
c© 2015 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 2, Issue 1, 2015

http://www.ronpub.com/ojsw
ISSN 2199-336X

Ontology Evolution Using Ontology Templates
Miroslav Blaško, Petr Křemen, Zdeněk Kouba

Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague,
Technicka 2, 16000 Prague, Czech Republic, {miroslav.blasko, petr.kremen, kouba}@fel.cvut.cz

Abstract

Evolving ontologies by domain experts is difficult and typically cannot be performed without the assistance of an
ontology engineer. This process takes long time and often recurrent modeling errors have to be resolved. This paper
proposes a technique for creating controlled ontology evolution scenarios that ensure consistency of the possible
ontology evolution and give guarrantees to the domain expert that his/her updates do not cause inconsistency.
We introduce ontology templates that formalize the notion of controlled evolution and define ontology template
consistency checking service together with a consistency checking algorithm. We prove correctness and demonstate
the practical use of the techniques in two scenarios.

Type of Paper and Keywords

Regular research paper: ontology template, ontology evolution, reasoning, consistency checking, semantic web

1 Introduction

With the growing amount of data, formal ontologies
are getting more and more popular for capturing shared
meaning of heterogeneous and incomplete data and
subsequent data integration. These features distin-
guish open-world ontologies from closed-world rela-
tional databases. Going inside, ontologies provide more
expressive constructs to capture data meaning, not only
on instance level (particular cases) but also on schema
level (general knowledge). Logic-based formalization of
ontologies is exploited during automated reasoning, in
particular for inferring new knowledge, powerful consis-
tency checking [2], query answering [34], or error expla-
nation [21].

Ontology engineering (and ontology design in partic-
ular) is a complex engineering discipline, requiring deep
knowledge of the particular domain as well as familiar-
ity with top-level ontologies, existing domain ontologies
and design methodologies. During ontology design do-
main experts and computer scientists cooperate. As a
result of some ontology engineering methodologies like

Methontology [13], a core schema is designed in co-
operation of both parties, possibly with use of ontol-
ogy design patterns [15]. However, an ontology is a
dynamic body and evolves in time as new knowledge
comes. The evolution process is tackled in existing on-
tology engineering methodologies on the high level, re-
quiring among others ontology consistency to be main-
tained.

In order to make ontology evolution efficient domain
experts can be given tools to enrich the ontology them-
selves. For example, in the MONDIS project [7, 5] we
came across a scenario where domain experts needed to
develop taxonomical knowledge. Although they were
able to perform this task (e.g. they developed the taxon-
omy of building components and materials), they weren’t
able to judge the computational impact of the evolution.
Due to unknown nature of the evolution, ontology con-
sistency has to be checked on the fly which slows down
the work. Even worse, in case ontology enrichment re-
sults in an inconsistency/unsatisfiability or any other un-
desired inference, it has to be debugged and explained
by standard techniques [21]. This process is typically

16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RonPub -- Research Online Publishing

https://core.ac.uk/display/304105951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.ronpub.com/ojsw

Miroslav Blaško, Petr Křemen, Zdeněk Kouba: Ontology Evolution Using Ontology Templates

hard to understand and interpret by domain experts and
requires assistance of computer scientists during all on-
tology evolution scenarios.

To cope with these problems, we introduce an idea of
controlled ontology enrichment and formalize it into the
notion of ontology templates – compact representation
of controlled evolution scenarios. Ontology templates
define simple ontology evolution scenarios for which the
domain expert can be sure that the knowledge he/she cre-
ates doesn’t cause inconsistency. Possible impact of the
ontology templates on the ontology consistency is pre-
computed in advance, before the domain expert starts
evolving the ontology.

We will explain motivation as well as formalization
of our framework on real-case example of MONDIS
project. Within the project, a core ontology [3] for de-
scription of monuments were created and later enriched
with MONDIS-specific taxonomies. The domain experts
were asked to add general knowledge about the devel-
oped taxonomies using specific relations of the core on-
tology. An example of such relation is “hasMaterial”
relation expressing that a building component (object de-
scribed by concept “Component”) is made of a building
material (object described by concept “Material“). Us-
ing the relation it can be stated at terminological level,
which building component types may/may not be associ-
ated with which building material types. For example, it
can be said that an object of type pillar may be made of a
wood, but may not be made of a glass. Within the paper,
we will illustrate on this running example how this spe-
cific evolution scenario can be formalized by ontology
templates and how it can be used to check its consistency
in advance – thus possibly providing human-readable ex-
planations or fixes of the modeling errors.

Section 2 refers to the work related to our approach.
In section 3, necessary background on formal ontology
languages and error explanation is introduced in order
to understand section 4 that presents the formal model
of ontology evolution. In section 5, reasoning services
are shown and ontology template validation algorithms
are presented. Section 6 shortly presents the prototypical
implementation of the ideas and section 7 demonstrates
the techniques on two cases. The paper is concluded by
section 8.

2 RelatedWork

This section provides an overview of related work in the
area of template-based management and second-order
reasoning over ontologies.

Ontology Pre-Processor Language (OPPL) [12] is a
domain-specific macro language for manipulation of on-
tologies written in OWL. There exists an Java API to

use the language within an application as well as plug-
ins for a major OWL editor Protege [18]. The plugins
allow for defining macros – operations (such as add/re-
move axiom, rename entity) on an ontology, which are
parametrized by variables. Variable values can be as-
signed to the macros by OPPL query, or manually by
setting the values in a form.

The OPPL Patterns plugin [20] provides mechanism to
find out whether the macro-based modification of an on-
tology is safe – it cannot change interpretation of existing
symbols within the ontology. The analysis outputs which
variables can take symbols from the signature of the on-
tology and which variables must be outside the signature
in order for the modification to be safe. This provides
certain insight into possible effect of the macro to an on-
tology engineer before applying it. Another approach
[10] using OPPL defines common anti-patterns that can
be used as additional information to ontology debugging
services. When a modeling error occurs anti-patterns can
help explaining the error on a higher level. If there are
more explanations of modeling errors, the explanations
are prioritized such that anti-pattern based explanations
are used first.

A major RDF-based ontology editor TopBraid Com-
poser integrates SPIN [25] templates to parametrize
operations over ontologies. SPIN templates are
parametrized SPARQL queries that can be serialized into
RDF. They are useful to attach additional validation con-
straints or inference rules to OWL classes, in order to
validate/infer over their instances. However, validation
constraints at the axiom level are by design not very con-
venient to use. The approach [8] uses Description Log-
ics with Temporal Logic operators to formally character-
ize and reason about ontology evolution. The approach
allows for expressing some statements about previous
snapshots of an ontology (i.e. whether a concept was
satisfiable in any snapshot or all previous snapshots).

There are many approaches that extends Description
Logic [11, 29, 27] in order to provide reasoning with
higher-level constructs. However, reasoning is incom-
plete for second-order logic, thus they provide either too
weak extension [14] towards second-order or they extend
too simple description logic (such as [1]). Hence such
approaches are not applicable to our use case. A paper
[9] provides a second-order framework and related cal-
culus to unify and solve many non-standard reasoning
tasks in Description Logics such as concept unification,
concept contraction etc.

3 Background

This section provides an overview of ontological back-
ground needed to understand the following sections.

17

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

An ontology, within scope of this paper, is a specifi-
cation of conceptualization [16] – an abstract and sim-
plified view of the world shared between applications or
people. It uses declarative logic-based formalism to de-
scribe entities and relationships between those entities
within the domain of interest. Statements about the do-
main are called axioms.

3.1 ALC DL - Syntax and Semantics

Current ontology standards, like OWL 2 [30], are based
on description logics. Description logics are monotonic
and decidable subsets of first-order predicate logic typi-
cally aimed at knowledge representation. Although our
framework is not dependent on any particular variant of
Description Logics (DL), we will use the ALC lan-
guage [32], the basic description logic capturing funda-
mentals of more expressive formalisms used in the se-
mantic web domain.

