
c© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 3, Issue 1, 2017

http://www.ronpub.com/ojiot
ISSN 2364-7108

Rewriting Complex Queries from Cloud to Fog
under Capability Constraints to Protect

the Users’ Privacy
Hannes Grunert, Andreas Heuer

Database Research Group, University of Rostock, Albert-Einstein-Straße 22, 18051 Rostock, Germany,
{hg, ah}@informatik.uni-rostock.de

ABSTRACT

In this paper we show how existing query rewriting and query containment techniques can be used to achieve an
efficient and privacy-aware processing of queries. To achieve this, the whole network structure, from data producing
sensors up to cloud computers, is utilized to create a database machine consisting of billions of devices from the
Internet of Things. Based on previous research in the field of database theory, especially query rewriting, we present
a concept to split a query into fragment and remainder queries. Fragment queries can operate on resource limited
devices to filter and preaggregate data. Remainder queries take these data and execute the last, complex part of the
original queries on more powerful devices. As a result, less data is processed and forwarded in the network and the
privacy principle of data minimization is accomplished.

TYPE OF PAPER AND KEYWORDS

Regular research paper: query rewriting, query containment, privacy, databases, fog, cloud

1 INTRODUCTION

In the Internet of Things, a variety of heterogeneous
devices [10, 27] with different capabilities are involved
in a complex computation chain (see Figure 1).
Especially in capability restricted environments, such as
sensor networks, it is not ensured that the processing
unit can handle every type of query. Thus, it might
be possible that data cannot be filtered by complex
constraints on a sensor node. Through this, only a subset
of these constraints can be applied directly on that node
and the rest of the filtering has to be done on a more

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2017) in conjunction with the
VLDB 2017 Conference in Munich, Germany. The proceedings of
VLIoT@VLDB 2017 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

powerful node. By sending more data than intended to,
e.g., a cloud provider, the provider can execute additional
analysis tasks on the data and retrieve more information
than intended or allowed. To prevent this, it has to be
ensured that the amount of additional data is limited to a
minimum to ensure the users’ privacy concerns.

In order to minimize data, scientific calculations can
partially be pushed from cloud servers down to local
computers or even sensor nodes. To determine which
parts of a query can be pushed down, Query Containment
algorithms can be applied. The problem of query
rewriting and query containment (and equivalence) has
been studied by many research groups to solve problems
in query optimization and information integration. While
query rewriting is focussing on finding a rewriting r for
a given query Q, query containment checks for a given r
and Q if they are contained in each other:

31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RonPub -- Research Online Publishing

https://core.ac.uk/display/304105878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

Figure 1: Layered System Approach

Let D be a database and Qi, i ∈ N be some database
queries. Q1 is a subset query of Q2 (Q1 v Q2), if for
every database D Q1(D) ⊆ Q2(D) holds, where Qi(D)
is the result of Qi.

A main application of the Query Containment
Problem is Answering Queries using Views (AQuV).
The problem is defined as follows: given a query Q1

on a database D and a set of views V over the same
database, can Q1 be answered by using only the views?
Previous research (see Section 2) has focused on finding
maximally-contained sets of rewritings Q2 of Q1 using
only V instead of the database D, which is a partial
answer to Q1 and contains the maximal amount of
answers.

Contribution: In this paper, we focus on finding a
Rewriting Supremum Q2 of Q1, such that Q2 w Q1

and Q2 contains the minimum amount of additional
tuples in respect to Q1. In the best case, this minimal
superset is equivalent to the original query Q1. If such a
rewriting exists, it is possible to use existing algorithms
for query rewriting. Otherwise, these algorithms have to
be modified.

Running example: As a running example in this paper,
we will use a query Q, which consists of various
predicates1:

Q(sum(x), y; y) := x < 5

∧ y BETWEEN 2AND 5

∧AV G(z) < AV G(x)

∧ regr slope(x, y) < 1.

(1)

Q is a query in the canonical conjunctive normal form
(CCNF) and consists of multiple predicates, which apply
either to a single tuple or to an aggregated group. Later,
we will call a predicate in a CCNF-query Q a subgoal
1 For a sample relation on this query see http://ls-dbis.de/
vliot-example.

of Q. This query is also an aggregate query, which
calculates the sum of the x-values for each distinct value
of y.

Outline: The rest of the paper is structured as follows:
The next section gives a brief overview of our framework
for privacy aware query processing. Section 3 describes
the State of the Art in Query Rewriting approaches,
including aggregates and capability constraints. In
Section 4 and 5 we introduce our concept to test
containment of queries with complex aggregates.
Section 6 applies our approach to more complex example
queries. Our conclusions are outlined in Section 7.

2 PARADISE

Our query rewriting concept is part of the PArADISE2

framework for privacy aware query processing. The
main idea of the framework is to vertically distribute the
execution of a query in a given system environment (see
Figure 1). Thus, the privacy of the users, whose data are
collected by various sensors and are stored in databases
of different characteristics, is preserved. We refer to
this process of the query execution as a Layered System
Approach, which can be compared to Edge Computing
approaches [28].

The layered architecture consists of four logically
distinguishable layers. The Sensor Layer includes the
sensors, which are very resource-constrained in terms of
CPU, memory, and power. The Personal Layer consists
of mobile devices or embedded systems, like mobile
phones or edge nodes of a WSN. Router, home media
centers, private servers, etc. build up the Fog Layer.
The Cloud Layer is built by powerful servers, like data
centers for Web Services.

From the top to the bottom layer resource constraints

2 Privacy AwaRe Assistive Distributed Information System
Environment

32

http://ls-dbis.de/vliot-example
http://ls-dbis.de/vliot-example


H. Grunert, A. Heuer: Rewriting Complex Queries from Cloud to Fog under Capability Constraints to Protect the Users’ Privacy

Figure 2: Query Processor

are increasing and the amount of possible database
related functionalities and operations are decreasing. In
terms of privacy, each layer defines a strict transition to
define which data and to which granularity it is passed
upwards. This allows the fine-grained protection of
critical personal data as the information can be stored
and processed within the local parts of the system.
Generally, the lower the layer, the higher is the ability
of the user to control its own data. As lower layers
are more resource constrained than the upper ones, the
middle layers provide functionalities for data processing.
This enables optimized query execution according to the
given resource constraints.

On every node, a customized JDBC driver (see Figure
2) is running as a middleware between the different
layers. As input, the processor accepts a relational
query formulated in SQL (and derivatives) and returns a
resultset, which is an array of arrays of objects (a relation
in terms of the relational model). The query processor
consists of a preprocessor, which analyzes the query,
while the postprocessor modifies the result of the query.

In the postprocessor, different metrics and algorithms
for testing and ensuring privacy are implemented. This
includes generalization based techniques to ensure k-
anonymity [26], l-diversity [21] and t-closeness [19],
permutation based techniques like Data Slicing [20]
as well as Differential Privacy [6]. To parameterize
these algorithms, we use for each base relation a
set of quasi identifiers (QI) [3], which are calculated
by an efficient algorithm [9] directly in the database.
To prevent deanonymization attacks, like homogenity
attacks and attacks via strong background knowledge,
the anonymized results are reviewed again [8].

