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ABSTRACT 
 

Clouds are dynamic networks of common, off-the-shell computers to build computation farms. The rapid growth 

of databases in the context of the semantic web requires efficient ways to store and process this data. Using cloud 

technology for storing and processing Semantic Web data is an obvious way to overcome difficulties in storing 

and processing the enormously large present and future datasets of the Semantic Web. This paper presents a new 

approach for storing Semantic Web data, such that operations for the evaluation of Semantic Web queries are 

more likely to be processed only on local data, instead of using costly distributed operations. An experimental 

evaluation demonstrates the performance improvements in comparison to a naive distribution of Semantic Web 

data. 
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1 INTRODUCTION 
 

In the last two centuries, the Internet has grown at an 

exponential rate. The biggest part of this growth can be 

attributed to the World Wide Web, both to publicly 

visible web pages and internal networks. 

This massive amount of data is quickly becoming 

harder and harder to handle, as most of it is not produced 

in a format which can be easily processed through 

electronic means. Billions of pages written in natural 

languages, untagged pictures and graphics of many 

kinds, together with other media have become an as-of-

yet untapped source of knowledge. 

To help processing this data, the concept of a 

Semantic Web has been developed. The projects 

involved have the intention to connect unstructured data 

with ways to express the semantics, the meaning, of this 

data, in order to be able to harness it. At the forefront of 

this movement is the World Wide Web Consortium, 

which has started to develop standards for the Semantic 

Web. 

One of the problems with processing this data, even 

when its semantic structure is available, is its sheer 

amount. Many collections of semantic web data already 

contain billions of data fragments like those of the 

Linking Open Data (LOD) project [14]. The exponential 
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growth of computing power cannot match the rate at 

which these databases are growing, so methods need to 

be found to split the work. Distributed computing may 

be the solution to handle this data. Specialized, high 

powered machines to build such distributed computation 

networks are not state-of-the-art anymore since the 

leading Internet search engine provider [2] has 

successfully shown that it is often more effective to use 

dynamic networks of common, off-the-shelf computers 

to build computation farms. The technology to do this 

has been named cloud computing. 

A computing cloud consists of many comparatively 

low powered nodes on which data and computation can 

be distributed dynamically. In times of higher 

performance demands more nodes can be quickly added 

to the system and exchanged when needed. In contrast 

to peer-to-peer networks, these clouds are controlled by 

a central instance which can optimally distribute load 

among the system. 

Our goal is to explore new ways to cope with the 

challenges posed by processing semantic data, 

especially when evaluating SPARQL [26, 27] queries 

over RDF [25] data. RDF data has a unique graph 

structure which naturally leads itself to free distribution 

within a distributed computing cloud. Exploiting this 

structure to improve processing of queries was the main 

idea leading to our proposed approach. 

Our main contributions are the following: 

 A cloud-based system to distributed SPARQL 

processing with self-optimizing capabilities. 

 Definition of locality: We define locality 

especially to have a mean to measure how many 

distributed join operations are potentially necessary 

in the RDF graph. As smaller the locality is as more 

join operations can be done locally on the slave 

nodes avoiding high network costs.  

 An iterative optimization strategy: One run 

improves locality of the RDF graph, succeeding 

iterations improve further the locality until an 

optimum is reached. 

 An experimental analysis showing the 

improvements of our proposed iterative 

optimization strategy to distributed query 

processing. 

 The rest of this paper is organized as follows: 

Section 2 provides the related work concerning 

SPARQL processing in peer-to-peer networks, clouds 

and in the context of data source integration, categorizes 

these existing approaches and put them into relation with 

our proposed cloud-based system; we describe our 

approach in Section 3 as well as the architecture and 

 

each component of our proposed system including the 

discussion of updates of administrated triples and cloud 

topology and a new optimization strategy to speed up 

distributed query processing; Section 4 contains the 

experimental evaluation; and finally Section 5 

summarizes and concludes our work. 

 

2 RELATED WORK 
 

We present the related work in the context of peer-to-

peer networks, clouds and distributed SPARQL 

processing in the context of data source integration in 

the following subsections. Afterwards, we categorize 

the existing contributions and relate them to our 

approach. 

 

2.1  Distributed RDF Data and SPARQL Query 

Processing in Peer-to-Peer Networks 
 

One of the first decentralized approaches to store RDF 

data in a peer-to-peer network can be found in [4]. The 

implementation makes extensive use of distributed hash 

tables and employs a recursive algorithm for multi-

predicate queries. The network is built on the grid 

computing framework MAAN and the service look-up 

framework Chord. 

In [1] the implementation of distributed RDF data 

takes a federated approach. As an extension to the 

Sesame system for storing and querying, the author 

implements a ’mediator’, which allows queries to be 

transparently executed over several RDF repositories at 

once and merge the results. Implementing the mediator 

with a ’brute force’ approach is compared to having a 

possibly multi-layered index over the predicates in each 

of the federated repositories. 

