K (x− y) (∇φ (x)−∇φ (y)), where K smooth for x 6= y, K (y − x) =

−K (x− y),

|K (x− y)| ≤ C

|x− y|
for small values of |x− y|. We set, for ǫ > 0,

Kǫ (x) =

{
K (x) (1− θǫ (x)) for x 6= 0

0 for x = 0
(7)

where θǫ (x) = θ
(
ǫ−1x

)
, 0 ≤ θ ≤ 1, θ is smooth, with support a small ball B (0, r), equal to

1 in B (0, r/2); and, given any sequence ǫn → 0 we set

Hn
φ (x, y) =

1

2
Kǫn (x− y) (∇φ (x)−∇φ (y)) .

Then Hn
φ is smooth; Hn

φ (x, x) = 0 hence
∫
Hn

φ (x, x) dx = 0; and

lim
n→∞

∫ ∫ (
Hn

φ −Hφ

)2
(x, y) dxdy = lim

n→∞

∫ ∫
H2

φ (x, y) θ
2
ǫn (x− y) dxdy

≤ lim
n→∞

∫ ∫

|x−y|≤ǫnr
H2

φ (x, y) dxdy = 0

(because H2
φ (x, y) is bounded above, θ2ǫn ≤ 1, and θ2ǫn 6= 0 only in B (0, ǫnr)).
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In fact, what we need in Definition 17 below is a definition of
∫ t
0 〈ωs ⊗ ωs,Hφ〉 ds and for

such purpose the previous result is not so strong; it would allow for instance to define such
integral as a Bochner integral in the Hilbert space L2 (Ξ). We prefer to have a stronger
meaning and for this purpose we refine the previous result.

Theorem 10 Let ω· : Ξ × [0, T ] → C∞ (T2
)′

be a measurable map with trajectories of
class C

(
[0, T ] ;H−1−). Assume that ωt is a white noise at every time t ∈ [0, T ]. Let

Hn
φ be an approximation of Hφ as above, of class H2+

(
T2 × T2

)
. Then the well defined

sequence of real valued process
{
s 7→

〈
ωs ⊗ ωs,H

n
φ

〉
; s ∈ [0, T ]

}
n∈N

is a Cauchy sequence

in L2
(
Ξ;L2 (0, T )

)
.

Proof. The proof is the same as the one of Theorem 8, but we repeat it, due to the
importance of the present result. We have

E

[∫ T

0

∣∣∣∣
〈
ωs ⊗ ωs,H

n
φ

〉
−
∫
Hn

φ (x, x) dx−
〈
ωs ⊗ ωs,H

m
φ

〉
+

∫
Hm

φ (x, x) dx

∣∣∣∣
2

ds

]

=

∫ T

0
E

[∫ T

0

∣∣∣∣
〈
ωs ⊗ ωs,H

n
φ

〉
−
∫
Hn

φ (x, x) dx−
〈
ωs ⊗ ωs,H

m
φ

〉
+

∫
Hm

φ (x, x) dx

∣∣∣∣
2
]
ds

= T · E
[∣∣∣∣
〈
ω0 ⊗ ω0,

(
Hn

φ −Hm
φ

)〉
−
∫ (

Hn
φ −Hm

φ

)
(x, x) dx

∣∣∣∣
2
]

and now we use properties (ii-iii) of the Corollary

= 2

∫

T2

∫

T2

(
Hn

φ −Hm
φ

)2
(x, y) dxdy.

Due to our assumption, this implies the Cauchy property.

Definition 11 Under the assumptions of the previous theorem, we denote by

{s 7→ 〈ωs ⊗ ωs,Hφ〉 ; s ∈ [0, T ]}

or more simply by 〈ω· ⊗ ω·,Hφ〉 the process of class L2
(
Ξ;L2 (0, T )

)
, limit of the sequence{

s 7→
〈
ωs ⊗ ωs,H

n
φ

〉
; s ∈ [0, T ]

}
n∈N

.

Remark 12 By the identification L2
(
Ξ;L2 (0, T )

)
= L2

(
0, T ;L2 (Ξ)

)
, we may see 〈ω· ⊗ ω·,Hφ〉

as an element of the class L2
(
0, T ;L2 (Ξ)

)
; its value at time s is, for a.e. s, an element

of L2 (Ξ); one may check that it is the same element of L2 (Ξ) given by Theorem 8.
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2.5 The nonlinear term for modified white noise vorticity

We may generalize a little bit the previous construction. Assume ω : Ξ → C∞ (T2
)′

is a
random distribution with the property that

E [Φ (ω)] = E [ρ (ωWN) Φ (ωWN)]

for every measurable function Φ : H−1− (T2
)
→ [0,∞), where ωWN : Ξ → C∞ (T2

)′
is a

white noise and ρ : H−1− (T2
)
→ [0,∞) is a measurable function such that

kq := E [ρq (ωWN)] <∞
for some q > 1, and

∫
ρdµ = 1. This is equivalent to say that the law of ω is absolutely

continuous with respect to µ with density ρ satisfying
∫
ρqdµ <∞.

Lemma 13 Under the previous assumptions, if f ∈ H2+
(
T2 × T2

)
, then:

i) for every r ≥ 1 there is a constant Cr > 0 such that

E [|〈ω ⊗ ω, f〉|r] ≤ Cr ‖f‖r∞ .

ii) If f is symmetric, then there exists a constant Cq > 0 such that

E

[∣∣∣∣〈ω ⊗ ω, f〉 −
∫

T2

f (x, x) dx

∣∣∣∣
]
≤ Cq ‖f‖1/pL2(T2×T2)

where p is the number such that 1
p + 1

q = 1.

Proof. i) We deduce the claim from

E [|〈ω ⊗ ω, f〉|r] = E [ρ (ωWN) |〈ωWN ⊗ ωWN , f〉|r]
≤ E [ρq (ωWN)]1/q E [|〈ωWN ⊗ ωWN , f〉|rp]1/p .

ii) One has

E

[∣∣∣∣〈ω ⊗ ω, f〉 −
∫

T2

f (x, x) dx

∣∣∣∣
]
= E

[
ρ (ωWN)

∣∣∣∣〈ωWN ⊗ ωWN , f〉 −
∫

T2

f (x, x) dx

∣∣∣∣
]

≤ E [ρq (ωWN)]1/q E

[∣∣∣∣〈ωWN ⊗ ωWN , φ〉 −
∫

T2

f (x, x) dx

∣∣∣∣
p]1/p

.

Moreover,

E

[∣∣∣∣〈ωWN ⊗ ωWN , f〉 −
∫

T2

f (x, x) dx

∣∣∣∣
p]

≤ E

[∣∣∣∣〈ωWN ⊗ ωWN , f〉 −
∫

T2

f (x, x) dx

∣∣∣∣
2
]1/2

E

[∣∣∣∣〈ωWN ⊗ ωWN , f〉 −
∫

T2

f (x, x) dx

∣∣∣∣
2p−2

]1/2

= C0
q

(∫

T2

∫

T2

f (x, y)2 dxdy

)1/2
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where

C0
q := 2E

[∣∣∣∣〈ωWN ⊗ ωWN , f〉 −
∫

T2

f (x, x) dx

∣∣∣∣
2p−2

]1/2

is a finite constant, due to property (i) of a previous corollary. We set Cq = k
1/q
q

(
C0
q

)1/p
.

The next results are the same as those above in the white noise case except that we
have a lower order of integrability, nevertheless sufficient for our aims.

Theorem 14 Under the previous assumptions, assume that Hn
φ ∈ H2+

(
T2 × T2

)
are sym-

metric and approximate Hφ as in Theorem 8. Then the sequence of r.v.’s
〈
ω ⊗ ω,Hn

φ

〉
is

a Cauchy sequence in L1 (Ξ). We denote by 〈ω ⊗ ω,Hφ〉 its limit. It is the same if Hn
φ is

replaced by H̃n
φ with the properties described in Theorem 8.

Proof. Since limn→∞
∫
Hn

φ (x, x) dx = 0, it is equivalent to show that
〈
ω ⊗ ω,Hn

φ

〉
−

∫
Hn

φ (x, x) dx is a Cauchy sequence in L1 (Ξ). We have

E

[∣∣∣∣
〈
ω ⊗ ω,Hn

φ

〉
−
∫
Hn

φ (x, x) dx−
〈
ω ⊗ ω,Hm

φ

〉
+

∫
Hm

φ (x, x) dx

∣∣∣∣
]

= E

[∣∣∣∣
〈
ω ⊗ ω,

(
Hn

φ −Hm
φ

)〉
−
∫ (

Hn
φ −Hm

φ

)
(x, x) dx

∣∣∣∣
]

and now we use property (ii) of the Corollary

≤ Cq

∥∥Hn
φ −Hm

φ

∥∥1/p
L2(T2×T2)

.

Due to our assumptions, this implies the Cauchy property. Hence 〈ω ⊗ ω,Hφ〉 is well
defined. The invariance property is prove in a similar way.

Theorem 15 Let ρ : [0, T ] × H−1− (T2
)
→ [0,∞) be a function such that

∫
ρqtdµ ≤ C

for some constants C > 0, q > 1, where µ is the law of white noise; and
∫
ρtdµ = 1 for

every t ∈ [0, T ]. Let ω· : Ξ × [0, T ] → C∞ (T2
)′

be a measurable map with trajectories of
class C

(
[0, T ] ;H−1−). Assume that the law of ωt is ρtdµ, at every time t ∈ [0, T ]. Let

Hn
φ be an approximation of Hφ as above, of class H2+

(
T2 × T2

)
. Then the well defined

sequence of real valued process
{
s 7→

〈
ωs ⊗ ωs,H

n
φ

〉
; s ∈ [0, T ]

}
n∈N

is a Cauchy sequence

in L1
(
Ξ;L1 (0, T )

)
.

