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 

Abstract — This paper presents an application formed by a 

classification method based on the architecture of ART neural 

network (Adaptive Resonance Theory) and the Fuzzy Set Theory 

to classify physiological reactions in order to automatically and 

dynamically adapt a robot-assisted rehabilitation therapy to the 

patient needs, using a three-dimensional task in a virtual reality 

system. Firstly, the mathematical and structural model of the 

neuro-fuzzy classification method is described together with the 

signal and training data acquisition. Then, the virtual designed 

task with physics behavior and its development procedure are 

explained. Finally, the general architecture of the 

experimentation for the auto-adaptive therapy is presented using 

the classification method with the virtual reality exercise. 

 
Keywords — Rehabilitation robotics; Physiological state; 
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I. INTRODUCTION 

HERE are a great number of literature about the growing 

importance of the use of robotic systems in the 

neurorehabilitation field [1] , [2]. Particularly in the assisted 

robotic devices for motor retraining in subjects who have 

suffered neurological injuries such as stroke or Parkinson. It is 

known that this kind of rehabilitation therapies produce a 

beneficial effects in those patients [3]. Many researchers 

intend to include them in a control loop [4] to increase the 

efficiency and effectiveness of such systems. Thus, robot-

assisted systems are able to decide the difficulty level that can 

be made during the different rehabilitation therapies taking 

into account the emotional and physiological aspects of the 

subject. 

Currently, the adaptation of the robotic systems behavior 

using psycho-physiological measures is analyzed by the 

scientific community. A large number of classification 

methods and emotional estimation are compared in [5]. 

However, there are few studies about the utilization of neuro-

fuzzy methods in these subjects. The hypothesis that neural 

network help us to estimate the emotional state of the patients 

 
 

is supported due to the network theory can be applied into the 

neural computing of the emotions, as is described conceptually 

in [6], and the architecture of cognitive networks, affective 

networks and evaluation layers is proposed in [7]. 

Furthermore, the virtual reality is a technology that allows 

developing rehabilitation environments such as virtual 

therapies based on activities of daily living (ADL), intended 

for stroke patients [8]. In other research, it was compared the 

virtual rehabilitation with the classical rehabilitation with two 

different post stroke groups [9]. The result was that the group 

exposed to the virtual rehabilitation shown a better 

improvement in the motor deficits of the upper limb than the 

other group. For this reasons, the adaptive robot-assisted 

rehabilitation therapy can be beneficial for the patient. 

This paper proposes a neuro-fuzzy architecture combined 

with 3D virtual reality in the development of an upper-limb 

rehabilitation application to study the potential usefulness of 

neural networks, fuzzy logic and three-dimensional 

environments based in physical principles. This method can be 

dynamically modify and can adapt the robot-assisted 

rehabilitation therapy according to the emotional state of the 

patient, following the psycho-physiological computing 

processing as defined in [5]. 

II. CLASSIFICATION METHOD 

In this section, an analysis of the classification method, used 

to differentiate the emotional state of the user during the 

proposed robot-assisted rehabilitation therapy, the acquisition 

data process and the extraction features of physiological 

signals are explained. Further information about the learning 

algorithm and validation test is also presented. 

A. Neuro-fuzzy System: S-dFasArt  

S-dFasArt [10] is a classification method based on the 

architecture provided by the ART neural network [11], where 

fundamentals of the Fuzzy Sets theory are applied in the 

different processing stages of the classification algorithm. The 

neuro-fuzzy architecture takes the advantages of both 

techniques, the learning and adaptability capacity of the neural 

networks, and the robustness, the interpretability and the fault 

tolerance of the fuzzy systems. 
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To improve the convergence speed and the update mode of 

the fuzzy weights dynamical equations are used. Moreover, 

this classification method allows a fast, supervised and 

competitive learning, keeping the accumulated knowledge. All 

nodes or output categories are actuated by the input data due to 

its competitive property, but only the neuron with the highest 

response level is activated. Therefore, the winner category 

generates the classifier output on the current input pattern. 

The architecture of the proposed method is shown in Fig. 1. 

This model is formed by three layers or levels and an 

orientation subsystem. 

 

 
Fig. 1 S-dFasArt Architecture. 

 

 The Input Level is used to receive the input data in a 

vector form, with the most important features of the 

physiological signals. Furthermore, in this level it is 

also applied an activation-membership function to 

determine the membership degree of each input 

attribute on the generated categories [12]. 

 The Supervisory Level presents the output pattern for 

the association with the input pattern. 

 The Category Level is formed by a several nodes that 

represent the fuzzy units or categories and it contains 

the classification results with activation and reset 

levels. This level stores the association between the 

input sequences and its corresponding supervision 

vector.  