The detected QIs are also used in the preprocessor
to modify the query to prevent access on sensitive
data. This includes the prevention of a projection which
includes all attributes of a QI at once and the prevention
of an apparent range query which may only return one
tuple. The preprocessor is also responsible for the query

rewriting of the input query into (1) a partial query that is
executed on the current layer and (2) a remainder query
that is executed on the parent layer. This concept has
been briefly introduced in [11]. In this paper we show
how previous research on query containment and query
rewriting can be utilized to perform the decomposition
of the query.

3 STATE OF THE ART

The problems of Query Rewriting and Query
Containment have been investigated for several
years [1, 15]. In this section, we give a brief overview
on a variety of concepts to test the containment and
equivalence of relational queries. In the next section,
we show how these concepts can be adapted to create
a privacy aware query processing in the Internet of
Things.

3.1 Classical Query Rewriting

For reasons of space, we give here just a short overview
on established concepts. For details, please refer to [13,
31] or the original publications themselves.

Bucket: The Bucket algorithm [17] reformulates a
conjunctive query on a given set of views into a rewritten
conjunctive query on the database relations. Considering
each subgoal in the query as a standalone, it determines
which views may be useful for each subgoal. By this,
the number of rewritings to be taken into account can be
reduced.

The Bucket algorithm rewrites a query Q in two
steps: First, a bucket is created for each subgoal G
in Q containing all views that are necessary to answer
G. Afterwards, the algorithm finds a set of conjunctive
query rewritings that contains one conjunct c from every
bucket. Each rewriting shows a way to retain a partial
answer to Q using only the views. By building the

33



Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

union of the rewritings, the maximally contained query
rewriting is created.

Inverse Rules: The Inverse-Rules algorithm [5]
constructs a set of rules that invert the views. An
inverse rule is constructed for every subgoal in the body
of a given view. For every variable that appears in
the view definitions, a function symbol in the heads of
the inverse rules is created. These function symbols
show, which information can be extracted from the view
definitions. The union of the inverse rules builds a
maximally contained set of rewritings to answer a query
Q.

MiniCon: The key idea of the MiniCon algorithm
[24] is to consider how each of the variables in the
query can be used in the available views instead of
combining rewritings for each subgoal of the query. By
doing so, the algorithm considers fewer combinations
of views to find a suitable rewriting. In the first
step, the MiniCon algorithm determines, which views
contain subgoals that correspond to subgoals in the given
query. Afterwards, the algorithm has to find the minimal
amount of additional subgoals that have to be mapped to
the subgoals in the set of views. In the second step, these
mappings are combined to get the query rewritings.

3.2 Query Rewriting with Aggregates,
Dependencies and Complex Comparisons

Semantic Integrity Constraints: In [30], Can Türker
shows how to compute for two given integrity constraints
I1 and I2 the relationship between each other. For
two constraints c1 and c2, there exist five possible
relationships. c1 and c2 can either be disjoint (i. e. they
have no tuple in common), equivalent (they return the
same result), c1 contains c2, c2 contains c1, or they
overlap (i. e. it depends on the data).

Türker divides the so-called linear arithmetic
constraints into four classes: attribute-value predicates
(for range queries) LAC1, attribute-attribute
comparisons LAC2, with addition LAC3, and
multiplication LAC4 over the integer domain. Allowed
comparisons operators include <,≤,=, 6=,≥ and >.

To determine the relationship between two sets
of constraints, a weighted graph based approach is
introduced. This graph algorithm tests the constraints for
strongly connected components, where each component
is a variable, which is represented as a node in the graph.
Türker further extends his approach by adding aggregate
constraints for simple aggregate functions as well as
inclusion dependencies and functional dependencies.

Rewriting Aggregate Queries: Cohen et al. examine in
[2] the QCP for aggregate queries under bag semantics.

For a subset of aggregates, the so-called expandable
aggregates, like min/max, count, sum and standard
deviation3, it is possible to test containment of queries
containing these aggregates.

An aggregate query (α-query) is a disjunctive query
defined as follows:

Q(α(Y );X)← r1(Z1, . . . , X, Y )

∨ . . .
∨ rn(Zn, X, Y ),

(2)

where α is an aggregate function, X are the grouping
and Y the aggregation attributes. The evaluation of the
query works in two phases: (1) grouping and then (2)
aggregation for each group. If a tuple fulfills multiple
conditions, it will be counted multiple times in the
aggregate function.

Their approach also allows the integration of integrity
constraints and functional dependencies. The approach
handles both bag and set semantics. As other QCP
algorithms, it returns a finite, maximally-contained set
of rewritings by building mappings from the original
relations to a set of views.

3.3 Rewriting with Constraints

Chase and Backchase: The Chase/Backchase
algorithm [23] can be used to find equivalent queries
under a set of constraints C that are defined over a set
of views and relations. C can include tuple-generating
dependencies (TGDs) as well as equality-generating
dependencies (EGDs), if the constraints are weakly
acyclic. During the chase, a universal query plan,
which includes all alternatives to answer a given query
under the constraints, is generated. Then, the backchase
searches for a minimal subset in the query plan that is
equivalent to the original query.

In [4], this approach is extended and optimized by
using a provenance-directed backchase. In the chase
phase, provenance information is stored that can be used
to generate the minimal subquery more efficiently in the
backchase phase.

Capability-Sensitive Query Processing: In [7], Garcia-
Molina et al. propose a scheme called GenCompact
for generating capability-sensitive plans for relational
queries. It is guaranteed that the sources can support,
in respect to their capabilities, the generated query
plans. Queries with the Boolean operators ∧ and ∨
are transformed into either a CNF or a DNF. Based on
the capabilites of the sources, a compact plan generator
rewrites a given query. The rewrite module reorders the

3 Complex aggregates like regression analysis and autocorrelation
consists of such aggregates.

34



H. Grunert, A. Heuer: Rewriting Complex Queries from Cloud to Fog under Capability Constraints to Protect the Users’ Privacy

predicates to execute supported operators first. A cost
model calculates for every generated plan the cost of
the plan by estimating the size of the expected result.
Afterwards, rules for pruning impure, sub-optimal and
dominating rules are applied. At last, the plan generator
produces a single plan for each condition and processes
them separately for ∨- and ∧-nodes.

Papakonstantinou et al. present a similar approach for
Capability based rewriting (CBR) in [22]. Given a set of
possible operations and a query that shall be executed on
a given layer L, CBR determines partial SPJ queries that
can be executed on L.

In [18], the theory of Answering Queries using Views
is extended to the problem of Answering Queries using
Restricted Capabilities. They use an infinite set of views
to represent a special capability of resource restricted
processors. To make this infinite set usable in practice,
the infinite set of views is partitioned into equivalence
classes. It is proven that a query can be answered by this
infinite set of views if and only if it can be answered by
a single query selected in one of the equivalence classes.

