-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by RonPub -- Research Online Publishing

(© 2018 by the authors; licensee RonPub, Liibeck, Germany. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Research
online Open Journal of Internet of Things (OJIOT)
Publishing Volume 4, Issue 1, 2018

www.ronpub.com http://www.ronpub.com/ojiot
ISSN 2364-7108

Techniques for the Generation of
Arbitrary Three-Dimensional Shapes in
Tile-Based Self-Assembly Systems

Florian-Lennert Lau, Kristof Stahl, Stefan Fischer

Institute of Telematics, University of Liibeck, Ratzeburger Allee 160, 23562, Liibeck, Germany,
{lau,stahl,fischer } @itm.uni-luebeck.de

ABSTRACT

A big challenge in nanorobotics is the construction of nanoscale objects. DNA is a bio-compatible tool to reliably and
constructively create objects at the nanoscale. A possible tool to build nano-sized structures are tile-based self-assembly
systems on the basis of DNA. It is challenging and time-consuming to efficiently design blueprints for the desired objects.
This paper presents basic algorithms for the creation of tilesets for n X nxn-cubes in the aTAM model. Only few publications
focus on three-dimensional DNA crystals. Three-dimensional shapes are likely to be of more use in nanorobotics. We present
three variations: hollow cubes, cube-grids and filled cubes. The paper also presents a basic algorithm to create arbitrary,
finite, connected, three-dimensional and predefined shapes at temperature 1, as well as ideas for more efficient algorithms.
Among those are algorithms for spheres, ellipsoids, red blood cells and other promising designs. The algorithms and tilesets
are tested/verified using a software that has been developed for the purpose of verifying three-dimensional sets of tiletypes
and was influenced by the tool ISU TAS. Others can use the simulator and the algorithms to quickly create sets of tiletypes
for their desired nanostructures. A long learning process may thus be omitted.

TYPE OF PAPER AND KEYWORDS

Regular research paper: tile-based self-assembly, computational complexity, aTAM, nanodevices

1 INTRODUCTION TO NANOROBOTICS for nanorobots are based on DNA as a building block
[22]. In 2005 and 2006 Rothemund [20] and Seeman
[23] presented several nanoscale two-dimensional objects
that were assembled out of DNA. Since then, Akyldiz [1]
proposed nanonetworks as a design principle for nanoscale
computing/robotics. However, the actual implementation of
nanorobots still remains unclear to this day.

Sicknesses and injuries are among the oldest human
ailments. Many generations of alchemists and scientists tried
to find solutions to these problems. Nanotechnologies and
especially nanomedicine is the next logical step in the long
lasting search for a general cure.

In nanomedicine, nanorobots are often proposed for the
treatment of diseases in countless scenarios. Some concepts In [14], a 3D DNA-nanomachine has been realized and
tested in vivo. One of the basic components for the self-
This paper is accepted at the International Workshop on Very | assembly of DNA-crystals are DX-molecules (see Figure 1).
b s of Ty (7 20 1o oo i 0| T molecles cn b used for DNA compuing becase
VLIoT@VLDB 2018 are published in the Open Journal of Internet of | their open ends can interact with those of other molecules.
Things (OJIOT) as special issue. Other, three-dimensional building blocks have also been

126

https://core.ac.uk/display/304105826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot

FE-L. Lau et al.: Techniques for the Generation of Arbitrary Three-Dimensional Shapes in Tile-Based Self-Assembly Systems

W Q NI,./ i

Figure 1: The basic two-dimensional molecule that
enables the implementation of tile-based self-assembly
systems [6]

o1

realized. Few publications focus on three-dimensional DNA
crystals [28, 10, 9]. Since three-dimensional structures have
already been realized and due to a variety of applications, we
assume that the discipline will progress in the near future.

We focus on an alternative, DNA tile-based system, while
[28, 10] use a non-hierarchical approach. Additionally, the
growth of their structures in the third dimension is limited.
3D tile-based self-assembly systems have no such limitations
once the appropriate building blocks are available.

To tackle the problem of creating nanorobots, we present
an approach for the algorithmic construction of simple,
three-dimensional objects based on tiles. Since there are
no available tools to manipulate matter at the atomic scale,
it appears advantageous to use self-organization for the
assembly process. Our solution is based on the abstract Tile
Assembly Model (aTAM) from Eric Winfree [27].