 The Orientation Subsystem is responsible to create 

categories during the learning and the generalization 

of the similar categories. 

B. Training data acquisition 

To test the possibilities of the proposed classification 

method it is necessary the acquisition of the training data. The 

process to obtain the physiological signals is done as it is 

explained in [14] A robotic device designed for upper-limb 

assisted therapy called PUPArm, which is commercialized by 

Instead Technologies Inc, is used during the therapy. It has a 

signal acquisition system provided by g.tec medical 

engineering GmbH with different sensors and a virtual reality 

system. The physiological signal of the subject, such a pulse 

rate, respiration rate, skin conductance level (SCL), skin 

conductance response (SCR) and skin temperature [15], were 

recorded in real-time.To test the possibilities of the proposed 

classification method it is necessary the acquisition of the 

training data. The process to obtain the physiological signals is 

done as it is explained in [14]. A robotic device designed for 

upper-limb assisted therapy called PUPArm, which is 

commercialized by Instead Technologies Inc, is used during 

the therapy. It has a signal acquisition system provided by 

g.tec medical engineering GmbH with different sensors and a 

virtual reality system. The physiological signal of the subject, 

such a pulse rate, respiration rate, skin conductance level 

(SCL), skin conductance response (SCR) and skin temperature 

[15], were recorded in real-time. 

The integrated virtual reality system encourages different 

psycho-physiological states of the patient. The activity is 

formed by a series of rectangular elements of different sizes 

that they move randomly across the screen with different 

speeds inside a defined area. Meanwhile, the user control a 

pointer with the robotic device in order to avoid the collision 

with the rectangular elements. Three different levels of 

difficulty (relax level, medium level and stress level) were 

defined using the number and speed of the rectangular 

elements shown in screen.  

Once the physiological signals are acquired, a data 

processing, based on normalization of the features, was 

performed to get the final set of training data with its  

respective supervision measures. The emotional states of the 

patient are collected in these supervision data. 

C. Learning algorithm 

In this section, the S-dFasArt neuro-fuzzy learning 

algorithm is explained briefly showing the required steps to 

train the neuro-fuzzy network nodes. Detailed explanation 

about this algorithm can be found in [13]. 

 

 

 

(1) 

 

 

 

 

(2) 

 

The input training data and its corresponding supervision 

labels are received through the classifier at the Input Level and 

Supervisory Level respectively. Next, the activation level (1) 
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and the reset level (2) of all nodes that form the Category 

Level are calculated. 

Then, the winner category is determined by comparing the 

activation levels values (3) and selecting the node with the 

highest value. If this activation value is null the classifier add a 

new uncommitted category. 

 

 

(3) 

In the next step, it is necessary to check the reset level to 

determinate if the winner category accomplishes the necessary 

conditions of similarity with the input vector using a vigilance 

threshold. If it overtakes the threshold, the category whose 

level activation is the next highest, is searched. Once the 

winner category exceeds activation and reset conditions, its 

supervision label is compared with the supervision label 

received to confirm if it is a correct prediction. If it is not 

satisfied, the next category is sought. 

To perform the update of the weights nodes of the neuro-

fuzzy network the following dynamic equations (4) are used in 

case of an existing category. 

 

 

 

 

 

(4) 

In case of a new category, the weights nodes are initialized 

(5) using the input vector. 

 

 

 

(5) 

D. Validation Test 

At this point, a functional classification model has been 

implemented to distinguish correctly in real time the input 

patterns generated by the physiological signals of the patient 

and they are processed for features extraction. To get this 

functional model, an adjustment process of the SdFasArt 

neuro-fuzzy classifier have been applied following three 

phases [10]: 

1. Initialization of the static value parameters linked to 

the dynamic equations. 

2. Learning the weights whose values represent the 

diffuse categories generated by the presentation of the 

input pattern data to the classifier, using the learning 

algorithm explained in the previous subsection. 

3. Setting the most influential parameters of the neuro-

fuzzy network, σ and AT, related to the diffuse 

character and the activation speed of the classifier 

categories, checking the values that provide better 

classification results. 

 

Once the possible values of σ y $A_{T}$ are analyzed, the 

functional classification model is completed. This model has 

been tested using the Leave-one-out validation technique to 

evaluate the classification results and ensure that they are 

independent of the partition between training and test data. 

Finally, the accuracy level has been calculated obtaining a 

performance results of 92.38% with 34 diffuse categories. 