17



Proof. As in previous proofs, we have

E

[∫ T

0

∣∣∣∣
〈
ωs ⊗ ωs,H

n
φ

〉
−
∫
Hn

φ (x, x) dx−
〈
ωs ⊗ ωs,H

m
φ

〉
+

∫
Hm

φ (x, x) dx

∣∣∣∣ ds
]

=

∫ T

0
E

[∣∣∣∣
〈
ωs ⊗ ωs,

(
Hn

φ −Hm
φ

)〉
−
∫ (

Hn
φ −Hm

φ

)
(x, x) dx

∣∣∣∣
]
ds

≤ CqT
∥∥Hn

φ −Hm
φ

∥∥1/p
L2(T2×T2)

Definition 16 Under the assumptions of the previous theorem, we denote by 〈ω· ⊗ ω·,Hφ〉
the process of class L1

(
Ξ;L1 (0, T )

)
, limit of the sequence

{
s 7→

〈
ωs ⊗ ωs,H

n
φ

〉
; s ∈ [0, T ]

}
n∈N

.

2.6 Weak vorticity formulation for white noise vorticity

Definition 17 We say that a measurable map ω· : Ξ× [0, T ] → C∞ (T2
)′

with trajectories
of class C

(
[0, T ] ;H−1− (T2

))
is a white noise solution of Euler equations if ωt is a white

noise at every time t ∈ [0, T ] and for every φ ∈ C∞ (T2
)
, we have the following identity

P -a.s., uniformly in time,

〈ωt, φ〉 = 〈ω0, φ〉+
∫ t

0
〈ωs ⊗ ωs,Hφ〉 ds.

Here 〈ωt, φ〉 is a.s. a continuous function of time because we assume that trajectories
of ω are of class C

(
[0, T ] ;H−1− (T2

))
, and

∫ t
0 〈ωs ⊗ ωs,Hφ〉 ds is the continuous process

obtained by integration of the L2 (0, T )-process provided by Definition 11.
In the case of the previous definition, in addition, we may require that ω· is a time-

stationary process. In a sense, the law of white noise is an invariant measure, although we
do not have a proper Markov structure allowing us to talk about invariant measures in the
classical sense.

Using Definition 16 we may generalize the previous definition to the following case:

Definition 18 Let ρ : [0, T ]×H−1− (T2
)
→ [0,∞) satisfy

∫
ρqtdµ ≤ C for some constants

C > 0, q > 1, where µ is the law of white noise; and
∫
ρtdµ = 1 for every t ∈ [0, T ]. Let ω· :

Ξ×[0, T ] → C∞ (T2
)′

be a measurable map with trajectories of class C
(
[0, T ] ;H−1− (T2

))
,

such that ωt has law ρtdµ, for every t ∈ [0, T ]. We say that ω is a ρ−white noise solution
of Euler equations if for every φ ∈ C∞ (T2

)
, t 7→ 〈ωt, φ〉 is continuous and we have the

following identity P -a.s., uniformly in time,

〈ωt, φ〉 = 〈ω0, φ〉+
∫ t

0
〈ωs ⊗ ωs,Hφ〉 ds.
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3 Random point vortex dynamics

Let us introduce some notations. In
(
T2
)N

, denote by ∆N the generalized diagonal

∆N =
{(
x1, ..., xN

)
∈
(
T2
)N

: xi = xj for some i 6= j, i, j = 1, ..., n
}
.

Then introduce the set of unlabelled and labelled finite sequences of different points

FNT2 =
{
(x1, ..., xn) ∈

(
T2
)N

:
(
x1, ..., xN

)
∈ ∆c

N

}

LFNT2 =
{
((ξ1, x1) , ..., (ξN , xN )) ∈

(
R× T2

)N
:
(
x1, ..., xN

)
∈ ∆c

N

}

and the unlabelled and labelled configuration space

CNT2 = FNT2/ΣN

LCNT2 = LFNT2/ΣN

where ΣN is the group of permutations of coordinates. This set, LCNT2, is in bijection
with the set of discrete signed measures with n-point support:

MN

(
T2
)
=
{
µ ∈ M

(
T2
)
: ∃X ∈ CNT2 : |µ| (Xc) = 0, µ (x) 6= 0 for every x ∈ X

}
.

We do not use extensively these notations but they may help to formalize further the topics
we are going to describe.

3.1 Definition for a.e. initial condition

Consider, for every N ∈ N, the finite dimensional dynamics in
(
T2
)N

dXi,N
t

dt
=

N∑

j=1

1√
N
ξjK

(
Xi,N

t −Xj,N
t

)
i = 1, ..., N (8)

with initial condition
(
X1,N

0 , ...,XN,N
0

)
∈
(
T2
)N \∆N , where as above K is the Biot-Savart

kernel on T2; we set K (0) = 0 so that the self-interaction (namely when j = i) in the sum
does not count. The intensities ξ1, ..., ξN are (random) numbers of any sign. One can
consider (8) as a dynamics on the configuration space CNT2. This system corresponds also

to the time-evolution of a vorticity distribution concentrated at positions
(
X1,N

t , ...,XN,N
t

)
:

ωN
t =

1√
N

N∑

n=1

ξnδXn
t
.
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There are various ways in which one can relate this finite dimensional dynamics to Eu-
ler equations, see [30]; under our assumptions made below we shall clarify one of these
connections.

In [30] it is shown an example with N = 3 and ξ1, ξ2, ξ3 of different signs such that,
starting from different initial positions X1,3

0 ,X2,3
0 ,X3,3

0 , in finite time X1,3
t ,X2,3

t ,X3,3
t co-

incide; this vortex collapse corresponds to a blow-up in the finite dimensional dynamics
(because K (x− y) diverges as 1

|x−y| as |x− y| → 0) and provokes troubles also at the level

of a PDE reformulation of the dynamics of ωN
t (having in mind the weak vorticity formula-

tion above, the measure ωN
t (dx) concentrates on the diagonal, where Hφ is discontinuous).

These difficulties do not happen for constant sign vortices, but they are not interesting

for our investigation. Let ⊗NLebT2 be Lebesgue measure on
(
T2
)N

. The main result we
use below, proved in [30] is that, independently of the sign of ξ1, ..., ξN , for ⊗NLebT2-a.e.

initial condition
(
X1,N

0 , ...,XN,N
0

)
∈
(
T2
)N

the positions
(
X1,N

t , ...,XN,N
t

)
remain dif-

ferent for all times; and in addition the measure ⊗NLebT2 is invariant, in the sense that(
X1,N

t , ...,XN,N
t

)
is distributed as ⊗NLebT2 for all t ≥ 0. The precise statement is:

Theorem 19 For every (ξ1, ..., ξN ) ∈ RN and for ⊗NLebT2- almost every
(
X1,N

0 , ...,XN,N
0

)
∈

∆c
N , there is a unique solution

(
X1,N

t , ...,XN,N
t

)
of system (8), with the property that

(
X1,N

t , ...,XN,N
t

)
∈ ∆c

N for all t ≥ 0. Moreover, considering the initial condition as

a random variable with distribution ⊗NLebT2 , the stochastic process
(
X1,N

t , ...,XN,N
t

)
is

stationary, with invariant marginal law ⊗NLebT2 .

When this occurs, the measure-valued process ωN
t = 1√

N

∑N
n=1 ξnδXn

t
satisfies, for every

φ ∈ C∞ (T2
)
, the identity

d

dt

〈
ωN
t , φ

〉
=

1√
N

N∑

n=1

ξn
d

dt
φ (Xn

t ) =
1√
N

N∑

n=1

ξn∇φ (Xn
t ) ·

N∑

j=1

1√
N
ξjK

(
Xn

t −Xj
t

)

=

∫

T2

∫

T2

∇φ (x) ·K (x− y)ωN
t (dx)ωN

t (dy)

and therefore
〈
ωN
t , φ

〉
=
〈
ωN
0 , φ

〉
+

∫ t

0

〈
ωN
s ⊗ ωN

s ,Hφ

〉
ds.

3.2 Random point vortices, at time t = 0, converging to white noise, and

their time evolution

On a probability space (Ξ,F ,P), let (ξn) be an i.i.d. sequence of N (0, 1) r.v.’s and (Xn
0 )

be an i.i.d. sequence of T2-valued r.v.’s, independent of (ξn) and uniformly distributed.
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Denote by
λ0N := ⊗N (N (0, 1) ⊗ LebT2)

the law of the random vector
((
ξ1,X

1
0

)
, ...,

(
ξN ,X

N
0

))
.

For every N ∈ N, let us consider also the measure-valued vorticity field

ωN
0 =

1√
N

N∑

n=1

ξnδXn
0
.

Remark 20 Since product Lebesgue measure does not charge the generalized diagonal ∆N ,
the law λ0N can be seen as a probability measure on the set of labelled ordered different points
LFNT2 (see the beginning of Section 3). It is an exchangeable measure (namely invariant by
permutations) and thus it induces a probability measure on the labelled configuration space
LCNT2. It also induces a probability measure on MN

(
T2
)
or, what we need below, on

H−1− (T2
)
. We shall denote this induced measure on discrete measures or on distributions

by µ0N (dω). Defined the measurable map TN :
(
R× T2

)N → H−1− (T2
)
as

((
ξ1,X

1
0

)
, ...,

(
ξN ,X

N
0

)) TN7→ 1√
N

N∑

n=1

ξnδXn
0

we have (with the push-forward notation)

µ0N = (TN )∗ λ
0
N .

The random distribution ωN
0 is centered, becuase

E
[
ξn
〈
δXn

0
, ϕ
〉]

= 0

(true since ξn and
〈
δXn

0
, ϕ
〉
are independent and ξn is centered). Let us denote by QN the

covariance operator of ωN
0 , defined as

〈QNϕ,ψ〉 = E
[〈
ωN
0 , ϕ

〉 〈
ωN
0 , ψ

〉]

for all ϕ,ψ ∈ C∞ (T2
)
. We have

〈QNϕ,ψ〉 =
1

N

N∑

n,m=1

E
[
ξnξm

〈
δXn

0
, ϕ
〉 〈
δXm

0
, ψ
〉]

=
1

N

N∑

n=1

E
[
ξ2n
]
E
[〈
δXn

0
, ϕ
〉 〈
δXn

0
, ψ
〉]

= E
[
ξ21
]
E
[
ϕ
(
X1

0

)
ψ
(
X1

0

)]

=

∫

T2

ϕ (x)ψ (x) dx
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hence ωN
0 has the same covariance as white noise, but obviously it is not Gaussian. However,

a Hilbert-valued version of the Central Limit Theorem gives us

Proposition 21 If ωWN denotes white noise, then

ωN
0

Law
⇀ ωWN

where convergence takes place in H−1−δ for every δ > 0.

