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Shape deformation for vibrating hinged plates

Davide Buoso and Pier Domenico Lamberti∗

We consider the biharmonic operator subject to homogeneous intermediate boundary conditions of Steklov-type. We

prove an analyticity result for the dependence of the eigenvalues upon domain perturbation and compute the appropriate

Hadamard-type formulas for the shape derivatives. Finally, we prove that balls are critical domains for the symmetric

functions of multiple eigenvalues subject to volume constraint. Copyright c© 2009 John Wiley & Sons, Ltd.

Keywords: biharmonic operator; intermediate, Steklov boundary conditions; hinged plate; domain perturbation

1. Introduction

Let Ω be a smooth bounded open set in RN , N ≥ 2. We consider the eigenvalue problem
∆2v = λv, in Ω,

v = 0, on ∂Ω,

∆v −K ∂v
∂ν

= 0, on ∂Ω,

(1.1)

where ν denotes the unit outer normal to ∂Ω and K the mean curvature, i.e. the sum of the principal curvatures of ∂Ω. For

N = 2 problem (1.1) arises in linear elasticity, for instance in the study of a vibrating hinged plate. We refer to [13] for a

detailed discussion concerning hinged plates and to the monograph [12] for a comprehensive study of boundary value problems

for polyharmonic operators. We refer also to [4, Appendix] for explicit computations of the eigenvalues of (1.1) on the unit ball.

The boundary conditions in (1.1) are often called Steklov boundary conditions. However, we warn the reader that the eigenvalue

problem (1.1) should not be confused with the classical Steklov eigenvalue problem (2.4) where the eigenvalue λ enters the

boundary conditions. See e.g., [5], see also Remark 2.3.

Since problem (1.1) involves a fourth order operator, it would be natural to assume that Ω is at least of class C4. However, the

proof of our analyticity result exploits only the weak formulation of (1.1). This allows us to relax the regularity assumptions on Ω

and require that Ω is of class C2. Under this assumption, problem (1.1) admits a divergent sequence of positive eigenvalues λj [Ω],

j ∈ N, of finite multiplicity. In this paper, we study the dependence of λj [Ω] upon Ω. The presence of the mean curvature in (1.1)

requires particular attention and unappropriate considerations in domain perturbation problems may lead to wrong conclusions,

as in the case of the celebrated Babuška Paradox (cfr. [3], see also [12, § 2.7]). For this reason, we focus our attention to a

class of diffeomorphic open sets of the type φ(Ω) where Ω is fixed and φ is a diffeomorphism of class C2. This enables us to

avoid paradoxical situations and to prove not only continuity but also analyticity results for the dependence of λj [φ(Ω)] on φ.

Namely, we prove that simple eigenvalues or the elementary symmetric functions of the eigenvalues splitting from a multiple

eigenvalue are real analytic functions of φ. Moreover, we compute Hadamard-type formulas for the corresponding derivatives.

These formulas allow us to prove that balls are critical domains in isovolumetric perturbations of problem (1.1). It would be

interesting to clarify whether balls are solutions to the corresponding optimization problems. Indeed, it is proved in [21] for N = 2

and in [1] for N = 2, 3 that the first eigenvalue of the biharmonic operator subject to Dirichlet boundary conditions is minimized

by the ball in the class of bounded open sets with prescribed measure, and a maximization result is proved in [10] for the case of

Neumann boundary conditions. Moreover, it is proved in [2] that the buckling load of a clamped plate admits a minimizer in the

class of simply connected open sets in the plane with prescribed measure, and the argument of Willms and Weinberger allows

to prove that such minimizer is a ball under the assumption that it is of class C2. However, the interesting results in [5] point

out that shape optimization problems are more involved in the case of Steklov boundary conditions (in particular, it is worth

mentioning that the first eigenvalue of the classical Steklov problem (2.4) on a planar square is strictly smaller than the first

eigenvalue on a planar disk with the same measure, as it is proved in [15]). We refer to [14] for a comprehensive exposition of

extremum problems for the eigenvalues of elliptic operators.
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Our study follows the approach developed in [6, 16, 17, 18, 19, 20] combined with a delicate analysis of complicated boundary

terms involved in several computations. We also refer to the survey paper [9] for a general discussion of domain perturbation

problems for elliptic operators and to [7, 8] for recent results concerning high order operators.