The focus in [3] lies in the evaluation of different 

heuristics to improve query planning in peer-to-peer 

RDF repositories which are based on distributed hash 

tables. Storing and representing triples is not treated in 

this paper. Introduced are local heuristics, which do not 

generate traffic (e.g. variable counting), dynamic 

heuristics, which query only meta information (e.g. 

interpolation of triple counts), and heuristic wrappers, 

which act like caches to prevent duplicate retrieval. 

Combinations of these heuristics are evaluated in 

extensive tests. 

Another peer-to-peer approach can be found in [12]. 

Instead of common networks based on distributed hash 

tables (DHT), this implementation uses swarm 

algorithms based on virtual ants to cluster related RDF 

tuples closer together, using the Sesame2 system as the 

storage layer. This is one of the few approaches which 

try to exploit data locality in an RDF graph. 
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2.2  Cloud-based SPARQL Query Processing 
 

A shared-nothing architecture consisting of off-the-shelf 

machines for parallel processing of RDF data is shown 

in [6]. This report does not go into technical details, but 

gives a very high-level overview of all necessary 

components with focus on the application of the Map-

Reduce [7] pattern. Touched subjects are a scripting 

language used to express the computations with a parser 

and compiler, constructing logical execution plans, 

compiling the plans into physical execution plans and 

scheduling them on the machines. No concrete 

implementation of these modules is given. 

The master’s thesis [13] shows a complete 

implementation of a Map-Reduce based RDF store with 

SPARQL queries. The RDF data is held in an Apache 

Cassandra key-value store. SPARQL queries to be 

processed are mapped to the Hadoop Pig language 

framework. Query execution is separated into a "select" 

and a "join" phase, which are implemented as separate, 

sequential Map-Reduce jobs. A focus of the thesis is an 

algorithm for Basic Graph Pattern matching utilizing 

Hadoop. Additionally, several optimizations are 

presented, e.g. indexes for RDF data filtering and 

preprocessing of joins. 

In [5], a very simple implementation of a distributed 

RDF store is presented based on the Map-Reduce pattern 

implemented in the Hadoop framework. It employs its 

facilities for storing large tables (HTable) and 

implements simple partial RDF query processing in its 

nodes. As the HTable framework gives little control 

over the concrete storage place, locality of RDF data 

cannot be fully exploited, which leads to inefficient 

query processing. 

A more complex implementation based on Hadoop 

can be found in [11]. It does not rely on HTable, but uses 

the distributed file system HDFS directly, introducing 

index-like files which reduce the total size of stored data 

and improves query execution times. This increases data 

locality, but still heavily restricts proper distribution of 

RDF data because of the opaque nature of HDFS. The 

paper also describes algorithms to split a query into 

multiple jobs and shows how to do effective joins with 

this setup. 

The subject of [16] is processing of a subset of 

SPARQL queries in a Map-Reduce based RDF store. 

The focus lies on providing an efficient algorithm for 

multi-way joins instead of the commonly employed 

multiple individual joins. The paper shows how to 

process basic graph patterns in SPARQL queries and 

shows strategies for join-key selection. 

The authors of [19] analyze pattern matching, 

grouping and aggregation in Map-Reduce based systems 

and develop extensions to Hadoop’s "Pig" high level 

parallel processing language system to facilitate these 

operations. The paper also shows query optimization via 

operator-coalescing and look-ahead processing in RDF 

queries. 

 

2.3  Distributed SPARQL Processing in the 

Context of Data Source Integration  
 

An extensive analysis of a specific kind of index for 

distributed RDF stores is given in [21]. The authors 

propose an index based on paths in the RDF graph and 

develop algorithms to optimize queries by matching on 

these paths. The index is also used to provide heuristics 

for join ordering in multi-join queries. 

An overview of different index structures for 

distributed RDF stores is presented in [22], including 

indices which represent structural similarities in the 

RDF graph and indices which map triples to the 

dimensions of spatial index structures. The paper also 

describes data structures for efficient local join 

processing and the handling of broken links. 

Distributed SPARQL queries and their optimization 

are the subject of [23]. The paper focuses on ordering 

tuple retrieval for SPARQL queries by applying a 

minimum spanning tree algorithm to the query graph 

together with RDF predicate statistics. The technique is 

not applicable to queries where the predicate is a 

variable. 

 

2.4  Categorization of Existing Contributions 
 

All of these approaches can be categorized in one of the 

three following categories: 

Imitating Relational Databases: Many approaches 

take the already extensive research in the area of 

relational databases and try to apply it to semantic data. 

The data is treated as a very simple instance of a 

relational database with a relation consisting of only 

three attributes: Subject, predicate and object. Then, the 

data is distributed with the well-known techniques of 

horizontal or vertical distribution. This approach is 

taken by [16], [19] and [23]. 

Specialized Indices: Some systems do not try to find an 

efficient way to store the semantic data, but instead try 

to generate efficient indices into already existing storage 

forms. These systems are often part of federated 

systems. Examples of this approach are [21] and [22]. 