Proof. The condition for the validity of this claim, a part from the computation above on
the covariance, is that the space is Hilbert and the second moment is finite:

E
[∥∥ξnδXn

0

∥∥2
H−1−δ

]
<∞ (9)

(see [26]). Condition (9) is true because E
[∥∥ξnδXn

0

∥∥2
H−1−δ

]
= E

[∥∥δXn
0

∥∥2
H−1−δ

]
and

∥∥δXn
0

∥∥
H−1−δ = sup

‖φ‖
H1+δ≤1

〈
δXn

0
, φ
〉
= sup

‖φ‖
H1+δ≤1

φ (Xn
0 )

≤ sup
‖φ‖

H1+δ≤1
‖φ‖∞ ≤ C sup

‖φ‖
H1+δ≤1

‖φ‖H1+δ = C

where we have used Sobolev embedding theorem H1+δ
(
T2
)
⊂ C

(
T2
)
.

Obviously, using proper versions of the Central Limit Theorem, one can provide much
more general random point vortices that converge in law to ωWN ; our aim here is not
the generality but the construction of an approximation scheme for our main existence
theorem.

As a consequence of Theorem 19 we have:

Proposition 22 Consider the vortex dynamics with random intensities (ξ1, ..., ξN ) and
random initial positions

(
X1

0 , ...,X
N
0

)
distributed as λ0N . For a.e. value of

((
ξ1,X

1
0

)
, ...,

(
ξN ,X

N
0

))

the dynamics
(
X1,N

t , ...,XN,N
t

)
is well defined in ∆c

N for all t ≥ 0, and the associ-

ated measure-valued vorticity ωN
t satisfies the weak vorticity formulation. The stochas-

tic process ωN
t is stationary in time and space-homogeneous; in particular the law of((

ξ1,X
1
t

)
, ...,

(
ξN ,X

N
t

))
is λ0N at any time t ≥ 0.

Proof. The first claims are obvious consequences of Theorem 19. Given (ξ1, ..., ξN ), the

process
(
X1,N

t , ...,XN,N
t

)
is stationary. Hence, denoted (ξ1, ..., ξN ) by ξ and

(
X1,N

t , ...,XN,N
t

)

by Xt, for every 0 ≤ t1 ≤ ... ≤ tn and bounded measurable F , the random variable (con-
ditional expectation given the σ-field generated by ξ)

E [F ((ξ,Xt1+h) , ..., (ξ,Xtn+h)) |ξ]
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is independent of h (in the equivalence class of conditional expectation). Therefore its
expectation, namely E [F ((ξ,Xt1+h) , ..., (ξ,Xtn+h))], is independent of h, which implies
that (ξ,Xt) (and therefore ωN

t ) is a stationary process. Space homogeneity is not used
below and thus we do not prove it, but it is not difficult due to the symmetries of the
system.

3.3 Integrability properties of the random point vortices

Let ωN
t be given by Proposition 22. It satisfies estimates similar to those of white noise.

Lemma 23 Assume f : T2 × T2 → R is symmetric, bounded and measurable. Then, for
every p ≥ 1 and δ > 0 there are constants Cp, Cp,δ > 0 such that

E
[〈
ωN
t ⊗ ωN

t , f
〉p] ≤ Cp ‖f‖p∞

E
[∥∥ωN

t

∥∥p
H−1−δ

]
≤ Cp,δ

and moreover

E
[〈
ωN
t ⊗ ωN

t , f
〉2]

=
3

N

∫
f2 (x, x) dx+

(∫
f (x, x) dx

)2

+ 2

∫ ∫
f2 (x, y) dxdy.

Proof. Step 1. It is sufficient to consider integer values of p. One has

E
[〈
ωN
t ⊗ ωN

t , f
〉p]

= E

(∫

T2

∫

T2

f (x, y)ωN
t (dx)ωN

t (dy)

)p

=

∫

(T2)2p
E

[
p∏

i=1

f (xi, yi)

p∏

i=1

(
ωN
t (dxi)ω

N
t (dyi)

)
]

=
1

Np

N∑

k1,h1,...,kp,hp=1

E

[
p∏

i=1

ξkiξhi

]
E

[
p∏

i=1

f
(
Xki

t ,X
hi
t

)]
.

We replace here Isserlis-Wick theorem by a combinatorial argument based on the inde-
pendence of the r.v.’s ξi. Denote by Pp the family of all (2p)-ples (k1, h1, ..., kp, hp) that
are ”paired”, namely such that we may split (k1, h1, ..., kp, hp) in p pairs such that in each
pair the two elements have the same value; an example is when h1 = k1, ... , hp = kp.
Notice that we do not require that the values in different pairs are different. One has

E

[
p∏

i=1

ξkiξhi

]
= 0 if (k1, h1, ..., kp, hp) /∈ Pp, hence

E
[〈
ωN
t ⊗ ωN

t , f
〉p]

=
1

Np

∑

(k1,h1,...,kp,hp)∈Pp

E

[
p∏

i=1

ξkiξhi

]
E

[
p∏

i=1

f
(
Xki

t ,X
hi
t

)]

≤ ‖f‖p∞
C ′
p

Np
Card (Pp)
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where C ′
p is a constant that bounds from above E

[
p∏

i=1

ξkiξhi

]
independently of the index.

The cardinality of Pp is bounded above by C ′′
pN

p for another constant C ′′
p > 0 (the idea is

that given any one of the N values of k1, either h1 or k2 or one of the next indexes is equal
to k1, and this constraints the variability of that index to one value; then repeat p times
this argument). Therefore E

[〈
ωN
t ⊗ ωN

t , f
〉p] ≤ ‖f‖p∞C ′

pC
′′
p . This proves the first claim of

the lemma, with Cp = C ′
pC

′′
p .

Step 2. Similarly,

E



∥∥∥∥∥

1√
N

N∑

n=1

ξnδXn
t

∥∥∥∥∥

2p

H−1−δ/2


 = E

[(〈
1√
N

N∑

n=1

ξnδXn
t
,

1√
N

N∑

n=1

ξnδXn
t

〉

H−1−δ/2

)p]

=
1

Np
E






N∑

n,m=1

ξnξM
〈
δXn

t
, δXm

t

〉
H−1−δ/2




p


=
1

Np

N∑

k1,h1,...,kp,hp=1

E

[
p∏

i=1

ξkiξhi

]
E

[
p∏

i=1

〈
δ
X

ki
t
, δ

X
hi
t

〉
H−1−δ/2

]

=
1

Np

∑

(k1,h1,...,kp,hp)∈Pp

E

[
p∏

i=1

ξkiξhi

]
E

[
p∏

i=1

〈
δ
X

ki
0

, δ
X

hi
0

〉
H−1−δ/2

]

≤ Cp,δ

because we use the same bounds above for E

[
p∏

i=1

ξkiξhi

]
and Card (Pp) and a trivial uniform

bound on E

[
p∏

i=1

〈
δ
X

ki
0

, δ
X

hi
0

〉
H−1−δ/2

]
due to the property

∥∥∥δXi
0

∥∥∥
H−1−δ/2

≤ C showed in

the proof of Proposition 21.
Step 3.

E
[〈
ωN
t ⊗ ωN

t , f
〉2]

= E

(∫

T2

∫

T2

f (x, y)ωN
t (dx)ωN

t (dy)

)2

= E
∫

(T2)4
f (x, y) f

(
x′, y′

)
ωN
t (dx)ωN

t (dy)ωN
t

(
dx′
)
ωN
t

(
dy′
)

=
1

N2

N∑

ijkh=1

E
[
f
(
Xi

t ,X
j
t

)
f
(
Xk

t ,X
h
t

)]
E [ξiξjξkξh] .

In this sum there are various terms. The term with i = j = k = h is

1

N2

N∑

i=1

E
[
f
(
Xi

t ,X
i
t

)
f
(
Xi

t ,X
i
t

)]
E
[
ξ4i
]
=

E
[
ξ4
]

N

∫
f2 (x, x) dx.

24



Then there are terms with j = i, h = k:

1

N2

N∑

i 6=k=1

E
[
ξ2i
]
E
[
ξ2k
]
E
[
f
(
Xi

t ,X
i
t

)
f
(
Xk

t ,X
k
t

)]

=
E
[
ξ2
]2

N2

N∑

i 6=k=1

E
[
f
(
Xi

t ,X
i
t

)]
E
[
f
(
Xk

t ,X
k
t

)]

≤ E
[
ξ2
]2
(∫

f (x, x) dx

)2

.

Then there are terms with k = i, h = j:

E
[
ξ2
]2

N2

N∑

i 6=j=1

E
[
f
(
Xi

t ,X
j
t

)
f
(
Xi

t ,X
j
t

)]
≤E

[
ξ2
]2
∫ ∫

f2 (x, y) dxdy.

Finally, then there are terms with k = j, h = i: (here we use symmetry)

E
[
ξ2
]2

N2

N∑

i 6=j=1

E
[
f
(
Xi

t ,X
j
t

)
f
(
Xj

t ,X
i
t

)]
≤E

[
ξ2
]2
∫ ∫

f2 (x, y) dxdy.

4 Main results

Denote by µ the law of White Noise. We first formulate our version of Albeverio-Cruzeiro
result [1].