2. An analyticity result

Let Ω be a bounded open set in RN of class C2. Let V (Ω) = H2(Ω) ∩H1
0(Ω) where H2(Ω) and H1

0(Ω) denote the standard

Solobev spaces of real-valued functions. It is easy to see that the weak formulation of problem (1.1) is given by∫
Ω

Hv ·Hϕdx = λ

∫
Ω

vϕdx, ∀ ϕ ∈ V (Ω), (2.1)

in the unknown v ∈ V (Ω), where Hu denotes the Hessian matrix of a function u and Hv ·Hϕ =
∑N

i,j=1
∂2v
∂xi xj

∂2ϕ
∂xi xj

. Indeed, if

v ∈ V (Ω) is smooth enough, then by integrating by parts we get∫
Ω

Hv ·Hϕdx =

∫
Ω

∆2vϕdx +

∫
∂Ω

∂2v

∂ν2

∂ϕ

∂ν
dσ =

∫
Ω

∆2vϕdx +

∫
∂Ω

(
∆v −K∂v

∂ν

)
∂ϕ

∂ν
dσ, (2.2)

for all ϕ ∈ V (Ω), which shows that a smooth function v ∈ V (Ω) is a solution to (1.1) if and only if it is a solution to (2.2).

Remark 2.3 If in (2.1) the space H2(Ω) ∩H1
0(Ω) is replaced by the Sobolev space H2

0(Ω), we get the weak formulation of the

eigenvalue problem for the biharmonic operator subject to the Dirichlet boundary conditions v = ∂v
∂ν

= 0 on ∂Ω. Similarly, if in

(2.1) the space H2(Ω) ∩H1
0(Ω) is replaced by the Sobolev space H2(Ω), we get the weak formulation of the eigenvalue problem

for the biharmonic operator subject to the Neumann boundary conditions ∂2v
∂ν2 = div∂Ω[P∂Ω[(Hv)ν]] + ∂∆v

∂ν
= 0 on ∂Ω. Here div∂Ω

is the tangential divergence and P∂Ω the orthogonal projector onto the tangent hyperplane to ∂Ω, see also [10]. Recall that the

Dirichlet and the Neumann problems arise for example in the study of clamped and free plates, respectively.

Thus, considering that the space H2(Ω) ∩H1
0(Ω) is intermediate between the two spaces H2

0(Ω) and H2(Ω), one may refer

to (1.1) as to the intermediate problem for the bihamornic operator.

Note that the weak formulation of the classical Steklov eigenvalue problem for the biharmonic operator
∆2v = 0, in Ω,

v = 0, on ∂Ω,

∆v − λ ∂v
∂ν

= 0, on ∂Ω,

(2.4)

is given by ∫
Ω

∆v∆ϕdx = λ

∫
∂Ω

∂v

∂ν

∂ϕ

∂ν
dσ, ∀ ϕ ∈ V (Ω),

in the unknown v ∈ V (Ω).

The space V (Ω) is equipped with the scalar product defined by the left-hand side of (2.1). By the Poincaré inequality, the

corresponding norm is equivalent to the standard norm in H2(Ω), hence V (Ω) is a Hilbert space. Moreover, V (Ω) is compactly

embedded into L2(Ω). Clearly, the operator ∆Ω defined by the pairing ∆2
Ω[v ][ϕ] =

∫
Ω
Hv ·Hϕdx for all v, ϕ ∈ V (Ω), is a linear

homeomorphism from V (Ω) to its dual. Let JΩ be the standard embedding of V (Ω) into its dual defined by JΩ[v ][ϕ] =
∫

Ω
vϕdx

for all v, ϕ ∈ V (Ω). It is immediate to see that the eigenvalues λj [Ω], j ∈ N, of problem (2.1) coincide with the reciprocal of the

eigenvalues of the nonnegative compact selfadjoint operator TΩ = (∆2
Ω)(−1) ◦ JΩ defined from the Hilbert space V (Ω) to itself.

We consider the set of domain transformations

AΩ = {φ ∈ C2(Ω̄;RN) : φ is injective and min
Ω̄
|det∇φ| > 0},

where C2(Ω̄;RN) is the space of functions of class C2 from Ω̄ to RN equipped with its standard norm defined by ‖φ‖ =

max0≤|α|≤2 maxx∈Ω̄ |Dαφ(x)| for all φ ∈ C2(Ω̄;RN). Note that if φ ∈ AΩ then φ(Ω) is an open set in RN of class C2 and