An ontology is represented in terms of individuals
(representing particulars, i.e. concrete objects), con-
cepts (representing universals, i.e set of objects) and
roles (representing relations between objects).

ALC Syntax: The vocabulary of ALC consists of
three disjoint sets of concept names (NC), role names
(NR), and individual names (NI). Let A be a concept
name and R a role name. AnyALC concept can be con-
structed inductively by the following syntax rules:

C →A | > | ⊥ | ¬C | ∃R.C | ∀R.C |

C1 uC2| C1 tC2
(1)

An ontology consists of finite set of axioms – concept
inclusion axioms of the form C1 v C2, class assertions
of the form C(a), and role assertion of the form R(a, b).

ALC Semantics: Formal semantics of ALC is de-
fined by interpretation I which is a pair 〈∆I, .I〉. A
non-empty set ∆I denotes domain of interpretation. .I is
an interpretation function that maps each concept name
A ∈ NC into a subset of ∆I, and each role name R ∈ NR

into a subset of ∆I × ∆I. The interpretation function is
extended for concepts in the following way :

>I = ∆I

⊥I = ∅

(¬C)I = ∆I \CI

(C1 uC2)I = (C1)I ∩ (C2)I

(C1 tC2)I = (C1)I ∪ (C2)I

(∃R.>)I = {a ∈ ∆I | ∃b.〈a, b〉 ∈ RI}
(∀R.C)I = {a ∈ ∆I | ∀b.〈a, b〉 ∈ RI → b ∈ CI}

We say that an ontology O is consistent if there is an
interpretation I such that for every axioms α, I entails
α. Formally, ∀α ∈ O,I � α such that:

I � (C1 v C2) ∈ O iff (C1)I ⊆ (C2)I

I � C(a) ∈ O iff aI ∈ CI

I � R(b, c) ∈ O iff 〈bI, cI〉 ∈ S I

An interpretation I that satisfies O is called model of
O. An ontology O entails an axiom α if every model of
O satisfies the axiom α. O entails an ontology O‘ if every
model of O is also model of O‘.

In addition to ontology consistency and entailment
checking, more complicated reasoning services that
make use of consistency checking are necessary in prac-
tical cases. We will need the error explanation service
that can explain ontology inconsistency in terms of a
minimal inconsistency preserving set (MIPS)1.

Formally, for an inconsistent ontology O, a MIPS is a
set of axioms µ v O which is inconsistent, and minimal
with this property, i.e. ∀α ∈ µ : (µ \ {α}) is consis-
tent. Generally, an inconsistent ontology can have many
“roots of inconsistency” corresponding to many MIPS-
es. Computing all of them is an exponential problem in
the number of ontology consistency checks [23]. Fortu-
nately, computing a single MIPS is polynomial, as shown
in [23]. We will use this technique for computing a sin-
gle MIPS during evolution schema consistency checking
in Section 5.

In addition, we will need a technique for solving a well
known NP-Complete problem, i.e. finding minimal hit-
ting set [31] [24] of some X, where X is a set of subsets
of a finite set S . Minimal hitting set ofX is a minimal set
S ′ such that S ′ ⊆ S and S ′ contains at least one element
from each subset in X.

3.2 Activities Related to Ontologies

Activities related to ontologies that are relevant to our
work can be defined according to [36] as follows :

• Ontology management is set of methods and tech-
niques that support creating, modifying, versioning,
querying, and storing ontologies.

• Ontology modification refers to an activity of
changing the ontology without considering its con-
sistency of ontologies.

1In literature, concept unsatisfiability, or general entailment expla-
nations are often considered [22], instead of ontology consistency ex-
planation. We will use just the latter notion, as both concept unsat-
isfiability and entailments can be reduced to ontology inconsistency
problems as shown in [2].

18

Miroslav Blaško, Petr Křemen, Zdeněk Kouba: Ontology Evolution Using Ontology Templates

• Ontology evolution refers to an activity of facilitat-
ing the modification of an ontology by preserving
its consistency.

4 FormalModel of Ontology Templates

As stated in introductory part of this paper, there are rea-
sons for inclusion of additional semantics to parts of the
ontology and in order to support extended reasoning, it
must be done in a formal way.

First, the grammar of logic-based ontology languages
is typically designed to find compromise between contra-
dicting requirements such as support for reasoning, sim-
plicity of grammar constructors, and ease of adoption by
software tools. For example to support reasoning, ontol-
ogy languages restrict the grammar to constructs that in
most or all cases make reasoning decidable. Thus, basic
building block of an ontology language, an ontology ax-
iom, is usually not convenient to express some statement
in person’s mind. Especially in cases, where ontology
contains a lot of complex and recurring structural pat-
terns, it is easier to think of such patterns as wholes.

Second, there are many cases, where possible evolu-
tion of ontology by an application can be described in
terms of atomic operations on the ontology. If we are
able to formalize possible space of the evolution, we
can apply reasoning techniques of the source language
to provide inference or debugging services of the evolv-
ing ontology in advance.

Formal model able to describe mentioned evolution
and its reasoning services must be able to describe: ini-
tial setting from which ontology evolution starts; atomic
operations of the evolution using some higher level con-
structs (“a template”); a way to express new inference
and debugging services in terms of defined atomic oper-
ations.

An ontology evolution starts from an initial ontology
that is being modified by addition and removal of ax-
ioms. We assume that each atomic operation of the evo-
lution adds/removes predefined axiom set called axiom
template grounding, where axiom template defines fam-
ily of such sets. Moreover, we assume that the initial
ontology will be the stable part of the evolution, i.e. no
axioms from this ontology will be removed during the
evolution. This stable initial ontology we call a core on-
tology of the evolution.

Recall the description of ontology activities from Sec-
tion 3.2. In the same sense with respect to scenario in
the previous paragraph we will use terms template-based
ontology modification – an modification using ontology
templates, when consistency of the ontology is not con-
sidered and template-based ontology evolution – an mod-
ification using ontology templates, when the consistency

of the ontology is considered. In addition, we will use
term template-based ontology extension as both an activ-
ity and an ontology that was created from a core ontology
by additions of some ontology template groundings. In
the following text we define described terms formally.

4.1 ALCx Syntax

Ontology Template: We denote NX = {X1, X2, ..} a set
of concept name variables. We define language ALCx

by extending ALC DL as follows. A concept template
is an expression defined by rules for ALC concepts (1)
extended with the new rule C → X, where X ∈ NX .
An axiom template is defined same way as ALC ax-
iom in Section 3.1 with concept templates in place of
concepts. Similarly, an ontology template is a finite set
of axiom templates. We call axiom/ontology template
ground if it does not contain any variable. A function
Υ : NX → P(NA) is variable domain function – it maps
each concept name variable to a subset of all concept
names.