The resulting DNA-based structures may be used to
shelter medical payload [14] (with DNA "keys" to open the
lid of a nanobox, e.g.) or serve as a “casing” to connect
components like batteries and circuits. They might also be
used to transport medical payload to a target location. Many
other practical scenarios are possible.

The rest of the paper is structured as follows. Section 2
explains the mathematical preliminaries for Tile Assembly
Systems. Section 3 shows an algorithm for different types
and sizes of cubes. Section 4 generalizes the basic algorithm
to arbitrary three-dimensional shapes. Section 5 analyzes
the algorithmic complexity of the algorithms and simulation
tools and Section 6 summarizes the paper and explains open
problems.

2 MODELLING PRELIMINARIES

Since there are numerous definitions for different
nanodevices, we introduce a formal definition for
the constructs the presented algorithms yield. In
new areas like nanonetworking, words like “nanobot”,
“nanorobot”,‘ ‘nanomachine” and “nanodevice” are often
used synonymously. Every person has a different concept

for the respective words. We also briefly define the required

Nanostructure Ng

Nanodevice Np

Nano-
sensor Ng.

a. " =

Nanorobot Nz

Figure 2: An overview of various nanostructures and
their relationships

terminology to understand Tile Assembly Systems.

In [5] Biither et al. introduced a hierarchy for
various nanodevices. Figure 2 depicts all formally defined
nanostructures.

The newly introduced term is nanostructures, denoting the
most primitive type of nanoscale constructs. Nanostructures
require no functional component other than a framework that
constitutes its physical appearance. They may be described
as a simple three-dimensional shape. Formally:

Definition 2.1. A nanostructure N's = Ky is a nanoscale,
artificial construct, designed to fulfill a predefined function
in an environment I". A nanostructure consists of 0 or more
optional components Ko, C {A,C,I,L,M,P,S,T}.

For the sake of this paper, we focus on nanostructures
in their most basic form, i.e., without any optional
components. The possible components are Actuation (A),
Computation (C), Information processing (1), Locomotion
(L), Memory (M), Power Supply (P), Sensor (S) and Time
(T). The Environment I" may be the human body. The
function of nanostructures might be the connection of the
aforementioned components.

In contrast, nanodevices require at least a power supply P.
Nanomachines additionally have an actuatory A component
to manipulate the environment. Nanosensors require a
sensory component S instead of an actuator. Nanorobots
are the most specific kind of nanomachine. They require
all previously mentioned components and locomotion L,
as well as information processing I and memory M.
Nanonodes require at least a power supply P and the ability
to communicate C.

The basic components for self-assembly systems are tiles

127

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Figure 3: An overlay of the DX-molecule and a
mathematical tile

[19]. The idea was originally introduced by Eric Winfree and
motivated by Wang [27, 25]. Since the available space in this
paper is very limited, we just give a very brief introduction
and refer to [19, 13] for a more detailed description of DNA-
based tile assembly. We use the notation of [11]. Tiles are
mathematical objects that can be implemented with DNA-
molecules. A tile may “fill” a cube in the three-dimensional
space. Tiles may have one or more glues of a certain
color attached to each side. Figure 3 explains how the DX-
molecule relates to abstract tiles. The sticky ends of the DNA
constitute the glues and their colors.

Only glues with the same color may form a stable binding
of two tiles. For the sake of modeling, we assume that there
is an unlimited supply of every tiletype (this is not true for the
constituting DNA molecules, but due to the limited size of
our desired constructs, it will not be a restriction). Tiles start
to randomly form bindings once a seed tile is introduced to
the medium. The process is illustrated in Figure 4. Figure 4a
shows an example set of tiletypes. The self-assembly process
starts with a seed-tile in step ag. In every following step,
exactly one tile is added to the assembly. As depicted, the
glue strength (the number of black blocks next to the tiles)
and the glue labels (the character next to the black blocks)
match. The label in the middle can be used for computation.

A Tile Assembly System (TAS) has a temperature 7. The
temperature describes how many glues are required to stably
attach two tiles to each other. A stable composite of tiles is
called an assembly. In this paper, we focus on temperature 1
systems. Most TAS only use two dimensions for simulation.
Two-dimensional systems are already capable of universal
computation at temperature 2 [4]. Since we are only

-

ﬁ

(a) The set of tiletypes that is used in
the following assembly sequence

ely

Figure 4: An exemplary assembly sequence of four tiles

interested in the geometrical aspect of tile assemblies, we
conclude that three-dimensional tiles are of interest and
focus on these in all simulations. We already introduced a
related approach in [13].