φ(−1) ∈ Aφ(Ω). We set λj [φ] = λj [φ(Ω)] and we study the dependence of λj [φ] upon φ ∈ AΩ. By using the min-max representation

formula as in [7, Lemma 4.1], it is possible to prove that λj [φ] depends with continuity on φ ∈ AΩ. In order to prove differentiability

results one has to consider simple eigenvalues or the symmetric functions of multiple eigenvalues (cfr. [18]). Let F be a nonempty

finite set in N. It is convenient to set

AF,Ω = {φ ∈ AΩ : λj [φ] 6= λl [φ], ∀ j ∈ F, l ∈ N \ F} , and ΘF,Ω = {φ ∈ AF,Ω : λj1 [φ] = λj2 [φ], ∀ j1, j2 ∈ F} . (2.5)

For φ ∈ AΩ, the elementary symmetric functions of the eigenvalues with index in F are defined by

ΛF,s [φ] =
∑

j1,...,js∈F
j1<···<js

λj1 [φ] · · ·λjs [φ], s = 1, . . . , |F |. (2.6)

2 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–7
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In the sequel, vectors are thought as column vectors, whilst gradients of real-valued functions are thought as rows. Moreover,

by At we denote the transpose of a matrix A. Accordingly, atb denotes the scalar product of two vectors a, b in RN .

Theorem 2.7 Let Ω be a bounded open set in RN of class C2, N ≥ 2, and F be a nonempty finite set in N. The set AF,Ω is open

in C2(Ω̄ ;RN) and the real-valued maps which take φ ∈ AF,Ω to ΛF,s [φ] are real-analytic on AF,Ω for all s = 1, . . . , |F |. Moreover,

if φ̃ ∈ ΘF,Ω is such that the eigenvalues λj [φ̃] assume the common value λF [φ̃] for all j ∈ F , and φ̃(Ω) is of class C4 then the

Fréchet differential of the map ΛF,s at the point φ̃ is delivered by the formula

d |φ=φ̃ΛF,s [ψ] = λsF [φ̃]

(
|F | − 1

s − 1

)∑
l∈F

∫
∂φ̃(Ω)

(
2∆∂φ̃(Ω)

(
∂vl
∂ν

)2

+ 2
∂vl
∂ν

∂3vl
∂ν3
− |Hvl |2

)
(ψ ◦ φ̃(−1))tνdσ, (2.8)

for all ψ ∈ C2(Ω̄;RN), where {vl}l∈F is an orthonormal basis in V (φ̃(Ω)) of the eigenspace associated with λF [φ̃], and ∆∂φ̃(Ω)

denotes the Laplace-Beltrami operator on ∂φ̃(Ω).

Proof Let ∆2
φ, Jφ be the pull-backs to Ω of the operators ∆2

φ(Ω), Jφ(Ω), i.e. the operators defined by the pairings

∆2
φ[u][η] = ∆2

φ(Ω)[u ◦ φ(−1)][η ◦ φ(−1)], Jφ[u][η] = Jφ(Ω)[u ◦ φ(−1)][η ◦ φ(−1)] for all u, η ∈ V (Ω). The proof of the analyticity of

ΛF,s follows by the abstract results in [18] applied to the operator
(

∆2
φ

)(−1) ◦ Jφ. See also [6]. We now prove formula (2.8). Let

ul = vl ◦ φ̃ for all l ∈ F . By proceeding as in [6, 18], we have that

d |φ=φ̃ΛF,s [ψ] = −λs+1
F [φ̃]

(
|F | − 1

s − 1

)∑
l∈F

∆2
φ̃

[
d |φ=φ̃

((
∆2
φ

)(−1) ◦ Jφ
)

[ψ](ul)
]

[ul ] . (2.9)

The proof of (2.8) will follow by combining (2.9) with the following formula

∆2
φ̃

[
d |φ=φ̃

((
∆2
φ

)(−1) ◦ Jφ
)

[ψ](ul)
]

[um]

= −λ−1
F [φ̃]

∫
∂φ̃(Ω)

(
2∆∂φ̃(Ω)

(
∂vl
∂ν

∂vm
∂ν

)
+

(
∂vl
∂ν

∂3vm
∂ν3

+
∂vm
∂ν

∂3vl
∂ν3

)
−Hvl ·Hvm

)
µtνdσ, (2.10)

which holds for all l , m ∈ F . Here and in the sequel µ = ψ ◦ φ̃(−1). We now prove formula (2.10). We note that we shall

systematically use the fact that vl ∈ W 4,2(φ̃(Ω)) for all l ∈ F , which follows by classical regularity theory (see e.g., [12, Chp. 2]).