3.4 State of the Art: Summary

The approaches for Query Rewriting, Query
Containment, and Answering Queries using Views
(AQuV) introduced above are too restricted in two
aspects. First, we have to consider more complex
queries than SPJ queries such as statistical functions
in database queries and are forced to handle them in
rewritings. Second, the AQuV techniques map queries to
an allowed set of views, while we need query rewritings
to an allowed set of operators or capabilities. This is a
more complex problem than mapping to views, because
operators or capabilities are (seen formally) an infinite
set of views. Additionally, AQuV techniques aim at
queries that calculate a maximally contained subset of
the original resultset. We need a superset of the original
resultset, to be able to perform what we call remainder
queries (see the next section).

4 VERTICAL FRAGMENTATION OF
COMPLEX QUERIES

Activity and intention recognition algorithms in smart
appliances are often complex techniques like Hidden
Markov Models [16], Fast Fourier transformations
[14] and autocorrelation and regression analysis tasks.
Currently, most systems collect data from various
sensors and store them in the cloud. Then, the
actual calculation is done on a cluster of multiple high
performance servers. Privacy is often compromised,
because sensible information is handed towards the

cloud, even if this information can be preprocessed and
prefiltered on a local node.

Our approach splits a complex query vertically into
query fragments and remainder queries. Each of these
fragments and remainders can be calculated on a node
that has enough capacities and allows specific operations
to be executed.

Given a query Q and a set of Node Layers L, Q
is rewritten and split into a partial query Q1 and a
remainder query Qδ . Q1 can be executed on L1 locally,
while the remainder Qδ is sent to the next Layer L2. If
L2 supports all operations in Qδ , Qδ is executed on L2

and the result is returned. Otherwise, Qδ is split into a
partial query Q2 and a new remainder query Qδ′ and the
procedure is repeated with Qδ′ until the cloud layer is
reached. This leads to a query chain on a database D:

Q(D) := Qn(Qn−1(. . . Q1(D))) (3)

The results of the partial queries always contain a
superset of the results of what is needed to get the same
result as the original query. A simple, but quite negative
example for a partial query Qn is a query that returns
every remaining tuple and every attribute:

Qn := π∗(σTrue(Qn−1(Dn−1))), (4)

where Dn−1 is the data processed on the layer Ln−1.

4.1 Answering Queries using Operators
(AQuO)

To find a query that contains the minimal amount of
additional information, but contains only a restricted set
of operations, we have to revisit the Query Containment
Problem as the theory in the background. The classical
Query Containment Problem is best known from the
“Answering Queries using Views” problem, which is
specified as follows: Given a database D, a query Q and
a set of views V overD, we search for a queryQ1, which
is a rewriting r over D and uses only the views in V , so
that

Q1(D) v Q(D)⇔ ∀d ∈ D : Q1(d) ⊆ Q(d). (5)

We say that Q1 is a Maximally contained set of
Rewritings of Q(D), if

6 ∃Q′ : Q1(D) @ Q′(D) v Q(D). (6)

In the best case, Q1(D) ≡ Q(D) holds.
We will now slightly modify the AQuV problem

to motivate our Answering Queries using Operators
(AQuO) problem: Given a database D, a query Q and
a set of Layers L with each Li ∈ L having a set of

35



Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

operators Oi. The AQuO-problem asks for a rewriting
r with r(Q) = Q1, such that

Q1(D) w Q(D)⇔ ∀d ∈ D : Q1(d) ⊇ Q(d) (7)

and Q1 uses only operations from O1.
We call Q1 a Rewriting Supremum4, if

6 ∃Q′ : Q1(D) A Q′(D) w Q(D). (8)

In the best case, Q1(D) ≡ Q(D) holds. The best case is
equal to the AQuV point of view from above.

The tricky point: As we mentioned in the Introduction,
we want to minimize the amount of data processed by
the information systems. With AQuO, it seems that Q1

returns more data as a result of the query than the original
query Q.

In reality, information systems gather all information
from the data sources and do the aggregation and
selection part of the query at a central node (cloud server
with data warehouse, . . . ). As a consequence, we have
as Q1 a “SELECT * FROM table” query, which is
executed on, for instance, a sensor node and collects
all data. Nothing is preselected or preaggregated here,
and the remainder query Qδ does nearly all the work
on the server side. This happens quite often when
new information systems are designed. The developers
frequently do not know which minimal amount of data
is needed to perform the given task. Thus, they decide
to collect all the data and they decide only later, which
data will actually be included in the calculation when the
system goes live: “Give me all you got. I will decide
later on what happens with the data”.

4.2 Algorithm

Like in other Query Containment Problem (QCP)
approaches, we deal with conjunctive normal form
queries QCNF , which have the form

Q(α(X);Y, P ) :=
∧
i

∨
j

(¬)pij , (9)

where α is an aggregate function over a set of attributes
X grouped by a set of attributes Y and pij is a (negated)
predicate from the set of predicates P . In our approach,
a predicate can either be a simple comparison (attribute-
attribute or attribute-constant) from a where- or having-
clause or even a subquery. We call each disjunction term
a subgoal Gi of QCNF :

Gi =
∨
j

(¬)pij . (10)

4 A Rewriting Supremum is a rewritten query, that returns minimally
more than or the same amount of tuples as the original query

For example, subgoal G3 of the example query Q is
defined as follows:

G3 := AV G(z) < AV G(x), (11)

where the term is part of a having-clause defined in Q.
Given a query Q in a CNF, we want to find a mapping

r to a query Q1 with a limited set of operations. In order
to find r, we have to map each subgoal Gi of Q to one
or more equivalent or superset-generating subgoals Gi′
in Q1.

Assume that Q has the form

Q := G1 ∧G2 ∧ · · · ∧Gx . . . Gn (12)

and Q1 has the form

Q1 := G1 ∧G2′ ∧ · · · ∧ > . . . Gm, (13)

where m and n are the number of subgoals in Q and
Q1, and > is a subgoal that returns every tuple. We call
m(G1) ≡ G1 an equivalent, operator retaining mapping
of the subgoal G1, if

∀d ∈ D : m(G1)(d) ≡ G1(d)∧ops(G1) = ops(m(G1))
(14)

holds. m(G2) ≡ G2′ ∧ G2′′ ∧ . . . is an equivalent,
fragmented mapping of the subgoal G2, if it is an
equivalent mapping that is split into multiple subgoals
that may contain different operators. A partial mapping
m(Gn) maps a subgoal Gn to a subgoal Gm, so that

∀d ∈ D : Gm(d) := m(Gn)(d) ⊇ Gn(d) (15)

holds. We call m(Gx) = > a not applicable mapping, if
Gx contains at least one operator that cannot be executed
on the current layer and there exists no suitable rewriting
of Gx. The number of subgoals can differ from Q to
Q1 when fragmented mappings occur or there exists a
subgoal Gw in Q1 which has multiple corresponding
subgoals in Q.