We determined a set of geometrical shapes which are of
special interest. Cubes, spheres, ellipsoids, tubes, rectangles
and biconcave, flat ellipsoids (erythrocytes) appear useful for
in-body application. In the following, we derive algorithms
that create sets of tiletypes for the mentioned structures of
adjustable sizes.

3 AN ALGORITHM FOR n X n X n-CUBES

In this section we present an algorithm that generates sets
of tiletypes for different variations of cubes of arbitrary size
automatically. The algorithm takes a cube size as an input
and outputs a set of tiletypes that assembles the desired
shape.

Medical scenarios are among the most prominent areas of
application for Nanorobots (e.g. [7, 8, 24]). Experimental
research from [2, 15] generated a cube with a controllable
lid. It may be used to shelter medical payload from
the chemical environment inside the target region. With
this level of control, it might be possible to locally apply
medication. Through targeted application, the required
dosage of medicine may be drastically reduced. The

128

FE-L. Lau et al.: Techniques for the Generation of Arbitrary Three-Dimensional Shapes in Tile-Based Self-Assembly Systems

side-effects of medication might also be reduced, since
fewer areas of the body are exposed to the substance. In
[12], we analyzed numerous medical scenarios. Since
medical payload comes in many shapes, vessels of different,
adjustable sizes are of interest. Cubes are especially useful,
since they are symmetrical and thus efficient to build.

Cubes have already been assembled in DNA-based tile
assembly systems [2, 3, 15]. Most of these structures
have been designed manually in a complicated process.
We present an algorithm that automatically creates a set
of tiletypes for either hollow, framed or filled cubes of
adjustable size. In the then following engineering step, at
least one tile of each of these tiletypes has to be created.
Adding the tiles to a shared medium then leads to the
automatic self-assembly of the desired structure. The
process is hierarchical. In a first step, the components are
created, in a second step they are introduced to a medium
and self-assemble into the desired structures.

The basic idea behind the algorithm is the creation of a
distinct tiletype for every position in the defined cube. This
procedure allows for fewer errors, since only one possible
tile exists for every position in an assembly, i.e., every tile
does only fit in exactly one position. As stated above,
the number of possible different tiletypes based on DNA
molecules is comparably large, thus this property of the
algorithm is no restriction for us, since we are only interested
in very small constructs.

Algorithm 1 displays the computational steps for creating
cube tiletypes in pseudocode. In three nested loops, we
consider every possible position of a cube. Lines 9 to 11
store in parameter ¢ whether the current position is an inner
position (¢ = 0), a wall position (¢ = 1), an edge position
(¢ = 2) or a cornerstone position (¢ = 3). The parameter p
then controls which position requires a tile. For a parameter
p = 0 Algorithm1 creates a solid n X n X n cube, since
every position is filled. Varying the parameter reduces the
filling. For p = 1 the cube is hollow and for p = 2 the cube
is just a frame, without even the side walls (only edge and
cornerstone tiles).

For every position at which a tile should be placed, we
add another tiletype to the output (Line 13). The resulting
set of tiletypes may then be simulated in an aTAM simulator
which supports three-dimensional tiles. Figure 5 shows a
simulation for the set of tiletypes for a 10 x 10 x 10 hollow
cube in three different stages and thus depict the assembly
progress. The different (randomly assigned) colors visualize
the different tiletypes. The glues themselves were omitted,
since they are unique for every position. Every tile has a
maximum of one glue on each side.

Cubes are limited structures which do not—or only very
rarely—naturally appear inside of the human body. While
they are the simplest 3D structure most can imagine, they
lack qualities required for efficient transportation inside the
human bloodstream. Even the intercellular space is a unique

(a) Start building a 10 x 10 x 10
hollow cube

(b) The 10 x 10 x 10 cube with a
corner still missing

(c) The fully assembled 10 x 10 x 10 hollow cube

Figure 5: A hollow cube with an edge length of ten
is assembled in the aTAM simulation. The simulation
is not interactive so three instances were run with the
same algorithm. Different coloring is due to a random
assignment of colors to tiletypes when displaying.

environment with challenges a cube is probably not optimal
for. Therefore, we propose different structures which are
probably better applicable in the following section.

