
c© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 4, Issue 1, 2017

http://www.ronpub.com/ojsw
ISSN 2199-336X

Scalable Generation of Type Embeddings
Using the ABox
Mayank Kejriwal, Pedro Szekely

Information Sciences Institute, USC Viterbi School of Engineering, 4676 Admiralty Way, Marina Del Rey, CA,
United States of America 90292, {kejriwal, pszekely}@isi.edu

ABSTRACT

Structured knowledge bases gain their expressive power from both the ABox and TBox. While the ABox is rich
in data, the TBox contains the ontological assertions that are often necessary for logical inference. The crucial
links between the ABox and the TBox are served by is-a statements (formally a part of the ABox) that connect
instances to types, also referred to as classes or concepts. Latent space embedding algorithms, such as RDF2Vec
and TransE, have been used to great effect to model instances in the ABox. Such algorithms work well on large-scale
knowledge bases like DBpedia and Geonames, as they are robust to noise and are low-dimensional and real-valued.
In this paper, we investigate a supervised algorithm for deriving type embeddings in the same latent space as a
given set of entity embeddings. We show that our algorithm generalizes to hundreds of types, and via incremental
execution, achieves near-linear scaling on graphs with millions of instances and facts. We also present a theoretical
foundation for our proposed model, and the means of validating the model. The empirical utility of the embeddings
is illustrated on five partitions of the English DBpedia ABox. We use visualization and clustering to show that our
embeddings are in good agreement with the manually curated TBox. We also use the embeddings to perform a soft
clustering on 4 million DBpedia instances in terms of the 415 types explicitly participating in is-a relationships
in the DBpedia ABox. Lastly, we present a set of results obtained by using the embeddings to recommend types
for untyped instances. Our method is shown to outperform another feature-agnostic baseline while achieving 15x
speedup without any growth in memory usage.

TYPE OF PAPER AND KEYWORDS

Regular research paper: semantic embeddings, knowledge graphs, DBpedia, machine learning, probabilistic typing,
entity typing, graph embeddings, word2vec, RDF2vec

1 INTRODUCTION

Lately, the distributional semantics paradigm has been
used with great effect in natural language processing
(NLP) for embedding words in vector spaces [26]. The
distributional hypothesis (also known as Firth’s axiom)
states that the meaning of a word is determined by
its context [25]. Algorithms like word2vec use neural
networks on large corpora of text to embed words in
semantic vector spaces such that contextually similar

words are close to each other in the vector space [16].
Simple arithmetic operations on such embeddings have
yielded semantically consistent results (e.g. King −
Man+Woman = Queen).

Recent work has extended such neural embedding
techniques, traditionally introduced only for natural
language word sequences, to alternate kinds of data,
including entities in large knowledge graphs like
DBpedia [22, 23]. The basic approach is to convert an

20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RonPub -- Research Online Publishing

https://core.ac.uk/display/304105866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojsw

M. Kejriwal, P. Szekely: Scalable Generation of Type Embeddings Using the ABox

Figure 1: Generative story (a) and visual intuition behind semantic embeddings, and how such embeddings
can co-exist with pre-generated entity embeddings in the same vector space (b).

instance-rich knowledge graph into sets of sequences of
graph nodes by performing random walks or using graph
kernels [12]. NLP algorithms like word2vec are applied
on the sequences to embed entities, just like words in
natural language sentences [23].

In the Semantic Web, the domain of discourse is
typically expressed by a manually curated ontology. A
basic element of an ontology is a type, also called a class.
Type assertion statements relate entities (i.e. instances)
in a knowledge base (KB) to the domain ontology, which
can then be used to infer more facts about entities.

Given the crucial role played by types in mediating
between domain ontologies and instance-rich KBs, a
natural question is whether types can be embedded in the
same semantic vector space as entities, and whether data-
driven type embeddings can be used to reason about, and
visualize, ontologies. For example, one could use these
embeddings to ask whether the data adequately capture
ontological semantics (Section 5.2), and to recommend
types for new entities in the knowledge base (Section 6).

Unfortunately, type embeddings are difficult to
directly derive from graphs because big knowledge
graphs are sparse in type assertion statements compared
to the number of unique instances and facts. In DBpedia,
for example there are over 17 million (non-type) triples,
and almost 4 million unique entities; the number of type
assertion statements is also about 4 million, meaning
that there is usually only one type assertion per entity.
In many cases, the type assertions can be trivial (e.g.
owl#Thing). Another problem is that types are typically
asserted as objects, not subjects, in the KB; hence, a
random walk cannot be initiated from a type node.

We propose a scalable solution to the problem of
deriving type embeddings from entity embeddings in big

graphs. A theoretical basis for the method is visualized
in Figure 1 (a). Given a set of pre-generated entity
embeddings, and a sparse collection of type assertion
triples (a subset of the ABox), we are able to robustly
generate embeddings for a set of types (e.g., Fruit,
Building in Figure 1 (b)).

We validate the type embeddings derived using our
method against a baseline that jointly embeds types and
entities by combining the ABox and TBox. We show that
our embeddings are able to capture TBox semantics (a
level of the type hierarchy) much better than the baseline,
despite having no knowledge of the TBox. Thus, in
principle, our method can be used to embed types from
different schemas and ontologies into the same space
as a given set of entities. For example, both DBpedia
types and schema.org types can be embedded (using our
method) into the same embedding space as DBpedia
entities.

We also illustrate an application for the proposed
method, notably probabilistic type recommendation
(e.g., recommending types such as Fruit and Plant for a
new entity like Grape), and probabilistic type clustering
over large graphs (Section 5). To the best of our
knowledge, this is the first work that presents a feature-
agnostic supervised typing of a large-scale semantic
graph, DBpedia. Our algorithm is also extremely
resource-efficient in terms of time and memory as it
requires two linear passes over the full dataset. Empirical
results on a partition of DBpedia, for example, show that
our algorithm achieved run-time speedups by more than
a factor of 15 on the type recommendation task compared
to non-parametric nearest-neighbors baselines, with
superior recall on two relevance criteria. The scalability
of the model enabled us to probabilistically cluster

21

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

almost 4 million DBpedia instances into 415 types on
a serial machine in under 50 hours.

This paper is an extended version of our recently
published workshop paper [9]. Along with the
contributions noted above, we list the following as
additional contributions of this extended work:

1. A theoretical justification for the proposed
embedding algorithm, and a section that explicitly
presents methods for validating the model.

2. A significantly expanded related work section that
places this work in a broader context than the
previous paper.

3. Novel experimental results, especially for
visualization and clustering. Unlike the workshop
paper, we also compare the visualization against
competitive baselines to illustrate the added value
of our embedding generation.

4. More examples and intuition into the philosophy
of the method, including an explicit motivation
section.

2 MOTIVATION

Latent space embeddings are not the only way to
represent types. For example, one could represent a type
by extracting features from the type, or alternatively, as
a bag of relationships. However, such manual feature
crafting methods, while not without merit, have two
disadvantages. First, there is considerable manual effort
involved in devising the ‘right’ features. This effort
is well-recognized in the machine learning community
for its ad-hoc, trial-and-error nature. Second, directly
extracting features from the types do not make full use
of the millions of facts in well-populated ABoxes.