Theorem 24 There exists a probability space (Ξ,F , P ) with the following properties.
i) There exists a measurable map ω· : Ξ × [0, T ] → C∞ (T2

)′
such that ω· is a time-

stationary white noise solution of Euler equations, in the sense of Definition 17.
ii) On (Ξ,F , P ) one can define the random point vortex system described in Sec-

tion 3.2; it has a subsequence which converges P -a.s. to the solution of point (i) in
C
(
[0, T ] ;H−1− (T2

))
.

We prove also a generalization to ρ−white noise solutions; the assumption on ρ0 is
presumably too restrictive but further investigation is needed for more generality.

Theorem 25 Given ρ0 ∈ Cb

(
H−1− (T2

))
such that ρ0 ≥ 0 and

∫
ρ0dµ = 1, there exist

a probability space (Ξ,F , P ), a bounded measurable function ρ : [0, T ] × H−1− (T2
)
→

[0, ‖ρ0‖∞] and a measurable map ω· : Ξ × [0, T ] → C∞ (T2
)′

such that ω· is a ρ−white
noise solution of Euler equations, in the sense of Definition 18. It is also the limit P -a.s.
in C

(
[0, T ] ;H−1− (T2

))
of a suitable sequence of random point vortices.
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4.1 Remarks on disintegration, uniqueness an Gaussianity

In this section we discuss several limits of the previous results and open problems arising
from them.

Consider the law Q, on path space C
(
[0, T ] ;H−1− (T2

))
, of a solutions provided by

Theorem 24 (similarly for Theorem 25). If we disintegrate Q with respect to the marginal
law at time t = 0 (namely the white noise law µ for Theorem 24 or law ρ0dµ for Theorem
25), we find a probability kernel Q (·, ω0), indexed by ω0 ∈ H−1− (T2

)
, such that for µ-a.e.

ω0 ∈ H−1− (T2
)
the probability measure Q (·, ω0) is concentrated on solutions of Euler

equations (in the sense described above). But Q (·, ω0) is not of the form δωω0
·
, namely it

is not concentrated on a single solution ωω0
t with initial condition ω0; or at least we do

not know this information. In the language of [6], we have a superposition solution that
we do not know to be a graph. For µ-a.e. ω0 ∈ H−1− (T2

)
, we have at least one solution

ω of Euler equations, but we could have many; also in the sense of the Lagrangian flows
described in [6], see below.

In the case of Theorem 25 on ρ−white noise solutions, we are certainly far away from any
uniqueness claim, even in law. Presumably one should try first to investigate uniqueness of
ρt, maybe with tools related to those of [7], [8], [18], [20], which already looks a formidable
task.

In the case however of Theorem 24, due to fact that the law at any time t is uniquely
determined, it could seem that a statement of uniqueness in law is not far (notice that
uniqueness in law would also imply that the full sequence of point vortices converges to it,
in law). And perhaps a statement of uniqueness of Lagrangian flows. These are however
open problems, potentially of very difficult solution. Let us mention where two approaches,
both based on uniqueness of the 1-dimensional marginals, meet essential difficulties.

One approach is by the criteria of uniqueness for martingale solutions of stochastic
equations (applicable in principle to deterministic equations with random solutions). Take
as an example Theorem 6.2.3 of [40]. It does not apply here, at the present stage of
our understanding, since we do not have any information of uniqueness of 1-dimensional
marginals starting from generic deterministic initial conditions. As remarked above, by
disintegration we may construct solutions Q (·, ω0) (in the sense of the martingale problem;
we do not develop the details) for µ-a.e. ω0 ∈ H−1− (T2

)
, but we do not know the

uniqueness of their 1-point marginals.
A second approach is described in [6], see Theorem 16. It requires the validity of

comparison principle, a variant of 1-point marginal uniqueness, for the associated continuity
equation. The comparison principle should hold in a convex class of solutions (denoted by
Lb in [6]); if only this, one could take the class defined by the rule that it is white noise
at every time. However, the class Lb in [6] has to satisfy also a monotonicity property (see
(14) in [6], used in essential way in Theorem 18), which is not satisfied by the trivial class
defined by being white noise at every time. If we enlarge the class to have the monotonicity
property, we are faced with a very difficult question of uniqueness - or comparison principle
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- for weak solutions of the continuity equation associated to Euler equations, which is an
open problem.

The k-dimensional time marginals are not easily identified by the Euler equations or
by the random point vortex dynamics. The question is, given 0 ≤ t1 < · · · < tk ≤ T , to
understand the limit as N → ∞ of the marginal

(
ωN
t1 , ..., ω

N
tk

)
, given by

(
ωN
t1 , ..., ω

N
tk

)
=

1√
N

N∑

n=1

ξn

(
δXn

t1
, ..., δXn

tk

)
.

This is an open problem.
For Burgers equations with white noise initial conditions, thanks to special represen-

tation formulae, it was possible to compute the two-point distribution, see [21]. Here we
do not see yet a method. But, also due to the comparison with [21], one should be aware
that there is no reason why k-dimensional time marginals are Gaussian! Nonlinearity,
still preserving a Gaussian initial condition, should distroy Gaussianity at the level of the
process.

Another example of nonlinear equation with stationary solutions having Gaussian 1-
dimensional marginals is KPZ equation or the stochastic Burgers equations, see [25], [23],
[24].

4.2 Proof of Theorem 24

Consider the Polish space X = C
(
[0, T ] ;H−1− (T2

))
with the metric dX (ω·, ω′

·) defined
in Section 1.1. J. Simon [38], in Corollary 8, gives a useful class of compact sets in this
space, generalizing the more classical Aubin-Lions compactness lemma (and Ascoli-Arzelà
criterion). Let us explain the result of Simon in our context. Take δ ∈ (0, 1), γ > 3 (this
special choice of γ is due to the estimates below) and consider the spaces

X = H−1−δ/2
(
T2
)
, B = H−1−δ

(
T2
)
, Y = H−γ

(
T2
)
.

We have
X ⊂ B ⊂ Y

with compact dense embeddings and we also have, for a suitable constant C > 0 and for

θ =
δ/2

γ − 1− δ/2

the interpolation inequality
‖ω‖B ≤ C ‖ω‖1−θ

X ‖ω‖θY
for all ω ∈ X. These are preliminary assumptions of Corollary 8 of [38]. Then such
Corollary, in the second part, in the particular case r1 = 2, states that a bounded family
F in

Lp0 (0, T ;X) ∩W 1,2 (0, T ;Y )
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is relatively compact in
C ([0, T ] ;B)

if
θ

2
>

1− θ

p0
.

Here p0 is any number in [1,∞]. We apply this result to our spaces X,B, Y , taking p0
large enough to have the previous inequality. More precisely, we use the following statement
(notice that 1−θ

θ = γ−1−δ
δ/2 ):

Lemma 26 Let δ > 0, γ > 3 be given. If

p0 >
γ − 1− δ

δ/2

then
Lp0

(
0, T ;H−1−δ/2

(
T2
))

∩W 1,2
(
0, T ;H−γ

(
T2
))

is compactly embedded into

C
(
[0, T ] ;H−1−δ

(
T2
))
.

In fact we need compactness in X . Denote by L∞− (0, T ;H−1− (T2
))

the space of all
functions of class Lp0

(
0, T ;H−1−δ

(
T2
))

for any p0 > 0 and δ > 0, endowed with the metric

dL∞−

t (H−1−)

(
ω·, ω

′
·
)
=

∞∑

n=1

2−n

((∫ T

0

∥∥ωt − ω′
t

∥∥n
H−1− 1

n

)1/n

∧ 1

)
.

It is a simple exercise to check that:

Corollary 27 Let γ > 3 be given. Then

Y := L∞− (0, T ;H−1− (T2
))

∩W 1,2
(
0, T ;H−γ

(
T2
))

is compactly embedded into X .

Let QN be the law of ωN on Borel subsets of X . We want to prove that the family{
QN
}
N∈N is tight in this space. In order to prove this, it is sufficient to prove that the

family
{
QN
}
N∈N is bounded in probability in the space Y given by the previous corollary.

For this purpose, it is sufficient to prove that
{
QN
}
N∈N is bounded in probability in

W 1,2
(
0, T ;H−γ

(
T2
))

and in each Lp0
(
0, T ;H−1−δ

(
T2
))
, for any p0 > 0 and δ > 0. Let

us prove these conditions.
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The family
{
QN
}
N∈N is bounded in probability in Lp0

(
0, T ;H−1−δ

(
T2
))

(by Cheby-
shev inequality) because

sup
N∈N

E

[∫ T

0

∥∥ωN
t

∥∥p0
H−1−δ dt

]
<∞.

This inequality (that we could conceptually summarize as the ”compactness in space”)
comes from stationarity of ωN

t :

E

[∫ T

0

∥∥ωN
t

∥∥p0
H−1−δ dt

]
=

∫ T

0
E
[∥∥ωN

t

∥∥p0
H−1−δ

]
dt ≤ Cp0,δT

by Lemma 23.
To prove ”compactness in time”, namely the property that the family

{
QN
}
N∈N is

bounded in probability in W 1,2
(
0, T ;H−γ

(
T2
))
, we use the equation, in its weak vorticity

formulation. We have, for all φ ∈ C∞ (T2
)
,

〈
ωN
t , φ

〉
=
〈
ωN
0 , φ

〉
+

∫ t

0

〈
ωN
s ⊗ ωN

s ,Hφ

〉
ds

where P -a.s. the function s 7→
〈
ωN
s ⊗ ωN

s ,Hφ

〉
is continuous (the trajectories of point

vortices are continuous and never touch the diagonal), hence, P -a.s., the function t 7→〈
ωN
t , φ

〉
is continuously differentiable and ∂t

〈
ωN
t , φ

〉
=
〈
ωN
t ⊗ ωN

t ,Hφ

〉
. Thus

E
[∣∣∂t

〈
ωN
t , φ

〉∣∣2
]
= E

[∣∣〈ωN
t ⊗ ωN

t ,Hφ

〉∣∣2
]

≤ C ‖Hφ‖2∞ ≤ C
∥∥D2φ

∥∥2
∞

by Lemma 23. Then we apply this inequality to φ = ek and get

E
[∣∣∂t

〈
ωN
t , ek

〉∣∣2
]
≤ C |k|4 .