4 AN ALGORITHM FOR ARBITRARY
PREDEFINED THREE-DIMENSIONAL SHAPES

For the creation of arbitrary three-dimensional shapes, we
generalized the idea from Algorithm 1. The resulting
algorithm can create sets of tiletypes for any given shape. It
is also designed for temperature 1 systems. Every tiletype
is used exactly once. Since more efficient algorithms
exploit symmetries in geometrical figures, a generic (shape-
agnostic) algorithm cannot be improved to require less
tiletypes, in general. This approach always works, but
requires the maximum possible amount of tiletypes. We
chose temperature 1 systems for the sake of simplicity. They

129

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

require few additional tiles that are not part of the main
assembly. E.g., efficiently assembled squares are based on
a binary counter, limiting their growth.

Due to biological limitations with DNA, we consider
the number of possible glues in a TAS limited. Once the
DNA strands that constitute the glues are too long, they
become more prone to binding with wrong counterparts.
We therefore assume that only a constant number k of
glues and thereby a constant number of tiles is reasonably
implementable.

To assemble big shapes nevertheless, we could use
efficient sets of tiletypes that can, e.g., assemble squares with
less than O(n) tiletypes. Very good algorithms may be able
to generate cubes with only O(nlog(n)) tiletypes required,
or even less [21]. The algorithm for cubes is special, since it
offers different variations of the same shape. In general, not
every geometrical figure has a “frame” or a “core” that can
be displayed separately. We therefore omitted any specific
component for the generalized version of the basic general
algorithm.

Algorithm 2 takes a finite subset of points from the R?
as input. The input structure has to be fully connected.
Every cube in the structure has to have at least one direct
neighbor in the cardinal directions, as well as above or below.
The algorithm then outputs a set of tiletypes for the desired
shape. The connectedness-constraint is due to limitations in
the aTAM definition.

Figure 6 displays an example application of
the generalized algorithm on a voxel-based sphere
approximation of radius four. The sphere itself is hollow, as
Figure 6b shows. Spheres are naturally occurring structures
that might be better suited for moving fluid environments
than cubes. They equally distribute pressure from the
outside along the whole surface of the shape. The other
desired shapes—Ilike ellipsoids or rectangles—may also be
assembled as voxel-approximations like the sphere.

We believe that temperature 1 systems suffice for many
practical cases and proofs of concept. The idea is to build
“nanoscale” constructs. Very efficiently assembled cubes
might very well be of micrometers in size. More efficient
algorithms are the subject of future work. The algorithm
which generates the sets of tiletypes is rather efficient due
to its simplicity. The simulator which verifies the output
structures on the other hand tends to be slower. Therefore,
we analyze the runtime and correctness of the developed
software and algorithms.

5 EVALUATION OF SIMULATOR AND
ALGORITHMS

The software we developed consists of three major parts,
namely (i) a generator implementing algorithms for the
synthesis of sets of tiletypes, (ii) the simulation software
which verifies the algorithms, and (iii) a component

Algorithm 1: Algorithm to create a set of tiletypes
that generates a cube of a given edge length

[T N N S

-
-

—
w N

14

15

16

Data: Edge length n, some parameter p
Result: Set of tiletypes T’

z:=0
y:=0
z:=0
T:=0
while x < n do
while y < n do
while z < n do
c:=0
fori € {z,y,2} do

ifi =0V i=mn—1then

Lc::c—kl
if ¢ > p then
T:=TU

{createPositionTiletype(z, y, z,1)}

z:=z+1

L y=y+1

gx::xﬁ—l

Algorithm 2: Algorithm to create a set of tiletypes
which generates a given shape in a Tile Assembly
Model

e % U R W N =

10

11

12

Data: A boolean array shape with three dimensions

of max lengths n, m, o

Result: Set of tiletypes T’

x:
Yy
A

T

=0
=0
=0
=0

while z < n do

while y < m do
while z < o do
if shape, , . then

T:=TU
{createPositionTiletype(z,y, z,1)}

z:=z+1

L y=y+1
rz:i=xz+1

130

E-L. Lau et al.: Techniques for the Generation of Arbitrary Three-Dimensional Shapes in Tile-Based Self-Assembly Systems

(a) A full hollow sphere produced by the
methods for generating arbitrary coherent
shapes in the simulator

(b) The hollow sphere from a different angle
shown with a hole to verify the Assembly

Figure 6: Simulation of the TAS introduced by
Algorithm 2. This creates a sphere with radius eight.