Peer-to-Peer Systems: These systems utilize more the 

graph structure semantic data can be represented as. The 

peers then analyze parts of the graph and order the peer 

network accordingly. Systems doing this are [3], [4] and 

[12]. 

All these systems have in common that they do not 

optimize the data distribution such that local joins can 
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be processed as much as possible and distributed joins 

are avoided in order to save transmission costs. 

 

2.5  Relation to our Approach 
 

In our proposed approach some of the ideas from these 

previous works are followed, e.g., specialized horizontal 

distribution and reordering of data among similar peers, 

and taken into a new direction. This new approach 

focuses on the following concepts: 

Focus on Graph Structure: Instead of treating the 

semantic data as specialized relational database, we 

focus on its unique structure in the form of a directed 

graph. 

Centralized Optimization: Until today, only peer-to-

peer approaches really focus on the graph structure. In 

contrast to peer-to-peer approaches, we propose a 

centralized approach, as the data distribution can be 

more controlled in this way. 

Cloud based: The system should easily adjustable to 

data growth, so it will have a cloud-based structure of 

many nodes with same capabilities.  

 

3 RDFCLOUD SYSTEM 
 

Our system, which we call the RDFCloud system, can 

be characterized in the following way: 

Self-optimizing: During times of little activity the 

system can rearrange the data distribution in order to 

improve performance (by redistributing data such that 

local joins can be processed as much as possible and 

distributed joins are avoided during query processing). 

This can be done repeatedly until an optimum is reached. 

Cloud computing: The system consists of an arbitrary 

number of storage and computation nodes. These nodes 

all have the same capabilities and may be removed or 

added to the system at any time. In contrast to peer-to-

peer systems, node activity is concerted by a central 

master node. 

Distributed storage: Data stored within the system is 

evenly distributed between the nodes. 

Distributed query processing: Queries targeting the 

data are processed in parallel on all relevant nodes. 

Semantic Web data: The technologies used for storing 

and processing data are RDF and SPARQL, respective 

standards for semantic web data. 

 

3.1  Overview 
 

The RDFCloud system is essentially a two-tiered 

network with exactly two different kinds of nodes: A 

single master node and an unrestricted number of slave 

nodes. External access to the system is made via a 

master client, which connects to the master node to 

request modification of the stored RDF data or query for 

the result of a single SPARQL query. 

Actual RDF data is only stored at the slave layer, 

while global information about the network structure 

and meta-data about the RDF graph is stored at the 

master node. The master node is responsible for the 

distribution of new RDF data and combination of the 

individual responses to SPARQL queries by the slave 

nodes. Furthermore, the master node can instruct slave 

nodes to transfer parts of the stored RDF data to other 

slave nodes in order to optimize the performance of 

SPARQL queries. 

There are two kinds of connections within the nodes 

of the RDFCloud system: The first kind is that between 

the distinguished master node and a slave node, the 

second kind is between two nodes in the slave layer. 

While the master-slave connection is permanent and 

never closed during the lifetime of the system, with the 

exception of an irreversible planned termination of a 

slave node, the connections between two slave nodes are 

temporary. Connections between slave nodes are not 

supported by the Map-Reduce framework. Hence we do 

not use the Map-Reduce framework and implement our 

own Cloud infrastructure. 

A slave node only connects to another slave node in 

one of two cases:  

 Either during the execution of a SPARQL query, 

during which the RDF graph is traversed, and a 

handover to other nodes is necessary to complete 

the computation, or  

 During an optimization of the RDF graph to 

exchange RDF nodes in order to increase the 

performance of SPARQL queries.  

Inter-slave connections for SPARQL processing are 

unidirectional, while connections initiated for 

optimization can be bidirectional. 

 

3.2  Representation of RDF data 
 

Semantic Web data is a set of triples, where the first 

component is called the subject (S), the second the 

predicate (P) and the third the object (O) of the triple. 

More formally: 

 

Definition (RDF triple): Assume there are pairwise 

disjoint infinite sets I, B and L, where I represents the set 

of IRIs, B the set of blank nodes and L the set of literals. 

We call a triple (s, p, o) ∈ (I × B) ∪ I ∪ (I × B × L) an 

RDF triple, where s represents the subject, p the 
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predicate and o the object of the RDF triple. We call an 

element of I  ∪ B ∪ L an RDF term.                                 

 Semantic Web query evaluators such as RDF3X [17, 

18] and Hexastore [24] as well as our RDFCloud system 

use dictionary indices to map RDF terms into integer ids. 

One advantage of ids is lower space requirements in the 

evaluation indices storing the input RDF triples as an 

integer is stored instead of a possibly large string. 

Solutions using ids consume less space such that the 

memory footprint is smaller and/or more solutions can 

be processed without swapping to hard disks and thus 

improving the performance. Finally, in a distributed 

scenario the transfer costs over network connections are 

significantly decreased because much less bytes must be 

transferred. Our RDFCloud system maintains the 

dictionary indices on the master node, such that the slave 

nodes only have to process integer ids instead of space-

consuming string representations and only integer ids 

are transferred over network. 