Therefore

E

[∫ T

0

∥∥∂tωN
t

∥∥2
H−γ dt

]
= E

[∫ T

0

∑

k

(
1 + |k|2

)−γ ∣∣〈∂tωN
t , ek

〉∣∣2 dt
]

≤ CE

[∫ T

0

∑

k

(
1 + |k|2

)−γ
|k|4 dt

]
<∞

for 2γ − 4 > 2, hence γ > 3. The estimate for E
[∫ T

0

∥∥ωN
t

∥∥2
H−γ dt

]
is similar to the one

for ”compactness in space” above. By Chebyshev inequality,
{
QN
}
N∈N is bounded in

probability in W 1,2
(
0, T ;H−γ

(
T2
))
.
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We have proved that the family
{
QN
}
N∈N is bounded in probability in Y and thus

it is tight in X . From Prohorov theorem, it is relatively compact in X . Let
{
QNk

}
k∈N

be a subsequence which converges weakly, in X , to a Borel probability measure Q. First,
convergence in X implies that Q is invariant by time-shift (because QN is; by shift we mean
shift of finite dimensional distributions such that all involved time points are in [0, T ]) and
the marginal at any time is the law of white noise, by Proposition 21 (recall that ωN

t is
stationary, hence this proposition applies at every time).

By Skorokhod representation theorem, there exist a new probability space
(
Ξ̂, F̂ , P̂

)

and r.v.’s ω̂Nk , ω̂ with values in X , such that the laws of ω̂Nk and ω̂ are QNk and Q
respectively, and ω̂Nk converges P -a.s. to ω̂ in the topology of X ; since X is made of
functions of time, we may see ω̂Nk and ω̂ as stochastic processes, ω̂Nk

t and ω̂t being the
result of application of the projection at time t. We are going to check that ω̂, or more
precisely another process closely defined, is the solution claimed by the theorem. We
already know it has trajectories of class C

(
[0, T ] ;H−1− (T2

))
, it is time stationary and

with marginal being a white noise. We have to show that it satisfies the equation, in the
sense specified by the definitions.

We have to enlarge the probability space
(
Ξ̂, F̂ , P̂

)
to be sure it contains certain inde-

pendent r.v.’s we need in the construction. Denote by
(
Ξ̃, F̃ , P̃

)
a probability space where,

for every N , it is defined a random permutation s̃N : Ξ̃ → ΣN , uniformly distributed. De-
fine the new probability space

(Ξ,F , P ) :=
(
Ξ̂× Ξ̃, F̂ ⊗ F̃ , P̂ ⊗ P̃

)

and the new processes

ωNk = ω̂Nk ◦ π1, ω = ω̂ ◦ π1, sN = s̃N ◦ π2
where π1 and π2 are the projections on Ξ̂ × Ξ̃. We adopt a little abuse of notation here,
because we indicate the final spaces and processes like the original ones, but we shall
try to clarify everywhere which ones we are investigating. Notice that the properties of
convergence and of the laws of the processes ωNk and ω are the same as those of ω̂Nk and
ω̂.

Lemma 28 The process ωNk
t (the one on the new probability space) can be represented in

the form 1√
Nk

∑Nk
i=1 ξiδXi,Nk

t

, where

((
ξ1,X

1,Nk
0

)
, ...,

(
ξNk

,XNk ,Nk
0

))
(10)

is a random vector with law λ0N and
(
X1,Nk

t , ...,XNk ,Nk
t

)
solves system (8) with initial

condition
(
X1,Nk

0 , ...,XNk ,Nk
0

)
.
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Proof. Step 1. Let us list a few preliminary facts; we omit some detail in the proofs; we
extensively use the notations at the beginning of Section 3.

Identify for a second T2 with [0, 1)2. On [0, 1)2, consider the lexicographic order: x =
(a, b) is smaller than y = (c, d) either if a < c or if a = c but b < d. It is a total order. We
write <L for the strict lexicographic order just defined. Let us denote by LΛ1

N ⊂ LFNT2

the set of strings ((ξ1, x1) , ..., (ξN , xN )) such that x1 <L ... <L xN , with xi seen as elements
of [0, 1)2. The set LFNT2 is partitioned in N ! subsets LΛ1

N , ...,LΛN !
N obtained applying to

LΛ1
N each one of the N ! permutations of indexes.
Given ω ∈ MN

(
T2
)
, there is a unique element {(ξi, xi) , i = 1, .., N} ∈ LCNT2 =

LFNT2/ΣN such that ω = 1√
N

∑N
i=1 ξiδxi . Notice that the indexing i = 1, .., N here,

a priori, is not canonical. However, we may use the lexicographic order, and the fact
that point are disjoint, to attribute the indexes i = 1, .., N to the elements of the set
{(ξi, xi) , i = 1, .., N}, in such a way that ((ξ1, x1) , ..., (ξN , xN )) ∈ LΛ1

N . This way, we have

uniquely defined maps ω
h17→ (ξ1, x1), ..., ω

hN7→ (ξN , xN ), from MN

(
T2
)
to R× T2.

On MN

(
T2
)
⊂ H−1− (T2

)
let us put the topology induced by dH−1− and consider

the functions of class C
(
[0, T ] ;MN

(
T2
))
. The set MN

(
T2
)
is measurable in H−1− (T2

)
,

and the set C
(
[0, T ] ;MN

(
T2
))

is measurable in C
(
[0, T ] ;H−1− (T2

))
(the proof is not

difficult arguing on suitable close subfamilies of MN

(
T2
)
, constrained by the minimal

distance between elements in the support).
If ωN

t = 1√
N

∑N
i=1 ξiδXi,N

t
comes from the vortex point dynamics with an initial condi-

tion such that coalescence does not occur, then ωN
· ∈ C

(
[0, T ] ;MN

(
T2
))
: to prove this,

one has to use the embedding of H−1− (T2
)
into Hölder continuous functions, in evaluating

sup
‖φ‖

H−1−δ≤1

∣∣∣∣∣

N∑

i=1

ξi

(
φ
(
Xi,N

t

)
− φ

(
Xi,N

s

))
∣∣∣∣∣ .

Conversely, if ωN
· ∈ C

(
[0, T ] ;MN

(
T2
))
, then there exist functions xi,N· ∈ C

(
[0, T ] ;T2

)

and numbers ξi, i = 1, ..., N , such that ωN
t = 1√

N

∑N
i=1 ξiδxi,N

t
; the lengthy proof requires

identification of these functions locally in time by means of very concentrated test functions.
The indexing i = 1, ..., N of this functions however cannot correspond to lexicographic or-
der: to have lexicographic order at every time we should accept jumps in time (these jumps
occur every time the first coordinates of two points exchange their order, also due to the
difference between T2 and [0, 1)2). Let us impose lexicographic order only at time t = 0
(in doing so there is no problem to identify T2 with [0, 1)2) and then accept that particles
exchange lexicographic order later in time, with the advantage that xi,N· ∈ C

(
[0, T ] ;T2

)
.

Thus we have uniquely defined the maps ωN
·

h̃17→
(
ξ1, x

1,N
·
)
, ..., ωN

·
h̃N7→
(
ξN , x

N,N
·

)
from

C
(
[0, T ] ;MN

(
T2
))

to R×C
(
[0, T ] ;T2

)
: at time zero we impose x1,N0 <L ... <L x

N,N
0 (at

later times this may be not true anymore). These maps are measurable.
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Finally let us discuss the last preliminary fact we need below. Given a probability mea-
sure ρ on LFNT2, assume it is exchangeable, namely its law is invariant by permutation of
the indexes; it is thus uniquely determined by its restriction to LΛ1

N . Consider ρ restricted
to LΛ1

N , remormalized by N ! so to be a probability measure; call ρ̂ such measure. We have
a one-to-one correspondence between ρ and ρ̂, measures on LFNT2 and LΛ1

N respectively.
In particular, given a measure ρ̂ on LΛ1

N , we may reconstruct an exchangeable measure
on LFNT2, the unique one that restricted to LΛ1

N gives values proportional to ρ̂ up to

N !. Assume more, namely that ρ̂ on LΛ1
N is the law of a vector

((
ξ̂1, X̂1

)
, ...,

(
ξ̂N , X̂N

))
,

defined on a probability space
(
Ξ̂, F̂ , P̂

)
. Enlarge the probability space as described before

the lemma, incorporating independent permutations s̃N : Ξ̃ → ΣN . On the product space

(Ξ,F , P ), with the notations above plus (ξi,Xi) =
(
ξ̂i, X̂i

)
◦ π1, consider the new vector

((ξ∗1 ,X
∗
1 ) , ..., (ξ

∗
N ,X

∗
N )) :=

((
ξs̃N (1),Xs̃N (1)

)
, ...,

(
ξs̃N (N),Xs̃N (N)

))
.

This vector takes values in LFNT2, not in LΛ1
N as the previous one

((
ξ̂1, X̂1

)
, ...,

(
ξ̂N , X̂N

))
.

We claim its law is ρ, in the correspondence ρ↔ ρ̂ described above. Indeed, ((ξ∗1 ,X
∗
1 ) , ..., (ξ

∗
N ,X

∗
N ))

is exchangeable, because given a single deterministic permutation s, s̃N ◦ s is uniformly
distributed. And conditioning to have Xs̃N (1) <L ... <L Xs̃N (N) is like conditioning to have
s̃N = id, which gives ρ̂. Let us call shuffling the procedure illustrated here of composition
with independent permutations, to get the exchangeable distribution from a distribution
on LΛ1

N .