By calculus in normed spaces we have

∆2
φ̃

[
d|φ=φ̃

((
∆2
φ

)(−1) ◦ Jφ
)

[ψ](ul)
]

[um] =
(
d |φ=φ̃Jφ[ψ](ul)

)
[um] + ∆2

φ̃

[
d|φ=φ̃

(
∆2
φ

)(−1)
[ψ] ◦ Jφ̃(ul)

]
[um]. (2.11)

Note that

∆2
φ̃

[
d|φ=φ̃

(
∆2
φ

)(−1)
[ψ] ◦ Jφ̃(ul)

]
[um] = −d|φ=φ̃

(
∆2
φ

)
[ψ] ◦ (∆2

φ̃)(−1) ◦ Jφ̃(ul)[um] = −λ−1
F [φ̃]

(
d |φ=φ̃∆2

φ[ψ](ul)
)

[um]. (2.12)

Moreover, [(
d |φ=φ̃(det∇φ)[ψ]

)
◦ φ̃(−1)

]
det∇φ̃(−1) = divµ, (2.13)

hence (
d |φ=φ̃Jφ[ψ](ul)

)
[um] =

∫
φ̃(Ω)

vlvmdivµdy.

Moreover, we have

(
d |φ=φ̃∆2

φ[ψ](ul)
)

[um] =

∫
Ω

(d |φ=φ̃H(ul ◦ φ(−1)) ◦ φ)[ψ] · (H(um ◦ φ̃(−1)) ◦ φ̃)| det∇φ̃|dx

+

∫
Ω

(H(ul ◦ φ̃(−1)) ◦ φ̃) · (d |φ=φ̃H(um ◦ φ(−1)) ◦ φ)[ψ]| det∇φ̃|dx

+

∫
Ω

(H(ul ◦ φ̃(−1)) ◦ φ̃) · (H(um ◦ φ̃(−1)) ◦ φ̃)d |φ=φ̃| det∇φ|[ψ]dx, (2.14)

and we note that the last summand in (2.14) equals
∫
φ̃(Ω)

Hvl ·Hvmdivµdy . By means of a few computations (see also [20, (3.3)])

we get H(u ◦ φ(−1)) ◦ φ = (∇φ)−tHu(∇φ)−1 + A , where A is the matrix defined by Ai ,j =
∑N

k,l=1
∂u
∂xk

∂ζk,i
∂xl
ζl ,j and ζ = (∇φ)−1.

This yields the following formula

(
d |φ=φ̃(H(u ◦ φ(−1)) ◦ φ)[ψ]

)
◦ φ̃(−1) = −Hv∇µ−∇µtHv −

N∑
r=1

∂v

∂yr
Hµr , (2.15)
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where v = u ◦ φ̃(−1). We rewrite formula (2.15) componentwise and get

(
(d |φ=φ̃(H(u ◦ φ(−1)) ◦ φ)[ψ]) ◦ φ̃(−1)

)
i ,j

= −
N∑
r=1

(
∂2v

∂yi∂yr

∂µr
∂yj

+
∂2v

∂yj∂yr

∂µr
∂yi

+
∂2µr
∂yi∂yj

∂v

∂yr

)
. (2.16)

To shorten notation, from now on all summation symbols will be dropped. By (2.16) the first summand of the right-hand side

of (2.14) equals

−
∫
φ̃(Ω)

(
∂2vl
∂yi∂yr

∂µr
∂yj

+
∂2vl
∂yj∂yr

∂µr
∂yi

+
∂2µr
∂yi∂yj

∂vl
∂yr

)
∂2vm
∂yi∂yj

dy. (2.17)

In order to compute (2.17), we note that integrating by parts yields∫
φ̃(Ω)

∂2vl
∂yi∂yr

∂µr
∂yj

∂2vm
∂yi∂yj

dy =

∫
∂φ̃(Ω)

∂vl
∂yi

∂µr
∂yj

νr
∂2vm
∂yi∂yj

dσ −
∫
φ̃(Ω)

∂vl
∂yi

∂divµ

∂yj

∂2vm
∂yi∂yj

dy −
∫
φ̃(Ω)

∂vl
∂yi

∂µr
∂yj

∂3vm
∂yi∂yj∂yr

dy

=

∫
∂φ̃(Ω)

∂vl
∂yi

∂µr
∂yj

νr
∂2vm
∂yi∂yj

dσ −
∫
φ̃(Ω)

∂vl
∂yi

∂µr
∂yj

∂3vm
∂yi∂yj∂yr

dy −
∫
∂φ̃(Ω)

∂vl
∂yi

divµ
∂2vm
∂yi∂yj

νjdσ +

∫
φ̃(Ω)