Ontology Template Set: An ontology template set is
a set Λ = {Ti | 1 ≤ i ≤ nΛ} such that :

• each Ti = {ti j | 1 ≤ j ≤ nTi } is an ontology template
that consists of axiom templates ti j

• var(ti j) is set of all variables occurring in the signa-
ture of axiom template ti j

• var(Ti) =
⋃

var(ti j) is set of all variables occurring
in ontology template Ti

• var(Λ) =
⋃

var(Ti) is set of all variables occurring
in Λ

Recall the motivating example from Section 1 and
consider the ontology of building components and ma-
terials that contains 4 axioms (we will use abbreviation
of OM for concept OrganicMaterial and VE for concept
VericalElement later in the text):

OCM = {Pillar v VerticalElement,

VerticalElement v Component,

Wood v OrganicMaterial,

OrganicMaterial v Material}

ΛCM = {T1,T2} is an ontology template set such that :

• T1 = {$COMP1 v ∀hasMaterial.¬$MAT1 }

• T2 = { c : $COMP2 u ∃hasMaterial.$MAT2 }

c is an anonymous individual [28]. Ontology template
T1 states that all individuals of type $COMP1 must have

19

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

material that does not belong to concept $MAT1. Ontol-
ogy template T2 states that there exists some individual
of type $COMP2 that has material of type $MAT2. Υ is
variable domain function such that :

• Υ($COMP1) = Υ($COMP2) =

{Pillar,VerticalElement,Component}

• Υ($MAT1) = Υ($MAT2) =

{Wood,OrganicMaterial,Material}

Substitution Set: Intuitively we define notion of sub-
stitution σ and a set of substitutions Σ = {σ1, σ2, ..}. In
context of some ontology template T these notions will
help us to differentiate between one grounding of T and
all possible groundings of T . In context of ontology tem-
plate set these notions help us to differentiate between
one grounding of all templates from Λ and all possible
ontology templates groundings that define possible evo-
lutions w.r.t. Λ. The concrete definitions are:

• var ⊆ NX – a set of variables

• σ : var → NA is a substitution (variable substitu-
tion function) – a function from subset of concept
variables to concept names. We will use notation:
σ = {[X1/A1], ..., [Xn/An]}, where [Xi/Ai] means
that σmaps variable Xi to concept name Ai; dom(σ)
for domain of σ.

• σ is ground substitution w.r.t. T if var(σ(T)) = ∅.
We call σ(T) grounding of axiom template w.r.t. σ
and define template(σ) = T . Similarly, ground sub-
stitution can be extended to Λ.

• σwg is the weakest ground substitution of σ w.r.t. T
if ∀σ′(σ′ is ground substitution and an extension of
σ) =⇒ σ′(T) |= σwg(T)

• Σ is a set of substitutions

• Σ is ground substitution set w.r.t. T if every σ ∈ Σ

is ground w.r.t. T . Similarly the definition can can
be extended to Λ.

As an example consider substitution
σ‘ = {[$COMP1/Pillar]} and ground substi-
tutions σ1, σ2, σ3, σ4 such that :

– σ1 = {[$COMP1/Pillar], [$MAT1/Wood]}

– σ2 = {[$COMP1/VE], [$MAT1/OM]}

– σ3 = {[$COMP2/Pillar], [$MAT2/OM]}

– σ4 = {[$COMP2/VE], [$MAT2/Wood]}

σ‘ is not ground substitution w.r.t. T1 as dom(σ‘) =

{$COMP1} does not contain $MAT1. σ1, σ2 are
ground substitutions w.r.t. T1, while σ3, σ4 are

ground substitutions w.r.t. T2. Thus template(σ1) =

template(σ2) = T1. {σ1, σ2} and {σ1, σ3} are exam-
ples of a ground substitution sets w.r.t. T1 and Λ,
respectively. {σ‘, σ2} is not ground substitution set
w.r.t. T1 or T2.

Instantiation Set: In order to define possible exten-
sions of a core ontology and an ontology template set,
we define the notion of an instantiation set. Intuitively,
any possible extension of the core ontology w.r.t. ontol-
ogy template set, i.e. an ontology O′ can be defined by
one instantiation. O′ is the result of applying the instanti-
ation to the core ontology and ontology template set. Let
O be a core ontology, Λ be a ontology template set, Σi a
substitution set for each i:

• A substitution Σ is an instantiation w.r.t. Λ, if ev-
ery σ ∈ Σ is a ground substitution of an ontology
template T from Λ such that dom(σ) = var(T).

• S = {Σ1,Σ2, ..Σi} is an instantiation set w.r.t. Λ if
each non-empty Σi is an instantiation w.r.t. Λ.

• cl(S) is a closure of S under inclusion, i.e. cl(S) =

{Σ′ | Σ ∈ S ∧ Σ′ ⊆ Σ}. If S = cl(S) we say that
instantiation S is closed under inclusion.

• max⊆(S) is a set of all maximal elements of S w.r.t.
partially ordered set ordered by inclusion.

• An instantiation set is complete if it is a power-set
of some substitution set, i.e. S = P(Σ).

Any subset of {σ1, σ2, σ3, σ4} is an instantiation w.r.t.
Λ, while substitution set {σ1, (σ2 ∪ σ3)} is an example
of a ground substitution set which is not an instantiation
w.r.t. Λ. S′ = {{σ1, σ2}, {σ1, σ3}, {σ1}} is an example
of instantiation set, while its closure under inclusion is
a set cl(S′) = {{σ1, σ2}, {σ1, σ3}, {σ1}, {σ2}, {σ3}, ∅} and
max⊆(S′) = {{σ1, σ2}, {σ1, σ3}}

Instantiation Function: Intuitively, an instantiation
function applies substitutions to relevant ontology tem-
plates. For ground substitutions it returns list of axioms,
otherwise it returns list of partially substituted axiom
templates. Let T be an ontology template, Λ an ontol-
ogy template set, an instantiation function IF is defined
as follows :

• IF(σ,T) = σ(T)

• IF(Σ,Λ) = {α | α ∈ IF(σ,T) ∧ (σ ∈ Σ) ∧ (T ∈
Λ) ∧ (dom(σ) ∩ var(T) , ∅)}

• IF(S,Λ) =
⋃

Σ∈S IF(Σ,Λ)

20

Miroslav Blaško, Petr Křemen, Zdeněk Kouba: Ontology Evolution Using Ontology Templates

Figure 1: Complete modification graph w.r.t. a
canonical evolution schema 〈O,Λ,SG,SV〉, green
(red) sub-graph represents SG (SV), respectively.

For example, IF(σ‘,T1) = {Pillar v

∀hasMaterial.¬$MAT1}, while IF(σ1,T1) =

IF({σ1},Λ) = IF({{σ1}},Λ) = {Pillar v

∀hasMaterial.¬Wood}

Modification Graph: Let S be some instantiation set
representing all possible extensions of some core ontol-
ogy O w.r.t. ontology template set Λ. A modification
graph of S is an oriented graph where:

• each node represents one instantiation from S,

• each edge connects instantiation from node repre-
senting Σi to node representing Σ j if there exists not
empty substitutionσ such that (σ < Σi) ∧ (Σi∪{σ} =

Σ j).

We say that a modification graph is complete if it
is a graph of a complete instantiation set. Figure 1
shows a modification graph for the complete instanti-
ation set which is power-set of 4 grounding substitu-
tions – σ1, σ2, σ3, σ4. In context of an ontology exten-
sion activity w.r.t. O and Λ, bottom node with label
“{}” refers to a core ontology O, while top node with
label “{σ1, σ2, σ3, σ4}” refers to ontology that was cre-
ated by addition of 4 ontology template groundings –
O ∪ IF({σ1, σ2, σ3, σ4},Λ). Each edge in graph can be
viewed as addition or removal (if opposite direction is
considered) of one ontology template grounding.

Evolution Schema: For a template-based ontology
extension activity we define an evolution schema as a 4-
tuple ES = 〈O,Λ,SG,SV〉 such that

• O is a core ontology

• Λ is an ontology template set

• SG is generating instantiation set – an instantiation
set that defines all possible template-based exten-
sions of O w.r.t. Λ

• SV is validating instantiation set – an instantiation
set that defines all minimal instantiations preserving
inconsistency

In addition, we define :

• 〈O,Λ,SG,SV〉 is canonical if SG is closed under
inclusion.

• SC = {ΣG ∈ SG | ∀ΣV ∈ SV : ΣV * ΣG} is a com-
bined instantiation set w.r.t. some evolution schema
〈O,Λ,SG,SV〉.