Step 2. Now let us prove the lemma. The law of ω̂Nk· , being the same as the law of
the original process, is concentrated on C

(
[0, T ] ;MNk

(
T2
))
. Hence, by the measurable

maps h̃i described above, it defines random elements
(
ξ̂1, X̂

1,Nk·
)
, ...,

(
ξ̂Nk

, X̂Nk ,Nk·
)

in

R×C
(
[0, T ] ;T2

)
. One has ω̂Nk

t = 1√
Nk

∑Nk
i=1 ξ̂iδX̂i,Nk

t

; therefore we have proved a first

claim of the lemma (in fact we shall redefine the random vector but the redefinition will
not change this statement). We still have to prove that λ0N is the law of (10) (in fact we

still have to define properly (10)) and
(
X̂1,Nk

t , ..., X̂1,Nk
t

)
solves system (8).

Since the original process ωNk· had the property that

E

[
sup

t∈[0,T ]

∣∣∣∣
〈
ωNk
t , φ

〉
−
〈
ωNk
0 , φ

〉
−
∫ t

0

∫

T2

∫

T2

∇φ (x) ·K (x− y)ωNk
s (dx)ωNk

s (dy) ds

∣∣∣∣ ∧ 1

]
= 0

for every φ ∈ C∞ (T2
)
, the same property holds for the new process ω̂Nk

t (because they

have the same law), hence P̂ -a.s. it holds

sup
t∈[0,T ]

∣∣∣∣
〈
ω̂Nk
t , φ

〉
−
〈
ω̂Nk
0 , φ

〉
−
∫ t

0

∫

T2

∫

T2

∇φ (x) ·K (x− y) ω̂Nk
s (dx) ω̂Nk

s (dy) ds

∣∣∣∣ = 0
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on a dense countable set of φ ∈ C∞ (T2
)
, which implies (using the structure ω̂Nk

t =
1√
Nk

∑Nk
i=1 ξ̂iδX̂i,Nk

t

) that
(
X̂1,Nk

t , ..., X̂Nk ,Nk
t

)
satisfies (8). Below we shall redefine this

process but the redefinition will not change this property.
It remains to understand the law of (10). We have constructed the random vector((
ξ̂1, X̂

1,Nk
0

)
, ...,

(
ξ̂Nk

, X̂Nk ,Nk
0

))
, with X̂1,N

0 <L ... <L X̂N,N
0 . We apply the shuffling

procedure described at the end of Step 1, hence redefining all r.v.’s and processes by
composition with random permutations. The result is an initial random vector of the

form (10) and the associated process
(
X1,Nk

t , ...,XNk ,Nk
t

)
. The modifications introduced

by shuffling do not change the representation ωNk
t = 1√

Nk

∑Nk
i=1 ξiδXi,Nk

t

(now ωNk
t is the

process defined before the lemma) and the fact that
(
X1,Nk

t , ...,XNk ,Nk
t

)
solves system

(8). We claim that the new initial random vector (10) has law λ0N . By construction
the vector (10) is exchangeable and its law is the unique exchangeable law on LFNT2

corresponding to a certain probability measure ρ̂ on LΛ1
N that we now describe. Since λ0N

has this property, we deduce that λ0N is the law of (10). Let us describe ρ̂. It is the law

of
((
ξ̂1, X̂

1,Nk
0

)
, ...,

(
ξ̂Nk

, X̂Nk ,Nk
0

))
, random vector constructed through the unique maps

hi, hence ρ̂ is the push forward under (h1, ..., hN ) of the law of ωNk
0 ; call it πt=0Q

Nk . These
correspondences are bijections and, as already said, if we start by λ0N and push it forward

(in opposite direction) to a law on ωNk
0 we find πt=0Q

Nk . Thus we have the identification.

Given φ ∈ C∞ (T2
)
and t ∈ [0, T ], we are going to prove that

E

[∣∣∣∣〈ωt, φ〉 − 〈ω0, φ〉 −
∫ t

0
〈Hφ, ωs ⊗ ωs〉 ds

∣∣∣∣ ∧ 1

]
= 0.

This implies that 〈ωt, φ〉 = 〈ω0, φ〉 −
∫ t
0 〈Hφ, ωs ⊗ ωs〉 ds with P -probability one, at time t.

Since the processes involved are continuous, this implies that the identity holds uniformly
in time, with P -probability one.

Based on the identity
〈
ωNk
t , φ

〉
−
〈
ωNk
0 , φ

〉
−
∫ t

0

〈
Hφ, ω

Nk
s ⊗ ωNk

s

〉
ds = 0

and the general fact that |x+ y| ∧ 1 ≤ (|x| ∧ 1) + (|y| ∧ 1), one has the inequality

E

[∣∣∣∣〈ωt, φ〉 − 〈ω0, φ〉 −
∫ t

0
〈Hφ, ωs ⊗ ωs〉 ds

∣∣∣∣ ∧ 1

]

≤ E
[(∣∣∣〈ωt, φ〉 −

〈
ωNk
t , φ

〉∣∣∣
)
∧ 1
]
+ E

[(∣∣∣〈ω0, φ〉 −
〈
ωNk
0 , φ

〉∣∣∣
)
∧ 1
]

+ E

[(∣∣∣∣
∫ t

0

〈
Hφ, ω

Nk
s ⊗ ωNk

s

〉
ds −

∫ t

0
〈Hφ, ωs ⊗ ωs〉 ds

∣∣∣∣
)
∧ 1

]
.
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We have, for φ ∈ C∞ (T2
)
and t ∈ [0, T ],

lim
k→∞

E
[(∣∣∣〈ωt, φ〉 −

〈
ωNk
t , φ

〉∣∣∣
)
∧ 1
]
= 0

simply because we have a.s. convergence in C
(
[0, T ] ;H−1−δ

(
T2
))
. Hence it remains to

prove

lim
k→∞

E

[(∣∣∣∣
∫ t

0

〈
Hφ, ω

Nk
s ⊗ ωNk

s

〉
ds −

∫ t

0
〈Hφ, ωs ⊗ ωs〉 ds

∣∣∣∣
)
∧ 1

]
= 0

which is the most demanding part of the passage to the limit. Let us consider a smooth (of
class H2+ is sufficient) approximation Hδ

φ of Hφ, δ > 0, with the property Hδ
φ (x, x) = 0

(see Remark 9). We have

lim
n→∞

E

[(∣∣∣∣
∫ t

0

〈
Hδ

φ, ω
Nk
s ⊗ ωNk

s

〉
ds−

∫ t

0

〈
Hδ

φ, ωs ⊗ ωs

〉
ds

∣∣∣∣
)
∧ 1

]
= 0

again because of a.s. convergence of ωNk to ω in C
(
[0, T ] ;H−1− (T2

))
and thus of ωNk ⊗

ωNk to ω ⊗ ω in C
(
[0, T ] ;H−2− (T2 × T2

))
. Therefore

lim sup
k→∞

E

[(∣∣∣∣
∫ t

0

〈
Hφ, ω

Nk
s ⊗ ωNk

s

〉
ds−

∫ t

0
〈Hφ, ωs ⊗ ωs〉 ds

∣∣∣∣
)
∧ 1

]

≤ E

[(∣∣∣∣
∫ t

0

〈
Hφ −Hδ

φ, ωs ⊗ ωs

〉
ds

∣∣∣∣
)
∧ 1

]
+ sup

k∈N
E

[(∣∣∣∣
∫ t

0

〈
Hφ −Hδ

φ, ω
Nk
s ⊗ ωNk

s

〉
ds

∣∣∣∣
)
∧ 1

]
.

We know that

E

[(∣∣∣∣
∫ t

0

〈
Hφ −Hδ

φ, ωs ⊗ ωs

〉
ds

∣∣∣∣
)
∧ 1

]
≤
∫ t

0
E
[∣∣∣
〈
Hφ −Hδ

φ, ωs ⊗ ωs

〉∣∣∣
]
ds

≤ C

∫ t

0
E

[∣∣∣
〈
Hφ −Hδ

φ, ωs ⊗ ωs

〉∣∣∣
2
]1/2

ds

and the last term is arbitrarily small with δ, due to Corollary 6 (a little argument is needed
because Hφ −Hδ

φ is not smooth but the computation is similar to the Cauchy property of
Theorem 8). It remain to show that

E

[(∣∣∣∣
∫ t

0

〈
Hφ −Hδ

φ, ω
Nk
s ⊗ ωNk

s

〉
ds

∣∣∣∣
)
∧ 1

]

is small for small δ, uniformly in k. But this case is similar to the previous one, using now
Lemma 23. The proof is complete.
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5 Proof of Theorem 25

Recall the definitions of λ0N (dθ), TN , µ0N (dω) from Remark 20.

Lemma 29 Given a measurable function ρ : H−1−δ
(
T2
)
→ [0,∞) such that

∫
H−1−δ(T2) ρ (ω)µ

0
N (dω) <

∞, the measure λρN (dθ) := ρ (TN (θ))λ0N (dθ) on
(
R× T2

)N
has the property that its image

measure µρN (dω) on H−1−δ
(
T2
)
under the map TN is ρ (ω)µ0N (dω).

Proof. By definition of µρN (dω) and λρN (dθ), for every non-negative measurable function
F we have

∫

H−1−δ(T2)
F (ω)µρN (dω) =

∫

RN×R2N

F (TN (θ))λρN (dθ)

=

∫

RN×R2N

F (TN (θ)) ρ (TN (θ))λ0N (dθ)

=

∫

H−1−δ(T2)
F (ω) ρ (ω)µ0N (dω) .

We may now prove Theorem 25. Given ρ0 ∈ Cb

(
H−1− (T2

))
, ρ0 ≥ 0,

∫
ρ0dµ = 1

(µ here is the white noise Gaussian law on H−1− (T2
)
), there is a constant CN > 0 such

that CN

∫
H−1−δ(T2) ρ0 (ω)µ

0
N (dω) = 1, for any δ > 0. Since µ0N converges weakly to µ on

H−1−δ
(
T2
)
and ρ0 is continuous and bounded on H−1−δ

(
T2
)
, we deduce limN→∞CN = 1.