In contrast, the latent space embeddings explored in
this paper are feature agnostic i.e. they make use of
the data in the ABox, along with a black box entity
embedding algorithm like a neural network, to derive
embeddings for types. Effort from a user, especially
a user who may not be familiar with the Semantic
Web or machine learning literature, is minimal as our
algorithm takes few parameters as input. Effort is further
minimized by the fact that many authors are increasingly
choosing to publicly release entity embeddings that they
have generated using their algorithms. For example,
the authors of RDF2Vec [23] have released their
embeddings for both Wikidata and DBpedia. While
we do not use Wikidata for the experiments in this
paper, we do make use of their publicly released
DBPedia embeddings to show that re-generating entity
embeddings is unnecessary both in theory and practice.

Also, because the type embeddings ultimately make
use of the pre-generated entity embeddings, which are
themselves derived by traversing the entire graph of
ABox facts, the embeddings are data driven. In this
sense, they are less prone to the biases of a feature
engineer: the data dictates the features.

As further motivations for type embeddings, we
illustrate several applications in which the embeddings
can be used, most notably type recommendation. We
also show that type embeddings can serve exploratory
purposes e.g., we use them to visualize sub-type and
super-type hierarchies. For example, in the clustering
space, we find that types with a common super-type
tend to be clustered closely together, while types with
different super-types tend to be well separated. Such
‘separation’ is not well-achieved by naive baseline
methods that seek to jointly embed entities and types
using a single algorithm.

3 RELATED WORK

Two broad research areas that are closely related to
the work presented in this article are graph (including
knowledge graph and network) embeddings, and entity
typing. We provide coverage on both areas below.
However, we note that, because embeddings are a
very general framework, we use the embeddings not
just for type embeddings but also visualization and
online clustering, which cannot be handled by the other
(special-purpose) type recommenders.

3.1 Graph Embeddings

Semantic vector space embeddings have witnessed much
research in recent years, with neural word embedding
algorithms (e.g. word2vec [16] and glove [18])
achieving state-of-the-art performance on a number of
NLP tasks (e.g. dependency parsing) [2]. The success
of word embedding approaches has led to a renewed
interest in graph-based communities for embedding
graphs. A famous example is DeepWalk [19], which
applies word embedding techniques on random walk
sequences on a graph to embed nodes in the graph to
vectors.

In the Semantic Web, variants of this strategy
were recently applied to DBpedia and Wikidata, and
the embedded entities were used in several important
problems, including content-based recommendation and
node classification [23],[24]. Some other influential
examples of such knowledge graph embeddings (KGEs),
which is an active area of research, include (but are not
limited to) systems such as TransE and TransH [11],
[28], [1], [8]. An important aspect of this research is
automatic knowledge base construction and completion

22

M. Kejriwal, P. Szekely: Scalable Generation of Type Embeddings Using the ABox

(AKBC), to which this work is related [27], [7]. A
major difference is that, because of an additional layer of
semantic abstraction (types vs. entities), we can afford
to infer types without incrementally training the model
such as in [10] or any other details of how the entity
embeddings were derived. We also do not rely on natural
language context of any kind [5].

In this article, we do not seek to develop a new
learning algorithm for graph (including knowledge
graph) or word embeddings; instead, the goal is to
use an existing publicly available set of graph entity
embeddings to extensionally model types. To the best
of our knowledge, this is the first attempt to derive the
embedding of schema-level elements (like types) directly
using the embeddings of instance-level elements like
entities. Because our method does not make underlying
assumptions about the entity embeddings, it is general
and can be applied to any set of entity embeddings.

3.2 Entity Typing

The type recommendation problem to which we apply
the type models is closely connected to the type
prediction problem studied in prior work, a good
example being Typifier [13]. Unlike Typifier, which is
not embedding-based and relies on manually devised
features (e.g. data and pseudo-schema features [13]),
our approach is feature-agnostic. Other examples of
feature-centric type recommenders are the systems in
[15], [17]. Due to the difficulty in automating feature
construction, feature-agnostic systems are still quite rare;
for example, in the Semantic Web, only a recent work
achieved competitive performance at scale for feature-
agnostic node classification [23].

In the Natural Language Processing (NLP)
community, entity typing is an important problem.
However, in the NLP community, the text context is very
important in entity typing. For more details, we refer the
reader to some recent work on entity typing in the NLP
community [3], [29], [4], [21]. In the Semantic Web, a
good example of a feature-rich entity typing system for
entities in knowledge bases like DBpedia is Tipalo [6].

4 APPROACH

In this section, we detail our approach for generating
type embeddings. First, we formally define our
framework and introduce some related terminology
(Section 4.1), followed by the actual algorithm in Section
4.2. A theoretical justification of the proposed model, as
well as means for validating it, are covered in Sections
4.3 and 4.4 respectively.

4.1 Framework

We lay the groundwork in this section by formally
defining a typed knowledge base (t-KB) and related
terminology below:

Definition (typed knowledge base). Given a set I
of Internationalized Resource Identifiers (IRIs), a set B
of blank nodes and a set L of literals, a typed RDF
Knowledge Base T is a set of RDF triples (i.e. ⊆
{I ∪B}×I ×{I ∪B ∪L}) such that ∀(s, p, o) ∈ T →
∃t ∈ I, (s, : type, t) ∈ T , where : type ∈ I is a special
type property (e.g. rdf:type).

We denote (s, : type, t) as a type assertion statement,
an arbitrary element s from the entity set S =
{s|(s, p, o) ∈ T } as an entity, and the set T (s) = {t|(s, :
type, t) ∈ T } as its set of asserted types1. Similar to the
entity set S, we denote T =

⋃
s∈S T (s) as the type set

of knowledge base T . Finally, we denote a type-only KB
(t-o-KB) T ′ as the subset of the typed knowledge base T
that contains exactly the type assertions in T .

In the literature, a knowledge base is typically meant
to comprise an ABox and a TBox. Since the TBox
contains the conceptualization of the knowledge base,
s in the definition above would have to be a type for
the type assertion (s,:type,t) to be included in the TBox.
However, because we explicitly assume s to be an entity,
the t-KB is necessarily a subset of the ABox. Although
we do not use the TBox in the development of our
framework, in Sections 4.4 and 5 and , we use the TBox
to validate the methods presented in this article.

Although each entity s is represented by an IRI per
the RDF data model, an alternate representation is as an
embedding in a real-valued d-dimensional space:

Definition (entity embedding). A d-dimensional entity
embedding representation of an entity s is a mapping
from s to a real-valued vector−→s that is constrained to lie
on the unit-radius hypersphere in d-dimensional space.

The constraint in the definition above (Σi
−→s [i]2 =

1) ensures that the entity embedding is l2-normalized,
which simplifies distance calculations considerably by
equating cosine similarity between the two vectors with
a dot product.