An example of a canonical evolution schema
〈O,Λ,SG,SV〉 is visualized in Figure 1. The generating
instantiation set SG is visualized by green color, while
validating instantiation set SV is visualized by red color.
Note that, for any graph of instantiation set closed under
inclusion (such as SG) it holds that if it contains node
representing substitution set Σ it as well contains com-
plete sub-graph w.r.t. Σ.

4.2 ALCx Semantics

Similarly to MIPS described in Section 3 but adapted
to ontology templates we say that an instantiation Σ is
MIPS minimal inconsistency preserving set w.r.t. an on-
tology O and an ontology template set Λ if following
conditions holds :

• inconsistency condition, i.e. (O ∪ IF(Σ,Λ)) is in-
consistent

• minimality condition, i.e. ∀Σ′ ⊂ Σ =⇒ (O ∪
IF(Σ′,Λ)) is consistent

Let ES = 〈O,Λ,SG,SV〉 be some evolution schema
and SC its combined instantiation set.

• An validating instantiation set S′
V

is correct w.r.t.
evolution schema 〈O,Λ,SG,SV〉, if O is consistent
and for each Σ ∈ S′

V
, such that Σ ∈ cl(SG) : Σ is

MIPS w.r.t. O and Λ.

• The evolution schema ES is (necessarily) consistent
if SV is correct w.r.t. 〈O,Λ,SG, ∅〉 and for every
substitution set Σ ∈ SC there exists an interpretation
I such that I � (O ∪ IF(Σ,Λ)).

Recall the example of the evolution schema
〈O,Λ,SG,SV〉 from Figure 1 as well as definitions
of substitutions σ1, σ2, σ3, σ4. We will show that the
evolution schema in the figure is consistent. First, it is
easy to see that SV = {{σ2, σ3}, {σ2, σ4}} is correct w.r.t.

21

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

Figure 2: Complete modification graph w.r.t. a
canonical evolution schema 〈O,Λ,SG,SV〉, sub-
graph with red and blue nodes represents SG, red
sub-graph represents a set of inconsistent instantia-
tions, blue sub-graph represents SC.

the evolution schema – ontologies O ∪ IF({σ2, σ3},Λ)
and O ∪ IF({σ2, σ4},Λ) are both inconsistent, while
ontologies O, O ∪ IF({σ2},Λ), O ∪ IF({σ3},Λ), and
O∪IF({σ4} are consistent. Second, according to the pro-
vided definition SC = {{σ1, σ3, σ4}, {σ1, σ3}, {σ1, σ4},
{σ3, σ4}, {σ1}, {σ2}, {σ3}, {σ4}, {}}. It can be shown that
for each Σ ∈ SC an ontology O ∪ IF(Σ,Λ) is consistent
(i.e. has model). Figure 2 shows combined instantiation
set SC as blue sub-graph. Red sub-graph shows all
inconsistent instantiations of the evolution. {σ2, σ3, σ4}

is example of inconsistent instantiation which is not
minimal. max⊆(SC) is set of all nodes that does not
have parent in SC, i.e. {{σ1, σ3, σ4}, {σ3, σ4}, {σ3}}.
Moreover, SV is MIPS w.r.t. O and Λ and note, that
this is true for each consistent evolution.

5 Reasoning Service for Ontology Templates

OWL2 and many other DL based languages provide a
set of useful services for querying, validating and debug-
ging errors within an ontology. One of the most basic
services is consistency checking of an ontology. If con-
sistency check fails during manual development of the
ontology, an ontology engineer typically starts appropri-
ate debugging services to find the root cause of the prob-
lem and fix it.

Let’s imagine, that an ontology engineer identifies
some higher level patterns within the ontology and cre-
ates an ontology template in order to simplify his work.
He assigns domain of each variable within the template
which significantly reduces his time when filling in the
templates. Unfortunately, he is still not satisfied as there
are many dependent variables in the template. Some of
them could be filled in automatically, others could have

set of values significantly reduced based on already as-
signed variables of the form. He decides to create bet-
ter instantiation function (not only based on variable do-
mains) by providing some additional relationships be-
tween particular variables of the template. He creates
new ontology templates, fills in some data based on them
and runs consistency check, which fails. After he spends
quite a long time trying to find out the ontology error,
he decides to add validation constraint for ontology tem-
plates, so it won’t happen again in such a situation. This
again reduces variable values within the forms of on-
tology templates. He also adds non-technical textual
description of validation constraint as he plans to pro-
vide some ontology templates forms to domain experts to
populate the ontology. The only think he is missing is: 1)
a way to find out whether the validation constraint is not
too restrictive, i.e. it does not exclude some consistent
ontology template groundings, 2) whether there are some
other possible inconsistences that ontology templates can
create. Points 1) and 2) can be answered by new reason-
ing service for ontology templates as follows.

Reasoning Services: Let 〈O,Λ,SG,SV〉 be an ontol-
ogy evolution scheme and S‘V an instantiation set:

• validation constraint check – take S‘V and
〈O,Λ,SG,SV〉 as parameters and returns true if
S‘V is correct validation instantiation set w.r.t. evo-
lution scheme 〈O,Λ,SG,SV〉. Otherwise it returns
an ontology that proves incorrectness of the S‘V.
Algorithm 1 provides description of the service.

• evolution scheme consistency check – take
〈O,Λ,SG,SV〉 as parameter returns true if
〈O,Λ,SG,SV〉 is consistent. Otherwise it returns
an ontology that proves either inconsistency of
whole scheme or incorrectness of validation set
SV. Algorithm 3 provides description of the
service.

In the following text we define three algorithms
needed for reasoning services together with proof of it
soundness and completeness. The algoritms have two
outputs – an output value and global variable E which
represents an error by tuple of a textual message and on-
tology that proves the error.

Algorithm 1 checks correctness of a validation con-
strains w.r.t. some evolution schema.

• Termination – The only looping structures are
“foreach” constructs over finite immutable set, thus
algorithm terminates.

• Soundness – If the algorithm returned true, thus the
execution did not step inside of the code within the

22

Miroslav Blaško, Petr Křemen, Zdeněk Kouba: Ontology Evolution Using Ontology Templates

lines (2-4), (7-9) and (12-14) – we will make abbre-
viation MISS() to express this fact. The MISS(2-
4) implies that the ontology O is consistent, the
MISS(7-9) implies that for each Σ ∈ (S‘V ∩ cl(SG))
the inconsistency criterion holds. The MISS(12-
14) implies that ∀σ ∈ Σ : O ∪ IF(Σ − {σ},Λ) is
consistent. For an arbitrary Σ′ ⊂ Σ it is true that
Σ′ ⊆ Σ − {σ} for some σ. Thus (O ∪ IF(Σ′,Λ)) ⊆
(O ∪ IF(Σ − {σ},Λ)) and minimality condition im-
plies from monotonicity of entailment2 [2] inALC.

• Completeness – Let O be a consistent ontology,
Σ ∈ (S‘V ∩ cl(SG)) and Σ is MIPS w.r.t. O and
Λ. Algorithm returns true as MISS(2-4), MISS(7-9)
and MISS(12-14) is trivially guaranteed from pre-
conditions.