Hvl ·Hvmdivµdy

+

∫
φ̃(Ω)

∇vl(∇∆vm)tdivµdy, (2.18)

and

∫
φ̃(Ω)

∂vl
∂yr

∂2µr
∂yi∂yj

∂2vm
∂yi∂yj

dy =

∫
∂φ̃(Ω)

∂vl
∂yr

∂µr
∂yi

νj
∂2vm
∂yi∂yj

dσ −
∫
φ̃(Ω)

∂2vl
∂yr∂yj

∂µr
∂yi

∂2vm
∂yi∂yj

dy −
∫
φ̃(Ω)

∂vl
∂yr

∂µr
∂yi

∂∆vm
∂yi

dy

=

∫
∂φ̃(Ω)

∂vl
∂yr

∂µr
∂yi

νj
∂2vm
∂yi∂yj

dσ −
∫
φ̃(Ω)

∂vl
∂yr

∂µr
∂yi

∂∆vm
∂yi

dy −
∫
∂φ̃(Ω)

∂vl
∂yj

∂µr
∂yi

νr
∂2vm
∂yi∂yj

dσ +

∫
φ̃(Ω)

∂vl
∂yj

∂divµ

∂yi

∂2vm
∂yi∂yj

dy

+

∫
φ̃(Ω)

∂vl
∂yj

∂µr
∂yi

∂3vm
∂yi∂yj∂yr

dy =

∫
∂φ̃(Ω)

∂vl
∂yr

∂µr
∂yi

νj
∂2vm
∂yi∂yj

dσ −
∫
φ̃(Ω)

∂vl
∂yr

∂µr
∂yi

∂∆vm
∂yi

dy −
∫
∂φ̃(Ω)

∂vl
∂yj

∂µr
∂yi

νr
∂2vm
∂yi∂yj

dσ

+

∫
φ̃(Ω)

∂vl
∂yj

∂µr
∂yi

∂3vm
∂yi∂yj∂yr

dy +

∫
∂φ̃(Ω)

∂vl
∂yj

divµ
∂2vm
∂yi∂yj

νidσ −
∫
φ̃(Ω)

Hvl ·Hvmdivµdy −
∫
φ̃(Ω)

∇vl(∇∆vm)tdivµdy. (2.19)

We recall that the eigenfunctions vl satisfy the boundary conditions vl = ∂2vl
∂ν2 = 0 on ∂φ̃(Ω), in particular ∇vl = ∂vl

∂ν
νt on

∂φ̃(Ω), for all l ∈ F . Thus, by (2.18) and (2.19) we have that (2.17) is equal to∫
φ̃(Ω)

∂vl
∂yj

∂µr
∂yi

∂3vm
∂yi∂yj∂yr

dy +

∫
φ̃(Ω)

∂vl
∂yr

∂µr
∂yi

∂∆vm
∂yi

dy −
∫
φ̃(Ω)

∇vl(∇∆vm)tdivµdy − 2

∫
∂φ̃(Ω)

∂vl
∂ν

∂2vm
∂yi∂yj

νj
∂µr
∂yi

νrdσ

−
∫
φ̃(Ω)

Hvl ·Hvmdivµdy. (2.20)

Thus the right-hand side of (2.14) equals∫
φ̃(Ω)

(
∂vl
∂yr

∂∆vm
∂yi

+
∂vm
∂yr

∂∆vl
∂yi

)
∂µr
∂yi

dy +

∫
φ̃(Ω)

(
∂vl
∂yj

∂3vm
∂yi∂yj∂yr

+
∂vm
∂yj

∂3vl
∂yi∂yj∂yr

)
∂µr
∂yi

dy

− 2

∫
∂φ̃(Ω)

(
∂vl
∂ν

∂

∂ν
∇vm +

∂vm
∂ν

∂

∂ν
∇vl
)
∇µtrνrdσ −

∫
φ̃(Ω)

Hvl ·Hvmdivµdy

−
∫
φ̃(Ω)

(∇vl(∇∆vm)t +∇vm(∇∆vl)
t)divµdy. (2.21)

The first summand in (2.21) equals∫
∂φ̃(Ω)

(
∂vl
∂ν

∂∆vm
∂ν

+
∂vm
∂ν

∂∆vl
∂ν

)
µtνdσ −

∫
φ̃(Ω)

(
∂2vl
∂yi∂yr

∂∆vm
∂yi

+
∂2vm
∂yi∂yr

∂∆vl
∂yi

)
µrdy −

∫
φ̃(Ω)