Concerning the actual learning of entity embeddings,
we noted in Section 3 that recent work has successfully
managed to learn embeddings (in spaces with only a
few hundred dimensions) on large datasets like DBpedia
by applying neural embedding algorithms like word2vec
on graph node sequences [23]. Such embeddings may

1 At present, we take an extensional (or instance-driven) view of a
type by identifying it by its referents (the set of explicitly declared
instances) of an entity s. We investigate an empirical relaxation of
this condition in Section 5.

23

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

or may not include type assertions during training. A
practical reason for not including types is that, in big
knowledge graphs like DBpedia, the graphs T ′ and
T −T ′ are released as separate files (we provide links in
Section 5), and it is more convenient to train embeddings
over the latter. A more serious reason, pointed out in
the introduction, is sparsity of assertions, data skew (a
disproportionate number of entities are solely typed as
owl:thing) and the observation that T ∩ S is typically
empty.

To address problems of sparsity and robustness, we
attempt to embed types into the same vector space as
entities (thereby leveraging the enormous context of
entities). Formally, we define a type embedding below.

Definition (type embedding). Given an entity set S and
a type t, a d-dimensional type embedding representation
of t is a mapping from t to a real-valued vector −→t that
is constrained to lie on the unit-radius hypersphere in d-
dimensional space.

Intuitively, a ‘good’ type embedding should have two
elements: (1) be close in the vector space to entities that
have that type. In Figure 1 (b), for example, Fruit is
much closer to Apple than it is to Times Square; (2) be
closer to ‘related’ types than to types that are unrelated.
In Figure 1 (b), Building, City and Place are all closer to
one another than to either Fruit or Plant.

Clearly, the two elements above are related as they
strongly rely on the data and on the context in which
types are asserted or co-appear with entities that share
context. In the next section, we explore how such robust
embeddings can be scalably generated.

4.2 Generating Type Embeddings

Given the framework above, the primary research
question addressed in this article is, given a set of entity
embeddings and a t-KB as inputs, how do we scalably
generate a set of embeddings for the types in the ABox?

Theoretically (and also empirically, as we illustrate
in Section 5.2), there are at least two possible solutions
to the problem. The first, which is not scalable, is to
re-train the entity embeddings by combining the ABox
and TBox (the knowledge base). One can do this in
two ways. The first way is to ignore the given set of
entity embeddings completely and re-run the embedding
algorithm on the knowledge base. The second way
is to use online machine learning optimization such
as stochastic gradient descent (SGD) to update the
original entity embeddings, and also generate new type
embeddings. While the second way is more time-
efficient than the first, the memory costs are extreme
since all the neural network parameters have to be stored
for the SGD to work.

In this article, we advocate a more scalable solution
for the problem by treating the set of entity embeddings
as a black box. In other words, we are agnostic to how
they were generated, and we treat them as fixed in the
rest of this discussion.

We propose a type embedding algorithm that is
lightweight both in terms of run-time and memory.
Algorithm 1 provides the pseudocode for our solution.
Before describing the pseudocode, we describe the
intuition as follows. A theoretical justification for the
approach is described subsequently in Section 4.3.

Algorithm 1 relies on two assumptions. First, a type
is ultimately described by its entities. This means that,
with all things staying unchanged, a type should be
close to as many entities having that type as possible.
Second, a type should give more preference to entities
that describe it exclusively. For example, suppose an
entity s1 has more than ten (explicitly declared) type
assertions {t1, t2 . . . t10} while the entity s2 only has
two type assertions {t1, t2}. Algorithm 1 is set up so
that s2 will contribute more to the derivation of t1 and t2
embeddings than s1.

To operationalize these assumptions, while still
being simple and scalable, Algorithm 1 computes a
weighted average of entity embeddings to derive a type
embedding. Specifically, in a first pass over a type-
only KB T ′, the algorithm computes the number of
types |T (s)| asserted by the entity s. For each new
type encountered, the algorithm initializes a zero vector
for the type, in the same d-dimensional space as the
entity embeddings. Even with millions of entities, this
information can be stored in memory at little cost.

The second pass of the algorithm is incremental. For
each triple (s, : type, t), we update a type vector −→t
(initialized to −→0) using the equation:

−→
t new =

−→
t old +

1

|T (s)|
−→s (1)

In the notation of the algorithm, TS [s] = T (s). Line
9 in Algorithm 1 shows a simple way of obtaining
the final type embedding −→t by normalizing the ‘final’
mean vector −→t new so that it lies on the unit-radius
(d-dimensional) hypersphere. Normalizing ensures that
the type embedding obeys the same constraints as
the original entity embeddings and conforms to the
type embedding definition earlier stated. A second
reason for normalizing is that the computation of the
cosine similarity between any vectors (whether type or
entity) on the d-dimensional hypersphere reduces to the
computation of the dot product between the vectors.

24

M. Kejriwal, P. Szekely: Scalable Generation of Type Embeddings Using the ABox

Algorithm 1 Generate Type Embeddings

Input: Sets S and ~S of entities and entity embeddings, type-only Knowledge Base T ′

Output: Type embedding −→t for each type t in T ′

1. Initialize empty dictionary TS where keys are entities and values are type-sets
2. Initialize type-set T of T ′ to the empty set

// First pass through T ′: collect entity-type statistics
3. for all triples (s, : type, t) ∈ T ′ such that −→s ∈ ~S do

Add t to T
Add t to TS [s], if it does not already exist

4. end for
5. for all s ∈ keys(TS), set TS [s] = |TS [s]| to save memory end for

//Second pass through T ′ to derive type embeddings
6. Initialize Mean parameter dictionary M such that keys(M) = T , and each value in M is ~0
7. for all triples (s, : type, t) ∈ T ′ such that s ∈ S do

Update M [t] using Equation 1, using T (s) = TS [s]

8. end for
//Derive type embedding from −→µt

9. for all types t ∈ keys(M) do
Let type embedding −→t be the projection of M [t] on d-dimensional hypersphere with unit radius (divide
throughout by ||M [t]||2)

10. end for
11. return type embeddings derived in last step

4.3 Theoretical Justification: Generative Type
Model

We now provide a theoretical basis for Algorithm 1 by
proposing a generative story for the t-KB. Specifically,
we will construct a generative type model or GTM
for each type t. Intuitively, a generative type model
‘explains’, in a probabilistic sense, how an instance
having type t was generated by the GTM of t.

We proceed as follows. Denoting GTMt as the
generative type model of type t and |T ′(t)| as the number
of t type assertions in the type-only KB T ′ provided
during a training phase, one way to model GTMt is
to assume a non-parametric empirical distribution that
assigns probability 1/|T ′(t)| to every entity s ∈ S with
asserted type t ∈ T (s), and 0 probability to every other
entity in S. Although the GTM model defined above
is a valid probability distribution, it is problematic for
various reasons.