Let us consider, on Borel sets of
(
R× T2

)N
, the finite positive measure CNρ0 (TN (θ))λ0N (dθ).

By the lemma, its image measure on H−1−δ
(
T2
)
under the map TN is CNρ0 (ω)µ

0
N (dω)

(we apply the lemma to ρ (ω) := CNρ0 (ω)). The point vortex dynamics is well defined for

a.e.
((
ξ1,X

1
0

)
, ...,

(
ξN ,X

N
0

))
∈
(
R× T2

)N
with respect to CNρ0 (TN (θ))λ0N (dθ), because

this fact holds for λ0N (dθ). Denote by ωN
t the vorticity of this point vortex dynamics; the

law of ωN
0 is CNρ0 (ω)µ

0
N (dω).

Denote by ΦN
t the map in H−1− (T2

)
, defined a.s. with respect to µ0N , which gives

ωN
t = ΦN

t ω
N
0 . The law of ωN

t has the form

CNρ0

((
ΦN
t

)−1
(ω)
)
µ0N (dω)

where
(
ΦN
t

)−1
is the inverse map of ΦN

t and it is defined for µ0N -a.e. ω ∈ H−1− (T2
)
.

Indeed, for every non-negative measurable function F we have

E
[
F
(
ωN
t

)]
= E

[
F
(
ΦN
t ω

N
0

)]
=

∫

H−1−δ(T2)
F
(
ΦN
t ω
)
CNρ0 (ω)µ

0
N (dω)

=

∫

H−1−δ(T2)
F (ω)CNρ0

((
ΦN
t

)−1
(ω)
) (

ΦN
t

)
∗ µ

0
N (dω)
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but
(
ΦN
t

)
∗ µ

0
N = µ0N , see Proposition 22.

Therefore, for every non-negative measurable function F on H−1− (T2
)
, one has

E
[
F
(
ωN
t

)]
= E

[
CNρ0

((
ΦN
t

)−1 (
ωN
WN

))
F
(
ωN
WN

)]

where ωN
WN denotes the random point vortices initial condition with law µ0N .

Let QN be the law of ωN on Borel subsets of the space X , as in the previous section.
We want to prove that the family

{
QN
}
N∈N is tight in X , by proving that it is bounded

in probability in Y (see previous section). The family
{
QN
}
N∈N is bounded in probability

in Lp0
(
0, T ;H−1−δ

(
T2
))
, because

E

[∫ T

0

∥∥ωN
t

∥∥p0
H−1−δ dt

]
=

∫ T

0
E
[∥∥ωN

t

∥∥p0
H−1−δ

]
dt

=

∫ T

0
E
[
CNρ0

((
ΦN
t

)−1 (
ωN
WN

)) ∥∥ωN
WN

∥∥p0
H−1−δ

]
dt

≤ CN ‖ρ0‖∞ TE
[∥∥ωN

WN

∥∥p0
H−1−δ

]
≤ Cp0,δCN ‖ρ0‖∞ T

(see the estimate of the previous section). It is bounded in probability inW 1,2
(
0, T ;H−γ

(
T2
))
,

by the same arguments given in the previous section, because

E
[∣∣〈ωN

t ⊗ ωN
t ,Hφ

〉∣∣2
]

= E
[
CNρ0

((
ΦN
t

)−1 (
ωN
WN

)) ∣∣〈ωN
WN ⊗ ωN

WN ,Hφ

〉∣∣2
]

≤ CN ‖ρ0‖∞ E
[∣∣〈ωN

WN ⊗ ωN
WN ,Hφ

〉∣∣2
]

≤ CN ‖ρ0‖∞C ‖Hφ‖2∞ ≤ CN ‖ρ0‖∞C
∥∥D2φ

∥∥2
∞

(all the other steps of the proof are the same). This proves tightness in X .
Repeating the arguments of the previous section (we use Prohorov and Skorokhod

theorems) we extract a subsequence Nk, construct a new probability space, denoted by
(Ξ,F , P ) and processes ωNk

t , ωt with trajectories in X , such that the laws of ωNk and ω
are QNk and Q respectively, and ωNk converges to ω in the topology of X , P -a.s.; and
the structure of ωNk as sum of delta Dirac is identified, namely Lemma 28 is still true
in the case treated here (the proof does not require modifications). The only difference
is that here the law of (10) is CNρ0 (ω)µ

0
N (dω). Let us first prove that the law of ωt on

H−1− (T2
)
, called herewith µt, is absolutely continuous with respect to µ (the law of white

noise) with bounded density. For every F ∈ Cb

(
H−1− (T2

))
, we have

∫
F (ω)µt (dω) = lim

N→∞
E
[
F
(
ωN
t

)]
= lim

N→∞
E
[
CNρ0

((
ΦN
t

)−1 (
ωN
WN

))
F
(
ωN
WN

)]

≤ ‖ρ0‖∞ lim
N→∞

E
[
F
(
ωN
WN

)]
= ‖ρ0‖∞

∫
F (ω)µ (dω) .
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This implies µt << µ with bounded density, denoted in the sequel by ρt.
We can pass to the limit as in the previous section. Inspection in that proof reveals

that we have only to explain why E
[(∣∣∣
∫ t
0

〈
Hφ −Hδ

φ, ωs ⊗ ωs

〉
ds
∣∣∣
)
∧ 1
]
and

E

[(∣∣∣∣
∫ t

0

〈
Hφ −Hδ

φ, ω
Nk
s ⊗ ωNk

s

〉
ds

∣∣∣∣
)
∧ 1

]
(11)

are small for small δ, uniformly in k for the second term. We have

E

[(∣∣∣∣
∫ t

0

〈
Hφ −Hδ

φ, ωs ⊗ ωs

〉
ds

∣∣∣∣
)
∧ 1

]
≤ C

∫ t

0
E

[∣∣∣
〈
Hφ −Hδ

φ, ωs ⊗ ωs

〉∣∣∣
2
]1/2

ds

= C

∫ t

0
E

[
ρs (ωWN)

∣∣∣
〈
Hφ −Hδ

φ, ωWN ⊗ ωWN

〉∣∣∣
2
]1/2

ds

≤ C

∫ t

0
E

[∣∣∣
〈
Hφ −Hδ

φ, ωWN ⊗ ωWN

〉∣∣∣
2
]1/2

ds

that is arbitrarily small with δ, due to Corollary 6. The proof for (11) is similar.

6 Proof of Theorem 1

We have proved, see Theorem 24 part (i), that there exist a probability space (Ξ,F , P ) and
a measurable map ω· : Ξ× [0, T ] → C∞ (T2

)′
such that ω· is a time-stationary white noise

solution of Euler equations, in the sense of Definition 17, and the random point vortex
system, defined on (Ξ,F , P ), has a subsequence which converges in law to this solution, in
C
(
[0, T ] ;H−1− (T2

))
.

This means that:

• ω0 is distributed as a white noise, hence it takes values inH−1− (T2
)
\
(
H−1

(
T2
)
∪M

(
T2
))

and it is a full µ-measure set, where µ is the enstrophy Gaussian measure;

• there exists a set Ξ1 ∈ F with P (Ξ1) = 1 such that for all θ ∈ Ξ1 one has ω· (θ) ∈
C
(
[0, T ] ;H−1− (T2

))
.

Moreover, for every φ ∈ C∞ (T2
)
, the following two claims hold true:

• for P -a.e. θ ∈ Ξ, s 7→ 〈ωs ⊗ ωs,Hφ〉 (θ) is well defined as L2 (0, T )-limit of a subse-

quence of s 7→
〈
ωs (θ)⊗ ωs (θ) ,H

n
φ

〉
(Definition 11 identifies s 7→ 〈ωs ⊗ ωs,Hφ〉 by

an L2 (Ξ)-limit, from which we can extract a subsequence which converges P -almost
surely)
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• for P -a.e. θ ∈ Ξ, we have the identity uniformly in time:

〈ωt (θ) , φ〉 = 〈ω0 (θ) , φ〉+
∫ t

0
〈ωs ⊗ ωs,Hφ〉 (θ) ds.

Therefore, if D is a countable set in C∞ (T2
)
, applying a diagonal procedure to extract

a single subsequence with P -a.s. convergence of
〈
ωs ⊗ ωs,H

n
φ

〉
, we can find a set Ξ2 ∈ F

with P (Ξ2) = 1 such that for all θ ∈ Ξ2:

• for every φ ∈ D, s 7→ 〈ωs ⊗ ωs,Hφ〉 (θ) is well defined as L2 (0, T )-limit of a subse-

quence of s 7→
〈
ωs (θ)⊗ ωs (θ) ,H

n
φ

〉

• for every φ ∈ D, we have the identity above uniformly in time.

Putting together Ξ1,2 := Ξ1 ∩ Ξ2, for all θ ∈ Ξ1,2 the function ω· (θ) satisfies the
conditions of Theorem 1, part (i), for all φ ∈ D. We have thus proved such claim, limited
to φ ∈ D.

Assume D is also dense in C∞ (T2
)
; precisely we shall use density in H−γ

(
T2
)
for some

γ > 3. Given φ ∈ H−γ
(
T2
)
, take φk → φ in H−γ

(
T2
)
, φk ∈ D. We have

∫ T

0

∣∣〈ωs (θ)⊗ ωs (θ) ,H
n
φ −Hm

φ

〉∣∣2 ds

≤ 2

∫ T

0

∣∣〈ωs (θ)⊗ ωs (θ) ,H
n
φk

−Hm
φk

〉∣∣2 ds+ 2

∫ T

0

∣∣〈ωs (θ)⊗ ωs (θ) ,H
n
φk−φ −Hm

φk−φ

〉∣∣2 ds

hence, to get that s 7→
〈
ωs (θ)⊗ ωs (θ) ,H

n
φ

〉
is Cauchy in L2 (0, T ) it is sufficient to prove

that ∫ T

0

∣∣〈ωs (θ)⊗ ωs (θ) ,H
n
φk−φ

〉∣∣2 ds

is small uniformly in n, if k is large enough. Let us prove that this property is true in a
set Ξ3 ∈ F with P (Ξ3) = 1. Then the proof of Theorem 1, part (i), will be complete,
considering θ ∈ Ξ1,2,3 := Ξ1 ∩ Ξ2 ∩ Ξ3.