(∆2vm∇vl + ∆2vl∇vm)µdy

=

∫
∂φ̃(Ω)

(
∂vl
∂ν

∂∆vm
∂ν

+
∂vm
∂ν

∂∆vl
∂ν

)
µtνdσ −

∫
φ̃(Ω)

(
∂2vl
∂yi∂yr

∂∆vm
∂yi

+
∂2vm
∂yi∂yr

∂∆vl
∂yi

)
µrdy + λF [φ̃]

∫
φ̃(Ω)

vlvmdivµdy

=

∫
∂φ̃(Ω)

(
∂vl
∂ν

∂∆vm
∂ν

+
∂vm
∂ν

∂∆vl
∂ν

)
µtνdσ + λF [φ̃]

∫
φ̃(Ω)

vlvmdivµdy −
∫
∂φ̃(Ω)

(∇vl(∇∆vm)t +∇vm(∇∆vl)
t)µtνdσ

+

∫
φ̃(Ω)

(
∂2∆vl
∂yr∂yi

∂vm
∂yi

+
∂2∆vm
∂yr∂yi

∂vl
∂yi

)
µrdy +

∫
φ̃(Ω)

(∇vl(∇∆vm)t +∇vm(∇∆vl)
t)divµdy. (2.22)

4 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–7
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The second summand in (2.21) equals

∫
∂φ̃(Ω)

(
∂vl
∂yj

∂3vm
∂yi∂yj∂yr

+
∂vm
∂yj

∂3vl
∂yi∂yj∂yr

)
νiµrdσ −

∫
φ̃(Ω)

(
∂vl
∂yj

∂2∆vm
∂yj∂yr

+
∂vm
∂yj

∂2∆vl
∂yj∂yr

)
µrdy

−
∫
φ̃(Ω)

(
∂2vl
∂yi∂yj

∂3vm
∂yi∂yj∂yr

+
∂2vm
∂yi∂yj

∂3vl
∂yi∂yj∂yr

)
µrdy =

∫
∂φ̃(Ω)

(
∂vl
∂yj

∂3vm
∂yi∂yj∂yr

+
∂vm
∂yj

∂3vl
∂yi∂yj∂yr

)
νiµrdσ

−
∫
φ̃(Ω)

(
∂vl
∂yj

∂2∆vm
∂yj∂yr

+
∂vm
∂yj

∂2∆vl
∂yj∂yr

)
µrdy +

∫
φ̃(Ω)

Hvl ·Hvmdivµdy −
∫
∂φ̃(Ω)

Hvl ·Hvmµtνdσ. (2.23)

By combining (2.21)-(2.23), we get that the right-hand side of (2.14) equals∫
∂φ̃(Ω)

(
∂vl
∂ν

∂3vm
∂yi∂yj∂yr

+
∂vm
∂ν

∂3vl
∂yi∂yj∂yr

)
νiνjµrdσ − 2

∫
∂φ̃(Ω)

(
∂vl
∂ν
νtHvm +

∂vm
∂ν

νtHvl

)
∇µtνdσ

−
∫
∂φ̃(Ω)

Hvl ·Hvmµtνdσ + λF [φ̃]

∫
φ̃(Ω)

vlvmdivµdy. (2.24)

Now we claim that

νtHvm = ∇∂φ̃(Ω)

∂vm
∂ν

on ∂φ̃(Ω), (2.25)

for all m ∈ F , where ∇∂φ̃(Ω) denotes the tangential gradient to ∂φ̃(Ω). Here and in the sequel it is understood that the normal

vector field ν is extended to a neighborhood of ∂φ̃(Ω) as a unitary vector field. We have

∇∂φ̃(Ω)

∂vm
∂ν

= ∇∂φ̃(Ω)(∇vmν) = ∇(∇vmν)− (∇(∇vmν)ν)νt . (2.26)

Clearly

(∇(∇vmν))j =
∂2vm
∂yi∂yj

νi +
∂vm
∂yi

∂νi
∂yj

=
∂2vm
∂yi∂yj

νi +
1

2

∂vm
∂ν

∂(νi)
2

∂yj
=

∂2vm
∂yi∂yj

νi , on ∂φ̃(Ω). (2.27)

Thus

∇∂φ̃(Ω)

∂vm
∂ν

= νtHvm − (νtHvmν)νt = νtHvm −
∂2vm
∂ν2

νt = νtHvm, (2.28)

and (2.25) is proved. Now we note that

∇(νtµ) = νt∇µ+ µt∇ν hence ∇µtν = ∇(νtµ)t −∇νtµ. (2.29)