First, the model does not consider the number of
types that an entity participates in. In the real world,
some entities are more unambiguously typed than others.
For example, the entity Antonio Conte may be typed
as a Soccer Player, Soccer Manager and as a Person.
In an extensional sense2, three different generative

2 Intensionally, the fact that Conte is a person can be derived using a
domain ontology; however, neither of the other two classes can be
derived from transitive closure.

distributions (each corresponding to an asserted type)
are contributing to the ‘explanation’ of the entity. In
contrast, if the only asserted type of the entity Brian Kerr
is Soccer Manager, he should contribute ‘more’ to the
generative type model of Soccer Manager. The second
problem with the model is that the number of parameters
required to specify the GTM is proportional to the
number of entities having that type; it is for this reason
that the model is deemed to be non-parametric. The third
challenge is that it is not obvious how such a model can
be used to generalize to unseen data e.g. predicting or
recommending types for a new entity during a test phase.

To address these challenges, we propose instead a
parametric probabilistic distribution to express the GTM
of a type. A simple, mathematically well-founded
distribution is a multi-variate isometric Gaussian (for
each type) in d-dimensional space. By isometric,
it is meant that the covariance matrix ~Σ is diagonal
(diag(

−→
σ2
t)). Given this assumption, each GTM has

2d parameters (a d-dimensional mean −→µt and a d-
dimensional variance vector

−→
σ2
t with

−→
σ2
t [i] representing

the variance along the ith dimension). We define the
single-type-conditional probability P (s|t) of an entity s
with embedding −→s by the isometric Gaussian3 N (−→x =

3 Recall thatN (−→x ;−→µ , ~Σ) = |2πΣ|−1/2e−
1
2

(−→x −−→µ)′Σ−1(−→x −−→µ);

in a slight abuse of notation, we denote ~Σ =diag(
−→
σ2
t) as

−→
σ2
t .

25

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

−→s ;−→µt,
−→
σ2
t) and the multi-type-conditional probability as:

P (s|T (s)) = Σt∈T (s)
1

|T (s)|
N (−→s ;−→µt,

−→
σ2
t) (2)

Since |T (s)| is not dependent on the summation, we can
move it out:

P (s|T (s)) =
1

|T (s)|
Σt∈T (s)N (−→s ;−→µt,

−→
σ2
t) (3)

The equation above is a special case of a Gaussian
mixture model (GMM) [20], which defines the
probability as a weighted sum of Gaussian components,
with the sum of the weights equating 1. In the general
GMM model, the weights are unknown, whereas in the
model expressed in Equation 3, the weights are equal.
Earlier, Figure 1 (a) demonstrated a low-dimensional
example (P (s|Fruit, P lant)).

One method to estimate the 2td parameter vector
(denoted by −→θ) of the full type model is by maximizing
a likelihood function over the the observed data D (the
triples in T ′). Specifically, denoting a triple (s, : type, t)
as (s, t), the likelihood of T ′ is:

L(D;
−→
θ) = P ((s, t)1, . . . , (s, t)|T ′||

−→
θ) (4)

Assuming that entities are independently and identically
distributed (i.i.d), and the type-conditional model in
Equation 3, Equation 4 is expressed as:

L(D;
−→
θ) = Πs∈SP (s, T (s)|−→θ) (5)

Πs∈SP (s, T (s)|−→θ) = Πs∈SP (s|T (s),
−→
θ)P (T (s)|−→θ)

(6)

By setting P (T (s)|−→θ) = P (T (s)) to an empirically
motivated frequency4, we can solve for−→θ by finding the
values that maximize the log likelihood:

argmax−→
θ
log(L) = argmax−→

θ
Σs∈Slog(P (s|T (s),

−→
θ))

(7)

An optimal solution to Equation 7 is intractable as it
has a strong non-linear dependence on the parameters.
One option is to use a procedure like Expectation
Maximization and derive iterative update equations.
Unfortunately, iterative updates in high-dimensional
parameter spaces are not feasible for millions of training
points and hundreds of Gaussian components, as is
the case in our setting. This is also true for other
iterative algorithms that fix the parameters for all but

4 A simple solution is to divide by |S| the number of entities in S
whose type-sets exactly equal T (s).

one Gaussian component, optimize over that component
and then repeat the procedure over all components till
convergence.

The solution in Algorithm 1 is motivated by a similar
intuition. Specifically, Algorithm 1 attempts a 2-
pass approximation to Equation 7. To understand the
intuition, suppose that |T (s)| ≤ 1. Then, the GMM
solution collapses to deriving Gaussian parameters
(using maximum likelihood for optimizing) for each type
independently of other types since two types never co-
occur within the context of a single entity s (because
T (s) is constrained never to contain more than one type).
The derivation has a known simple form: in particular,
the mean of the entity vectors with type t yields the
parameter µt.

Algorithm 1 uses this intuition to construct a weighted
mean, as described earlier. The weight is analogous to
the famous idf5 term in information retrieval. Thus, if a
type t participates in many type sets T (s), it is assumed
to not contribute significantly to any of them.

Algorithm 1 does not use the variance in any way.
In principle, one could use both the mean and variance
parameters of each GTMt to infer a type embedding ~t.
However, in practice, such a formulation did not prove
to be necessary. Simply using the mean µt as the type
embedding ~t yielded excellent agreement with the TBox
(see Section 4.4) in empirical evaluations, which implies
that with sufficiently large knowledge bases, Algorithm
1 is robust enough that the variance ceases to matter.

4.4 Model Validation

An important question that arises concerning the
treatments above is how the type embeddings derived
using Algorithm 1 can be validated. Given that
Algorithm 1, or the generative model in the previous
section, did not use the TBox6, we posit that a reasonable
way of validating the extrinsic goodness of the type
embeddings is to use the type hierarchy in the TBox.
We do so in the following way. In many knowledge
bases, instances are asserted in terms of very few types
(out of hundreds of types) in the ABox. This is what
we denote as extensional type semantics. Using the type
hierarchy in the TBox, one can then perform transitive
closure to infer more types for an instance intensionally.
Since our type embedding algorithm does not have
access to the TBox, it does not have access to the types
obtained solely through transitive closure. Using this
observation, the main validation question then is: does a
set of extensionally embedded types with an immediate
common super-type (i.e. a parent in the type taxonomy)

5 Inverse document frequency.
6 The t-KB is a subset of the ABox, since the t-KB involves type

assertions involving instances.

26

M. Kejriwal, P. Szekely: Scalable Generation of Type Embeddings Using the ABox

cluster together in the embedding space using a well-
defined clustering/visualization measure? If they do,
then the cluster represents the super-type: one could
assert that the type hierarchy obtained statistically (via
clustering) is in good agreement with a manually curated
ontology. In the next section, we use this claim to
empirically evaluate type embeddings derived using our
method to those of a competitive baseline that jointly
embeds the TBox and the ABox.

One could propose more complicated validation
measures (e.g., computing a global probability for the
full set of axioms in the TBox), or use an application
(e.g., type recommendation) as a validation measure. We
present some proof-of-concept results for the latter in a
later section. Given that this is among the first attempts
to propose the validation of derived type embeddings,
we leave an investigation of the former for future work,
as a theoretical justification of more complex validation
metrics is beyond the scope of this article.