Example: Let Q be the example query from the
Introduction, given in conjunctive normal form and L :=
{L1, L2}. Assume that L2 has the capability to perform
all operations. L1 has limited capabilities, so that only a
subset of operations O1 is allowed: O1 := {<,<=,=>
,>,=,MIN,MAX}. Q consists of four subgoals:

• G1 := x < 5

• G2 := y BETWEEN 2AND 5

• G3 := AV G(z) < AV G(x)

• G4 := regr slope(x, y) < 1

36



H. Grunert, A. Heuer: Rewriting Complex Queries from Cloud to Fog under Capability Constraints to Protect the Users’ Privacy

With regards to O1, G4 cannot be executed on L1,
while G2 can easily be rewritten by replacing the
between predicate by <=- and =>-predicates. G1 is
a simple subgoal that can directly be executed on L1. By
applying the query rewriting approach by Can Türker, it
is possible to replace the predicates in G3 by MIN- and
MAX-predicates.

One possible rewriting of Q is the partial query Q1 on
L1:

Q1(x, y, z; y) := x < 5

∧ y >= 2 ∧ y <= 5

∧ MIN(z) < MAX(x)

∧ >.

(16)

with the following subgoals:

• Ga := x < 5

• Gb := y >= 2

• Gc := y <= 5

• Gd :=MIN(z) < MAX(x)

• Ge := >

The rewriting of Q to Q1 contains an equivalent
mapping from G1 to Ga and an equivalent, fragmented
mapping from G2 to Gb and Gc. m(G3) = Gd is a
partial mapping based on the condition thatMIN(X) ≤
AV G(X) and AV G(X) ≤ MAX(X) holds [30]. By
this, we can assume that Gd returns at least the same
tuples than G3. Ge returns the whole data, because there
exists no mapping (as far as we know) of G4 that returns
more tuples than G4 but less than all tuples.

Given two queries Q1, Q and a database D, we can
solve the AQuO problem by testing the subgoals:

Q1(D) w Q(D)⇔
∀d ∈ D : ∀Gi ∈ Q : ∃m : m(Gi)(d) ⊇ Gi(d)

(17)

For every database instance d of the database D and
every subgoal Gi from the original query Q, there exists
a mapping m, such that the evaluation of m(Gi) on d
returns more tuples than Gi. In the worst case, all tuples
are returned for each subgoal.

Based on this, we can express the Rewriting
Supremum (RS) in a similar way. Q1 is a RS, if

6 ∃Q′ : Q1(D) A Q′(D) w Q(D)⇔
∀d ∈ D : ∀Gi ∈ Q : 6 ∃m′ :

m(Gi)(D) ⊃ m′(Gi)(D) ⊇ Gi(D)

(18)

4.3 Splitting the Query

Up to now, we have built a partial query Q1 from the
given query Q. Q1 is executed on the layer L1. For the
rest of the execution, a remainder query Qδ is needed,
which removes the additional tuples and does the final
aggregation on top of Q1(D): Q ≡ Qδ(Q1(D)).
Q can be expressed as a conjunction of three subsets

of its subgoals: Q :=
∧
GX ∧

∧
GY ∧

∧
GZ , where

• GX := set of (mapped) equivalent subgoals

• GY := set of superset generating subgoals

• GZ := set of unmapped subgoals

Example: In the previous step, we transformed the
query Q into the partial query Q1. Given that partial
rewriting, every subgoal from Q can be put into one of
the three sets:

• GX := {x < 5, y BETWEEN 2AND 5}

• GY := {AV G(z) < AV G(x)}

• GZ := {regr slope(x, y) < 1}
By constructing GX , GY and GZ , Qδ can be defined

as follows:

Qδ :=
∧
GY ∧

∧
GZ (19)

Thus, Qδ contains all partial and all not applicable
mapped subgoals. On the other hand, all subgoals from
GX , that have been fully executed by Q1 on L1, do not
have to be executed again in Qδ .

Example: By combining GY and GZ , Qδ is defined as
follows:

Qδ := AV G(z) < AV G(x)

∧ regr slope(x, y) < 1
(20)

The idea of splitting predicates in multiple parts is
not completely new. It is a well-known concept that is
used by algebraic optimization [29] in many database
systems. For example, one of these rules allows the
partial execution of selection predicates F on the base
relations r1 before a join with r2: σF (r1 ./ r2) ⇔
σF (r1) ./ r2, if the attributes in F are a subset of the
relation schema of r1.

While these rules were intended to be used for a more
efficient query processing by reducing the amount of
comparisons between both relations, they can also be
used for increasing privacy. If some parts of the selection
are done on the local nodes (the base relations), less
data is sent to the next layer, which executes the join
operation. Our approach extends these algebraic rules
by adding new query containment checks. In the next
section, we will show how this approach can easily be
assigned to complex aggregate queries.

37



Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

4.4 Proof of Equivalence

Before we can handle complex queries, we have to show
the correctness of our query rewriting. After rewriting
the original query Q, we have a query chain QC (see
equation 3). We will now show that Q is equivalent
to QC. Without losing generality, we will prove the
equivalence for a single rewriting step. Thus, our query
chain consists of Q1 as the partial query and Qδ as the
remainder query:

Q ≡ Qδ(Q1(D)) (21)

Example:

Q ≡AV G(z) < AV G(x)

∧ regr slope(x, y) < 1(

x < 5

∧ y >= 2 ∧ y <= 5

∧MIN(z) < MAX(x)

∧ >)

(22)

Proof. “⇒”:
The proof follows directly from the construction of Q1

and Qδ from Q (see Subsection 4.2).
“⇐”:

From logical optimization of database queries, we know
that the logical AND is commutative for two sets of
selection predicates F1 and F2:

σF1(σF2(D))⇔
σF1∧F2(D)⇔
σF2(σF1(D))

(23)

Let F2 contain the predicates from Qδ and F1 contain
the predicates from Q1. Because

∀Gx ∈ Qδ : ∃Gx′ ∈ Q1, (24)

withGx(D) ⊆ Gx′(D), based on the construction ofQ1

and Qδ , we know that Gx′ returns a superset of tuples
of D in respect to Gx. Due to this, we can remove
each Gx′ from F1 in the F1 ∧ F2 selection predicate,
so that only the predicates from F2 and the unreplicated
predicates in Q1 remain. In the case of rewritten
subgoals, the equivalent subgoal from the construction
step is inserted instead of the corresponding Gx. The
query now contains only the predicates that are also used
in Q. By this, Q(D) ≡ Qδ(Q1(D)) holds.

Example: For our running example, F1 contains the
predicates x < 5, y >= 2, y <= 5, MIN(z) <

MAX(x) and >. F2 consists of the predicates
AV G(z) < AV G(x) and regr slope(x, y) < 1. Thus,

F2(F1(D)) := AV G(z) < AV G(x)

∧ regr slope(x, y) < 1(

x < 5

∧ y >= 2 ∧ y <= 5

∧MIN(z) < MAX(x)

∧ >(D)).

(25)

By applying equation 23, we get

F2 ∧ F1(D) := AV G(z) < AV G(x)

∧ regr slope(x, y) < 1

∧ x < 5

∧ y >= 2 ∧ y <= 5

∧MIN(z) < MAX(x)

∧ >(D).

(26)

Now, some predicates can be removed, because they
are overlapped by others:

1. y BETWEEN 2AND 5 ≡ y >= 2 ∧ y <= 5

2. AV G(z) < AV G(x) ⊆MIN(z) < MAX(x)

3. regr slope(x, y) < 1 ⊆ >

Thus, all right sides can be removed from F2 ∧ F1. The
following query Q′ remains:

Q′ := x < 5

∧ y BETWEEN 2AND 5

∧AV G(z) < AV G(x)

∧ regr slope(x, y) < 1(D),

(27)

which is equivalent to Q.