• Complexity – Let O, Λ, S be an ontology, an ontol-
ogy template set and an instantion set, respectively.
We will use l(O), l(Λ), l(S) to denote length (size)
of their encoding within the algorithm. The upper
bound complexity of ontology consistency (satisfi-
ability) check of ALC is PSPACE [2]. Thus lines
(2-4) are in PSPACE w.r.t. l(O). Computation of
the condition on line (5) is at most polynomial w.r.t.
SG and S′

V
. The size of O′ and O′′ is at most

l(O) + l(Λ) ∗ l(S′
V

), thus polynomially bounded by
l(O), l(Λ), and l(S′

V
). Loop (5-14) is executed at

most l(S′
V

) times and its inner loop is thus exe-
cuted at most l(S′

V
)2 times. Size of O′′ and O′ is

at most l(O) + l(Λ) ∗ l(S′
V

). Thus number of con-
sistency checks within lines (5-14) as well as size
of the checked ontology is bounded polynomially
and therefore can be computed in PSPACE. From
the above analysis it implies that Algorithm 1 uses
input l(SG) to compute only line (5) which can be
done polynomially w.r.t. l(SG) and l(S′

V
). The al-

gorithm is in PSPACE w.r.t. l(O), l(Λ), l(S′
V

) and
l(SG).

Algorithm 2 computes an instantiation Σ′ which is
MIPS w.r.t. an ontology O, an ontology template set Λ,
an instantiation Σ. It assumes to call two external func-
tions : compute single MIPS of an ontology and compute
hitting set, both explained in section 3. The algorithm
works as follows :

• lines (5-10) define ontology O′′ = IF(Σ,Λ) and re-
lation M that maps each axiom α such that α < O
to a set of substitutions {σi} that could lead to the
grounded axiom α. σi represents some ground sub-
stitution of an ontology template from Λ,

2Monotonic logic such asALC ensures that if O is consistent, than
any subset O′ is consistent as well.

Algorithm 1: Check validating constraint correct-
ness

1 is correct VC (S‘V, 〈O,Λ,SG,SV〉) : boolean is
Result: Returns true, if S‘V is correct validation

instantiation set w.r.t. evolution scheme
〈O,Λ,SG,SV〉. Otherwise it returns
false and an ontology that proves
incorrectness of the S‘V.

2 if not is consistent(O) then
3 E ← 〈“core ontology is not consistent”,O〉
4 return false

5 foreach Σ ∈ (S‘V ∩ cl(SG)) do
6 O′ ← (O ∪ IF(Σ,Λ))
7 if is consistent(O′) then
8 E ← 〈“validation constraint not

correct”,O′〉
9 return false

10 foreach σ ∈ Σ do
11 O′′ ← (O ∪ IF(Σ − {σ},Λ))
12 if not is consistent(O′′) then
13 E ← 〈“validation constraint is not

minimal”,O′′〉
14 return false

15 return true

Algorithm 2: Get single MIPS instantiation

1 get single MIPS instantiation (O,Λ,Σ) : Σ′ is
Result: Returns an arbitrary instantiation Σ′ ⊆ Σ

that causes inconsistency w.r.t. O and is
minimal with respect to template-based
extension of O using Λ and Σ. In case
where O is inconsistent or instantiation
Σ does not lead to inconsistence, it
returns ∅

2 if not is consistent(O) then
3 E ← 〈“core ontology is not consistent”,O〉
4 return ∅
5 M ← {}
6 O′′ ← O
7 foreach σ ∈ Σ do
8 O′ ← IF(σ,Λ) − O
9 M ← M ∪ {〈α, σ〉 | α ∈ O‘}

10 O′′ ← O′′ ∪ O′

11 OsMIPS ←get single MIPS(O′′)
12 SMIPS ← {{σ | 〈α, σ〉 ∈ M} | α ∈ OsMIPS }

13 return get single minimal HTS(SMIPS)

23

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

• lines (11-12) compute single MIPS of ontology
O ∪ IF(Σ,Λ) i.e. set of axioms OsMIPS which
are transformed to set of substitution sets SsMIPS

where each substitution represent some axiom from
OsMIPS ,

• line (13) compute minimal hitting set of SMIPS .

To prove the correctness of the algorithm let’s assume
that O is consistent, O ∪ IF(Σ,Λ) is inconsistent, but
the algorithm outputs Σ′ failing the inconsistency con-
dition. From the monotonicity of entailment and fact
that OsMIPS ⊆ O ∪ IF(Σ,Λ) it implies that OsMIPS must
be consistent ontology which is contradiction. Let’s as-
sume that Σ‘ satisfies inconsistency condition but fails
minimality condition. Thus there exists σ ∈ Σ′ and
Σ′′ = Σ′ − {σ} such that O ∪ IF(Σ′′,Λ) is inconsistent.
This implies that either computed hitting set is not mini-
mal or axiom set returned by single mips algorithm is not
minimal – this is constradiction, and thus we proved that
Σ′ must satisfy both inconsistence and minimality con-
dition. Termination of the algorithm is satisfied because
only looping structures are “foreach” constructs over fi-
nite immutable set.

Complexity of Algorithm 2 can be evaluated using
function l that defines size of the encoding of the in-
put as explained above. Lines (2-4) can be evaluated
in PSPACE w.r.t. l(O). The size of O′′ is polynomial
w.r.t. l(O), l(Λ) and l(Σ). Algorithm for single MIPS
is PSPACE [23] and algorithm for minimal HTS is NP-
complete [24] problem. Thus Algorithm 2 is PSPACE
w.r.t. l(O), l(Λ), and l(Σ).

Algorithm 3: Check evolution schema consistency

1 is consistent ES (〈O,Λ,SG,SV〉) : boolean is
Result: Returns true, if evolution schema

〈O,Λ,SG,SV〉 is consistent. Otherwise
it returns false and an ontology that
proves its inconsistency.

2 if not is correct VC(SV, 〈O,Λ,SG, ∅〉) then
3 return false

4 SC ← {ΣG ∈ SG | ∀ΣV ∈ SV : ΣV * ΣG}

5 foreach Σ ∈ max⊆(SC) do
6 ΛsMIPS ←

get single MIPS instantiation(O,Λ,Σ)
7 if ΛsMIPS , ∅ then
8 E ← 〈“evolution generate inconsistent

ontology”,O ∪ IF(ΛsMIPS ,Λ)〉
9 return false

10 return true

Algorithm 3 checks consistency of evolution schema.
It uses algorithm to compute single MIPS instantiation
only to return meaningfull explanation if consistency
check fails.

• Termination – implies from only one “foreach” con-
structs over finite set.

• Soundness – Let’s assume that algoritm returned
true. Thus from MISS(2-3) it implies that SV is
correct and O is consistent. From lines (5-9) and
MISS(7-9) it implies that for each Σ ∈ max⊆(SC)
it implies that O ∪ IF(Σ,Λ) is consistent. For any
Σ′ ∈ SC it holds that is subset of some Σ and again
due to monotonicity it implies that O ∪ IF(Σ′,Λ) is
consistent, thus there exists an interpretation I that
satisfies the ontology.

• Correctness – This assume we have interpretation
I for each Σ ∈ SC and that lines (7-9) are not exe-
cuted. Thus algorithm returns true.

• Complexity – Let l be a function defining size of the
encoding of the input as used above. Upper bound
complexity of lines (2-3) is PSPACE w.r.t. l(SV),
l(O), and l(Λ). Computation of SG at line (4) is
polynomial w.r.t. l(SG) and l(SV). Loop (5-9) is
evaluated at most l(SG) times. Single MIPS instan-
tiations (line 6) is computed in PSPACE w.r.t. l(O),
l(Λ), l(SG)) as explained above. Thus Algorithm 3
is in PSPACE w.r.t. l(O), l(Λ), l(SG), and l(SV) .

6 Prototype Implementation

We created a prototype implementation of reasoning ser-
vice over ontology templates as well as set of tools to
manage templates within command-line interface 3.

It is written in Java and uses Pellet query engine [35]
to evaluate SPARQL [17] and SPARQL-DL queries [34].

Ontology templates are encoded using syntax of “con-
struct template” of SPARQL construct query [17]. In-
stantiation sets can be defined by a set of generating and
validating SPARQL / SPARQL-DL queries . The defi-
nitions of ontology templates and instantiation sets are
attached to an ontology using OWL2 compliant annota-
tions.