5 EXPERIMENTS

5.1 Preliminaries

Datasets: We construct five evaluation datasets by
performing random stratified partitioning on the full set
of DBpedia triples. We used the publicly available
type-only KB7 for our experiments from the October
2015 release of the English-language DBpedia. This file
contains all the type assertions obtained only from the
mapping-based extractions, without transitive closure
using the ontology. Details of the five ground-truth
datasets are provided in Table 1. Across the full five-
dataset partition, there are 3,963,983 unique instances
and 415 unique types. The five datasets are roughly
uniform in their representation of the overall dataset,
and not subject to splitting or dataset bias, owing
to random stratified partitioning. In the experiments
in Section 5.2, we derive type embeddings using the
combined dataset (D1-5) and compare against two
alternate type embedding methods in terms of the
validation criteria outlined in Section 4.4. Subsequent
to the empirical validation, we describe a potential
entity typing application of our type embeddings. In a
summary evaluation of the proof-of-concept evaluation,
we use four partitions for training and another for
testing. The DBpedia TBox which we use for the model
validation in Section 5.2 may be dowloaded from the
following link8.

7 Accessed at http://downloads.dbpedia.org/2015-10/
core-i18n/en/instance_types_en.ttl.bz2

8 http://downloads.dbpedia.org/2015-10/dbpedia_
2015-10.nt

Entity Embeddings: The algorithms presented in this
article assume that a set of entity embeddings has already
been generated. Recently, [23] publicly made available
two sets of 500-dimensional embeddings for DBpedia
entities by using the word2vec algorithm on graph node
sequences9. The word2vec model was trained using
skip-gram, and was found to perform well on a range
of node classification tasks. The authors referred to
this algorithm as RDF2Vec in their paper. Rather
than generate our own entity embeddings (which could
potentially cause bias by overfitting to the type modeling
task), we used those previously generated embeddings
for all experiments in this article.

The difference between the two independently
generated sets of entity embeddings that are used to
evaluate the model in this article is that the first set,
denoted DB2Vec-types, jointly embeds the TBox and
ABox IRIs10. This was achieved by running RDF2Vec
on the full knowledge base i.e. the combination of TBox
and ABox assertions. The second set of embeddings,
referred to as DB2Vec, only contains embeddings for
entities in the ABox. No type embeddings were
generated, since the authors removed all type assertions
in the ABox before executing RDF2Vec. For validating
our framework, we use both sets of embeddings
for generating two sets of type embeddings (using
Algorithm 1) and comparing both sets of results with
the pre-generated type embeddings in DB2Vec-types. We
respectively refer to these two sets of type embeddings as
DB2Vec-types-Alg111 and DB2Vec-Alg1.

Implementation: All experiments in this article were
run on a serial iMac with a 4 GHz Intel core i7 processor
and 32 GB RAM. All code was written in the Python
programming language. We used the gensim package12

for accessing, manipulating and computing similarity
on the entity embeddings. For details on the DB2Vec
embeddings, we refer the reader to the empirical section
of the RDF2Vec paper [23].

9 Accessed at http://data.dws.informatik.
uni-mannheim.de/rdf2vec/models/DBpedia

10 However, we note that, because of word2vec parameter settings that
the authors of [23] used to train the models, this does not guarantee
that every IRI has an embeddings. IRIs that are too sparse will not
be embedded as there is not enough data. This sparsity also affects
evaluations, as we later illustrate.

11 Note that, for this case, the original type embeddings (expressed by
DB2Vec-types) are overwritten by the type embeddings generated
by Algorithm 1. The embeddings are different from those in
DB2Vec-Alg1 because the entity embeddings are different (due to
non-exposure of the latter to TBox type contexts).

12 https://pypi.python.org/pypi/gensim

27

http://downloads.dbpedia.org/2015-10/core-i18n/en/instance_types_en.ttl.bz2
http://downloads.dbpedia.org/2015-10/core-i18n/en/instance_types_en.ttl.bz2
http://downloads.dbpedia.org/2015-10/dbpedia_2015-10.nt
http://downloads.dbpedia.org/2015-10/dbpedia_2015-10.nt
http://data.dws.informatik.uni-mannheim.de/rdf2vec/models/DBpedia
http://data.dws.informatik.uni-mannheim.de/rdf2vec/models/DBpedia
https://pypi.python.org/pypi/gensim

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

Table 1: Details of ground-truth datasets. The five datasets together comprise a partition of all (extensional)
type assertion statements available for DBpedia.

Dataset Num. triples Num. unique instances Num. unique types Size on disk (bytes)
D-1 792,835 792,626 410 113,015,667
D-2 793,500 793,326 412 113,124,417
D-3 793,268 793,065 409 113,104,646
D-4 793,720 793,500 410 113,168,488
D-5 792,865 792,646 410 113,031,346

5.2 Experiment 1: Clustering and Visualizing
the Extensional Model

Note that our methods never relied on the DBpedia
ontology (the TBox) when deriving embeddings and
generative model parameters. As described in Section
4.4, one reasonable way to validate the model is to
use the intensional semantics of types (e.g. sub-
class relationships in the ontology) to visualize the
embeddings derived from extensional assertions (the
mapping-based type assertion extractions). We perform
two visualization experiments using the unsupervised t-
SNE algorithm [14], a state-of-the-art tool for visualizing
high-dimensional points on a 2-D plot. We compare
three sets of derived type embeddings: DB2Vec-types
(the baseline) and the two sets of type embeddings
generated using Algorithm 1 (DB2Vec-types-Alg1 and
DB2Vec-Alg1) described in the Entity Embeddings
section.

We conduct two experiments using each of these three
sets of embeddings to answer two research questions:
(1) Does exposure to the TBox actually ‘matter’ for
Algorithm 1 to derive good type embeddings or does
exposure to the ABox alone suffice? (2) Can Algorithm
1 perform as well as, or even outperform, DB2Vec-
types, which directly generates type embeddings? We
use two evaluation datasets to answer these questions.
Since the model validation, and the goodness of the
type embeddings, ultimately depends on how ‘well’ we
capture the intensional semantics of the TBox, we use the
t-SNE algorithm to visualize the performance of each of
the embeddings [14]. Although very different from each
other, both evaluation datasets involve five super-types in
the DBpedia TBox.

Dataset 1: We apply t-SNE on a matrix containing
the type embedding vectors of all direct sub-types of
five sampled types from the DBpedia ontology, namely
Animal, Politican, MusicalWork, Building and Plant.
The t-SNE algorithm takes the matrix as input and
returns another matrix with the same number of rows but
only 2 columns. We plot these points (rows) in Figure 2,

by assigning labels (i.e. colors) to points13 based on their
super-type. The results in Figure 2 (a) and (b) show five
well-separated clusters, with each cluster representing
a super-type. In these cases, the extensional model
is in excellent agreement with the intensional model.
Since Figure 2 (a) and (b) respectively represent the
results for DB2Vec-Alg1 and DB2Vec-types-Alg1, this
helps us answer the first research question: Algorithm 1
is relatively insensitive to whether entities were exposed
to types during the execution of graph embedding. We
also note that the clusters in Figure 2 (a) and (b)
also demonstrate other interesting aspects not captured
intensionally: e.g. Building, Politician and MusicalWork
(artificial constructs) are much closer to each other, than
they are to Animal and Plant (natural constructs), which
form a separate ‘super’ cluster.