III. 3D  VISUAL TASKS ARCHITECTURE 

The virtual task developed to perform the robot-assisted 

rehabilitation therapy has been designed following the scheme 

of programming routines. The general architecture is shown in 

Fig. 2. The graphic content required for the virtual scene is 

generated using Blender [16], a modeling software. This 

modeling tool can generate 3D meshes files with an 

appropriate format for an easy installation. Thus, the polygon 

mesh of the stage and the interacting elements are obtained. A 

file with the distribution of all scene elements is also 

generated. 

These visual elements implemented are interpreted by the 

application core to build the virtual environment providing a 

characteristic behavior to each element. The core is 

responsible for controlling the application execution to 

organize all components of each of the blocks of the general 

scheme. The open source software called Ogre3D [17] has 

been used as a graphics engine. Ogre3D provides a flexible 

and object-oriented programming and, through its high level 

interface written in C++, it offers a series of intuitive methods 

that facilitates the preparation of 3D visualization applications 

with quite realistic, interactive and real-time environments on 

any kind of platform. 

The physical engine is an important component that has 

been added. In this case, to simulate elements with some 

realism degree the NVIDIA PhysX \cite{physx} has been 

used. This engine tries to predict the physics effects within a 

scene subject to various conditions of speed, force, friction, 

mass and many more physics variables. Its main function is the 

collision detect algorithms able to calculate the interaction 

between all elements of the physics scene and the forces 

generation. Then, the rendering loop of the graphic engine 

updates the temporal evolution of the physics elements. It is 

also responsible for the visual representation of the behavior of 

each physics model by moving its corresponding graphical 

model. Each physics model consists in a simplified geometry 

of each specific graphical model to provide the main core the 

collision detect within the simulated physics space. 

A sounds engine has been also incorporated to play sound 

effects depending on the task objectives. This engine helps in 

realism of the application and immerse the user in the virtual 

environment. The robotic system is controlled by the patient to 

manage the position of a virtual tool, whose movement affects 

in the collisions detect generated by the physics engine, 

depending of the simulated tool geometry. Meanwhile, the user 

has a visual feedback of everything happening in the 

application.  



Special Issue on Digital Economy 

 

-66- 

 

USER

 

Ogre 3D FilesVirtual Application

Management 

CONTENT CREATION

Graphics Resources

- Virtual tools

- Stage

Vertex

Triangles

Textures

Normals

Blender Exporter

- Ogre 3D Files

- Distribution File PHYSICAL SIMULATION

Ogre 3D FilesPhysical Rendering

Engine PhysX

Collision 

detection

Sound Engine

APPLICATION CORE

Control

Haptic

Assistance

ROBOTIC CONTROL VISUALIZATION 

Ogre 3D FilesGraphic Rendering

Engine OGRE3D

MULTIMEDIA

COMPLEMENTS

 

 
Fig. 2 General architecture of virtual reality applications. 

 

A. Whack a Rabbit 

In this paper, an example of virtual task has been designed 

using the procedure explained previously. The main objective 

of this task is to find items, in this case rabbits, which appear 

randomly on the scene. The user should use the robotic system 

to control the virtual tool and hit these targets. In Fig. 3 the 

implemented virtual task is shown. 

To complete the experimentation different difficulty levels 

have been implemented in the virtual task for automatic level 

changes depending of the emotional state of the patient. 

 Only one rabbit appears and stays on stage for 10 

seconds. 

 Only one rabbit appears and stays ion stage for 5 

seconds. 

 Two rabbits appear at the same time, and they stay on 

stage for 10 seconds. 

 Two rabbits appear asynchronously, and everyone 

stays on stage for 5 seconds. 

 Three rabbits appear at the same time, and they stay on 

stage for 10 seconds. 

 Three rabbits appear asynchronously, and everyone 

stays on stage for 5 seconds. 

The physic and visual elements used to develop the virtual 

task are explained in the following subsections. 

 

 
Fig. 3 Virtual task screenshot 

 

1) Static bodies 

The static bodies are the elements of PhysX that are used in 

this application. These elements are placed in a particular 

localization in the scene and they are kept immobile during all 

simulation, while the remaining elements are influenced by the 

collision forces inside the stage during the exercise. In this 

virtual task the static elements have been designed to represent 

a garden with lawn, a wooden fence and 9 rabbit burrows. 

Also, a garden tools have been added to introduce the patient 

on the virtual reality. 

 

2) Kinematic bodies 

The kinematic bodies are objects that the user can freely 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2 

 

-67- 

 

move within defined work range, and do not act under the 

influence of forces response, gravity and collisions. The 

movement of the kinematic bodies are produced getting the 

coordinates generated by the robotic system. In this task, a 

hammer has been designed as kinematic body, which generates 

an hit animation when the hammer is closed to the target. 