Using ids has disadvantages in seldom cases when 

operations like sorting or relational comparisons like <, 

≤, ≥, and > require the RDF terms instead of the ids 

causing high costs for large intermediate results because 

of the materializations of the RDF terms. Furthermore, 

displaying the final query result has also high costs 

whenever the query result is large. However, the 

advantages typically outweigh the disadvantages of 

using ids for large-scale datasets.  

One dictionary index maps RDF terms into integer 

ids; one translates integer ids back into RDF terms. The 

dictionary indices do not fit into main memory for large-

scale datasets such that our RDFCloud system uses a 

B+-tree for the dictionary index for the mapping from 

the string representation to the integer id, and a disk-

based array for the other direction from integer ids to the 

string representation. When storing RDF terms in the 

dictionaries, we use difference encoding in order to save 

storage space: we determine common left substrings of 

the current and previously stored strings and store only 

the length of the common left substring together with the 

remaining right substring of the current string. 

Furthermore, after transforming id values of query 

results back to RDF terms, we cache the RDF terms with 

their ids together in order to avoid multiple 

materializations. We use the strategy of least recently 

used (LRU) caches for the accesses to the B+-tree nodes 

in order to further improve the performance of these 

materializations.  

The dictionary indices are used to transform RDF 

triples into id triples, which are consisting of ids instead 

of RDF terms and are then stored in the cloud: Id triples 

are obtained from RDF triples by using the dictionary 

index from strings to ids and mapping the RDF terms of 

the subject, predicate, and object from the triples to their 

ids. 

3.3  Master Node 
 

The master node has several key responsibilities in the 

RDFCloud system: 

Maintaining Topology: The master node must keep 

track of all participating slave nodes in the system. This 

includes maintaining permanent connections and 

alerting clients when slave nodes are missing. 

Dictionary: As the RDF data is not stored on the slave 

nodes in textual form, the master node has to maintain a 

mapping between numerical and textual representations. 

Construct Query Graphs: SPARQL queries received 

from clients need to be parsed by the master node, 

transformed to a form usable for distributed 

computations and transfer them to the slave nodes. 

Result Processing: Once all slave nodes returned their 

results to the SPARQL query, these results need to be 

combined by the master node and mapped back to their 

textual representation using the maintained dictionary. 

Initiate Optimization: If the previous optimization 

iteration already yielded good results (and hence the 

optimum is not yet reached), if the topology has changed 

or many updates have been processed in the meanwhile, 

an optimization iteration is expected to improve the 

performance much and hence scheduled. When an 

optimization iteration is scheduled and the system is 

idle, the master node starts optimization phases 

involving all slave nodes and coordinates RDF data 

movement among the slave nodes in order to improve 

performance. 

 

3.4  Slave Node 
 

The main purposes of a slave node are the storage of 

parts of the RDF graph and the processing of SPARQL 

queries on the stored parts. One of the main decisions 

which need to be made in a distributed storage system is 

the distribution method and the way of locating data. In 

the RDFCloud system all slave nodes have equal 

capabilities and may store arbitrary data. A way to do 

this would be the completely unrestricted distribution of 

triples among all slave nodes. The advantage of this 

approach would be the ability to achieve perfectly 

balanced nodes, as the smallest possible storage units 

can be freely moved around. 

However, this would lead to serious problems: It 

would be very difficult to locate specific data and only 

the most primitive queries could be evaluated 

efficiently, as any data could be located on any node. 

Data structures storing this information would be as big 

as the data itself. For this reason, the RDFCloud system 

takes a different approach: Each slave node in the 

system can take control over certain subsets of the RDF 
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data. Information about which slave controls which 

subset is distributed by the master node. 

The shape of these data subsets follows naturally 

from the graph representation of RDF data: A slave node 

can take control of a vertex within the graph, i.e. over a 

specific RDF subject. 
 

Definition (Authority): A slave node is the authority 

for an RDF subject. ⇔ The slave node is the only node 

storing triples having this subject.                                  

Table 1: Example RDF Data 

Triple S a c b a a 

P p p p p p 

O c d c b d 

 

 

Figure 1: Example of subject authorities 

As an example, the RDF data of Table 1 is 

distributed among three nodes. Figure 1 visually 

presents the distribution of these triples in slave nodes 

numbered 1 to 3. Here, subjects and objects of triples 

become (unique) nodes in the RDF graph, and the 

predicate a directed edge from the subject to the object 

node. In this example, node 1 is the authority for subject 

"a", node 2 the authority for subject "b" and node 3 for 

subject "c". Important to note here is the fact that node 3 

is not the authority for subject "d", even though the 

graph representation might suggest this. No triple 

containing "d" as a subject exists, so there is no authority 

for "d". Furthermore, a slave node may be the authority 

of several subjects, not only one. 

 

3.5  Modification of RDF Data and Topology 
 

In this section it is shown how to modify the data stored 

in the distributed RDFCloud system. Operations 

explained here include: 

 Insertion of RDF triples for storage on the slave 

nodes, 

 deletion of data, 

 removal of a slave node without changing stored 

data, and 

 inclusion of an additional slave node into the 

system. 