There are 2 types of validating queries that we dif-
ferentiate in implementation: flat validating queries –
can validate ontology templates only with each other;
multidimensional validating queries – can in addition
formulate constraints including more groundings of one
template. More formally, flat validation query repre-
sents instantiation set SV such that each Σ ∈ SV is

3http://kbss.felk.cvut.cz/web/portal/web/blaskmir/ontology-
templates, cit. 10.8.2015

24

Miroslav Blaško, Petr Křemen, Zdeněk Kouba: Ontology Evolution Using Ontology Templates

set of grounding substitutions of mutually different on-
tology templates (i.e. ∀σi, σ j ∈ Σ : (σi , σ j) =⇒

template(σi) , template(σ j)). Examples of both types
of the queries are shown in Section 7.

Flat validating queries and generating queries are
SPARQL / SPARQL-DL select queries over the core on-
tology. Result of a query, i.e. variable bindings is after
execution transformed into instantiation set. To evalu-
ate multidimensional validating queries we introduced
Evolution schema ontology, an OWL 2 ontology that
describes concrete evolution schema. Within the ontol-
ogy, each ground substitution of an ontology template is
represented by unique individual together with its vari-
able mappings. Thus query over evolution scheme ontol-
ogy can answer questions such as “Which ontology tem-
plate groundings (substitutions) has variable $COMP1
assigned to value Component ?”. Instead of core ontol-
ogy, a multidimensional query queries dataset consisting
of core ontology and evolution schema ontology. This
is implemented through “group graph pattern” [17] of
SPARQL language.

7 Use Cases

We demonstrate usage of ontology templates in two dif-
ferent domains. First, within domain of cultural heritage,
we show example of two ontology templates with gener-
ating and flat validating SPARQL-DL queries for them.
Second, within domain of privacy protection we show
one template and multidimensional validating SPARQL
query for it.

7.1 MONDIS Project Use Case

Ontology templates are currently used within the re-
search project MONDIS4. Aim of the project is to cre-
ate a knowledge-based system for description of monu-
ments, their damage analysis, intervention planning and
prevention in the field of cultural heritage protection. Re-
call the example ontology from Section 4 about compo-
nents and materials and their templates T1,T2:

• T1 = {$COMP1 v ∀hasMaterial.¬$MAT1 }

• T2 = { c : $COMP2 u ∃hasMaterial.$MAT2 }

The example ontology is proper fragment of Mon-
ument Damage Ontology [3, 6] developed within the
project MONDIS. The ontology templates T1 and T2
were used by domain experts to collect general knowl-
edge about sub-concepts of Component and Material.

The generating query used for the template T1 was :

4http://www.mondis.cz, cit. 10.8.2015

$COMP1 $MAT1
Pillar Wood
Pillar OrganicMaterial

VerticalElement Wood
VerticalElement OrganicMaterial

Table 1: Result of generating query for T1

SELECT $COMP1 $MAT1
WHERE {

$COMP1 r d f : s u b C l a s s O f Component .
$MAT1 r d f : s u b C l a s s O f M a t e r i a l .
FILTER (! ($COMP1 = Component))
FILTER (! ($MAT1 = M a t e r i a l))

}

}

The SPARQL-DL query over the core ontology re-
turns variable bindings as shown in Table 1. Each row of
the query result can be naturally transformed to instanti-
ation with one substitution (e.g. second row of the table
is {σ} where σ = {[$COMP1/Pillar], [$MAT1/Wood]}.
Same query, but with appropriate variable names was
used for generating query of T2.

One of the validating query was query :

SELECT $COMP1 $MAT1 $COMP2 $MAT2
WHERE {

$COMP2 r d f : s u b C l a s s O f $COMP1 .
$MAT2 r d f : s u b C l a s s O f $MAT1 .

}

Each row of the validating query result can be trans-
formed into instantiation consisting of 2 substitutions
{σi, σ j}, e.g. :

• σi = {[$COMP1/Pillar], [$MAT1/Wood]}

• σ j = {[$COMP2/Pillar], [$MAT2/OM]}

The generating query of T1, generating query of T2
and the validating query are actually not evaluated alone
as the combined instantiation can be evaluated by one
SPARQL query. On the other hand, if S1 and S2 are re-
sulting instantiation sets of the generating queries w.r.t.
T1 and T2, the canonical SG can be constructed by
P(S1 ∪ S2). Let S′ be resulting instantiation set of the
validation query. The validating instantiation set SV can
be constructed by splitting each substitution within S′

into two ground substitutions, i.e. SV = {{σ1, σ2} | σ ∈
S′ ∧ σ1 = σ|var(T1) ∧ σ2 = σ|var(T2)}.

Within the MONDIS project, similar templates were
created also between other top level concepts that are
related to diagnosis and intervention of damages (i.e.
concept Mani f estationO f Damage, Agent, Mechanism,
Intervention) [6]. In addition to this general knowledge,

25

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

some real object descriptions (e.g. about “north tower
of Prague’s castle and its crack”) were collected using
concept and role assertions.

7.2 P3P Use Case

Validating queries will be demonstrated on use case from
domain of privacy protection. It will be also shown how
two groundings of one ontology template can generate
inconsistencies. P3P [26] is W3C recommendation for
expressing service privacy practices. The practices are
described by XML-based P3P policies in terms of data
that will be collected, purposes for which the data will
be used, a period how long the data will be held etc. In
the paper [4], we proposed framework for detection and
explanation of P3P policy inconsistencies using seman-
tic technologies. The policies are transformed to an on-
tology and then validated by ontology consistency check
and set of SPARQL-DL queries. This was implemented
in P3P privacy policy editor [33]. Although P3P edi-
tor was able to find inconsistencies we were not able to
provide user human-readable message to explain incon-
sistency as we did not know about them in advance. This
can be done by framework described in this paper.

One of the ontology templates (T) used in our P3P
framework is the following:

$DATA v∃hasPurpose.($PURu
∃hasRequirement.$REQ)

$DATA v∀hasPurpose.((¬$PUR)
t ∀hasRequirement.$REQ)

$DATA TR v∃hasPurpose.$PUR
$DATA TR v∀hasPurpose.((¬$PUR)t

∀hasRequirement.(Alwayst

$REQ1 t $REQ))

The ontology template T is used to state that some data
($DAT A) such as “User’s business contact information”
is collected for some purpose ($PUR) such as “Market-
ing of services or products”. The $REQ variable indi-
cates requirement to which extent is the purpose required
for the service. The requirement can be one of 3 values :
opt-in - the user has to affirmatively request usage of data
for this purpose; opt-out - the data may be collected for
this purpose unless the user requests otherwise; always -
the data will be used for this purpose.

Variables $DAT A TR and $REQ1 can be generated
from variables $DAT A and $REQ, respectively. A vali-
dating query is expressed in SPARQL query, which can
well describe the syntactic nature of generated depen-
dencies. Validation query can be expressed using dataset
of core ontology and evolution schema ontology as fol-
lows:

SELECT $IS1 $IS2 WHERE {

query t o e v o l u t i o n schema o n t o l o g y
GRAPH p3p : e v o l u t i o n S c h e m a {

$IS1 a r g : DATA TR $DATA TR1 ;
a r g :PUR $PUR ;
a r g :REQ $REQ1 .

$IS2 a r g : DATA TR $DATA TR2 ;
a r g :PUR $PUR ;
a r g :REQ $REQ2 .

}

query t o core o n t o l o g y
GRAPH p3p : {

$DATA TR1
(r d f : s u b C l a s s O f)+ $DATA TR2 .