4.5 Unsupported Logical AND

Regarding sensor networks, the lowest layer L1 contains
nodes with a very restricted set of capabilities and
operations, or without enough energy to process more
than one subgoal at once. Therefore, it might happen that
the logic AND operation ∧ cannot be applied on L1. As
a result, complex predicates, with multiple conditions,
cannot be executed on this layer. In order to preprocess
the data on that node, one of the subgoals have to be
chosen to be executed in the query Q1. To decide
which of the subgoals will be executed, the subgoals are
ordered by their (descending) selectivity: QKNF o :=
ORDER(QKNF )

The functionORDER orders each subgoal inQKNF
by their descending selectivity. The ordering is due to

38



H. Grunert, A. Heuer: Rewriting Complex Queries from Cloud to Fog under Capability Constraints to Protect the Users’ Privacy

the fact, that a layer Li may not support the operator ∧
or do not have enough energy to process more than one
subgoal at once.

As an example, the queryQ from our running example
has the following selectivities:

• SEL(x < 5) = 0, 5

• SEL(AV G(z) < AV G(x)) = 0, 42

• SEL(y BETWEEN 2AND 5) = 0, 05

• SEL(regr slope(x, y) < 1) = 0, 01,

where SEL is the size of the expected result divided by
the cardinality of the relation. For an aggregate function
agg over a set of attributes X , this is the number of
groups specified by the grouping set Y divided by the
cardinality c of the relation R:

SEL(agg(X)) :=
#groups(Y )

c(R)
. (28)

After sorting the selectivities, the subgoal with
the highest selectivity, which contains only supported
operations, is chosen to be executed on L1. In the
example, this is the predicate x < 5. The regression
analysis, which has the highest selectivity, cannot be
executed, because it is an unsupported operation on L1.
Regarding the BETWEEN-predicate, it also cannot be
executed, because BETWEEN is unsupported and the
equivalent rewriting y >= 2 ∧ y <= 5 contains
the unsupported logical AND. The predicate, which
compares the average values of x and z, is unsupported
and we assume for this example, that the rewriting
MIN(z) < MAX(x) has a lower selectivity than
x < 5. Thus, only the predicate x < 5 remains for
the execution on L1.

4.6 Heads

Based on our rewriting concept, we can also define
which attributes have to be passed through the query
chain. As a prerequisite, we define two functions var
and head: head(X) returns the head of a query X , i. e.
the query signature. var(X) returns all variables given in
a subgoal predicate X or a query head X .

The required attributes that must be returned by the
remainder query Qδ are the same as in the original query
Q:

var(head(Qδ)) := var(head(Q)) (29)

Similar to Qδ , Q1 must contain all variables from the
head of Qδ . Additionally, all attributes that appear in a

Algorithm 1: Query Distribution to Layers
Data: Query tree QT, set of layers L
Result: a set of query fragments F
i := 0;
F0j := leaf(QT);
while i <= n do

if Fij v Li then
add parent to Fij ;
combine all Fij with same parent;

else
assign Fij to Li;
remove Fij from QT;
add Dij at same position;
i++;

end
end
if Ln contains root(QT) then

return F ;
else

return ⊥;
end

subgoal of Qδ , must be passed by Q1:

var(head(Q1)) := var(head(Qδ))⋃
var(Gi), Gi ∈ Q1

(30)

In our running example, Q1 returns the attributes x, y
and z. x and y are needed for the final output of Qδ and
z appears in the average comparison.

4.7 Distribution of the Aggregate Fragments

If a query Q is translated into a query tree (see the next
section), the assignment of the query fragments to the
layers can directly be taken over by parsing the tree
from its leaves to its root. Algorithm 1 shows how each
fragment is assigned to a suitable layer. The algorithm
takes the query tree QT as an input. Additionally, a
set of layers L is given. Each layer Li ∈ L, 0 < i <
n, i ∈ N, has a set of capabilities, defined by the allowed
operations Oi. With L0, we define the bottom layer
where the raw data is processed, while Ln is the final
output layer which outputs the result ofQ. The algorithm
outputs a set of fragments Fi which can be executed on
the layer Li.

After initialization, the algorithm parses the tree,
beginning at the leaf nodes. While each node supports
only allowed operations from Oi, the whole subtree
is assigned to Li. Otherwise, the unsupported nodes
are placed on the next layer Li+1 and the subtrees are
replaced by leaf nodes, which contain the intermediate

39



Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

result. The procedure is repeated until the root of the
query tree is reached. Our algorithm is based on the basic
Query Folding algorithm [25], which can be computed in
time exponential in the size of the query. Implementation
details and test results can be found in [32].

5 REWRITING COMPLEX QUERIES

Previous approaches for rewriting queries have several
drawbacks in terms of complex aggregates and functions.
Regarding linear regression, correlation or even Hidden
Markov Models and Support Vector Machines, these
approaches will fail to find a rewriting r for a given query
Q which contains complex aggregates. This is either due
to the usage of two or more different simple aggregates
or because two counts are used on different attributes.
With respect to the approach of Türker [30], the result
will always lead to an overlapping relationship for Q and
r.

Currently, only simple algorithms can be split up into
their basic functions. The transformation of complex
queries into simple fragments can be done automatically
with our approach. By rewriting the complex query
Q into Qj and Qδ , where Qδ is executed on a more
powerful layer, we can transfer only those data to the
cloud, which do not compromise privacy. We will
now show how an extension of the theory of query
containment and query optimization can consider more
complex queries, including complex statistical functions
using aggregation and grouping.

The handling of data in IoT environments will be
rethought fundamentally. Currently, data is just pushed
to the cloud while the layered approach enables new
methods to store, process and query data on the lower
layers.

As we mentioned before, it is possible to use existing
algorithm to calculate a Rewriting Supremum under
capability constraints, if and only if the rewriting is
equivalent to the query, because the rewriting returns
exactly the same set of answers as the query. Thus, it
cannot contain any additional information.

5.1 Meta Algebra

We introduced our Layer fragmentation in [12] and
showed how a query can be split into fragments [11].
We will now introduce our meta algebra for rewriting
complex queries for a layered evaluation.

Our algebra is a tupleH := (O,D) withO being a set
of allowed operations5 and D being a multiset of typed
data6. At this point, we will start with a simple example:

5 For the relational case: operations from the relational algebra
6 For the relational case: relations and views

AsD, we have the domain of integer values and asO the
operations “+” and “*”. Correspondingly, H is defined
as follows: H := ({+, ∗},Z)

Data and operations can be seen as nodes in a directed
forest7. A directed forest is a directed acyclic graph,
which is not necessary connected (multiple trees). Data
nodes can have a directed outgoing edge to an operator
node. These nodes are the leaves of the trees. They are
raw data, which are still not processed by an operation.