which generates a three-dimensional representation of the
assembled structure. We analyze the three parts separately
in the following paragraph. We analyze both correctness and
runtime.

e The tiletype generator for the 3D aTAM is based
on the ISU TAS software [17]. The software
implements the mathematical model of Winfree’s
aTAM rigorously, thus it is working as intended. The
previously two-dimensional mathematical objects have
been generalized to three dimensions, while keeping
the desired behavior intact. To verify the functionality,
we tested the software with various sets of tiletypes
that have already been evaluated in other papers. Two
examples are binary counters and a version of the
Sierpinsky Triangle [18]. The sets of tiletypes were
modified to fit the 3D context.

Figure 7 shows the result after several hundred
iterations. Only two dimensions were used for
the assembly process. The functionality in three
dimensions has been verified with algorithms for cubes
as displayed in Figure 5.

The synthesis of the set of tiletypes is dependent on
the underlying function used to determine the used
positions for the resulting shape. To create each
tiletype, only O(1) calculations occur. When using
a naive approach to determine the positions that are
occupied by tiles, O(n?) calculations are necessary.
The input size n is the biggest size in all of the three

Figure 7: Proof of concept assembly of the Sierpinsky
Triangle

dimensions of the given shape. The resulting runtime
of the tiletype generation is thus O(n3). To further
improve the runtime, the possible next tiles for every
position of the grid may be stored in a d-tree.

e The simulation software is slower than the tileset
generation'. In every step of the assembly process,
one tile is added to the assembly. Since we are only
interested in finite structures, the number of required
steps is also denoted by n. The possible positions where
a tile may be added are kept in a list. The runtime
thus depends on the size of the list of possible positions
or frontier and the number of steps and generally the
number of possible tiles for a position, which is always
one in our case. All presented cases are limited by n.
The resulting runtime is limited by O(n?).

e The component for the graphical representation
requires O(n) steps.

Since all three steps are independent of each other, the total
runtime is limited by O(n3) and the software works as
intended.

Figure 8 shows the required time for the synthesis of the
set of tiletypes for cubes of various sizes?. The JVM induces
overhead due to garbage collection and allocation when the
problem instance increases in size. As an example, the run-
time values jump between 2.5 seconds and 8§ seconds when
the cubes edge length grows larger than 400. Additionally,
the PC uses a variable CPU clock and is able to increase
the calculation frequency if more calculations are required
to save energy when running idle.

! The tileset generation’s n represents the biggest length in the z,y or Z
dimension, while the simulations’ n represents the number of tiles in a
nanostructure.

2 The JVM used was OpenJDK version 1.8.0_144 64-Bit Server VM (build
25.144-b01, mixed mode).

131

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

@ Tileset gen.
inms
e 113 | 1000

Generation for different cube sizes

14000

12000

10000

8000

6000

Runtime in ms

4000

2000

0
0 100

200

300 400 500 600

Cube edge length (n)

Figure 8: Assembly runtime of cubes of different sizes
with respect to the edge length

6 CONCLUSION

The algorithms and the simulator itself have been tested.
Both represent first sound steps in the process of
automatically designing architectures for nanostructures or
more specific nanoscale machines/robots. Other algorithms
for better geometrical objects will be introduced in the future
and tested in both the aTAM simulator and a more realistic
version (the KTAM [27]) which is still in development.

Algorithm 2 is a generalized procedure to generate any
connected shape in form of a set of tiletypes. Algorithm 1
exploits symmetries in shapes like squares or cubes to
generate variations of the basic structure of arbitrary size.
Algorithms for specific shapes may be more efficient than
general versions.

The simulation software implements Winfree’s aTAM
model and is capable of verifying the assembly process of
sets of tiletypes. Unlike Xgrow of ISU-TAS [26, 16] the
implemented software is capable of simulating growth in
three dimensions.

Possible future research focuses on the following aspects:

e Generating efficient algorithms for more complex
structures, like red blood cell-like shapes or simple
spheres/cubes.

e Increasing the efficiency of algorithms for cubes
and rectangles by applying known results from two-
dimensional structures.

e Implementing another simulation tool capable of both
respecting errors with DNA implementations and using
three-dimensional tiles.

e Implementing error-correction measures for arbitrary
shapes in the kKTAM model.

e Developing a modular principle to generate
complex architectures for nanostructures from basic
components.

e Defining assembly sequences that prohibit growth of
“outer” structures before the “inner” structures are
finished.