}

FILTER (i s S t r o n g e r ($REQ1 , $REQ2))
}

The first part of the query is evaluated on evolution
schema ontology. It selects all instantiations $IS 1 and
$IS 2 such that their purposes are same value. $PUR is
bound to this value. $DAT A TR1 binds to “DATA TR”
variable of original template. Similarly, $DAT A TR2,
$REQ1 and $REQ2 are bound. The second part of the
query is evaluated on the core ontology, i.e. the P3P
ontology. isS tronger is SPIN-based SPARQL function
that relates requirements, it is true if used for arguments
〈always, opt-out〉, 〈always, opt-in〉, 〈opt-out, opt-in〉 and
false otherwise. Transformation of the query to the vali-
dating instantiation set is straight-forward as each row of
the query result is translated to one instantiation {σ1, σ2}

directly corresponding to values of $IS 1 and $IS 2.

An example that would cause the query to fire is :
“User’s business contact information” is collected for
“Marketing of services or products” with requirement
“always”. “User’s business telephone number” is col-
lected for “Marketing of services or products” with re-
quirement “opt-out”.

We use the evolution schema ontology within Top-
Braid Composer [37] to edit concrete instantiations of
templates, i.e. instead of creating ontology templates
directly in P3P ontology we create only instantiations
within the evolution schema ontology, which are then
synchronized with the core ontology. It allows us to have
specialized forms for each template as shown in Fig-
ure 3. In addition using the query above we can create
SPIN constraint on instantiations that provides human-
readable explanations of inconsistencies and fixes as it is
shown in Figure 3 and Figure 4. The provided frame-
work can be used with Free Edition of TopBraid Com-
poser.

26

Miroslav Blaško, Petr Křemen, Zdeněk Kouba: Ontology Evolution Using Ontology Templates

Figure 3: P3P error in TopBraid composer.

Figure 4: Suggestion for fix in TopBraid composer.

8 Summary and Conclusion

The paper introduced a formal technique for controlling
ontology evolution by domain experts. The technique
guarantees for them that – as long as the changes they
make comply with the evolution templates, they will not
result in an inconsistency.

The formal framework depends only on ontology con-
sistency check and single MIPS procedure of the under-
lyingDL. Thus it can be easily extended to more expres-
sive description logics, such as S ROIQ(D) [19] which
is used in current ontology standard OWL 2. Moreover
it seems straight-forward to extend the framework with
role name variables and general concept variables.

The introduced technique has far-reaching impact on
the process of ontology design and evolution. As our
experience in the MONDIS project shows, domain ex-
perts feel more comfortable and less frustrated when they
can predict the impact of changes they make. Another
impact is the optimization of ontology engineering re-
sources during the evolution phase.

The introduced research opened several interesting re-
search topics. First, we introduced two cases of ontol-
ogy evolution. In the future we would like to experiment

with various ontology templates w.r.t. their usability for
domain experts. Comparing to ontology design patterns
that are meant for ontology engineers (in the same sense
as software design patterns are meant for software engi-
neers), ontology templates are meant for domain experts
– thus, they have to be simpler, intuitive and have the
formal guarantees introduced in this paper.

Another interesting research topic is the management
of ontology templates themselves. Within a large on-
tology, many ontology templates can be defined, repre-
senting simple interaction schemes with the ontology for
domain experts. For such cases, management and mu-
tual interaction of such templates becomes an important
topic. We will also deal with this problem in the next
work.

Acknowledgements

This work has been supported by the grant “Defects in
immovable cultural heritage objects: a knowledge-based
system for analysis, intervention planning and preven-
tion”,
No. DF11P01OVV002 of the Ministry of Culture of the
Czech Republic.

References

[1] L. Akroun, L. Nourine, and F. Toumani, “Rea-
soning in description logics with variables: pre-
liminary results regarding the EL logic,” in
Proceedings of the 28th International Work-
shop on Description Logics, Athens,Greece, June
7-10, 2015., ser. CEUR Workshop Proceed-
ings, D. Calvanese and B. Konev, Eds., vol.
1350. CEUR-WS.org, 2015. [Online]. Available:
http://ceur-ws.org/Vol-1350/paper-42.pdf

[2] F. Baader, The description logic handbook: the-
ory, implementation, and applications. Cambridge
university press, 2003.

[3] M. Blaško, R. Cacciotti, P. Křemen, and Z. Kouba,
“Monument damage ontology,” in Progress in Cul-
tural Heritage Preservation. Springer, 2012, pp.
221–230.

[4] M. Blaško, P. Křemen, and Z. Kouba, “Privacy pro-
tection using semantic technologies,” in Proceed-
ings of the 12th European Meeting on Cybernetics
and Systems Research, Vienna, 2009.

[5] R. Cacciotti, J. Valach, P. Kuneš, M. Čerňanskỳ,
M. Blaško, and P. Křemen, “Monument damage
information system (mondis), an ontological ap-
proach to cultural heritage documentation,” ISPRS
Annals of the Photogrammetry, Remote Sensing

27

http://ceur-ws.org/Vol-1350/paper-42.pdf

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

and Spatial Information Sciences, vol. 2, no. 5, pp.
55–60, 2013.

[6] R. Cacciotti, M. Blaško, and J. Valach, “A diagnos-
tic ontological model for damages to historical con-
structions,” Journal of Cultural Heritage, vol. 16,
no. 1, pp. 40–48, 2015.

[7] R. Cacciotti, J. Valach, P. Kuneš, and
M. Čerňanský, “Knowledge-based system for
documentation and mitigation of damages in
historical structures,” CESB13-Central Europe
towards sustainable building, 2013.

[8] C. Chen and M. M. Matthews, “Extending de-
scription logic for reasoning about ontology evolu-
tion,” in Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Web Intelligence. IEEE
Computer Society, 2007, pp. 452–456.

[9] S. Colucci, T. Di Noia, E. Di Sciascio, F. M.
Donini, and A. Ragone, “Second-order description
logics: Semantics, motivation, and a calculus,” in
23rd International Workshop on Description Log-
ics DL2010, 2010, p. 67.

[10] Ó. Corcho, C. Roussey, L. M. V. Blázquez, and
I. Pérez, “Pattern-based OWL ontology debugging
guidelines,” in Proceedings of the Workshop on
Ontology Patterns (WOP 2009) , collocated with
the 8th International Semantic Web Conference
(ISWC-2009), Washington D.C., USA, 25
October, 2009., ser. CEUR Workshop Proceedings,
E. Blomqvist, K. Sandkuhl, F. Scharffe, and
V. Svátek, Eds., vol. 516. CEUR-WS.org, 2009.
[Online]. Available: http://ceur-ws.org/Vol-516/

pap02.pdf

[11] G. De Giacomo, M. Lenzerini, and R. Rosati,
“On higher-order description logics.” in Descrip-
tion Logics, 2009.

[12] M. Egana, E. Antezana, and R. Stevens, “Trans-
forming the axiomisation of ontologies: The on-
tology pre-processor language,” Proceedings of
OWLED, 2008.

[13] M. Fernandez-Lopez, A. Gomez-Perez, and N. Ju-
risto, “Methontology: from ontological art towards
ontological engineering,” in Proceedings of the
AAAI97 Spring Symposium, Stanford, USA, March
1997, pp. 33–40.

[14] D. M. Gabbay, R. Schmidt, and A. Szalas, Second
Order Quantifier Elimination: Foundations, Com-
putational Aspects and Applications. College Pub-
lications, 2008.

[15] A. Gangemi, A. Gomez-Perez, V. Presutti, and
M. Suarez-Figueroa, “Towards a catalog of
owl-based ontology design patterns,” in 12th

Conference of the Spanish Association for
Artificial Intelligence, CAEPIA 2007. Salamanca
(Spain): AEPIA, 2007. [Online]. Available:
http://www.neon-project.org/web-content/images/
Publications/caepia-catalogpatterns-vfinal.pdf

[16] T. R. Gruber, “A translation approach to portable
ontology specifications,” Knowl. Acquis., vol. 5,
no. 2, pp. 199–220, Jun. 1993. [Online]. Available:
http://dx.doi.org/10.1006/knac.1993.1008

[17] S. Harris, A. Seaborne, and E. Prudhommeaux,
“Sparql 1.1 query language (2013),” W3C Recom-
mendation, 2014.