By observing that |ν|2 = 1 implies that νt∇ν = 0, by (2.25) and (2.29) we get

∂vl
∂ν
νtHvm∇µtν =

∂vl
∂ν
∇∂φ̃(Ω)

∂vm
∂ν
∇(νtµ)t − ∂vl

∂ν
∇∂φ̃(Ω)

∂vm
∂ν
∇νtµ

=
∂vl
∂ν
∇∂φ̃(Ω)

∂vm
∂ν
∇∂φ̃(Ω)(νtµ)t − ∂vl

∂ν
∇∂φ̃(Ω)

∂vm
∂ν
∇νt(µν + µ∂φ̃(Ω))

=
∂vl
∂ν
∇∂φ̃(Ω)

∂vm
∂ν
∇∂φ̃(Ω)(νtµ)t − ∂vl

∂ν
∇∂φ̃(Ω)

∂vm
∂ν
∇νtµ∂φ̃(Ω), (2.30)

where µ = µν + µ∂φ̃(Ω), µν is the normal component of µ and µ∂φ̃(Ω) the tangential one. Hence the second integral in (2.24)

equals

2

∫
∂φ̃(Ω)

∇∂φ̃(Ω)

(
∂vl
∂ν

∂vm
∂ν

)
∇νtµ∂φ̃(Ω)dσ − 2

∫
∂φ̃(Ω)

∇∂φ̃(Ω)

(
∂vl
∂ν

∂vm
∂ν

)
∇∂φ̃(Ω)(νtµ)tdσ. (2.31)

Now we consider the first integral in (2.24), and we recall that

∂2vm
∂yi∂yj

νiνj = 0 , on ∂φ̃(Ω). (2.32)

By differentiating (2.32) with respect to any tangential direction τ to ∂φ̃(Ω) we obtain

∂3vm
∂yi∂yj∂yr

νiνjτr + 2
∂2vm
∂yi∂yj

∂νi
∂yr

νjτr = 0,

hence
∂3vm

∂yi∂yj∂yr
νiνjµ

tττr = −2
∂2vm
∂yi∂yj

∂νi
∂yr

νjµ
tττr . (2.33)

Math. Meth. Appl. Sci. 2009, 00 1–7 Copyright c© 2009 John Wiley & Sons, Ltd. 5
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences A. N. Other

By taking in (2.33) vectors τ belonging to a basis of the tangent hyperplane to ∂φ̃(Ω) and using (2.28), we easily get

∂3vm
∂yi∂yj∂yr

νiνjµ∂φ̃(Ω),r = −2νtHvm∇νtµ∂φ̃(Ω) = −2∇∂φ̃(Ω)

(
∂vm
∂ν

)
∇νtµ∂φ̃(Ω). (2.34)

Thus∫
∂φ̃(Ω)

∂vl
∂ν

∂3vm
∂yi∂yj∂yr

νiνjµrdσ =

∫
∂φ̃(Ω)

∂vl
∂ν

∂3vm
∂yi∂yj∂yr

νiνj(µν,r + µ∂φ̃(Ω),r )dσ =

∫
∂φ̃(Ω)

∂vl
∂ν

∂3vm
∂yi∂yj∂yr

νiνjνrµ
tνdσ

+

∫
∂φ̃(Ω)

∂vl
∂ν

∂3vm
∂yi∂yj∂yr

νiνjµ∂φ̃(Ω),rdσ =

∫
∂φ̃(Ω)

∂vl
∂ν

∂3vm
∂ν3

µtνdσ − 2

∫
∂φ̃(Ω)

∂vl
∂ν
∇∂φ̃(Ω)

∂vm
∂ν
∇νtµ∂φ̃(Ω)dσ. (2.35)

Hence the first integral in (2.24) is equal to∫
∂φ̃(Ω)

(
∂vl
∂ν

∂3vm
∂ν3

+
∂vm
∂ν

∂3vl
∂ν3

)
µtνdσ − 2

∫
∂φ̃(Ω)

∇∂φ̃(Ω)

(
∂vl
∂ν

∂vm
∂ν

)
∇νtµ∂φ̃(Ω)dσ. (2.36)

Finally, by (2.31), (2.36) and by the tangential Green formula (see [11, § 5.5]), we get that the right-hand side of (2.24)

equals∫
∂φ̃(Ω)

(
∂vl
∂ν

∂3vm
∂ν3

+
∂vm
∂ν

∂3vl
∂ν3

)
µtνdσ −

∫
∂φ̃(Ω)