 

3) Soft bodies 

To provide more realism when the collision with the target 

occurs, the PhysX feature of soft bodies generating has been 

used. These deformable and volumetric elements have a elastic 

topology formed structurally by tetrahedral meshes that 

encapsulate all the 3D object surfaces. The stretching and 

bending constraints maintain subjected the vertices of this 

mesh type. The vertex positions are modified because of the 

internal forces of the soft body and the external forces 

generated in the physical engine. 

Each tetrahedron of the soft body involves a number of 

vertices in the visual mesh. These vertices are attached to the 

behavior of the corresponding tetrahedron. Once the physics 

are updated, the new vertices positions are calculated and the 

graphic engines change the vertices positions of the visual 

mesh depending on the displacement suffered by the soft body. 

Thus, the 3D soft visualization body is updated. Also, PhysX 

offers different parameters that influence the internal physics 

of these bodies such as density, friction or damping, whose 

values can cause varying impact on the overall response of the 

element. 

In this task, the bodies that move randomly in the scene are 

the soft bodies and they are shaped like a rabbit. Whenever a 

body is hit by the virtual tool, it color changes to indicate the 

success. Therefore, thanks to this functionality, the user is 

aware of the impact moment against the target and force 

direction. 

IV. AUTOADAPTATIVE EXPERIMENTATION 

The final application, based on adaptive robot-assisted 

rehabilitation therapy according with the specific psycho-

physiological state of each patient, is defined in this section. A 

good performance has been observed in the classification 

method used in this experimentation, explained in the section 

II.  

The general diagram of the autoadaptive experimentation is 

shown in Fig. 4, it is formed by four functional blocks. The 

sensors are connected to the user to record his/her 

physiological signals while controlling the interaction system. 

The explained rehabilitation robotic device and the virtual 

reality subsystem are included in this interaction system. The 

user has three feedback types (visual, audio and force). When 

the user starts using the robotic system, his physiological 

signals are processed to extract the most important features. 

These features are sent to the functional model of the neuro-

fuzzy classifier. Three possible states are generated by the 

classification block processing, the input information to check 

the psycho-physiological state of the user and decide the 

modification to be made in the deployed task (up level, down 

level or maintain level). This proportionate classification state 

is sent to the interaction system to complete the experiment of 

automatic difficulty level changes in the virtual task explained 

in section II, where six levels have been defined. The aim of 

the experimentation is to maintain an intermediate difficulty 

level along the task period.  

The extraction and processing of the signals features have 

been performed in a Simulink scheme, while the classification 

block has been designed with Matlab. A UDP protocol is used 

to communicate the classifier with the virtual task software. 

This communication is applied every 30 seconds to send three 

possible action commands and changing the difficulty level of 

the virtual task: 

1. If the user has an over-stressed level, one difficulty 

level is reduced in the virtual task. 

2. If the user has stable state, the virtual task does not 

change the difficulty level. 

3. If the user is relaxed, the actual difficulty level is 

increased.  

Currently, several subjects are doing these experiments, who 

were informed of the work purpose. The subjects must perform 

an adaptation period of few minutes. Then, the subjects signals 

in relaxed state for 5 min are recorded to obtain baseline 

measurements. Finally, the subjects perform the task for 10 

minutes, starting in the first difficulty level of the virtual task. 

V. CONCLUSSION 

In this paper, a classification model based on a neural 

network architecture and the fuzzy logic is presented to 

classify three different states of the user's reactions 

physiological in an assisted system of robotic rehabilitation. 

This method has obtained a quite good performance results 

(92.38% in LOOCV) that allow an efficient classification in 

real-time. 

On the other side, a graphical application based on 3D 

virtual reality has been implemented. The aim of this issue is 

to increase the sense immersion of the user inside of the virtual 

environment, checking the patients behavior in front of scenes 

in three dimensions. Ogre3D has been used for visualization. 

The physics engine adds realism to the scene providing 

performance energies on elements that have different physical 

behaviors. These software tools offer a great versatility and 

flexibility to implement all type of virtual exercises with 

visually and physically realistic environments. 
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CarlosPérez-Vidal received the B.Sc. degree in in-
dustrial engineering in 1998, and the M.Sc. degree in
control engineering in 2000, both from the Technical
University of Valencia, Valencia, Spain, and the Ph.D.
degree in industrial technologies in 2008 from Miguel
Hernández University of Elche (UMH), Elche, Spain.

He is currently an Associate Professor of control
and systems engineering with UMH.

Eduardo Fernández received the M.D. degree in
1986 and the Ph.D degree in Neuroscience in 1990,
both from the University of Alicante. Alicante, Spain.

He is currently a Professor and Chairman of the
Department of Histology and Anatomy and a Direc-
tor of the Biomedical Neuroengineering group of the
Miguel Hernández University of Elche, Elche, Spain.