[18] M. Horridge, H. Knublauch, A. Rector, R. Stevens,
and C. Wroe, A Practical Guide To Building
OWL Ontologies With The Protege-OWL Plugin,
1st ed., University of Manchester, 2004. [Online].
Available: http://home.skku.edu/∼samoh/class/sw/

ProtegeOWLTutorial.pdf

[19] I. Horrocks, O. Kutz, and U. Sattler, “The even
more irresistible sroiq.” KR, vol. 6, pp. 57–67,
2006.

[20] L. Iannone, A. Rector, and R. Stevens, “Embed-
ding knowledge patterns into owl,” in The Semantic
Web: Research and Applications. Springer, 2009,
pp. 218–232.

[21] A. Kalyanpur, “Debugging and repair of owl on-
tologies,” Ph.D. dissertation, University of Mary-
land at College Park, College Park, MD, USA,
2006, aAI3222483.

[22] A. Kalyanpur, B. Parsia, E. Sirin, and B. C. Grau,
“Repairing unsatisfiable concepts in owl ontolo-
gies.” in ESWC, ser. Lecture Notes in Computer
Science, Y. Sure and J. Domingue, Eds., vol. 4011.
Springer, 2006, pp. 170–184.

[23] A. Kalyanpur, B. Parsia, E. Sirin, and
J. Hendler, “Debugging unsatisfiable classes
in owl ontologies,” Web Semantics: Sci-
ence, Services and Agents on the World Wide
Web, vol. 3, no. 4, 2005. [Online]. Avail-
able: http://www.websemanticsjournal.org/index.
php/ps/article/view/77

[24] R. Karp, “Reducibility among combinatorial prob-
lems,” in Complexity of Computer Computations,
ser. The IBM Research Symposia Series, R. Miller,
J. Thatcher, and J. Bohlinger, Eds. Springer
US, 1972, pp. 85–103. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4684-2001-2 9

[25] H. Knublauch, J. Hendler, and K. Ide-
hen, “Spin – overview and motiva-
tion,” http://www.w3.org/Submission/2011/

28

http://ceur-ws.org/Vol-516/pap02.pdf
http://ceur-ws.org/Vol-516/pap02.pdf
http://www.neon-project.org/web-content/images/Publications/caepia-catalogpatterns-vfinal.pdf
http://www.neon-project.org/web-content/images/Publications/caepia-catalogpatterns-vfinal.pdf
http://dx.doi.org/10.1006/knac.1993.1008
http://home.skku.edu/~samoh/class/sw/ProtegeOWLTutorial.pdf
http://home.skku.edu/~samoh/class/sw/ProtegeOWLTutorial.pdf
http://www.websemanticsjournal.org/index.php/ps/article/view/77
http://www.websemanticsjournal.org/index.php/ps/article/view/77
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/
http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/

Miroslav Blaško, Petr Křemen, Zdeněk Kouba: Ontology Evolution Using Ontology Templates

SUBM-spin-overview-20110222/, 2011, accessed:
2015-09-14.

[26] M. Marchiori, “The platform for privacy
preferences 1.0 (P3P1.0) specification,”
W3C, W3C Recommendation, Apr. 2002,
http://www.w3.org/TR/2002/REC-P3P-20020416/.

[27] B. Motik, “On the properties of metamodeling in
owl,” Journal of Logic and Computation, vol. 17,
no. 4, pp. 617–637, 2007.

[28] B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock,
A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks,
A. Ruttenberg, U. Sattler et al., “Owl 2 web
ontology language: Structural specification and
functional-style syntax,” W3C recommendation,
vol. 27, no. 65, p. 159, 2009.

[29] J. Z. Pan and I. Horrocks, “Owl fa: a metamodeling
extension of owl d,” in Proceedings of the 15th in-
ternational conference on World Wide Web. ACM,
2006, pp. 1065–1066.

[30] P. Patel-Schneider, B. Parsia, and B. Motik,
“OWL 2 web ontology language structural spec-
ification and functional-style syntax (second
edition),” W3C, W3C Recommendation, Dec.
2012, http://www.w3.org/TR/2012/REC-owl2-
syntax-20121211/.

[31] R. Reiter, “A theory of diagnosis from first princi-
ples,” Artificial intelligence, vol. 32, no. 1, pp. 57–
95, 1987.

[32] M. Schmidt-Schauß and G. Smolka, “Attribu-
tive concept descriptions with complements,”
Artif. Intell., vol. 48, no. 1, pp. 1–26, 1991.
[Online]. Available: http://dx.doi.org/10.1016/

0004-3702(91)90078-X

[33] P. Schneider, “P3p editor based on semantic tech-
nologies,” Master’s thesis, Czech Technical Uni-
versity in Prague, Prague, Czech Republic, 2012.

[34] E. Sirin and B. Parsia, “Sparql-dl: Sparql query for
owl-dl.” in OWLED, vol. 258, 2007.

[35] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur,
and Y. Katz, “Pellet: A practical owl-dl reasoner,”
Web Semant., vol. 5, no. 2, pp. 51–53, Jun. 2007.
[Online]. Available: http://dx.doi.org/10.1016/j.
websem.2007.03.004

[36] L. Stojanovic, “Methods and tools for ontol-
ogy evolution,” Ph.D. dissertation, Karlsruhe
Institute of Technology, 2004. [Online]. Avail-
able: http://digbib.ubka.uni-karlsruhe.de/volltexte/

1000003270

[37] TopQuadrant, “Tobbraid composer,” http://www.
topquadrant.com/tools, accessed: 2015-09-14.

Author Biographies

Miroslav Blaško is PhD stu-
dent in the field of artifical
intelligence and biocybernetics
from the Czech Technical Uni-
versity in Prague, Czech Repub-
lic. His research topics are on-
tology development, error expla-
nation and query answering that
he applied in medicine, privacy
protection and cultural heritage
domain.

Dr. Petr Křemen received his
Ph.D. degree in artifical intelli-
gence and biocybernetics from
the Czech Technical University
in Prague, Czech Republic. He
leads a research team at the De-
partment of Cybernetics, Faculty
of Electrical Engineering, Czech
Technical University, Prague in
the field of ontology-based in-
formation systems, ontology de-
velopment, ontology compari-

son, error explanation and query answering. He is an
author of more than 30 peer-reviewed articles, mainly on
international fora.

Dr. Zdeněk Kouba is an As-
sociate Professor with the Czech
Technical University, Prague,
Czech Republic. His research
interests include design of in-
formation and knowledge based
systems, data modeling and
knowledge representation. He is
a head of Knowledge-based and
Software Systems group in the

Department of Cybernetics at the Faculty of Electrical
Engineering, Czech Technical University. His team has
participated in six international research projects of the
European Commission in past 20 years.

29

http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/
http://dx.doi.org/10.1016/0004-3702(91)90078-X
http://dx.doi.org/10.1016/0004-3702(91)90078-X
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003270
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003270
http://www.topquadrant.com/tools
http://www.topquadrant.com/tools

	Introduction
	Related Work
	Background
	ALC DL - Syntax and Semantics
	Activities Related to Ontologies

	Formal Model of Ontology Templates
	ALCx Syntax
	ALCx Semantics

	Reasoning Service for Ontology Templates
	Prototype Implementation
	Use Cases
	MONDIS Project Use Case
	P3P Use Case

	Summary and Conclusion