 

3.5.1 Insertion of RDF Data 
 

When new RDF information needs to be inserted into 

the distributed storage, the client first parses the local 

source data and transforms it into string based triples. 

These triples are then transferred to the master node over 

a temporary connection, where they are processed 

further. 

As a first step, the triples are converted into a more 

efficient representation by replacing each literal into an 

integral number uniquely representing the original 

string. In order to achieve this, the master node makes 

subsequent lookups into the dictionary, a data structure 

storing bi-directional mappings between literal strings 

and numbers. This data structure is extended each time 

a string is encountered which cannot be mapped yet. 

Already existing mappings may not be modified when 

doing this, as this would invalidate the data structure on 

the slave nodes storing the already existing RDF data. 

After converting all RDF data into numerical triples, 

the master node has to distribute it among all connected 

slave nodes. If a slave node is already the authority for 

the subject of triple to be inserted, the triple is sent to 

this slave node. However, in order to save transmission 

costs, the triples are first collected for each slave node 

and sent to them in bulk.  

If no slave node has the authority for the subject of a 

triple, the slave node with lowest fill rate, which is 

defined as  

number of triples of the slave node

total number of triples
, 

could become the authority. However, in order to boost 

local joins, the authority should be assigned to a slave 

node containing already triples having the subject of the 

triple to be inserted as object. The algorithm to do this is 

as follows: 

1. Contact each slave node and: 

a. Transfer a distinct list of "subject" literals of the 

new data to the slave node. 

b. The slave node checks if it has at least one entry 

in its local indices containing the subjects. 

c. For all subjects found this way the slave node is 

the authority and the master node is informed of 

this. 
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d. The master node responds with the full triples 

containing the subjects to the slave node, which 

adds the data to its local indices. 

e. This data is removed from the list of triples to be 

added to the system. 

2. All data still left is distributed among the slave 

nodes according to their respective fill rates. 

3. Authority information of the new subjects is 

broadcast to all slave nodes by the master node. 

The performance of this operation is highly 

dependent on the distribution of data among the slave 

nodes and the new data. In the optimal case, the very 

first node is subject authority for all triples and the 

algorithm can immediately terminate. The worst case is 

that the slave node checked last is the authority for all 

subjects. 

 

3.5.2 Deletion of RDF Data 
 

Removing data from the system works in a similar way 

to adding data: 

1. After conversion of triples to be deleted to numerical 

representation contact each slave node and: 

a. Transfer triples to be deleted to the slave node. 

b. The slave node looks up its local indices and 

removes entries if necessary. 

c. If the last entry containing a specific subject is 

deleted inform the master node of lost authority. 

2. Broadcast removed authority to all slave nodes by 

the master node. 

 

3.5.3 Removal of Slave Node 
 

The removal of a slave node is possible as long as there 

is at least one node available which can take over the 

RDF data currently stored on the slave node to be 

removed. 

First, all subjects the slave node is an authority for 

are transferred to the master node. Using information 

about the fill level of all remaining slave nodes, the 

master node now evenly distributes the RDF subjects to 

available recipients. After the redistribution is complete, 

the master informs all nodes of the changed subject 

authorities. 

As only the fill levels are taken into account during 

redistribution, it is not guaranteed that the distribution is 

optimal for the system’s performance. In the example 

shown (Figure 2), the number of edges crossing slave 

node boundaries remains equal, even though there are 

better distributions. Subsequent optimization steps can 

further optimize the distribution. 

 

 

Figure 2: Removal of a slave node 

3.5.4 Adding new Slave Node 
 

In case the slave nodes in the system cannot accept more 

RDF data because of memory constraints or because 

calculation load during queries becomes too high, more 

nodes can be included as well. 

The master node initiates the communication with a 

new slave node and asks for its storage capabilities. The 

master node contacts the already existing slaves, which 

then offer a certain amount of RDF subjects depending 

on their current fill rate. The total amount of RDF 

transferred to the new slave node is dependent on the 
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average fill rate of the whole system to ensure optimal 

load distribution. In contrast to the removal of nodes, the 

optimality of the final distribution can be influenced by 

the slave nodes. Instead of randomly choosing subjects 

they are the authority of, they offer subjects with lowest 

count of total local subject edges. This ensures that the 

total number of inter-slave edges increases by at most 

this count of local edges, as external edges either remain 

external, or become internal edges in the new slave 

node. 

An example for the inclusion of a new slave node is 

shown in Figure 3. Here, the number of inter-slave edges 

increases by the minimum possible of 2, while 

remaining balance in node fill level. 

 

 

Figure 3: Insertion of a new slave node 

3.6  Optimization of Data Distribution 
 

One of the characteristics of the RDFCloud system is the 

ability to continually optimize itself in order to improve 

its performance. By not having a fixed mapping of 

specific data to specific nodes through a distribution 

function, data can continually be reordered among the 

slave nodes. The key element to achieve better 

performance is choosing a well-defined characteristic of 

the system to alter and find a method which has a high 

chance of optimizing this characteristic. In the 

RDFCloud system, this characteristic is the locality of 

data. 