Cluster separation is much worse in Figure 2 (c),
which represents the DB2Vec-types baseline. The type
embeddings are not well separated, illustrating the lack
of agreement with TBox semantics14.

Dataset 2: We re-run the experiment but over sub-type
embeddings of the types SportsTeam, SportsLeague,
Company, Organisation and EducationalInstitution.
Note that this set is much more topically coherent than
the earlier set. The 2D visualization is illustrated in
Figure 3; the topical coherence (there are now two
clusters rather than five) is well-reflected in (a) and (b).
The two purple ‘outliers’ on the left cluster are the
embeddings for SportsTeam and SportsLeague, which
are themselves sub-types of Organisation. Similar
observations apply to (b); again, we note that exposure
to the TBox during entity embedding generation did
not affect the results of Algorithm 1. Because of
data sparsity, little data was available from DB2Vec-
types. The figures illustrate that our algorithm is able
to deal more effectively with sparsity than the direct type

13 Because t-SNE is unsupervised, it never accessed the labels during
the clustering.

14 Not all types in the TBox got embedded by RDF2Vec in the dataset
released by the authors [23]. This may be due to pruning during
model training e.g., in the word2vec model that underlies RDF2Vec,
a common technique is to remove words that occur too few times in
the dataset.

28

M. Kejriwal, P. Szekely: Scalable Generation of Type Embeddings Using the ABox

(a) DB2Vec-types-Alg1

(b) DB2Vec-Alg1

(c) DB2Vec-types

Figure 2: Visualization and clustering results on
Dataset 1 using the t-SNE package. The dimensions
in the figure do not have any intrinsic meaning.

(a) DB2Vec-types-Alg1

(b) DB2Vec-Alg1

(c) DB2Vec-types

Figure 3: Visualization and clustering results on
Dataset 2 using the t-SNE package. The dimensions
in the figure do not have any intrinsic meaning.

29

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

embedding generation. Combined with the observations
from Dataset 1, the use of Algorithm 1 seems to be
favored over direct type embedding generation.

5.3 Experiment 2: Probabilistic Typing of
DBpedia Instances

The results of Experiment 2 in Section 6 illustrated that
there are many types in the DBpedia ontology that are
clearly related to an entity of interest, even if they are
not super-types (or even sub-types) of the entity’s type.
Given an entity, we ideally want to assign a probability
to each type. Such a clustering has much potential,
including topic modeling of entities and fuzzy reasoning.
To achieve a full fuzzy clustering over DBpedia, we used
the union of all five datasets in Table 1 to compute our
type embeddings, and then executed the fuzzy clustering
algorithm over all DBpedia entities in the union of all
five datasets. The algorithm scaled near-linearly and was
able to finish executing over almost 4 million entities
and 415 clusters (types) in about 50 hours, collecting
over 100 GB of data15. To illustrate the quality of the
probabilistic typing, we provide ten examples in Table
2, along with the top five types. We provide a formal
evaluation, compared to a nearest neighbors baseline, in
Section 6.

The results in Table 2 illustrate the advantage and
robustness of fuzzy typing. For example, it is technically
more appropriate for ‘Animation’ to be typed as an
OWL thing, since it does not seem to have an evident
type. However, the options listed in Table 2 make
intuitive sense in that they contribute probabilistically to
the definition of Animation. While the fuzzy clustering
can be used for entity typing or type recommendation
(see Section 6), we note that it has many other
applications as well e.g., answering probabilistic queries
or performing link prediction between entities by using
type probabilities as explanations (not dissimilar to the
generative theoretical justification of Algorithm 1 in
Section 4.3).

6 PROOF-OF-CONCEPT APPLICATION:
TYPE RECOMMENDATION

In this experiment, we evaluate Algorithm 1 on the
probabilistic type recommendation task. The input to the
recommendation system is an entity, and the output must
be a set of scored (or ranked) types that are topically
relevant to the entity. The issue of relevance, by its
nature, is subjective; we present a methodology for
evaluating subjective relevance shortly.

15 We will make this data available on a public server in the near future.

Baseline: We employ baselines based on weighted
k Nearest Neighbors (kNN). The kNN algorithm
is a strong baseline with some excellent theoretical
properties: for example, even the 1NN algorithm is
known to guarantee an error rate that is at most twice
the Bayes error rate16 in a given feature space and for a
given distance function in the space. Because the entity
embeddings are given, the kNN baseline, just like the
embedding method, is feature-agnostic; to the best of our
knowledge, it is the only baseline that has this property
and is not super-linear. We consider three versions with
k set to 1, 5 and 10 respectively.

Baseline Complexity: Compared to the embedding
method, kNN has high time and memory complexity
since it is non-parametric and requires storing all
the (training) entities in memory. In contrast, after
computing the type embeddings, the embedding method
has to store |T | vectors, one for each type. In terms of
run-time, a full pass is required over the training dataset
for each new test entity, regardless of the value of k. We
explore the empirical consequence of this in our results.

Application Experiment 1: We perform five
experiments, where in each experiment, four partitions
(from Table 1) are used as the training set, and 5000
entities are randomly sampled from the remaining
partition and used as the test set. We were forced to
constrain the test set to 5000 for this initial experiment
because of baseline complexity.

This experiment adopts an extremely strict definition
of relevance: namely, the only relevant types are the
ones that are explicitly asserted for the entity in the test
partition. Thus, even a super-type (of the true asserted
type) would be marked as ‘irrelevant’ if not explicitly
asserted itself, since we do not consider transitive
closures in the type-only KB. Although a strict measure,
it provides a reasonable first benchmark, as it conforms
to extensional semantics.

We evaluate performance using the Recall@k17

measure from Information Retrieval. Recall@k
computes, for each rank k in a ranked list of types, the
ratio of true positives to the sum of true positives and
false negatives. For each one of the five experimental
runs, we compute a single Recall@k measure (for each
k) by averaging the Recall@k over all 5000 entities.
Finally, we compute the average across the experimental
runs, and plot the results in Figure 4 (a). We also plotted
individual plots for all five experimental runs, which
turned out to be qualitatively very similar to Figure 4 (a).
We omit those figures and a per-run analysis herein due

16 This is the minimum possible error for a particular distribution of
data.

17 k in Recall@k should not be confused with k in kNN.