An operator node has one or more incoming edges
from data or operator nodes and can have a directed
outgoing edge (with a typed output) to another operator
node. Consequently, an operation cannot be a leaf.
Operations can have a certain number of incoming edges
(the number of arguments) and each edge has to be of the
appropriate type (e. g. multiplication is only allowed on
numeric values, not on databases).

For simplification, data nodes and subtrees can occur
multiple times (bag semantics). This will allow an easier
evaluation when rewriting the queries. As a special
case, the forest will become a tree when we have the
final result of a query or a function after executing the
last operation. Table 1 shows the translation of the
calculation (1 + 2) ∗ (2 + 3) into the forest structure.
The translation is done step by step from the raw data
H0, over the interim forest H1 to the final tree H2.

In database research, such trees are well-known when
it comes to query optimization. Our approach extends
these trees by allowing any type of operation (in this
paper we focus on relational algebra with aggregates
and calculations) and by restricting the allowed set
of operations by capability constraints. Additionally,
the operations and the data will be split on multiple
computing units with different capability constraints.

5.2 Reducing the Complexity

When it comes to complex aggregates it becomes more
difficult to determine the relationship between two
queries. To reduce the complexity we introduce the
concept of operator equivalence and containment. A set
of operators O1 contains (wO) another set of operators
O2 if it can do at least the same operations. For example,
the set consisting only of the sum operator is a subset of
the set consisting of the add operator:

{add} wO {sum}. (31)

While the sum operator can only calculate the total
sum for a given data setD, the add operator can calculate
the sum of any two elements over D. Another well-
known example is the average over a data set, which is a

7 If we use set semantics: directed, hierarchical graph

40



H. Grunert, A. Heuer: Rewriting Complex Queries from Cloud to Fog under Capability Constraints to Protect the Users’ Privacy

Table 1: Translation of a calculation into a forest structure

H0 := ({+, ∗}, {1, 2, 3}) 1 2 3

H1 := ({+, ∗}, {(1 + 2), (2 + 3)})
+

1 2

+

2 3

H2 := ({+, ∗}, {(1 + 2) ∗ (2 + 3)})

*
+

1 2

+

2 3

subset of the set consisting of the operations sum, count
and division:

{avg} vO {sum, count, div}. (32)

O1 andO2 are said to be equivalent (≡O), if they contain
each other:

O1 ≡O O2 ⇔ O1 vO O2 ∧O2 vO O1 (33)

The same applies to the data: One set of data D1 is
contained in D2, if every tree t ∈ D1 is also in D2 or can
be rewritten by only using the operators from the related
set O1. The rewriting can be achieved by using either
the associative, distributive, . . . laws, the optimization
rules of the relational algebra as well as the algorithm
presented in Section 2. Two data sets are equivalent, if
D1 contains D2 and D2 contains D1:

D1 ≡D D2 ⇔ D1 vD D2 ∧D2 vD D1 (34)

By breaking down complex functions and aggregates
into sets of primitives we gain two advantages: First, we
do not have to test the containment relation for every
function against every other function. Second, we also
get to know which complex functions require the same
operators and the same data nodes for the calculation.
By this, we can detect privacy violations. For instance, a
smart (assistive) system wants to calculate the regression
slope as part of an intention recognition analysis. By
breaking down the regression into its primitives addition,
multiplication and count, we can easily see that these
operations can also be used to perform a correlation
analysis over the data, which may be an unintended
function or even malicious attack to comprimise the
privacy of the user.

5.3 Query Execution

Algorithm 3 shows how for a database D and a set
of layers L a given query Q can be fragmented into
subqueriesQi, so thatQi can be executed on a capability
restricted layer Li. In the first step, the conjunctive
normal form QKNF is built for Q, such that QKNF :=
G1∧· · ·∧Go, withGj := pj1∨· · ·∨pjn. Afterwards, the
conjuncts are ordered by their selectivity in descending
order. The order is stored in QKNF o .

Algorithm 2: ExecuteSubgoals
Data: An ordered KNF-Query QKNF o , Database

D, set of n layers L
Result: A partially executed Query Q′KNF o

while Lx do not support ∧ x < n do
Ghigh :=
findHighSelectivitySubgoal(QKNF o);
if ∃Ghigh then

Dx+1 := Ghigh(Dx);
Remove Ghigh from QKNF o

end
x++;

end

From the lowest layer L0 onwards, it is checked
whether Lx supports the operator ∧. If not, the query
cannot be executed on Lx, but it is possible to execute
a single subgoal Gj (see Algorithm 2), if Lx has the
capability to execute it. If such subgoals exist, the
subgoal with the highest selectivity is executed on the
data Di from Li and the preaggregated, prefiltered
result is stored in Dx+1 and handed up to layer Lx+1.
Additionally, Gj is removed from QKNF o , because a
second execution will have no effect on the data. The
procedure is repeated until Lx supports ∧.

As soon as a layer Lx supports ∧, the combination
of subgoals is considered for execution. If it is possible
to execute one or more subgoals Gi with the specified
operations on Lx, they will be executed and removed
from the remainder query Qx+1, which will be executed
on Lx+1. In case that a Rewriting Supremum r for Gi
exists, r(Gi) will be executed on Lx, but Gi will remain
inQx+1 to eliminate that “bit more” from r(Gi). If there
exists no suitable rewriting for Gi, it will be executed on
Lx+1.

As soon as all subgoals are processed, the query
Q′x, which contains all remaining subgoals or their
rewritings, will be executed on Lx resulting in the
resultset Dx+1. If there are no subgoals to be executed
on Lx+1, Dx+1 is equivalent to Q(D) and can be sent
to the top layer. Otherwise, the capability check and the
rewriting is repeated until the top LayerLn is reached. In
case that the top layer is reached, the query is executed

41



Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

Algorithm 3: Query Rewriting and Partial
Execution

Data: Query Q, Database D, set of n layers L
Result: A rewritten Query Q’
QKNF := buildKNF (Q);
QKNF o := order(QKNF );
x := 0;
ExecuteSubgoals;
Qx := QKNF o ;
Dx := getData(Lx);
while x < n do

for each Gi in Qx do
if Lx supports Op(Gi) then

Keep Gi on Lx;
else

if ∃ Rewriting r: r(Gi) ≡ Gi and r(Gi)
is supported on Lx then

replace Gi with r(Gi);
else

if ∃ Rewriting r: Gi @ r(Gi) and
r(Gi) is Rewriting Supremum and
r(Gi) is supported on Lx then

replace Gi with r(Gi);
mark Gi for Lx+1;

else
remove Gi;
mark Gi for Lx+1;

end
end

end
end
Qx :=

∧
i Gi on Lx;

Dx+1 := Execute Qx(Dx) on Lx;
end
return Dx+1;

and there are still subgoals remaining, there will be no
result. But that would also mean that Q(D) could not
have been executed on Ln at all, because it needs the
same base operations as its rewriting.