The often complicated process of designing the tilesets
of three-dimensional shapes of specific sizes may now be
partly automated. The user simply has to supply a binary
description of the target shape and receives the desired
output. Only the design of the actual DNA implementation
is still necessary.

REFERENCES
[1] I. F. Akyildiz, F. Brunetti, and C. Blazquez,
“Nanonetworks: A new communication paradigm,’

Computer Networks, vol. 52, no. 12, pp. 2260-2279,
2008.

E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn,
R. Subramani, W. Mamdouh, M. M. Golas, B. Sander,
H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal,
F. Besenbacher, K. V. Gothelf, and J. Kjems, “Self-
assembly of a nanoscale DNA box with a controllable
lid,” Nature, vol. 459, no. 7243, pp. 73-76, 2009.

F. Becker, E. Remila, and N. Schabanel, “Time
optimal self-assembly for 2d and 3d shapes: The
case of squares and cubes,” in DNA Computing: 14th
International Meeting on DNA Computing, Prague,
Czech Republic, June 2-9. Springer Berlin Heidelberg,
2009, pp. 144-155.

R. Berger, The undecidability of the domino problem,
ser. Memoirs ; No 1/66. American Mathematical
Society, 1966.

F. Biither, F.-L. Lau, M. Stelzner, and S. Ebers, “A
formal definition for nanorobots and nanonetworks,”
in 17th International Conference on Internet of Things,
Smart Spaces, and Next Generation Networks and
Systems, O. Galinina, S. Andreev, S. Balandin, and
Y. Koucheryavy, Eds., St. Petersburg, Russia, August
28-30, 2017, pp. 214-226. [Online]. Available:
https://doi.org/10.1007/978-3-319-67380-6_20

M. Chengde, “Basic DNA structures for self-assembly
(c) a DNA DX.,” 2004. [Online]. Available: https://en.
wikipedia.org/wiki/File:Mao-DX-schematic-2.svg

D. C. Ferreira, L. P. Reis, and N. V. Lopes, “A
nanocommunication system for endocrine diseases,”’
Cluster Computing, pp. 1-18, 2017.

(5]

(7]

132

https://doi.org/10.1007/978-3-319-67380-6_20
https://en.wikipedia.org/wiki/File:Mao-DX-schematic-2.svg
https://en.wikipedia.org/wiki/File:Mao-DX-schematic-2.svg

FE-L. Lau et al.: Techniques for the Generation of Arbitrary Three-Dimensional Shapes in Tile-Based Self-Assembly Systems

(8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

R. A. Freitas, “Current status of nanomedicine and
medical nanorobotics,” Journal of Computational and
Theoretical Nanoscience, vol. 2, no. 1, pp. 1-25, 2005.

Y. Ke, L. L. Ong, W. M. Shih, and P. Yin,
“Three-dimensional structures self-assembled from
dna bricks,” science, vol. 338, no. 6111, pp. 1177-
1183, 2012.

Y. Ke, L. L. Ong, W. Sun, J. Song, M. Dong, W. M.
Shih, and P. Yin, “Dna brick crystals with prescribed
depths,” Nature chemistry, vol. 6, no. 11, p. 994, 2014.

J. 1. Lathrop, J. H. Lutz, and S. M. Summers,
“Strict self-assembly of discrete sierpinski triangles,”
in Computation and Logic in the Real World: Third
Conference on Computability in Europe, S. B. Cooper,
B. Lowe, and A. Sorbi, Eds., Siena, Italy, June 18-23,
2007, pp. 455-464.

F. Lau, F. Biither, and B. Gerlach, “Computational
requirements for Nano-Machines: there is limited
space at the bottom,” in 4th ACM International
Conference on Nanoscale Computing and
Communication, Washington DC, USA, Aug 2017.

F. Lau and S. Fischer, “Embedding space-
constrained quantum-dot cellular automata in three-
dimensional tile-based self-assembly systems,” in
4th ACM International Conference on Nanoscale
Computing and Communication (ACM NanoCom’17).
Washington DC, USA: ACM, Aug 2017.

S. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian, C. Song,
J. Wang, Y. Zou, G. Anderson, J. Han, Y. Chang, Y. Liu,
C. Zhang, L. Chen, G. Zhou, G. Nie, H. Yan, B. Ding,
and Y. Zhao, “A dna nanorobot functions as a cancer
therapeutic in response to a molecular trigger in vivo.”
Nature Biotechnology, vol. 36, no. 5, pp. 258-264,
2018.