30

M. Kejriwal, P. Szekely: Scalable Generation of Type Embeddings Using the ABox

Table 2: Example results of probabilistic entity typing of DBpedia instances. Probabilities are not shown.
Each entity in this representation is represented by a 415 dimensional type probability vector, since 415 TBox
types in DBpedia have extensional participation (i.e. are asserted at least once in the ABox). In the last line,
we list both ComedyGroup and Manga, since they were assigned equal probabilities (tied for fifth place).

Entity Top 5 types
[u’http://dbpedia.org/ontology/ChemicalCompound’]
[u’http://dbpedia.org/ontology/Mineral’]

http://dbpedia.org/resource/Acid [u’http://dbpedia.org/ontology/Drug’]
[u’http://dbpedia.org/ontology/Protein’]
[u’http://dbpedia.org/ontology/HumanGene’]
[u’http://dbpedia.org/ontology/Continent’]
[u’http://dbpedia.org/ontology/Sea’]

http://dbpedia.org/resource/Asia [u’http://dbpedia.org/ontology/EthnicGroup’]
[u’http://dbpedia.org/ontology/Country’]
[u’http://dbpedia.org/ontology/Gnetophytes’]
[u’http://dbpedia.org/ontology/MilitaryPerson’]
[u’http://dbpedia.org/ontology/MilitaryUnit’]

http://dbpedia.org/resource/Albert Sidney Johnston [u’http://dbpedia.org/ontology/MilitaryConflict’]
[u’http://dbpedia.org/ontology/Senator’]
[u’http://dbpedia.org/ontology/Governor’]
[u’http://dbpedia.org/ontology/Sport’]
[u’http://dbpedia.org/ontology/SumoWrestler’]

http://dbpedia.org/resource/Aikido [u’http://dbpedia.org/ontology/VoiceActor’]
[u’http://dbpedia.org/ontology/AnimangaCharacter’]
[u’http://dbpedia.org/ontology/OlympicEvent’]
[u’http://dbpedia.org/ontology/HollywoodCartoon’]
[u’http://dbpedia.org/ontology/ComicsCreator’]

http://dbpedia.org/resource/Animation [u’http://dbpedia.org/ontology/Comic’]
[u’http://dbpedia.org/ontology/ComedyGroup’,
u’http://dbpedia.org/ontology/Manga’]

to space constraints.

Analysis: Figure 4 (a) shows that, even with the
strict definition of relevance, although the embedding
method starts out with low recall at the highest ranks,
it converges with the other methods fairly quickly
(between ranks 3-13). Figure 4 (b) shows that the
baselines return very few non-zero recommendations per
entity (fewer than 1.5) and the returned number is sub-
linear in k: in this respect, the baselines perform ‘hard’
type predictions rather than graded recommendations. In
contrast, the embedding method returns a more nuanced
probability distribution over the 415 types (per entity),
and is more apt for recommendations, as we show in the
next experiment.

Application Experiment 2: Although Experiment 1
is appropriate for determining the extensional types of
an entity, it takes an overly strict reflection of relevance.
Considering the number of triples and unique instances
in Table 1, there was usually only one extensional type
asserted in the knowledge base. For a better judgment

of relevance, we randomly sampled 100 instances from
D-1 and pruned the ranked type lists for 10NN (clearly
the best performing method in Figure 4 (a)) and the
embedding method to 10. Because the number of
returned types for 10NN was often fewer than 10, we
randomly ‘padded’ the rest of the list with DBpedia
types, and manually counted the number of topically
relevant recommendations in each (10-element) list18.
This allows us to compute a single-point Recall@10
score over the 100 sampled entities. Note that the
random padding can only help, not hurt, the Recall@10
score of the baseline. We also asked the annotator to do
a side-by-side comparison of the two lists (for each of
the 100 entities) and mark the list that is more topically
useful overall. The annotator was not given the details
of the two ranking algorithms; also, all annotations were
conducted within a single short time-span.

Analysis: The single-point Recall@10 was 0.4712
for the embedding method (averaged across the 100

18 The annotations were performed externally, not by the authors.

31

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

Figure 4: Application Experiment 1 results over all five datasets in Table 1. (a) plots the average Recall@k
across all five experimental runs, while (b) illustrates average number of recommended types per entity for
each of the datasets and baselines.

Table 3: Top 3 type recommendations for the embedding method and 10NN for five entities from the 100-
sample dataset (Experiment 2)

Entity Embedding Method Rec. 10NN Rec.
Shenyang J-13 Aircraft, Weapon, Rocket Aircraft, Weapon, Photographer
Amtkeli River River, BodyOfWater, Lake River, Dam, Mountain
Melody Calling Album, Single, Band Album, Single, PublicTransitSystem
Esau (judge royal) Monarch, Loyalty, Noble Noble, Journalist, AdministrativeRegion
Angus Deayton Comedian, ComedyGroup, RadioProgram Person, Actor, TelevisionShow

manually annotated samples) and 0.1423 for the
10NN with standard deviations of 0.2593 and 0.0805
respectively. Some representative results for both
10NN and the embedding method are presented in
Table 3. The table presents some intuitive evidence
that types recommended by the embedding method are
more topically relevant than the types recommended by
10NN. The annotator found the embedding method to
be topically more useful for 99 of the 100 entities, with
10NN more useful on only a single entity.

Run-times: Concerning the empirical run-times, all
baseline methods required about 1 hour to process 5000
test instances for the 4-partition training set while the
embedding method only required 4 minutes. If the
training set is fixed, all methods were found to exhibit
linear dependence on the size of the test set. This
illustrates why we were forced to sample 5000 test
instances (per experimental run) for evaluating kNN,
since predicting types on only one of the full five
partitions in Table 1 would take about 150 hours, which
is untenable, even if only strict type predictions (i.e.
assertions) are of interest.

7 CONCLUSION

In this article, we developed a framework for deriving
type embeddings in the same space as a given set
of entity embeddings. We devised a scalable data-
driven algorithm for inferring the type embeddings using
only the assertions in the ABox. We evaluated the
algorithm using the DBpedia ABox, against the DBpedia
TBox, by comparing to a competitive baseline that
infers type embeddings from scratch by re-executing the
RDF2Vec on the entire knowledge base. Visualizations
using the t-SNE algorithm illustrate the potential of the
method. Furthermore, we also applied the algorithm to a
probabilistic type recommendation task on five DBpedia
partitions. Compared to a kNN baseline, the algorithm
yields better results on various relevance criteria, and is
also significantly faster.

Future Work. There are many avenues for future
work that we have already started exploring. First, we
are using the methods in this article to embed entire
ontologies (collections of types and properties) into
vector spaces, to enable a combination of distributional
and ontological semantic reasoning. Second, we
are exploring more applications of embedded types,
such as an enhanced version of semantic search,
and semantically guided information extraction from

32

M. Kejriwal, P. Szekely: Scalable Generation of Type Embeddings Using the ABox

structured data. Last, but not least, we are conducting
broader empirical studies e.g. on datasets other
than DBpedia and using knowledge graph embeddings
other than the DeepWalk-based RDF2Vec to test the
robustness of our type embedding approach to such
variations. We are also testing the hypothesis that
deriving type embeddings from entity embeddings yields
higher quality typing than treating types as part of a
knowledge graph and jointly deriving entity and type
embeddings. We are also looking to carry out a broader
user study than the preliminary study in Application
Experiment 2.