Consider the distribution gns (θ) defined as

〈gns (θ) , φ〉 :=
〈
ωs (θ)⊗ ωs (θ) ,H

n
φ

〉
.

We have

‖gns (θ)‖2H−γ =
∑

k

(
1 + |k|2

)−γ
|〈gns (θ) , ek〉|2

=
∑

k

(
1 + |k|2

)−γ ∣∣〈ωs (θ)⊗ ωs (θ) ,H
n
ek

〉∣∣2
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E

[∫ T

0
‖gns ‖2H−γ ds

]
=
∑

k

(
1 + |k|2

)−γ
E

[∫ T

0

∣∣〈ωs ⊗ ωs,H
n
ek

〉∣∣2 ds
]

≤ CT
∑

k

(
1 + |k|2

)−γ
‖ek‖2C2 ≤ CT

∑

k

(
1 + |k|2

)−γ
|k|4

and this is finite when γ > 3. Hence there is a set Ξ3 ∈ F with P (Ξ3) = 1, such that∫ T
0 ‖gns (θ)‖2H−γ ds <∞ for all θ ∈ Ξ3. For such θ we have

∫ T

0

∣∣〈ωs (θ)⊗ ωs (θ) ,H
n
φk−φ

〉∣∣2 ds =
∫ T

0
|〈gns (θ) , φk − φ〉|2 ds ≤ C (θ) ‖φk − φ‖2Hγ

where C (θ) :=
∫ T
0 ‖gns (θ)‖2H−γ ds <∞. Hence we have the required property.

As to claim (ii) of Theorem 1, we invoke the result of [29]. First, let us recall The-
orem 24 part (ii): the solution (not unique) provided by part (i) is the P -a.s. limit in
C
(
[0, T ] ;H−1− (T2

))
of a subsequence of the random point vortex system (8), defined

also on (Ξ,F , P ). This means that there is (Nk)k∈N and a subset Ξ4 ∈ F of Ξ1,2,3, still
with P (Ξ4) = 1 such that for all θ ∈ Ξ4 the function ω· (θ) is the C

(
[0, T ] ;H−1− (T2

))
-

limit of the sequence 1√
Nk

∑Nk
n=1 ξn (θ) δXn

t (θ); with the understanding that Ξ4 is such that

for all θ ∈ Ξ4 the corresponding point vortex dynamics is well defined for all times, without
coalescence of points.

Taken θ ∈ Ξ4, the function ω· (θ) satisfies the conditions of Theorem 1, part (i). In
addition, given any ǫ > 0, there is kǫ ∈ N such that

sup
t∈[0,T ]

dH−1−


ωt (θ) ,

1√
Nkǫ

Nkǫ∑

i=1

ξi (θ) δXi
t (θ)


 < ǫ/2.

Hence, for every φ ∈ C∞ (T2
)
one has

sup
t∈[0,T ]

∣∣∣∣∣∣
〈ωt (θ) , φ〉 −

〈
1√
Nkǫ

Nkǫ∑

i=1

ξi (θ) δXi
t (θ)

, φ

〉∣∣∣∣∣∣
< ǫ/2.

We now apply Theorem 2.1 of [29] to 1√
Nkǫ

∑Nkǫ
i=1 ξi (θ) δXi

t (θ)
, applicable because this so-

lution of the point vortex dynamics is global (namely without coalescence). It claims that

there exists a sequence ω
(n)
· of solutions of class L∞ ([0, T ]× T2

)
∩ C

(
[0, T ] ;Lp

(
T2
))

for
every p ∈ [1,∞), such that for every φ ∈ C

(
T2
)
one has

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∣∣

〈
ω
(n)
t , φ

〉
−
〈

1√
Nkǫ

Nkǫ∑

i=1

ξi (θ) δXi
t (θ)

, φ

〉∣∣∣∣∣∣
= 0.
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Hence, given the value of ǫ above, there is n0 such that for all n > n0

sup
t∈[0,T ]

∣∣∣∣∣∣

〈
ω
(n)
t , φ

〉
−
〈

1√
Nkǫ

Nkǫ∑

i=1

ξi (θ) δXi
t (θ)

, φ

〉∣∣∣∣∣∣
< ǫ/2.

We deduce supt∈[0,T ]

∣∣∣〈ωt (θ) , φ〉 −
〈
ω
(n)
t , φ

〉∣∣∣ < ǫ, concluding the proof of Theorem 1, part

(ii).

7 Remarks on ρ-white noise solutions

7.1 The continuity equation

Let µ be the law of white noise. Following [16], [18] and related literature, let us denote
by FC1

b,T the set of all functionals F : [0, T ] × C∞ (T2
)′ → R of the form F (t, ω) =

∑m
i=1 f̃i (〈ω, φ1〉 , ..., 〈ω, φn〉) gi (t), with φ1, ..., φn ∈ C∞ (T2

)
, f̃i ∈ C1

b (R
n), gi ∈ C1 ([0, T ])

with gi (T ) = 0. Given F ∈ FC1
b,T , denote by DωF (t, ω) the function

m∑

i=1

n∑

j=1

∂j f̃i (〈ω, φ1〉 , ..., 〈ω, φn〉) gi (t)φj.

Definition 30 Given F ∈ FC1
b,T , we set

〈DωF (t, ω) , b (ω)〉 :=
m∑

i=1

n∑

j=1

∂j f̃i (〈ω, φ1〉 , ..., 〈ω, φn〉) gi (t)
〈
ω ⊗ ω,Hφj

〉

where
〈
ω ⊗ ω,Hφj

〉
, j = 1, ..., n, are the elements of L2 (Ξ) given by Theorem 8. Hence

〈DωF (t, ω) , b (ω)〉 is an element of C
(
[0, T ] ;L2 (Ξ)

)
.

Definition 31 We say that a bounded measurable function ρ : [0, T ]×H−1− (T2
)
→ [0,∞)

is a bounded weak solution of the continuity equation

∂tρt + divµ (ρtb) = 0 (12)

with initial condition ρ0, if

∫ T

0

∫

H−1−δ/2

(∂tF (t, ω) + 〈DωF (t, ω) , b (ω)〉) ρt (ω)µ (dω) dt = −
∫

H−1−δ/2

F (0, ω) ρ0 (ω)µ (dω)

for all F ∈ FC1
b,T .

Proposition 32 Any function ρ given by Theorem 25 is a bounded weak solution of the
continuity equation (12).
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Proof. Let ω be a solution of Euler equations given by Theorem 25, with the associated
density function ρ. Given F ∈ FC1

b,T of the form F (t, ω) =
∑m

i=1 f̃i (〈ω, φ1〉 , ..., 〈ω, φn〉) gi (t),
we know that

〈ωt, φj〉 = 〈ω0, φj〉+
∫ t

0

〈
ωs ⊗ ωs,Hφj

〉
ds

for every j = 1, ..., n. Here P -a.s. the function s 7→
〈
ωs ⊗ ωs,Hφj

〉
is of class L2 (0, T ).

Hence 〈ωt, φj〉 is differentiable a.s. in time. We have, P -a.s., a.s. in time,

∂t (F (t, ωt))

=
m∑

i=1

n∑

j=1

∂j f̃i (〈ωt, φ1〉 , ..., 〈ωt, φn〉) gi (t) ∂t 〈ωt, φj〉+
m∑

i=1

f̃i (〈ωt, φ1〉 , ..., 〈ωt, φn〉) g′i (t)

= 〈DωF (t, ωt) , b (ωt)〉+ ∂tF (t, ω) |ω=ωt

and thus

∫ T

0

∫

H−1−δ/2

(∂tF (t, ω) + 〈DωF (t, ω) , b (ω)〉) ρt (ω)µ (dω) dt

=

∫ T

0
E [∂tF (t, ω) |ω=ωt + 〈DωF (t, ωt) , b (ωt)〉] dt

=

∫ T

0
E [∂t (F (t, ωt))] dt =

∫ T

0
∂tE [F (t, ωt)] dt

= E [F (T, ωT )]− E [F (0, ω0)]

= −
∫

H−1−δ/2

F (0, ω) ρ0 (ω)µ (dω)

where the exchange of time-derivative and expectation is possible due to the boundedness
of terms in F ; and we have used gi (T ) = 0.

The analysis of this continuity equation deserves more attention; we have just mentioned
here as a starting point of future investigations.

7.2 An open problem

We have treated above the problem of approximating Albeverio-Cruzeiro solution by smoother
solutions of the Euler equations. Let us mention a sort of dual problem, that can be for-
mulated thanks to Theorem 25.

Given ω0 ∈ L∞ (T2
)
, there exists a unique solution ωt in L

∞ (T2
)
of the Euler equations

(point 1 of the Introduction). For every ǫ > 0, consider the density

ρ
(ǫ)
0 (ω) =

1

ZR
exp

(
−dH−1− (ω, ω0)

2

2ǫ

)
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defined on H−1− (T2
)
, where

ZR =

∫

H−1−δ(T2)
exp

(
−dH−1− (ω, ω0)

2

2ǫ

)
µ (dω) .

Let ω
(ǫ)
t be a ρ-white noise solution, provided by Theorem 25, corresponding to this initial

density ρ
(ǫ)
0 . Can we prove that ω

(ǫ)
t converges, in a suitable sense, to ωt?

We do not know the solution of this problem. Let us only remark that it looks similar
to the question of vortex point approximation of solutions of Euler equations, solved in
a smoothed Biot-Savart kernel scheme by [30] and in great generality by [36]. Also, very
roughly, reminds large deviation approximations of smooth paths by diffusion processes.

Theorems 24 and 25 give some intuition into Albeverio-Cruzeiro solution and its vari-
ants, as a limit of random point vortices. A positive solution of the previous problem would
add more.
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