K. Ming-Yang and V. Ramachandran, “DNA self-
assembly for constructing 3D boxes,” in Algorithms
and Computation: 12th International Symposium,
P. Eades and T. Takaoka, Eds., Christchurch, New
Zealand, December 19-21, 2001, pp. 429-441.

M. J. Patitz, “Isu tas, accessed
3. March 2018 URL: http://self-
assembly.net/wiki/index.php?title=ISU_TAS.

Lt}

M. J. Patitz, “Simulation of self-assembly in the
abstract tile assembly model with ISU TAS,” CoRR,
vol. abs/1101.5151, 2011.

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

133

M. J. Patitz, “An introduction to tile-based self-
assembly and a survey of recent results,” Natural
Computing, vol. 13, no. 2, pp. 195-224, 2014.

M. J. Patitz, “An introduction to tile-based self-

assembly,” in Proceedings of the 1Ith International
Conference on Unconventional Computation and

Natural Computation, J. Durand-Lose and N. Jonoska,
Eds., Orléan, France, September 3-7, 2012, pp. 34-62.

P. W. K. Rothemund, “Folding dna to create nanoscale
shapes and patterns,” Nature, vol. 440, no. 7082, pp.
297-302, Mar 2006.

P. W. K. Rothemund and E. Winfree, “The program-
size complexity of self-assembled squares (extended
abstract),” in Proceedings of the Thirty-second Annual
ACM Symposium on Theory of Computing. ACM,
2000, pp. 459-468.

N. C. Seeman, “Nucleic acid junctions and lattices,”
Journal of Theoretical Biology, vol. 99, no. 2, pp. 237
—247,1982.

N. C. Seeman, “Structural DNA nanotechnology: An
overview,” Methods Mol Biol, vol. 303, pp. 143-166,
2005.

M. Stelzner, F.-L. Lau, K. Freundt, F. Biither, M. L.
Nguyen, C. Stamme, and S. Ebers, “Precise detection
and treatment of human diseases based on nano
networking,” in 11th International Conference on Body
Area Networks, Turin, Italy, December 2016.

H. Wang, “Dominoes and the aea case of the decision
problem,” in Computation, Logic, Philosophy: A
Collection of Essays. Springer Netherlands, 1990, pp.

218-245.
E. Winfree, R. Schulman, and C. Evans,
“Xgrow,” accessed 3. March 2018 URL:

http://www.dna.caltech.edu/Xgrow/.

E. Winfree, “Simulations of computing by self-
assembly,” University of Pennsylvania, 1998.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E.
Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman,
“From molecular to macroscopic via the rational
design of a self-assembled 3d dna crystal,” Nature,
vol. 461, no. 7260, pp. 74-77, Sep 2009. [Online].
Available: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2764300/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764300/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764300/

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

AUTHOR BIOGRAPHIES

Stefan Fischer was born June
13th, 1967. He received his
Diploma in Information Systems
in 1992 at the University of
Mannheim. He received his
doctoral degree in Computer
Science in 1996 supervised by
Prof. Dr. Wolfgang Effelsberg
at University of Mannheim.
He was Assistant Professor for
Kristof Stahl was born Feburary Information Technology from 1998
24th, 1990 in Pinneberg, Germany. to 2001,International University
He received his B.Sc in computer i Germany, Bruchsal. From Sept. 2001 to Oct. 2004
science in 2015 and his M.Sc. in he was Associate Professor for Computer Science at TU
2018 respectively at the University = Braunschweig and since Nov. 2004: Full Professor at

Florian Lau was born March 21th,
1990 in Liibeck, Germany. He
received his B.Sc in computer
science in 2013 and his M.Sc.
in 2015 respectively. He is
currently a phd student at the
university of Liibeck. His work
is focused on DNA-based self-
assembly systems.

of Liibeck. He is currently University of Liibeck, Germany
working for Ferchau Engineering

doing analysis, specification,

implementation, documentation

and testing in hard-/software

development.

134

	Introduction to Nanorobotics
	Modelling Preliminaries
	An Algorithm for n n n-Cubes
	An Algorithm for Arbitrary Predefined Three-Dimensional Shapes
	Evaluation of Simulator and Algorithms
	Conclusion