 

3.6.1 Locality 
 

The main idea behind the optimization process is that the 

most expensive operation in a distributed database is the 

transfer of data from one node to another. In non-

distributed systems, access to permanent storage is the 

most expensive operation, but this takes a much lower 

priority in a distributed system like RDFCloud. 

Especially join operations during query executions 

should be executed preferable only on local data. 
 

Definition (Locality between two slave nodes): Let e 

be the number of edges crossing node boundaries. The 

locality of RDF data of two slave nodes is 0 if e is 0, 

otherwise 
1

𝑒
.             

 

Definition (Global Locality): The global locality of 

RDF data in an RDFCloud system is the sum of 

localities of all disjoint pairs of slave nodes.    

 

 

Figure 4: Locality 

For example in Figure 4 one edge is crossing 

between the slave nodes on the left: Their locality is 
1

1
=

1. Two edges are crossing each of the following three 

pairs of slave nodes: the pair of slave nodes on the top, 

the pair of slave nodes on the right as well as the pair of 

slave nodes at the bottom. Hence, each of these pairs of 

slave nodes has the locality 
1

2
. No other pairs of slave 

nodes have edges crossing them, i.e. the locality of all 

other pairs of slave nodes is 0. Therefore, the global 

locality in Figure 4 is 1 + 3 ∗
1

2
=

5

2
= 2.5. 
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3.6.2 Optimizing Locality 
 

Clustering: One possible way to maximize the locality 

of data is the employment of a class of algorithms used 

for cluster analysis. In order to apply these algorithms, 

the graph representing the RDF data first has to be 

converted into a form these algorithms can work on. 

This means that the graph has to be projected to a system 

in which two subjects have a well-defined distance, and 

subjects with short predicate-paths between them are 

placed in close proximity. 
 

Definition (Distance): The distance between two 

subjects in the RDF graph is defined as the length of the 

shortest path between them. If no path connects the 

subjects, the distance is the length of the longest possible 

path in the graph.                    
 

General clustering algorithms do not have a concept 

of "balance". This leads to a bad distribution of 

computation load, even though the data locality is 

optimal. Another problem is that a clustering algorithm 

which finds optimal clusters even for problem instances 

as simple as points in a 2-dimensional Cartesian space is 

always NP-complete (see [15]). This makes such 

algorithms unusable for the RDFCloud system, as 

potentially very large RDF data sets are stored and the 

algorithm would also have to run every time the data is 

changed. This makes it prohibitively expensive to use 

clustering algorithms. 

Heuristics: The problem of NP-completeness of all 

algorithms finding an optimal solution to maximizing 

data locality lead to the development of heuristics which 

scale better with the amount of data, such that handling 

big data becomes realistic. 

Instead of immediately finding an optimal solution, 

an iterative approach to reducing inter-slave edges is 

taken. The algorithm is designed to quickly return 

possible improvements through subject authority 

changes, which is important for a self-optimizing system 

as optimization phases must be short in order to keep the 

system responsive for queries. 

The basic idea is that the slave nodes are not only 

used to divide computation load of queries, but also take 

part in distributed optimization. To this end, they 

analyze the local subset of the RDF graph. 

The heuristic algorithm is as follows: 

1. The master node signals all slave nodes the start of 

an optimization phase. 

2. Each node generates two lists. The number of 

entries in these lists is limited by the master node, 

making them independent of the total amount of 

RDF data: 

a. One list contains the most referenced remote 

subjects on other slave nodes. 

b. Another list includes authority subjects which 

have the least count of incoming edges (i.e. 

referenced with a predicate). 

3. Both lists are transferred to the master node by all 

slave nodes. 

4. The master node compares these lists and tries to 

find matches between those lists. These matches are 

stored in a candidate list. 

5. If a previously defined amount of candidates was 

not met yet, candidates are added from the list 

containing often referenced foreign subjects. As a 

priority criterion the fill rate of slave nodes is used. 

The lower the fill rate, the lower the chance that a 

subject authority will be removed from it. 

6. The candidate lists are sent to the receiving slave 

nodes, which contact their respective partner. The 

partner informs the slave node of local edges which 

would become cross-slave edges in case of moving 

the authority. If the move is an improvement, the 

authority transfer is initiated. Otherwise, the subject 

is put on a temporary black list together with the 

number of local triples having this subject as object, 

i.e., the authority of this subject will not be moved 

any more until the authorities movements may 

become beneficial again. 

7. All slave nodes are informed by the master node of 

authority changes. Slave nodes modify their local 

list of remote authorities accordingly. 

 

 

Figure 5: Perfect Authority Exchange 

There are several possible outcomes when an 

authority exchange is tested for locality improvement. 

The best outcome is shown in Figure 5; none of the 

subjects have local incoming edges, so switching them 

between the slave nodes is a clear improvement in 

locality. As both nodes gain and lose an authority, no 

imbalance is created either. 