REFERENCES

[1] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
and O. Yakhnenko, “Translating embeddings for
modeling multi-relational data,” in Advances in
neural information processing systems, 2013, pp.
2787–2795.

[2] D. Chen and C. D. Manning, “A fast and accurate
dependency parser using neural networks.” in
EMNLP, 2014, pp. 740–750.

[3] L. d. Corro, A. Abujabal, R. Gemulla, and
G. Weikum, “Finet: Context-aware fine-grained
named entity typing,” in Proceedings of the
Conference on Empirical Methods on Natural
Language Processing. Assoc. for Computational
Linguistics, 2015.

[4] G. Durrett and D. Klein, “A joint model for
entity analysis: Coreference, typing, and linking,”
Transactions of the Association for Computational
Linguistics, vol. 2, pp. 477–490, 2014.

[5] M. v. Erp and P. Vossen, “Entity typing using
distributional semantics and dbpedia,” in Under
Review, 2016.

[6] A. Gangemi, A. Nuzzolese, V. Presutti,
F. Draicchio, A. Musetti, and P. Ciancarini,
“Automatic typing of dbpedia entities,” The
Semantic Web–ISWC 2012, pp. 65–81, 2012.

[7] P. Groth, S. Pal, D. McBeath, B. Allen, and
R. Daniel, “Applying universal schemas for domain
specific ontology expansion,” Proceedings of
AKBC, pp. 81–85, 2016.

[8] S. Guo, Q. Wang, B. Wang, L. Wang, and
L. Guo, “Semantically smooth knowledge graph
embedding.” in ACL (1), 2015, pp. 84–94.

[9] M. Kejriwal and P. Szekely, “Supervised typing
of big graphs using semantic embeddings,” arXiv
preprint arXiv:1703.07805, 2017.

[10] S. Li, J. Zhu, and C. Miao, “Psdvec: A toolbox
for incremental and scalable word embedding,”
Neurocomputing, 2016.

[11] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu,
“Learning entity and relation embeddings for
knowledge graph completion.” in AAAI, 2015, pp.
2181–2187.

[12] U. Lösch, S. Bloehdorn, and A. Rettinger, “Graph
kernels for rdf data,” in Extended Semantic Web
Conference. Springer, 2012, pp. 134–148.

[13] Y. Ma, T. Tran, and V. Bicer, “Typifier: Inferring
the type semantics of structured data,” in Data
Engineering (ICDE), 2013 IEEE 29th International
Conference on. IEEE, 2013, pp. 206–217.

[14] L. v. d. Maaten and G. Hinton, “Visualizing
data using t-sne,” Journal of Machine Learning
Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[15] A. Melo, H. Paulheim, and J. Völker, “Type
prediction in rdf knowledge bases using
hierarchical multilabel classification,” in
Proceedings of the 6th International Conference
on Web Intelligence, Mining and Semantics, 2016.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of
words and phrases and their compositionality,”
in Advances in neural information processing
systems, 2013, pp. 3111–3119.

[17] H. Paulheim and C. Bizer, “Type inference on
noisy rdf data,” in International Semantic Web
Conference. Springer, 2013, pp. 510–525.

[18] J. Pennington, R. Socher, and C. D. Manning,
“Glove: Global vectors for word representation.”
in EMNLP, vol. 14, 2014, pp. 1532–43.

[19] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk:
Online learning of social representations,”
in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery
and data mining. ACM, 2014, pp. 701–710.

[20] C. E. Rasmussen, “The infinite gaussian mixture
model,” in Advances in neural information
processing systems, 2000, pp. 554–560.

[21] X. Ren, A. El-Kishky, C. Wang, F. Tao, C. R.
Voss, and J. Han, “Clustype: Effective entity
recognition and typing by relation phrase-based
clustering,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp.
995–1004.

[22] K. Riesen and H. Bunke, Graph classification
and clustering based on vector space embedding.
World Scientific Publishing Co., Inc., 2010.

33

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

[23] P. Ristoski and H. Paulheim, “Rdf2vec: Rdf graph
embeddings for data mining,” in International
Semantic Web Conference. Springer, 2016, pp.
498–514.

[24] J. Rosati, P. Ristoski, T. Di Noia, R. d. Leone, and
H. Paulheim, “Rdf graph embeddings for content-
based recommender systems,” in CEUR workshop
proceedings, vol. 1673. RWTH, 2016, pp. 23–30.

[25] M. Sahlgren, “The distributional hypothesis,”
Italian Journal of Linguistics, vol. 20, no. 1, pp.
33–54, 2008.

[26] J. Turian, L. Ratinov, and Y. Bengio, “Word
representations: a simple and general method
for semi-supervised learning,” in Proceedings
of the 48th annual meeting of the association
for computational linguistics. Association for
Computational Linguistics, 2010, pp. 384–394.

[27] Q. Wang, B. Wang, and L. Guo, “Knowledge base
completion using embeddings and rules.” in IJCAI,
2015, pp. 1859–1866.

[28] Z. Wang, J. Zhang, J. Feng, and Z. Chen,
“Knowledge graph embedding by translating on
hyperplanes.” in AAAI. Citeseer, 2014, pp. 1112–
1119.

[29] Y. Yaghoobzadeh and H. Schütze, “Corpus-
level fine-grained entity typing using contextual
information,” arXiv preprint arXiv:1606.07901,
2016.

AUTHOR BIOGRAPHIES

Mayank Kejriwal is a research
scientist at the Information
Sciences Institute, USC Viterbi
School of Engineering, and is
the corresponding author. He
graduated in 2016 with his PhD
from the University of Texas at
Austin. He has been actively
involved in researching, testing

and integrating machine learning and Semantic Web
applications in the Domain-specific Insight Graph (DIG)
architecture, most notably entity resolution, information
extraction, and entity-centric information retrieval.
DIG is widely used by US law enforcement agencies
to combat human trafficking. He is currently funded
under 3 DARPA projects, and is co-authoring a textbook
on knowledge graphs with Pedro Szekely and Craig
Knoblock.

Pedro Szekely is a Research
Associate Professor at ISI/USC.
He received his PhD from
Carnegie Mellon University
and is currently the principal
investigator on the DARPA
MEMEX program. His research
expertise is in rapid and robust
construction of domain-specific
knowledge graphs, for which he

has won multiple best paper awards from the Semantic
Web community.

34

	Introduction
	Motivation
	Related Work
	Graph Embeddings
	Entity Typing

	Approach
	Framework
	Generating Type Embeddings
	Theoretical Justification: Generative Type Model
	Model Validation

	Experiments
	Preliminaries
	Experiment 1: Clustering and Visualizing the Extensional Model
	Experiment 2: Probabilistic Typing of DBpedia Instances

	Proof-of-Concept Application: Type Recommendation
	Conclusion