6 EXAMPLE QUERIES

Figure 3 shows a rewriting tree for the calculation of
a linear regression slope reg slope(X,Y ) over two
numerical attributes X and Y . The regression slope is
calculated as follows:

reg slope(X,Y ) :=
∑n

i=1(Xi−X)∗(Yi−Y )∑n
i=1(Xi−X)

2

As a first distribution approach, the query is split

into two fragments: The blue subqueries calculate
the difference of an X value to the average of X,
X . The same applies for the Y values in the green
subqueries. Because

(
Xi −X

)
is needed twice in the

calculation, it appears twice as a data node for the rest
of the calculation, which is done on the Cloud Layer
(orange). The rest of the query (pair-wise multiplication,
summation and division) is performed on that layer.

Figure 4 shows how a correlation corr(X,Y ) over
two numerical attributes X and Y can be represented
in a rewriting tree. The distribution of the query stays
the same as in the regression analysis. The correlation is
calculated as follows:

corr(X,Y ) :=
∑n

i=1(Xi−X)∗(Yi−Y )√∑n
i=1(Xi−X)

2∗
∑n

i=1(Yi−Y )
2

For correlation analysis, it is insufficient to build query
fragments that calculate the difference between the X-
values and the mean of the X-values (in the figures with
blue background) on the sensor node sending the rest of
the query to the cloud provider. The same applies to the
Y -values (green background). This is due to the fact that
these intermediate results can also be used to perform
a regression analysis. To prevent such an unintended
analysis, the data has to be in a more aggregated form.
This means, that the data nodes, which arrive at the
Cloud Layer, must contain only data which cannot be
used by any other algorithm.

Assume for our scenario, that the Sensor Layer does
not have enough power to aggregate the data any further.
To prevent the data to be sent to the Cloud Layer in its
preaggregated form, we add an additional layer between
the Sensors and the Cloud: the Home Media Center
Layer. We assume that this layer has enough power to
multiply each x-y-pair in the counter and to square and
to sum up the x-y-pairs in denominator (gray layer in
Figure 5). The rest of the analysis, the summation of the
counter, the extraction of the root in the denominator and
the final division, is done on the Cloud Layer. Note that
the distribution of the query fragments in the regression
slope tree has also to be modified in order to prevent an
unintended correlation analysis.

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented a new approach for rewriting
queries with aggregates under capability constraints.
We introduced a concept for decomposition of complex
aggregates into simple atoms and showed how a query
can be rewritten into another query with a restricted set
of operations, which returns a Rewriting Supremum to
answer a given query.

As a use case, we utilized our approach to generate a

42



H. Grunert, A. Heuer: Rewriting Complex Queries from Cloud to Fog under Capability Constraints to Protect the Users’ Privacy

/∑
*

-

Xi ∈ X /∑
Xi ∈ X

COUNT

Xi ∈ X

-

Yi ∈ Y /∑
Yi ∈ Y

COUNT

Yi ∈ Y

∑
2

-

Xi ∈ X /∑
Xi ∈ X

COUNT

Xi ∈ X

Figure 3: Rewriting tree for the aggregate function regression slope (green/blue: Fog Layer, orange: Cloud
Layer)

/∑
*

-

Xi ∈ X /∑
Xi ∈ X

COUNT

Xi ∈ X

-

Yi ∈ Y /∑
Yi ∈ Y

COUNT

Yi ∈ Y

√

*∑
2

-

Xi ∈ X /∑
Xi ∈ X

COUNT

Xi ∈ X

∑
2

-

Yi ∈ Y /∑
Yi ∈ Y

COUNT

Yi ∈ Y

Figure 4: Rewriting tree for the aggregate function correlation (green/blue: Fog Layer, orange: Cloud Layer)

/∑
*

-

Xi ∈ X /∑
Xi ∈ X

COUNT

Xi ∈ X

-

Yi ∈ Y /∑
Yi ∈ Y

COUNT

Yi ∈ Y

√

*∑
2

-

Xi ∈ X /∑
Xi ∈ X

COUNT

Xi ∈ X

∑
2

-

Yi ∈ Y /∑
Yi ∈ Y

COUNT

Yi ∈ Y

Figure 5: Rewriting tree for the aggregate function correlation with an improved fragmentation (green/blue:
Fog Layer, orange: Cloud Layer, gray: Home Media Center Layer)

privacy aware decomposition of regression an correlation
analysis into several query fragments, which are
distributed in an Internet of Things scenario. In this
scenario, simple filters and projections are done on a
sensor node, while parts of complex aggregates are done
on nodes between the sensors and the cloud server. The
final result is computed on the cloud server, which does
not get the raw input any more. Thus, no unintended
analysis can be applied by the cloud provider and the
user’s privacy is protected.

It remains an open research question, if it is possible
to gain additional knowledge out of the aggregated data
via a malicious query Q’ on the intermediate results. For

example, Q’ could be an inverse function, which restores
the raw data from the aggregated results. Furthermore,
intermediate results could be used for other calculations
than intended. In our example with the correlation and
the regression analysis, the blue and green intermediate
results are the same. Thus, both queries are possible,
even if only one was intended.

Future work will concentrate on finding rewritings,
which allow no further usage of intermediate results
rather than the intended queries. Also, we did not
provide a detailed complexity analysis of our rewriting
approach. Another interesting point is to integrate
further rewriting algorithms, especially for aggregate

43



Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

queries, in our distribution algorithm to find more
suitable rewritings for a given set of operations. We also
want to investigate how encryption mechanisms can be
integrated into the computation chain.

ACKNOWLEDGMENTS

We thank the following students for their support by
implementing parts of our framework: Felix Wächter,
Martin Haufschild, Jan Tepke, Hannes Steffenhagen,
Christoph Damerius (SQL query splitting), Richard
Dabels, Johann Kluth, Jörg Stüwe, Roman Titok,
Alex Lymar (anonymization) and Johannes Goltz
(deanonymization). We also thank the anonymous
referees for their constructive comments.

REFERENCES

[1] R. Chirkova, “Query Containment,” in
Encyclopedia of Database Systems. Springer US,
2009, pp. 2249–2253.

[2] S. Cohen, W. Nutt, and A. Serebrenik, “Rewriting
Aggregate Queries Using Views,” in Proceedings
of the eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems,
1999, pp. 155–166.

[3] T. Dalenius, “Finding a Needle In a Haystack or
Identifying Anonymous Census Records,” Journal
of Official Statistics, vol. 2, no. 3, pp. 329–336,
1986.

[4] A. Deutsch and R. Hull, “Provenance-Directed
Chase&Backchase,” in In Search of Elegance in
the Theory and Practice of Computation - Essays
Dedicated to Peter Buneman, ser. Lecture Notes in
Computer Science, V. Tannen, L. Wong, L. Libkin,
W. Fan, W. Tan, and M. P. Fourman, Eds., vol.
8000. Springer, 2013, pp. 227–236.

[5] O. M. Duschka and M. R. Genesereth, “Query
Planning in Infomaster,” in Proceedings of the 1997
ACM symposium on Applied computing, 1997, pp.
109–111.

[6] C. Dwork, “Differential privacy: A Survey of
Results,” in International Conference on Theory
and Applications of Models of Computation, 2008,
pp. 1–19.

[7] H. Garcia-Molina, W. Labio, and R. Yerneni,
“Capability-sensitive Query Processing on Internet
Sources,” in Proceedings of the 15th International
Conference on Data Engineering 1999, 1999, pp.
50–59.