Hvl ·Hvmµtνdσ − 2

∫
∂φ̃(Ω)

∇∂φ̃(Ω)

(
∂vl
∂ν

∂vm
∂ν

)
∇∂φ̃(Ω)(µtν)tdσ

+ λF [φ̃]

∫
φ̃(Ω)

vlvmdivµdy =

∫
∂φ̃(Ω)

(
∂vl
∂ν

∂3vm
∂ν3

+
∂vm
∂ν

∂3vl
∂ν3

)
µtνdσ −

∫
∂φ̃(Ω)

Hvl ·Hvmµtνdσ + λF [φ̃]

∫
φ̃(Ω)

vlvmdivµdy

+ 2

∫
∂φ̃(Ω)

∆∂φ̃(Ω)

(
∂vl
∂ν

∂vm
∂ν

)
µtνdσ. (2.37)

This combined with (2.11) and (2.14) concludes the proof of (2.10).

3. Criticality of balls in isovolumetric perturbations

We consider the following extremum problems for the symmetric functions of the eigenvalues

min
V [φ]=const

ΛF,s [φ] or max
V [φ]=const

ΛF,s [φ], (3.1)

where V [φ] denotes the N-dimensional Lebesgue measure of φ(Ω). By the Lagrange multiplier theorem, if φ̃ ∈ AΩ is a minimizer

or maximizer in (3.1) then φ̃ is a critical domain transformation for the map φ 7→ ΛF,s [φ] subject to volume constraint, i.e.,

there exists c ∈ R such that d|φ=φ̃ΛF,s = cd |φ=φ̃V , where V is the real-valued function defined on AΩ which takes φ ∈ AΩ to

V [φ]. By using (2.8) and (2.13), one can easily see that under the same assumptions of Theorem 2.7, φ̃ is a critical domain

transformation for any of the functions ΛF,s , s = 1, . . . , |F |, with volume constraint if and only if there exists C ∈ R such that

∑
l∈F

(
2∆∂φ̃(Ω)

(
∂vl
∂ν

)2

+ 2
∂vl
∂ν

∂3vl
∂ν3
− |Hvl |2

)
= C, on ∂φ̃(Ω) . (3.2)

Then we can prove the following.

Theorem 3.3 Let the same assumptions of Theorem 2.7 hold. If φ̃(Ω) is a ball then condition (3.2) is satisfied.

Proof Assume that φ̃(Ω) is a ball B of radius R centered at zero. By arguing as in [6, 17], one can easily prove that
∑

l∈F v
2
l and∑

l∈F (∆vl)
2 are radial functions. By differentiating

∑
l∈F v

2
l twice with respect to the radial coordinate r , we get that

∑
l∈F ( ∂vl

∂r
)2

is constant on ∂B, hence ∑
l∈F

∆∂φ̃(Ω)

(
∂vl
∂ν

)2

= 0, on ∂B. (3.4)

The function
∂4

∂r 4

∑
l∈F

v 2
l =

∑
l∈F

(
6

(
∂2vl
∂r 2

)2

+ 8
∂vl
∂r

∂3vl
∂r 3

+ 2vl
∂4vl
∂r 4

)
is clearly radial, hence ∑

l∈F

∂vl
∂ν

∂3vl
∂ν3

is constant on ∂B. (3.5)

6 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–7
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Note that ∂
∂ν

∑
l∈F (∆vl)

2 = 2
∑

l∈F
N−1
R

∂vl
∂ν

∂∆vl
∂ν

on ∂B, hence∑
l∈F

∂vl
∂ν

∂∆vl
∂ν

is constant on ∂B. (3.6)

Finally, we note that

∆2
∑
l∈F

v 2
l =

∑
l∈F

(
2λF [φ̃]v 2

l + 2(∆vl)
2 + 4|Hvl |2 + 8∇vl(∇∆vl)

t
)

(3.7)

is radial, hence by (3.6) the function
∑

l∈F |Hvl |
2 is constant on ∂B. This, combined with (3.4), (3.5) implies that (3.2) holds.

Remark 3.8 It would be interesting to characterize those open sets φ̃(Ω) such that condition (3.2) is satisfied. We recall that

in the case of the first eigenvalue of the Dirichlet Laplacian, the corresponding condition is ∂u
∂ν

= C on ∂φ̃(Ω) in which case it is

a classical result that the existence of a positive solution implies that φ̃(Ω) is ball, see the celebrated paper [22]. We also refer

to [6, 14] for more references.
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