Another possibility is the attempt of a one-sided 

transfer. This is depicted in Figure 6, where the right 

slave node requests the subject authority because there 

are many predicates pointing at it. In the shown 

example, the transfer fails, because the internal edges to 

this subject outnumber the external ones by one. A 

transfer would result in lowered locality, so the subject 
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(together with some of its context information like the 

number of local triples containing it as object) is black-

listed for future attempts. Only if an authority movement 

may become beneficial again (i.e., the context has 

changed and we have a lower number of local triples 

containing it as object), an authority movement of the 

considered subject is checked again. 

 

 

Figure 6: Failed Authority Transfer 

 

Figure 7: Optimization of RDF Graph  

with Short Paths 

Effects of the Heuristics: To make the effects of 

optimizing the locality of RDF data visible, this section 

gives two examples of how the data distribution among 

the slave nodes changes for specific highly structured 

types of RDF graphs, which often occur in real-world 

RDF data. 

The type of RDF datasets for which the optimization 

process of RDFCloud works extremely well has the 

graph representation of set of trees with short paths. For 

an example, see Figure 7. It can be seen that data with 

short paths can be optimized very well and the system 

finally reaches a state where there are no edges between 

slave nodes. 

 

 

Figure 8: Optimization of RDF Tree Graph 

In the case of long chains of predicates leading from 

very few "root" subjects to a large number of "leaf" 

subjects, the resulting graph takes on the shape of a large 

tree (in the case of a single root) (see Figure 8) or a forest 

(for multiple roots). The main problem for this type of 

graphs lies in the balance of both, minimizing the 

number of edges between slave nodes and evenly 

distributed fill levels among all slaves. 

Most queries follow the graph structure of its queried 

RDF data (e.g., the queries of the SP2B benchmark 

[20]). Thus the proposed distribution approach is ideally 

suitable for executing queries. Only exotic queries like 

those having a join between a predicate and a subject or 

object cannot be handled efficiently. As a heuristic for 

data distribution is used, it is possible that the system 

ends up in a local minimum instead of finding the global 

minimum. However, standard approaches like simulated 

annealing can be also applied here to overcome these 

problems. 

 

3.7  Discussion of Possible Bottlenecks 
 

The bottleneck during query processing is the speed 

of the network, as the main query processing tasks are 

distributed among the slave nodes. The master node only 

initiates the query processing and collects the results 

from the slave nodes. The additional task of the master 

node, the mapping between the integer ids and the 
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textual representations with the help of the dictionary, is 

also fast. On the other side huge amount of intermediate 

results need to be transferred between the slave nodes 

during query processing. 

 The bottleneck during optimizing the data 

distribution is the network speed as well as the speed 

of the master node. Again a lot of data need to be 

transferred for collection of statistics and informing 

slave nodes with candidate lists of authorities, which are 

analyzed for movement. However, also the 

determination of the candidate lists on the master node 

itself is a costly and time-consuming task. We will deal 

with a distributed computation of the candidate lists in 

our future work. 

 

4 EXPERIMENTAL EVALUATION 
 

In this section experimental results based on the 

reference implementation of the RDFCloud system will 

be presented. Both, the optimization process and 

example queries have been executed on the system. The 

example system consists of the master node and six 

active slave nodes, processing data sets of different 

sizes. All nodes run Linux and Java 1.6 on a 2.33 GHz 

Dual Core processor with 1 Gigabytes main memory. 

All nodes are in a LAN with 1 Gbit/s. The RDFCloud 

system is implemented on top of the non-distributed 

Semantic Web database LUPOSDATE [8], the code of 

which is open source [9]. Also other Cloud extensions 

of LUPOSDATE exist like P-LUPOSDATE [10]. 

These data sets have been generated with the tools 

provided by the SP2Bench SPARQL Performance 

Benchmark [20]. This benchmark was created by 

observing statistical characteristics of scientific 

publications since the year 1940 and can generate data 

sets of arbitrary size which imitate the characteristics. 

The used set sizes were 250,000, 1,000,000 and 

2,500,000 RDF triples. 

 

4.1  Optimizing Data Distribution 
 

First, the distribution of RDF data and optimization over 

several iterations of the described algorithm is tested. To 

this end, the optimization process is started repeatedly 

until a stable configuration is found, i.e., the number of 

moved authorities is 0, or only negligible changes occur 

from one iteration to the next, i.e., the edge difference 

divided by the number of inter-slave edges is below a 

threshold to be specified. Considering the experiments 

for query execution, a threshold of 5% already yields 

sufficient results, which is reached after an optimization 

rate of about 33%. We define the optimization rate to be 

the number of optimization iterations divided by the 

number of total optimization iterations until a stable 

configuration is reached. After each iteration, the 

number of moved subject authorities and the inter-slave 

edge count are calculated (see tables 2, 3 and 4). 