[8] J. Goltz, “De-Anonymisierungsverfahren:
Kategorisierung und deren Anwendung für
Datenbankanfragen,” Bachelor’s thesis, Universität
Rostock, 2017, in German.

[9] H. Grunert and A. Heuer, “Big Data und der
Fluch der Dimensionalität: Die effiziente Suche
nach Quasi-Identifikatoren in hochdimensionalen
Daten,” in Proceedings of the 26th GI-Workshop
on Foundations of Databases (Grundlagen von
Datenbanken), 2014, in German.

[10] H. Grunert and A. Heuer, “Privacy Protection
through Query Rewriting in Smart Environments,”
University of Rostock, Tech. Rep. CS-01-16, 2016.

[11] H. Grunert and A. Heuer, “Privacy Protection
through Query Rewriting in Smart Environments,”
in Proceedings of the 19th International
Conference on Extending Database Technology,
EDBT 2016, Bordeaux, France, Bordeaux,
France, March 15-16, E. Pitoura, S. Maabout,
G. Koutrika, A. Marian, L. Tanca, I. Manolescu,
and K. Stefanidis, Eds., 2016, pp. 708–709.

[12] H. Grunert, M. Kasparick, B. Butzin, A. Heuer,
and D. Timmermann, “From Cloud to Fog and
Sunny Sensors,” in Proceedings of the Conference
”Lernen, Wissen, Daten, Analysen”, Potsdam,
Germany, September 12-14,, R. Krestel, D. Mottin,
and E. Müller, Eds., vol. 1670, 2016, pp. 83–88.

[13] A. Y. Halevy, “Answering Queries Using Views:
A Survey,” The VLDB Journal, vol. 10, no. 4, pp.
270–294, 2001.

[14] J. Joshi, R. Goecke, S. Alghowinem, A. Dhall,
M. Wagner, J. Epps, G. Parker, and M. Breakspear,
“Multimodal Assistive Technologies for
Depression Diagnosis and Monitoring,” Journal
on Multimodal User Interfaces, vol. 7, no. 3, pp.
217–228, 2013.

[15] P. G. Kolaitis and M. Y. Vardi, “Conjunctive-
Query Containment and Constraint Satisfaction,”
17. Symposium on Principles of Database Systems,
Seattle, pp. 205–213, 1998.

[16] F. Krüger, K. Yordanova, A. Hein, and T. Kirste,
“Plan Synthesis for Probabilistic Activity
Recognition,” in ICAART (2), 2013, pp. 283–
288.

[17] A. Levy, A. Rajaraman, and J. Ordille, “Querying
Heterogeneous Information Sources Using Source
Descriptions,” Stanford InfoLab, Tech. Rep., 1996.

[18] A. Y. Levy, A. Rajaraman, and J. D. Ullman,
“Answering Queries Using Limited External Query
Processors,” J. Comput. Syst. Sci., vol. 58, no. 1, pp.
69–82, 1999.

44



H. Grunert, A. Heuer: Rewriting Complex Queries from Cloud to Fog under Capability Constraints to Protect the Users’ Privacy

[19] N. Li, T. Li, and S. Venkatasubramanian, “t-
closeness: Privacy Beyond k-Anonymity and l-
Diversity.” in ICDE, vol. 7, 2007, pp. 106–115.

[20] T. L. Li, N. Li, J. Zhang, and I. Molloy, “Slicing:
A New Approach for Privacy Preserving Data
Publishing,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD), vol. 24, no. 3, pp.
561–574, March 2012.

[21] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam, “l-diversity: Privacy
beyond k-Anonymity,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 1,
no. 1, p. 3, 2007.

[22] Y. Papakonstantinou, A. Gupta, and L. Haas,
“Capabilities-based Query Rewriting in Mediator
Systems,” Distributed and Parallel Databases,
vol. 6, no. 1, pp. 73–110, 1998.

[23] L. Popa, “Object/Relational Query Optimization
with Chase and Backchase,” IRCS Technical
Reports Series, p. 19, 2001.

[24] R. Pottinger and A. Halevy, “MiniCon: A Scalable
Algorithm for Answering Queries Using Views,”
The VLDB Journal - The International Journal on
Very Large Data Bases, vol. 10, no. 2-3, pp. 182–
198, 2001.

[25] X. Qian, “Query Folding,” in ICDE. IEEE
Computer Society, 1996, pp. 48–55.

[26] P. Samarati, “Protecting respondents identities
in microdata release,” IEEE Transactions on
Knowledge and Data Engineering, vol. 13, no. 6,
pp. 1010–1027, 2001.

[27] M. Schmude, “Systematische Untersuchung
der Anfragekapazität verschiedener DBMS,”
Bachelor’s thesis, Universität Rostock, 2016, in
German.

[28] W. Shi and S. Dustdar, “The Promise of Edge
Computing,” Computer, vol. 49, no. 5, pp. 78–81,
2016.

[29] J. M. Smith and P. Y.-T. Chang, “Optimizing
the Performance of a Relational Algebra Database

Interface,” Communications of the ACM, vol. 18,
no. 10, pp. 568–579, 1975.

[30] C. Türker, Semantic Integrity Constraints in
Federated Database Schemata, ser. DISDBIS.
Infix Verlag, St. Augustin, Germany, 1999.

[31] V. Vassalos, “Answering Queries Using Views,” in
Encyclopedia of Database Systems. Springer US,
2009.

[32] F. Wächter and M. Haufschild, “PArADISE
Sensor- and Appliance-Level,” https://eprints.dbis.
informatik.uni-rostock.de/823/, 2017, in German.

AUTHOR BIOGRAPHIES

Hannes Grunert was born in
Ribnitz-Damgarten (Germany).
He received his B.Sc. degree and
his M.Sc. degree in Computer
Science from the University of
Rostock, Germany, in 2011
and 2013, respectively. He is
currently a PhD student at the
University of Rostock. His work
is focused on privacy aware
query processing.

Andreas Heuer studied
Mathematics and Computer
Science at the Technical
University of Clausthal from
1978 to 1984. He got his PhD
and Habilitation at the TU
Clausthal in 1988 and 1993,
resp. Since 1994, he is full
professor for Database and
Information Systems at the
University of Rostock. He
is interested in fundamentals

of database models and languages, and in big data
analytics, here especially performance, privacy and
provenance.

45

https://eprints.dbis.informatik.uni-rostock.de/823/
https://eprints.dbis.informatik.uni-rostock.de/823/

	Introduction
	PArADISE
	State of the Art
	Classical Query Rewriting
	Query Rewriting with Aggregates, Dependencies and Complex Comparisons
	Rewriting with Constraints
	State of the Art: Summary

	Vertical Fragmentation of Complex Queries
	Answering Queries using Operators (AQuO)
	Algorithm
	Splitting the Query
	Proof of Equivalence
	Unsupported Logical AND
	Heads
	Distribution of the Aggregate Fragments

	Rewriting Complex Queries
	Meta Algebra
	Reducing the Complexity
	Query Execution

	Example Queries
	Conclusions and Future Work