Table 2: Optimizing Data Distribution  

(250k triples) 

Iteration 0 1 2 3 4 5 6 

Inter-slave 

edges 
75453 56752 55326 54882 54769 54747 54742 

Moved 

Authorities 
16300 1527 323 88 13 4 0 

Edge 

Difference 
-18701 -1426 -444 -113 -22 -5 0 

Table 3: Optimizing Data Distribution  

(1,000k triples) 

Itera-

tion 
0 1 2 3 4 5 6 7 8 

Inter-

slave 

edges 

303456 258692 233523 
220 

784 

220 

108 

220 

006 

219 

961 

219 

905 

219

903 

Moved 

Autho-

rities 

31566 23092 14747 1526 336 250 56 2 0 

Edge 

Diffe-

rence 

-44764 -25169 -12739 -676 -102 -45 -56 -2 0 

Table 4: Optimizing Data Distribution  

(2,500k triples) 

Iteration 0 1 2 3 4 5  
 

 

… 

13 
Inter-slave 

edges 

77168

4 
707108 673453 648773 625166 599756 532064 

Moved 

Authoritie

s 

30442 24943 23272 23963 25331 25732 64 

Edge 

Difference 
-64576 -33655 -24680 -23607 -25410 -25732 -70 

 

These results show that the heuristic algorithm can 

effectively improve the locality of data. In relatively few 

iterations the edge count can be reduced by roughly a 

third in these test cases. The number of optimizing 

movements of subject authorities is decreasing in a 

strongly logarithmic fashion, as fewer nodes with high 

inter-slave connectivity are found. 

 

4.2  Query Execution 
 

The SP2Bench project also provides several queries to 

be executed with the data set. However, the optimization 

algorithm has hardly any effect on the runtime of most 

of the given SP2Bench queries. The reason for this lies 

in the focus of the provided queries on sub-graphs within 

the RDF graph, which take the form of a star, centered 

among certain subjects. Because of this, no inter-slave 

connectivity is needed and the optimization algorithm 

has almost no influence. The almost insignificant 

increase in performance can be attributed to a lower 
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count of remote bindings the slave nodes have to 

process. 

In a sense, the RDF graph in the RDFCloud system 

is already in its final optimized form from the very 

beginning, as triples with the same subject are stored on 

the same node by design. Because of this, the queries are 

only testing the performance of the underlying query 

engine, LUPOSDATE, and the speed of network 

communication. Note that these numbers as well as the 

query execution times of other types of queries for the 

initial data distribution (where no optimization iteration 

has been done already), are comparable to the times 

achieved in peer-to-peer systems distributing the data 

according to the subject of the triples. 

 
SELECT ?name ?document WHERE { 

?document dc:creator ?author . 

?author foaf:name ?name. } 

Figure 9: Query E1 (Find all documents and their 

respective authors) 

Table 5: Query Execution Times of E1  

(Avg. of 10 executions) 

                 

Optimization rate 

 #Triples 

0% 33% 67% 100% 

   250k 8.9 s 6.9 s 6.3 s 6.1 s 

1,000k 21.5 s 18.7 s 17.6 s 16.9 s 

2,500k 53.4 s 41.3 s 39.2 s 38.3 s 

 
SELECT ?name ?document ?jname WHERE { 

?document dc:creator ?author . 

?author foaf:name ?name . 

?document swrc:journal ?journal . 

?journal dc:title ?jname. } 

Figure 10: Query E2 (Find all journal articles, their 

respective authors and the name of the journal.) 

Table 6: Query Execution Times of E2  

(Avg. of 10 executions) 

                 

Optimization   rate   

 #Triples 

0% 33% 67% 100% 

   250k 13.4 s 8.2 s 8.1 s 8.1 s 

1,000k 39.4 s 26.7 s 22.1 s 21.9 s 

2,500k 71.4 s 59.3 s 53.2 s 52.9 s 

 

The queries in Figure 9 and Figure 10 are better 

suited to show the effects of graph optimization done by 

the RDFCloud system. The effects of reduced inter-

slave edges are clearly visible for the query in Figure 9 

(see Table 5), as the graph needs to be traversed for each 

result. The optimization algorithm can quickly improve 

the query by moving the author subjects belonging to a 

document onto the same slave node. This effect is even 

more pronounced when the path taken in the RDF graph 

is increased further to at least two edges (see Figure 10). 

It can be seen (see Table 6) that the first iterations of the 

optimization algorithm have the greatest effect on query 

runtime. A possible explanation for this is that the first 

subject authority movements have a high chance of 

bringing leaf nodes to the node their respective RDF tree 

is located at. 

 

4 SUMMARY AND CONCLUSIONS 
 

The goal of our research is the development of a 

distributed system which exploits the characteristics of 

RDF data. The methods developed to optimize the RDF 

graph were shown to measurably improve performance 

of SPARQL queries, although this is dependent on the 

type of queries given to the system. 

The concept of subject authority in a distributed 

system is a good compromise between the freedom of 

data distribution and keeping the optimization and query 

algorithms comparatively simple and effective. This 

approach still has potential for improvement, e.g. in 

form of combination with effective indices to reduce 

network load. 
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